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I. P. BLAZHIEVSKA

ON ASYMPTOTIC BEHAVIOR OF THE ERROR TERM IN
CROSS-CORRELOGRAM ESTIMATION OF RESPONSE FUNCTIONS

IN LINEAR SYSTEMS

The problem of estimation of an unknown response function of a linear system with
inner noises is considered. We suppose that the response function of the system
belongs to L2(�). Integral-type sample input-output cross-correlograms are taken
as estimators of the response function. The inputs are supposed to be zero-mean
stationary Gaussian processes that are close, in some sense, to a white noise. Both
the asymptotic normality of finite-dimensional distributions of the normalized error
term in the cross-correlogram estimation and the asymptotic normality in the space
of continuous functions are discussed.

1. Introduction

We consider a time-invariant casual continuous linear Volterra system with inner noises
and a response function H = (H(τ), τ ∈ R). This means that the real-valued function
H satisfies the condition H(τ) = 0, τ < 0, and the response of the system to an input
process X(t), t ∈ R, has the form

(1) U(t) =
∫ ∞

0

H(τ)X(t− τ) dτ + Z(t), t ∈ R,

where the process Z(t), t ∈ R, describes inner noises of the system.
Let us focus on the problem of estimation of the unknown function H by observations

of responses of the system to certain input signals. To solve this problem, a lot of de-
terministic methods exist, as well as statistical approaches. The latter are based on a
perturbation of the system by stationary stochastic processes and the further analysis
of some characteristics of both input and output processes [3, 5, 13]. For the estima-
tion of the stability or instability of the system, the methods of periodograms or cross-
correlograms may be useful (see [1, 4] or [6, 9], respectively). In the cross-correlogram
method, the sample correlograms between input and output processes are taken as es-
timators for H . Such an approach is suitable, when the input process is close, in some
sense, to the Gaussian white noise ([8], [10]–[12]).

In work [7], we used the method of integral-type correlograms for the estimation of
the response function H ∈ L2(R). Both the asymptotic normality of finite-dimensional
distributions of the centered estimators and their asymptotic normality in the space of
continuous functions were studied.

This paper continues the research started in [7] and contains the final results about the
asymptotic normality of the normalized error term in the cross-correlogram estimation
of H .
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2. Preliminaries

Assume that XΔ = (XΔ(t), t ∈ R), Δ > 0, is a family of measurable real-valued
stationary zero-mean Gaussian processes that disturb system (1). Let fΔ = (fΔ(λ), λ ∈
R), Δ > 0, be a family of spectral densities of the processes XΔ. We suppose that these
functions are nonnegative and continuous and satisfy the conditions

(2a) fΔ(λ) = fΔ(−λ), λ ∈ R;

(2b) sup
Δ>0

‖fΔ‖∞ <∞;

(2c) fΔ ∈ L1(R);

(2d) ∃c ∈ (0,∞) ∀a ∈ (0,∞) : lim
Δ→∞

sup
−a≤λ≤a

∣∣∣fΔ(λ) − c

2π

∣∣∣ = 0;

(2e) KΔ ∈ L1(R),

where KΔ(t) =
∫∞
−∞ eiλtfΔ(t) dt, t ∈ R, is the correlation function of XΔ.

By (1), the reaction of the system to an input signal XΔ is represented by

(3) UΔ(t) =
∫ ∞

0

H(τ)XΔ(t− τ) dτ + Z(t), t ∈ R.

We assume that the inner noise (Z(t), t ∈ R) is a separable real-valued stationary zero-
mean Gaussian process which is orthogonal to XΔ; that is, EXΔ(s)Z(t) = 0, s, t ∈ R.

Let (g(λ), λ ∈ R) be the spectral density of the process Z. It is a nonnegative
measurable function which satisfies the conditions

(4a) g(λ) = g(−λ);

(4b) g ∈ L1(R).

The so-called cross-correlogram (or the sample cross-correlation function)

(5) ĤT,Δ(τ) =
1
cT

∫ T

0

UΔ(t+ τ)XΔ(t) dt, τ ≥ 0,

will be used as an estimator for H. Here, c is the constant from (2d), and T is the length
of the averaging interval. The integrals in (3) and (5) are interpreted as a mean square
Riemann integrals.

Generally speaking, for all T > 0,Δ > 0, and τ ≥ 0,

H(τ) 
= EĤT,Δ(τ) =
1
c

∫ ∞

−∞
KΔ(τ − s)H(s) ds,

that is, the estimator ĤT,Δ is biased.
Consider the normalized error term

(6) ŴT,Δ(τ) =
√
T [ĤT,Δ(τ) −H(τ)], τ ≥ 0.

The further results deal with asymptotic properties of ŴT,Δ = (ŴT,Δ(τ), τ ≥ 0) as the
parameters T,Δ tend to infinity. Let us represent (6) as the sum

(7) ŴT,Δ(τ) = AT,Δ(τ) +BT,Δ(τ), τ ≥ 0,

where

(8) AT,Δ(τ) =
√
T
[
ĤT,Δ(τ) −EĤT,Δ(τ)

]
;

(9) BT,Δ(τ) =
√
T
[
EĤT,Δ(τ) −H(τ)

]
.
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From (7), the asymptotic properties of the process ŴT,Δ are characterized by properties
of the stochastic process AT,Δ = (AT,Δ(τ), τ ≥ 0) and the function BT,Δ = (BT,Δ(τ), τ ≥
0) as T,Δ tend to infinity.

Now we eliminate the dependence of BT,Δ in the representation of ŴT,Δ. For this
purpose, note some conditions on the order of local smoothness of H and the character
of tending T,Δ to infinity (see [8]).

Let α ∈ (0, 1]. We say that H ∈ Lipα[0,∞), if there exist constants δ > 0 and M > 0
such that

∀t, s ≥ 0 ∃δ > 0 : |t− s| < δ ⇒ |H(t)−H(s)| < M |t− s|α.
(That is, H is uniformly on [0,∞) satisfies the Lipschitz condition with index α.)

Example 2.1. (A) Let H(τ) = cosμτ
(1+τ)β , τ ≥ 0, where μ > 0 and β ∈

(
0, 1

2

)
. Then

H ∈ Lip1[0,∞) ∩ L2(R) (here, the Lipschitz constant M = μ + β), and its Fourier–
Plancherel transform has the form

H∗(λ) =

{
1
2

[
e−i(λ+μ)

∫∞
1

ei(λ+μ)τ

τβ dτ + e−i(λ−μ)
∫∞
1

ei(λ−μ)τ

τβ dτ

]
, λ 
= ±μ,

+∞, λ = ±μ.
(B) Let H(τ) = 1

1+τ , τ ≥ 0. Then H ∈ Lipα[0,∞) ∩ L2(R) for

α ∈ (0, 1] (here, Lipschitz constant M =
(

1−α
1+α

) 1
1−α

for α ∈ (0, 1) or M = 1 for α = 1,
respectively), and its Fourier–Plancherel transform has the form

H∗(λ) =

{
e−iλ

∫∞
1

eiλτ

τ dτ, λ 
= 0,
+∞, λ = 0;

(C) Let H(τ) = 1+τ
1+τ2 , τ ≥ 0. Then H ∈ Lipα[0,∞) ∩ L2(R) for α ∈ (0, 1]

(here, the Lipschitz constant M = ‖ 1−2x−x2

(1+x2)2 ‖ 1
1−α

for α ∈ (0, 1) or M = 2 1
4 for α = 1,

respectively), and its Fourier-Plancherel transform has the form

H∗(λ) =

{ ∫∞
0
eiλτ 1+τ

1+τ2 dτ, λ 
= 0,
+∞, λ = 0.

Given α ∈ (0, 1]. Assume that T →∞,Δ→∞ in such a way that

(10a)
√
T
[
1− 2πfΔ(0)

c

]
→ 0;

(10b) ∀δ > 0 :
√
T

∫ ∞

δ

KΔ(t) dt→ 0;

(10c) ∀δ > 0 : T
∫ ∞

δ

K2
Δ(t) dt→ 0;

(10d) ∃δ > 0 :
√
T

∫ δ

−δ
|KΔ(t)||t|α dt→ 0.

Example 2.2. Let α ∈ (0, 1] and H ∈ Lipα[0,∞) ∩L2(R). The spectral densities fΔ and
the correlation functions KΔ of the processes XΔ are

(A) fΔ =
(
c

2π exp
(
−λ2

Δ

)
, λ ∈ R

)
and KΔ =

(
c
2

√
Δ
π exp

(
− Δt2

4

)
, t ∈ R

)
;

(B) fΔ =
(
c
2π

Δ
Δ+λ2 , λ ∈ R

)
and KΔ =

(
c
√

Δ exp
(
−√Δt

)
, t ∈ R

)
,



8 I. P. BLAZHIEVSKA

and satisfy conditions (2a) - (2e) and (10a) - (10d), if T → ∞,Δ → ∞ in such a way
that

TΔ−α → 0.

Further, we will use the following assertion (see [8]):

Lemma 2.1. Let α ∈ (0, 1]; H ∈ Lipα[0,∞) ∩ L2(R) and T → ∞,Δ → ∞ in such a
way that conditions (10a) - (10d) hold true. Then
(i) ∀τ ≥ 0 BT,Δ(τ) → 0;
(ii) ∀a > 0 sup

τ∈[0,a]

|BT,Δ(τ)| → 0.

In work [7], it was shown that if H ∈ L2(R) and g ∈ L1(R), then the correlation
function of AT,Δ for any τ1, τ2 ≥ 0 has the form

(11) EAT,Δ(τ1)AT,Δ(τ2) =
2π
c2

∫ ∞

−∞

∫ ∞

−∞

[
ei(τ1−τ2)λ2

(|H∗(λ2)|2fΔ(λ2) + g(λ2)
)
+

+ei(τ1λ1+τ2λ2)H∗(λ1)H∗(λ2)fΔ(λ2)
]
ΦT (λ2 − λ1)fΔ(λ1) dλ1dλ2,

where ΦT is the Fejer kernel; that is,

ΦT (λ) =
1

2πT

(
sin(Tλ/2)

λ/2

)2

, λ ∈ R,

and H∗ is the Fourier-Plancherel transform of H in L2(R).
The limit C∞(τ1, τ2) of correlation function from (11) as T,Δ→∞ has the following

form:

(12) C∞(τ1, τ2) = lim
T,Δ→∞

EAT,Δ(τ1)AT,Δ(τ2) =

=
1
2π

∫ ∞

−∞

[
ei(τ1−τ2)λ

(
|H∗(λ)|2 +

2π
c
g(λ)

)
+ ei(τ1+τ2)λ(H∗(λ))2

]
dλ.

3. Asymptotic behavior of the correlation function of ŴT,Δ

In this section, we consider the asymptotic behavior of the correlation function of
ŴT,Δ as T and Δ tend to infinity.

Theorem 3.1. Assume that g ∈ L1(R); for some α ∈ (0, 1], the response function
H ∈ Lipα[0,∞) ∩ L2(R) and T → ∞,Δ → ∞ in such a way that conditions (10a) -
(10d) are satisfied. Then the relation

EŴT,Δ(τ1)ŴT,Δ(τ2)→ C∞(τ1, τ2)

holds for all τ1, τ2 ≥ 0.

Proof. The statement of Theorem 3.1 follows immediately from the representation

EŴT,Δ(τ1)ŴT,Δ(τ2) = BT,Δ(τ1)BT,Δ(τ2) + EAT,Δ(τ1)AT,Δ(τ2),

Lemma 2.1 (part (i)), and formula (12). �
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4. Asymptotic normality of finite-dimensional distributions of ŴT,Δ

Theorem 3.1 demonstrates that the function C∞ defined in (11) is positive semi-
definite on [0,∞) × [0,∞). So, there exists a zero-mean real-valued Gaussian process
A = (A(τ), τ ≥ 0) with the correlation function C∞; that is,

EA(τ1)A(τ2) = C∞(τ1, τ2).

Without loss of generality, we assume that the process A is defined on the same proba-
bility space {Ω,F,P} as the processes AT,Δ and ŴT,Δ.

Theorem 4.1. Assume that g ∈ L1(R); for some α ∈ (0, 1], the response function
H ∈ Lipα[0,∞) ∩ L2(R) and T → ∞,Δ → ∞ in such a way that conditions (10a) -
(10d) are satisfied. Then the relation

(13) E

⎡⎣ m∏
j=1

ŴT,Δ(τj)

⎤⎦→ E

⎡⎣ m∏
j=1

A(τj)

⎤⎦
holds for any m ∈ N and any τ1, ..., τm ≥ 0.

In particular, all finite-dimensional distributions of the process (ŴT,Δ(τ), τ ≥ 0) con-
verge weakly to the corresponding finite-dimensional distributions of the Gaussian process
(A(τ), τ ≥ 0) by the given character of tending T and Δ to infinity.

Remark 4.1. Theorem 4.1 refines results of [8] (see Theorem 3). To show that the
analogous statements hold true, some additional assumptions on the Fourier–Plancherel
transformation of the response function H are required, namely: 1) H∗ ∈ L1(R) ∩
L∞(R); 2) H∗ is continuous almost everywhere on R.

Proof. From representation (7), it follows that

E

⎡⎣ m∏
j=1

ŴT,Δ(τj)

⎤⎦ = E
1∑

k1=0,k2=0,...,km=0

⎡⎣ m∏
j=1

A
kj
T,Δ(τj)B

1−kj
T,Δ (τj)

⎤⎦ =

=
1∑

k1=0,k2=0,...,km=0

⎡⎣E
m∏
j=1

A
kj
T,Δ(τj)

⎤⎦ m∏
j=1

B
1−kj
T,Δ (τj).

By the given character of tending T and Δ to infinity, the last formula together with
Lemma 2.1 (part (i)) and Theorem 4.1 [7] yield

E

⎡⎣ m∏
j=1

ŴT,Δ(τj)

⎤⎦→ E

⎡⎣ m∏
j=1

AT,Δ(τj)

⎤⎦→ E

⎡⎣ m∏
j=1

A(τj)

⎤⎦
for any m ∈ N and τj ≥ 0, j = 1, ...,m. So, we proved formula (13).

By the Markov theorem (see, [2]), the weak convergence of finite-dimensional distrib-
utions of the process (ŴT,Δ(τ), τ ≥ 0), to the corresponding finite-dimensional distribu-
tions of the process (A(τ), τ ≥ 0), takes place, since the Gaussian process (A(τ), τ ≥ 0)
is uniquely determined by its moments. �

5. Asymptotic normality of ŴT,Δ in the space of continuous functions

In addition to Theorem 4.1, it is natural to study the asymptotic normality of ŴT,Δ

in the space of continuous functions. Assume that AT,Δ, ŴT,Δ, T > 0, Δ > 0, and A
are separable processes. We use the notation C[0, a], a > 0, for the space of real-valued
continuous functions defined on [0, a] and endowed with uniform norm. In what follows,
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we write ŴT,Δ
C[0,a]
=⇒ A to denote the weak convergence of the process ŴT,Δ to the process

A in the space C[0, a] by the given character of tending T and Δ to infinity.
We now recall some tools related to Gaussian stochastic processes (see, e.g., [9]). Let S

be a parameter set. A function ρ(t, s), t, s ∈ S, is called a pseudometric on S if it satisfies
all axioms of a metric, with the exception that the set {(t, s) ∈ S × S : ρ(t, s) = 0} may
be wider than the diagonal {(t, s) ∈ S × S : t = s}. We write Nρ(S, ε) for the minimal
number of closed ρ-balls of radius ε > 0, whose centers lie in S and which cover S. If
there is no finite covering of S, then Nρ(S, ε) = ∞. Further, let Hρ(S, ε) = logNρ(S, ε)
be a metric entropy of the set S with respect to ρ. For any β > 0, the inequality∫
0+Hβ

ρ (S, ε) dε < ∞ is always interpreted in the sense that, for some (and, hence, for
all) u > 0, we have

∫ u
0 Hβ

ρ (S, ε) dε <∞.
Consider the function [7]

σH,g(τ) =
[∫ ∞

−∞
sin2 τλ

2
(|H∗(λ)|2 + g(λ)) dλ

] 1
2

, τ ≥ 0.

Since H ∈ L2(R) and g ∈ L1(R), this function is well-defined and generates the following
two pseudometrics: σ(τ1, τ2) = σH,g(|τ1 − τ2|) and

√
σ(τ1, τ2) =

√
σ(τ1, τ2), τ1, τ2 ≥ 0.

Note that if H∗(λ) 
= 0 and g(λ) 
= 0 simultaneously on the set of a positive Lebesgue
measure, then σ and

√
σ are metrics.

For all ε > 0, put Hσ(ε) = Hσ([0, 1], ε), H√
σ(ε) = H√

σ([0, 1], ε). Since the pseudo-
metrics σ and

√
σ depend on |τ1 − τ2| only, one has, for any a > 0 and β > 0,∫

0+

Hβ
σ(ε) dε <∞⇐⇒

∫
0+

Hβ
σ([0, a], ε) dε <∞;∫

0+

H√
σ(ε) dε <∞⇐⇒

∫
0+

H√
σ([0, a], ε) dε <∞.

Theorem 5.1. Assume that g ∈ L1(R); for some α ∈ (0, 1], the response function
H ∈ Lipα[0,∞)

⋂
L2(R), and the condition

(14)
∫

0+

H√
σ(ε) dε <∞,

is satisfied. Then, for any a > 0, the following statements hold true:
(I) A ∈ C[0, a] almost surely;
(II) ŴT,Δ ∈ C[0, a] almost surely, T > 0,Δ > 0;

Moreover, if T → ∞, Δ → ∞ in such a way that conditions (10a) -(10d) are satisfied,
then

(III) ŴT,Δ
C[0,a]
=⇒ A.

In particular, by the given character of tending T and Δ to infinity, for all x > 0 and
a > 0,

P

{
sup
τ∈[0,a]

∣∣∣ŴT,Δ(τ)
∣∣∣ > x

}
→ P

{
sup
τ∈[0,a]

|A(τ)| > x

}
.

Remark 5.1. Statement (I) of Theorem 5.1 holds true under a weaker condition than
(14), namely,

(15)
∫

0+

H 1
2
σ (ε) dε <∞.

Note that (15) always holds if there exists β > 0 such that (see [14])∫ ∞

0

(|H∗(λ)|2 + g(λ)
)
log1+β(1 + λ) dλ <∞.
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Remark 5.2. Condition (14) holds if there exists β > 0 such that (see [12])∫ ∞

0

(|H∗(λ)|2 + g(λ)
)
log4+β(1 + λ) dλ <∞.

Proof. Using formula (14), statement (I) was proved in paper [7] (see Theorem 5.1, part
I)). The other statements of Theorem 5.1 immediately follow from formula (7), Lemma
2.1 (part (ii)), Theorem 5.1 [7] (parts II) and III)), and Theorem 4.1. �

Conclusion

This paper continues the research from [7] concerning the problem of the cross-
correlogram estimation of an unknown response function of a linear system with in-
ner noises. Main results are presented in Theorem 4.1 and Theorem 5.1 and deal with
the asymptotic normality of finite-dimensional distributions of the estimates and their
asymptotic normality in the space of continuous functions.
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