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V. V. BULDYGIN AND O. A. TYMOSHENKO

ON THE EXACT ORDER OF GROWTH OF SOLUTIONS OF
STOCHASTIC DIFFERENTIAL EQUATIONS WITH
TIME-DEPENDENT COEFFICIENTS

We study the exact order of growth of the solution of the stochastic differential
equation dn(t) = g (n(t)) ¢(t)dt+o (n(t)) 6(¢t)dw(t), X (0) = b, where w is the standard
‘Wiener process, b is a nonrandom positive constant, g, o are continuous positive
functions, and ¢ and 6 are real continuous functions such that a continuous solution
n exists. As an application of these results, we discuss the problem of asymptotic
equivalence for solutions of stochastic differential equations.

1. INTRODUCTION

Gikhman and Skorokhod [9], Keller et al. [10], and later Buldygin et al. [1], [5]-[8]
considered the exact order of growth of solutions of autonomous stochastic differential
equations (SDE’s) and found conditions, under which these solutions are asymptotically
equivalent, as t — 0o, to solutions of ordinary differential equations (ODE’s). The same
problem for SDE’s with the time-dependent coefficients of drift and diffusion of the form

g(t,z) = pt)g(x), o(t,x)=0()c(x), t>0, z€R=(—00,00),

where g, ¢, and o are positive functions, was considered in paper [2]. Moreover, Buldygin
et al. [8] gave conditions, under which solutions of two different autonomous SDE’s are
asymptotically equivalent. In this paper, we continue the similar investigations for SDE’s
with time-dependent coefficients with alternating signs.

Consider, for k = 1,2, the stochastic differential equations

(1) dn(t) = gr (mk(t)) e (t)dt + o (i (t)) Or (t)dwy(t), t > 0;

nk(O) = bk > O,

where wy, k = 1,2, are standard Wiener processes defined on a common probability
space; by, k = 1,2, are nonrandom positive constants; ¢y, 0k, kK = 1,2, are real continuous
functions, and g, ok, k = 1,2, are positive continuous functions such that, for each
k =1,2, SDE (1) has a continuous It6-solution n, = (nx(t),t > 0).

For k = 1,2, we denote, by ur = (ur(t),t > 0), the continuous solution of the Cauchy
problem for the ODE’s corresponding to (1) with o =0, i.e.

(2) dpk(t) = gk (pe(t)) e (t)dt, 20, pp(0) =br >0 (k=1,2).

We assume that, for each k = 1, 2, the functions g and ¢y, are such that the continuous
solution puy exists and satisfies the relation

tlim i (t) = 0.

Three following problems will be considered.
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ON THE EXACT ORDER OF GROWTH OF SOLUTIONS 13

The first problem is to study, under which conditions the solutions of SDE’s (1) and
their corresponding ODE’s (2) are asymptotically equivalent almost surely (a.s.) on the
set {limy—,o0 i (t) = 00}, i.e.

oy ()
t—o0 ik (t)

The second problem is to study, under which conditions the solutions of ODE’s (2)
are asymptotically equivalent, i.e.

t—o0 (1)

Finally, the third problem is to consider the conditions, under which solutions of the
SDE’s (1) are asymptotically equivalent a.s., i.e.

=1 a.s. on the set {tlim e (t) = oo} , k=1,2.

t

t—00 19(t)

All these problems are closely connected, and the solution of the third problem follows
from two first ones.

=1 a.s. on the set {tlim m(t) = oo} N {tlim 2 (t) = oo}.

2. AsymMPTOTIC EQUIVALENCE OF SOLUTIONS OF SDE’s AND ODE’s

In this section, we consider the exact order of growth of the solution n = (7(t),t > 0)
of the SDE

(5) dn(t) = g (n(t)) @(B)dt + o (n(t)) O(E)dw(t), ¢ > 0;
n(0) =b >0,
were w is a standard Wiener process, and b is a nonrandom positive constant. We
assume that ¢ = (p(z),z € R) and § = (6(z),z € R) are real continuous functions, and
g=(g9(z),zr € R) and 0 = (0(z),z € R) are positive continuous functions such that (5)
has continuous solution 7. Remark that we will be only interested in situations, in which
lim;_, o 7(t) = co with positive probability and such that the infinity will not be reached
in a finite time.
The main problem in this section is to study the conditions, under which

t
(6) lim ) =1 a.s. on the set { lim n(t) = oo},
t—o0 pu(t) =00
where g = (u(t),t > 0) is the continuous solution of the Cauchy problem for the ODE

corresponding to (5) with ¢ =0, i.e.
(7) du(t) = g (u(t)) p(H)dt, t > 0;
1(0) =b> 0.
We assume that the functions g and ¢ are such that the continuous solution p exists and

satisfies the relation
lim p(t) = 0.

t—o0

For t > 0, we denote

(1) = /0 o(u)du and (1) = /0 ()] du.

We assume that

(8) o(t) >0, t>0; tlim D(t) = oo,
and

b (t
9) lim sup +(1) < oo

t—oo  P(1)
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Note that conditions (8) and (9) hold for any positive-valued function ¢. An example
of the alternating function ¢, which satisfies conditions (8) and (9), is the function

o(t) =a+sint, t>0, a€(0,1).

T ds

Then, for the solution u of Eq. (7), one has the relation
G(u) = @(t), t=0.

Put

Thus,
(10) u(t) = G7H(@(1), t=0,
where G~! is the inverse function of G.
Consider the condition
(11) lim G(x) = co.

xr—00

Theorem 2.1. Let ¢ and 6 be continuous functions, and let g and o be continuous
positive functions such that (5) has a continuous solution n and conditions (8), (9), and
(11) hold. Assume that
= o 0(s)d
s)ds
(12) = < 0,
PP T
and also two following conditions hold:
a) the function o/g is bounded;
b) the function g is continuously differentiable, and its derivative ¢'(x),z € R, is such
that

t 2
0°(s)d
(13) lim 0 g (nqi)()t) S _ o s, on the set {tgr& n(t) = oo}.
Then Gn(t)
n _ ; _
Jim 3 1 a.s. on the set {tlggon(t) = oo}.
Remark 2.1. It is appropriate to use, instead of (13), the conditions
t
0%(s)ds
lim ¢'(x) =0 and limsu foi
Jim_g'(x) msup g
or .
6%(s)d
ligrvrisogp\g’(X)l <oo and  lim IO?((‘?)S =

In the next theorem, we consider the conditions, under which the solutions of SDE
(5) and its corresponding ODE (7) are asymptotically equivalent a.s..
Theorem 2.2. Assume that all conditions of Theorem 2.1 hold, and
(14) lim inf ! _du >0 forall c>1

t—oo Jy g(u)G(u) ’

Then (6) holds.
Remark 2.2. If o(t) > 0, t > 0, then all corresponding results of paper [2] follow from
Theorems 2.1-2.2. Moreover, all corresponding results of papers [5]-[7] follow from these
theorems with (t) = 6(t) =1, ¢ > 0.

Recall the conditions, under which condition (14) holds (see [6], [8]).
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Proposition 2.1. Let g be a positive continuous function such that (11) holds. Assume
that at least one of the following conditions holds:
1) limsup, . (9(2)G(x)/z) < oc;
2) g is eventually nonincreasing;
3) there exists o < 1 such that 0 < infz>; g(z)x™%, sup,s, g(x)z™ < o0;
4) g*(c) < c for all ¢ > 1, with g*(¢) = hmbupIHoo( (cx)/g(z));
5) g is a regular varying function with index a < 1 (see [11]).
Then condition (14) is satisfied.

Now we consider the following SDE which has a new term on the right-hand side in
contrast to SDE (5):

(15) d¢(t) = (9 (C(t) (t) + g1 (C(1)6 (1)) dt + G (C()) O(t)dw(t), ¢ > 0;
¢(0)=b>0,

where w is a standard Wiener process; b is a nonrandom positive constant; g1, 6, and ¢

are continuous functions, § and & are continuous positive functions such that SDE (15)

has a continuous solution (.
Two following auxiliary lemmas are needed to prove Theorem 2.1.

Lemma 2.1. Assume that conditions (8), (9), and (12) and the following three conditions
hold:
AT) limy 00 g(x) = 22 € (0, 00);
B1) the function & is bounded;
C1)
a3 )
t—00 P4 (1)

lim ﬂ
B (0)

=0 a.s. on the set {tlim ¢(t) = oo}.
Then
= a.s. on the set {tlirglo ¢(t) = oo} .

Lemma 2.2. Let ¢ and 6 be continuous functions, and let g and o be continuous positive
functions such that (5) has a continuous solution n and conditions (8), (9), and (12)
hold. Assume that there is an increasing twice continuously differentiable function f =
(f(x), z € R), for which three following conditions hold:

A2) limy oo f(z) =00 and lim,_. f(x)g (z) = C € (0,00);

B2) the function f'o is bounded;

C2)
o I ((s)0® (n(s)) 6%(s)ds : a
tlirgo 0 5.0 =0 a.s. on the set {tlirgo n(t) = oo} .
e F(t)
n(t .
Jim 0 =C a.s. on the set {tlggon(t) = oo}.

3. AsYyMPTOTIC EQUIVALENCE OF SOLUTIONS OF ODE’s

In this section, we consider ODE’s (2) and discuss the condition, under which the
solutions w1 and po of these ODE’s are asymptotically equivalent, i.e. (3) holds true.
We assume that, for each k = 1,2, the function g in (2) is continuous and positive
n (0,00), and the function ¢y, is continuous.
For k = 1,2, we put

T dS t
Gk(x):/bk gk—(s), x > by; Cbk(t)Z/ k(w)du, (P / |k (w)|du, t > 0.
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In the sequel, we make use four following conditions: for k =1, 2,

(16) tlim Gi(t) = oc;
(17) ®i(t) >0, t >0, and tlim Oy (t) = o0;
(18) lim inf ! _du >0 forall c¢>1;
t=oo J;i gr(u)G(u) ’
ct du
19 lim lim su / ——— =0.
1 i PN

Theorem 3.1. Let g and pg, k = 1,2, be such that conditions (16) and (17) hold and
also

. Dq(2)
20 1 =1.
(20) 00 By(f)
Then,
1) if condition (18) holds for at least one of k = 1,2, then
Gi(t) pa (t)
im =1 = im =1
t—o00 G2 (t) t—o00 L2 (t)
2) if condition (19) holds for at least one of k = 1,2, then
im Gr(t) =1 <= lim () =1
t—o00 G2 (t) t—o0 ,LLQ (t)

3) if condition (18) holds for at least one of k = 1,2, and condition (19) holds for at
least one of k = 1,2, then

Git) _ | N

lim <= im =1.
t—o0 Gia(t) t—00 pi(t)

Theorem 3.2. Let g and pg, k = 1,2, be such that conditions (16) and (17) hold and
also

. Gi(t)
21 1 =1.
(21) 0% Ga(t)
Then,

1) if condition (18) holds for at least one of k = 1,2, then
m 200 g O
t—oc Po(t) t=o0 pa(t)

2) if condition (19) holds for at least one of k = 1,2, then

P
im 1®) =1 <<= m 210 =1
t—o0 @2(t) t—oo MQ(t)

3) if condition (18) holds for at least one of k = 1,2, and also condition (19) holds
for at least one of k = 1,2, then
pa(t)

D (t
im 1) =1 <= lim =1
t—o0 Oy(t) t=00 (1)

Recall the conditions, under which condition (19) holds (see [6], [8]).
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Proposition 3.1. Let g be a positive continuous function such that (11) holds. Assume
that at least one of the following conditions holds:

1) liminf, o (g9(x)G(x)/x) > 0;
2) g is eventually nondecreasing;
3) there exists o < 1 such that 0 < infz>; g(z)x™%, sup,s, g(x)z™ < o0;
4) g*(c) < c for all ¢ > 1, with g*(¢) = hmbupIHoo( (cx)/g(z));
5) g is a regular varying functzon with index a < 1 (see [11]).

Then condition (19) is satisfied with g, = g.

4. AsympTOTIC EQUIVALENCE OF SOLUTIONS OF SDE’S

In this section, we consider SDE’s (1) and discuss, under which conditions (4) holds
true. This problem is the last one in the list of our problems (see Section 1), and its
solution follows from the results of Sections 2 and 3, since
(22) m)  m@) pa(t) pe(t)

me(t)  pa(t) p2(t) me(t)

We assume that g and 6, kK = 1,2, are real continuous functions, and g and oy,
k = 1,2, are positive continuous functions such that, for each k¥ = 1,2, SDE (1) has a
continuous It6-solution 7. Moreover, we assume that, for each k = 1,2, the function g
has the derivative g} (x),z € R.

In this section, we use four following conditions: for k = 1,2,

. (Pr)+ (1)
2 1 iy S /TN .
(23) msup gy < %%
n+1
> f2n 02 (s)ds
(24) e gt < 005
7;) (®r)3(27)
(25) the function Z—k is bounded;
k

S k()83 (s)ds
@) )

Theorem 4.1. Assume that, for each k = 1,2, conditions (16), (17), (20), and (23)—(26)
hold. Then

1) if condition (18) holds for at least one of k = 1,2, and if condition (21) holds, then
(4) follows, i.e.

=0 a.s. on the set {tlim ne(t) = oo} .

2

m(t) :
im =1 a.s. on the set { lim 7 (t) = oo} ;
t=o0 1)2(t) ,Ql o0

2) if condition (19) holds for at least one of k = 1,2, and if (4) holds with

(27) P (ﬂ {Jim (1) = oo}> >0,

k=1

then (21) follows;
3) if (27) holds and if condition (18) holds for at least one of k = 1,2, and if condition
(19) holds for at least one of k = 1,2, then

Gi(t) _ o M)
25 Galt) 1 lim 12 (t)

2

=1 a.s. on the set IQ {tlgélo (t) = OO}~




18 V. V. BULDYGIN AND O. A. TYMOSHENKO

Theorem 4.2. Assume that, for each k = 1,2, conditions (16), (17), (21), and (23)—(26)
hold. Then

1) if condition (18) holds for at least one of k = 1,2, and if condition (20) holds, then
(4) follows, i.e.
(1 2

Jim Z;(t) =1 a.s. on the set ,Ql {tlinolo ne(t) = oo} ;

2) if condition (19) holds for at least one of k = 1,2, and if conditions (4) and (27)
hold, then (20) follows;

3) if (27) holds and if condition (18) holds for at least one of k = 1,2, and if condition
(19) holds for at least one of k = 1,2, then

2
m(t) =1 a.s. on the set ﬂ {tlim n(t) = OO} .

k=1

5. PROOFS OF THE MAIN RESULTS
Proof of Lemma 2.1. We have

t t
=(¢(0 g d s)d s)d .
)= €0+ [ acts) etsiis+ [ a <)o &+A Jduo(s)
To prove Lemma 2.1, it is sufficient to show, by conditions (9) and C1), that
t
(28) tlim ﬁ/ g(C(s))p(s)ds = = a.s. on the set {hm ¢(t) }
— 00 0
and
! t 0(s)d 0
29 lim —— o =
(29) Jim 5o [ o0 du(s) =0 as

By Al), we have that, for any w € {lim;_.o ((¢t) = oo} and any € > 0, there exists
$e = 8e(w) > 0 such that |§({(s)) — »| < e for s > s.. Therefore, for any t > s,

[0, 060~ Apl)ds| [ p@)lds _ (o,
0 R0 E(@m)
and, in view of (8),
) Jy(G(C(3) = )e(s)ds| i
imsu = limsu
P 0 Pl (t)
: P4 (1)
lims .
€<?$pﬂw)
Hence, by (9), relation (28) holds.
In order to prove (29), we consider, for any n > 0 and £ > 0, the following two events:

ﬁ@mm—@¢$@

Se

1 L
B, - {Wi‘i‘;mm /0 5(C(5))0(s)dw(s) >e}
and
1 L
Cp = {2n<bt1£n+l EeD) /0 a(¢(s))0(s)dw(s)| > e’:‘} .

Since @ is an increasing function, B,, C C,, n > 0. Hence, by (Theorem 1, §3, [9]),

1 .
P{2n<stl£n+1 .0 /0 a(¢(s))0(s)dw(s)| > 5}
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1 L
<p{, o iz |[ oconmtaacs] > <]
4 gn+1 4M2 ( 22:/-%—1 92(8)d8)

SW . E|5(¢(s)))* 0% (s)ds <

where M = sup,, 6(z) < 0.
Thus,

ICDER

/0 5(C(5))0(s)dw(s)

an<g<ontl ¢)+(t) q)i(Qn)&«Q

(30) P{ sup L - 5} < 4M? <f2n 92(s)ds)

for any n > 0 and ¢ > 0.
Now, for any m > 1 and € > 0, we consider the following event:

B ={sw 5 | ()0 du(s) >e).
> 6}

It is clear that B,, = Use,,, B Therefore, by (30),

/0 5(¢(5))8(s)du(s)

P ~
{o 57

o] 1 t
< P sup /& 5))0(s)dw(s)| > e p < Ep,
> { 57| ) }
where »
> f2n/ 02 (s)ds
B = = _————— m2>1
2w
Thus, for any ¢ > 0 and m > 1,
K 42, M?
31 PJ sup —— (C(s))0(s)dw(s)| > e < .
@1 {sw 57 | [ cenoeim| > <} < =5
By condition Al), Z,, — 0 as m — oo. Hence, by (31),
t
P{ lim sup —— / 7(¢(s))0(s)dw(s) >5}
m—00 1>9m By (t) [Jo
1 t
~ lim P { sup —— / F(C())0(s)dw(s)| > e}
m—00 t227n @+(t) 0
o 2
< lim 4Hm2M =0
m—0oQ0 £
for any € > 0. Therefore,
1 t
lim —— / o(¢(s))f8(s)dw(s)| =0 a.s.,
tim | [ (o)
i.e. relation (29) holds, and Lemma 2.1 is proved. O

Proof of Lemma 2.2. Denote ((t) = f(n(t)), t > 0. Then n(t) = f~1(¢(t)), t > 0,
where f~! is the inverse function for f. It is clear that

{fim nir) = o} = {jim ¢(0) = o0}
Using the It6 formula for f(n(t)), we obtain

d¢(t) = [f'(n(t))g (n(t)) ¢ (t) + %f”(n(t))02(n(t))92(t)]dt + 1 (n(8)o (n(t)) O(t)dw(t)
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= f'(f7HC@)g (F71C®) ot) + %f”(f‘l(C(t)))UZ(f_l(C(t))92(t)]dt

+F ()T (F7HC®))) O(t)duw(t).
Thus, the process ( is a solution of the SDE
d¢ () = (§(C(t)p(t) + g1 (C(1)0° (1))dt + 3 (L (1))6(t)dw(t),

where

9(@) = f'(fH(2)g(f (),

G1(0) = o @) (7 (@)

(@) = f'(fH @) (@)
Note that this SDE is similar to SDE (15). Hence, we can use Lemma 2.1.
It follows from conditions A2) and C2) that

T () = lm [/~ (2)g(f (@) = Tim f/(x)g(x) = C

and

i DB CEN s 1o () () (s _
)

{00 D (t 2500 . (1)
a.s. on the set {lim;_,o, n(t) = co}. Moreover, it follows from B2) that & is a bounded
function. Thus, all conditions of Lemma 2.1 hold, and, therefore,

fn(®) _
R

a.s. on the set {tlim n(t) = oo} .

Proof of Theorem 2.1. Let

T du O du
f(:t):/0 @,xzo, and f(x):—/w m,x<0.

Hence, f/ = 1/g, lim,; . f'(x)g () = 1, and the function f’o is bounded by condition

a).
Further, it follows from condition b) that f is a twice continuously differentiable
function, and, by a) and b),

[y 17" n(s)? ()6 (s)ds| i i 2 g ((5))6% (s)ds

I
tilgo (b_;,_ (t) t—o0 ¢)+(t)
L{fy o' (n(5)6(s)ds|
< lim =0
t—00 P4 (1)
a.s. on the set {lim;_,o 7(t) = oo}, where
o?(z)
L =sup < 0.
» 9%(z)
Hence, all conditions of Lemma 2.2 hold with C' = 1 and, therefore,
t t
oy S5 = P =1 o e {0 =20}
Thus, Theorem 2.1 is proved. O
Proof of Theorem 2.2. By Theorem 2.1,
G(n(t))

Jim 0 =1 a.s. on the set {tlirglo n(t) = OO}~
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Moreover, by conditions (11) and (14) and Lemma 4.3 [6], with f = G and f' = 1/g,

we have
hg} ggf (é((d))

Hence, by Theorem 3.2 [6] (see also [3]-[5]), the function G~1 preserves the asymptotic
equivalence of the functions. Therefore,

>1 forall e¢>1.

i 1)y GO0
A TR TG @)
a.s. on the set {lim;_.o 7(t) = co}. Thus, relation (6) holds, and Theorem 2.2 is proved.

(]

Proof of Theorem 3.1. Assume that (18) holds for at least one of k = 1,2. Let, for

example, k = 1. Then, by conditions (16) and (18) and Lemma 4.3 [6], with f = G; and
f''=1/g1, we have

. . G1 (Ct)

htrgggf N0

Hence, by Theorem 3.2 [6] (see also [3]-[5]), the function G preserves the asymptotic

equivalence of the functions. Therefore, in view of (17) and (20),

L GrA®(1)
= GL(@(0)

>1 forall ¢>1.

If
Gi1(t)
% Ga(t)
then, by Theorem 3.3 [6] (see also [3]-[5]), we have

:]_7

Therefore, in view of (17),

Finally, we obtain

g P10 GER@) (G-%@l(t)) G;l(%(t»)
R pal) R Gy T (@5(0) e\ G (@a(0) | Gy (Ba(0)
Grl@() Gl (®a)

Jm Gl (@a(1) 1ot Gy (Ba(t))

since p; = G;l(@j), j =1,2. Thus, statement 1) is proved.
In order to prove statement 2), we assume that (19) holds for at least one of k = 1, 2.
Let, for example, k = 1. We assume also that relation (3) holds, i.e.

lim ()
t=00 fin(t)

Note that lim; o, ptj(t) = 00, j = 1,2, since (16) and (17) hold.
By condition (16) and (19) and Lemma 4.1 [6], with f = G; and f/ = 1/g1, we have

L G1(ct)
lim lim su =1
c—1 tﬂoop G1 (t)

=1

forall e¢>1.
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by Lemma 3.1 [6] (see also [3]-[5]), the function G; preserves the asymptotic

equivalence of the functions. Moreover, in view of (3), we have

o Gl (@)
t—o0 Gy (p2(t))

This relation in combination with (20) yield

iy G1l2(?))

2 G (1)

since ®; = G;(p;), j =1, 2. Therefore,

o G _
t=oo Go(t)

since the continuous function uo goes to infinity, as t — co. Thus, statement 2) is proved.
Statement 3) follows from statements 1) and 2). O
Proof of Theorem 3.2. The proof of Theorem 3.2 is similar to the proof of Theorem 3.1.

O
Proof of Theorem 4.1. Theorem 4.1 follows from Theorems 2.2 and 3.1. O
Proof of Theorem 4.2. Theorem 4.1 follows from Theorems 2.2 and 3.2. (]

9.
10.

11
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