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ON THE EXACT ORDER OF GROWTH OF SOLUTIONS OF
STOCHASTIC DIFFERENTIAL EQUATIONS WITH

TIME-DEPENDENT COEFFICIENTS

We study the exact order of growth of the solution of the stochastic differential
equation dη(t) = g (η(t)) ϕ(t)dt+σ (η(t)) θ(t)dw(t), X(0) = b, where w is the standard
Wiener process, b is a nonrandom positive constant, g, σ are continuous positive
functions, and ϕ and θ are real continuous functions such that a continuous solution
η exists. As an application of these results, we discuss the problem of asymptotic
equivalence for solutions of stochastic differential equations.

1. Introduction

Gikhman and Skorokhod [9], Keller et al. [10], and later Buldygin et al. [1], [5]–[8]
considered the exact order of growth of solutions of autonomous stochastic differential
equations (SDE’s) and found conditions, under which these solutions are asymptotically
equivalent, as t→∞, to solutions of ordinary differential equations (ODE’s). The same
problem for SDE’s with the time-dependent coefficients of drift and diffusion of the form

g(t, x) = ϕ(t)g(x), σ(t, x) = θ(t)σ(x), t ≥ 0, x ∈ R = (−∞,∞),

where g, ϕ, and σ are positive functions, was considered in paper [2]. Moreover, Buldygin
et al. [8] gave conditions, under which solutions of two different autonomous SDE’s are
asymptotically equivalent. In this paper, we continue the similar investigations for SDE’s
with time-dependent coefficients with alternating signs.

Consider, for k = 1, 2, the stochastic differential equations

(1) dηk(t) = gk (ηk(t))ϕk(t)dt+ σk (ηk(t)) θk(t)dwk(t), t ≥ 0;

ηk(0) ≡ bk > 0,

where wk, k = 1, 2, are standard Wiener processes defined on a common probability
space; bk, k = 1, 2, are nonrandom positive constants; ϕk, θk, k = 1, 2, are real continuous
functions, and gk, σk, k = 1, 2, are positive continuous functions such that, for each
k = 1, 2, SDE (1) has a continuous Itô-solution ηk = (ηk(t), t ≥ 0).

For k = 1, 2, we denote, by μk = (μk(t), t ≥ 0), the continuous solution of the Cauchy
problem for the ODE’s corresponding to (1) with σk ≡ 0, i.e.

(2) dμk(t) = gk (μk(t))ϕk(t)dt, t ≥ 0, μk(0) = bk > 0 (k = 1, 2).

We assume that, for each k = 1, 2, the functions gk and ϕk are such that the continuous
solution μk exists and satisfies the relation

lim
t→∞μk(t) = ∞.

Three following problems will be considered.
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The first problem is to study, under which conditions the solutions of SDE’s (1) and
their corresponding ODE’s (2) are asymptotically equivalent almost surely (a.s.) on the
set {limt→∞ ηk(t) =∞}, i.e.

lim
t→∞

ηk(t)
μk(t)

= 1 a.s. on the set
{

lim
t→∞ ηk(t) =∞

}
, k = 1, 2.

The second problem is to study, under which conditions the solutions of ODE’s (2)
are asymptotically equivalent, i.e.

(3) lim
t→∞

μ1(t)
μ2(t)

= 1.

Finally, the third problem is to consider the conditions, under which solutions of the
SDE’s (1) are asymptotically equivalent a.s., i.e.

(4) lim
t→∞

η1(t)
η2(t)

= 1 a.s. on the set
{

lim
t→∞ η1(t) = ∞

}
∩
{

lim
t→∞ η2(t) = ∞

}
.

All these problems are closely connected, and the solution of the third problem follows
from two first ones.

2. Asymptotic Equivalence of Solutions of SDE’s and ODE’s

In this section, we consider the exact order of growth of the solution η = (η(t), t ≥ 0)
of the SDE

(5) dη(t) = g (η(t))ϕ(t)dt + σ (η(t)) θ(t)dw(t), t ≥ 0;

η(0) = b > 0,
were w is a standard Wiener process, and b is a nonrandom positive constant. We
assume that ϕ = (ϕ(x), x ∈ R) and θ = (θ(x), x ∈ R) are real continuous functions, and
g = (g(x), x ∈ R) and σ = (σ(x), x ∈ R) are positive continuous functions such that (5)
has continuous solution η. Remark that we will be only interested in situations, in which
limt→∞ η(t) =∞ with positive probability and such that the infinity will not be reached
in a finite time.

The main problem in this section is to study the conditions, under which

(6) lim
t→∞

η(t)
μ(t)

= 1 a.s. on the set
{

lim
t→∞ η(t) = ∞

}
,

where μ = (μ(t), t ≥ 0) is the continuous solution of the Cauchy problem for the ODE
corresponding to (5) with σ ≡ 0, i.e.

(7) dμ(t) = g (μ(t))ϕ(t)dt, t ≥ 0;

μ(0) = b > 0.
We assume that the functions g and ϕ are such that the continuous solution μ exists and
satisfies the relation

lim
t→∞μ(t) =∞.

For t ≥ 0, we denote

Φ(t) =
∫ t

0

ϕ(u)du and Φ+(t) =
∫ t

0

|ϕ(u)| du.
We assume that

(8) Φ(t) > 0, t > 0; lim
t→∞ Φ(t) = ∞,

and

(9) lim sup
t→∞

Φ+(t)
Φ(t)

<∞ .
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Note that conditions (8) and (9) hold for any positive-valued function ϕ. An example
of the alternating function ϕ, which satisfies conditions (8) and (9), is the function

ϕ(t) = a+ sin t, t ≥ 0, a ∈ (0, 1) .

Put
G(x) =

∫ x

b

ds

g (s)
, x ≥ b.

Then, for the solution μ of Eq. (7), one has the relation

G(μ(t)) = Φ(t), t ≥ 0.

Thus,

(10) μ(t) = G−1(Φ(t)), t ≥ 0,

where G−1 is the inverse function of G.
Consider the condition

(11) lim
x→∞G(x) = ∞.

Theorem 2.1. Let ϕ and θ be continuous functions, and let g and σ be continuous
positive functions such that (5) has a continuous solution η and conditions (8), (9), and
(11) hold. Assume that

(12)
∞∑
n=0

∫ 2n+1

2n
θ2(s)ds

Φ2
+(2n)

<∞,

and also two following conditions hold:
a) the function σ/g is bounded;
b) the function g is continuously differentiable, and its derivative g′(x), x ∈ R, is such

that

(13) lim
t→∞

∫ t
0 g

′(η(s))θ2(s)ds
Φ+(t)

= 0 a.s. on the set
{

lim
t→∞ η(t) =∞

}
.

Then

lim
t→∞

G(η(t))
Φ(t)

= 1 a.s. on the set
{

lim
t→∞ η(t) =∞

}
.

Remark 2.1. It is appropriate to use, instead of (13), the conditions

lim
x→∞ g′(x) = 0 and lim sup

t→∞

∫ t
0 θ

2(s)ds
Φ+(t)

<∞
or

lim sup
x→∞

|g′(x)| <∞ and lim
t→∞

∫ t
0 θ

2(s)ds
Φ+(t)

= 0.

In the next theorem, we consider the conditions, under which the solutions of SDE
(5) and its corresponding ODE (7) are asymptotically equivalent a.s..

Theorem 2.2. Assume that all conditions of Theorem 2.1 hold, and

(14) lim inf
t→∞

∫ ct

t

du

g(u)G(u)
> 0 for all c > 1.

Then (6) holds.

Remark 2.2. If ϕ(t) > 0, t ≥ 0, then all corresponding results of paper [2] follow from
Theorems 2.1–2.2. Moreover, all corresponding results of papers [5]–[7] follow from these
theorems with ϕ(t) = θ(t) = 1, t ≥ 0.

Recall the conditions, under which condition (14) holds (see [6], [8]).
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Proposition 2.1. Let g be a positive continuous function such that (11) holds. Assume
that at least one of the following conditions holds:

1) lim supx→∞(g(x)G(x)/x) <∞;
2) g is eventually nonincreasing;
3) there exists α < 1 such that 0 < infx≥1 g(x)x−α, supx≥1 g(x)x

−α <∞;
4) g∗(c) < c for all c > 1, with g∗(c) = lim supx→∞(g(cx)/g(x));
5) g is a regular varying function with index α < 1 (see [11]).
Then condition (14) is satisfied.

Now we consider the following SDE which has a new term on the right-hand side in
contrast to SDE (5):

(15) dζ(t) =
(
g̃ (ζ(t))ϕ(t) + g̃1(ζ(t))θ2(t)

)
dt+ σ̃ (ζ(t)) θ(t)dw(t), t ≥ 0;

ζ(0) ≡ b > 0,
where w is a standard Wiener process; b is a nonrandom positive constant; g̃1, θ, and ϕ
are continuous functions, g̃ and σ̃ are continuous positive functions such that SDE (15)
has a continuous solution ζ.

Two following auxiliary lemmas are needed to prove Theorem 2.1.

Lemma 2.1. Assume that conditions (8), (9), and (12) and the following three conditions
hold:

A1) limx→∞ g̃(x) = κ ∈ (0,∞);
B1) the function σ̃ is bounded;
C1)

lim
t→∞

∫ t
0
g̃1(ζ(s))θ2(s)ds

Φ+(t)
= 0 a.s. on the set

{
lim
t→∞ ζ(t) = ∞

}
.

Then

lim
t→∞

ζ(t)
Φ(t)

= κ a.s. on the set
{

lim
t→∞ ζ(t) = ∞

}
.

Lemma 2.2. Let ϕ and θ be continuous functions, and let g and σ be continuous positive
functions such that (5) has a continuous solution η and conditions (8), (9), and (12)
hold. Assume that there is an increasing twice continuously differentiable function f =
(f(x), x ∈ R), for which three following conditions hold:

A2) limx→∞ f(x) = ∞ and limx→∞ f ′(x)g (x) = C ∈ (0,∞);
B2) the function f ′σ is bounded;
C2)

lim
t→∞

∫ t
0 f

′′(η(s))σ2 (η(s)) θ2(s)ds
Φ+(t)

= 0 a.s. on the set
{

lim
t→∞ η(t) = ∞

}
.

Then

lim
t→∞

f(η(t))
Φ(t)

= C a.s. on the set
{

lim
t→∞ η(t) =∞

}
.

3. Asymptotic Equivalence of Solutions of ODE’s

In this section, we consider ODE’s (2) and discuss the condition, under which the
solutions μ1 and μ2 of these ODE’s are asymptotically equivalent, i.e. (3) holds true.

We assume that, for each k = 1, 2, the function gk in (2) is continuous and positive
on (0,∞), and the function ϕk is continuous.

For k = 1, 2, we put

Gk(x) =
∫ x

bk

ds

gk(s)
, x ≥ bk; Φk(t) =

∫ t

0

ϕk(u)du, (Φk)+(t) =
∫ t

0

|ϕk(u)|du, t ≥ 0.
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In the sequel, we make use four following conditions: for k = 1, 2,

(16) lim
t→∞Gk(t) =∞;

(17) Φk(t) > 0, t ≥ 0, and lim
t→∞Φk(t) = ∞;

(18) lim inf
t→∞

∫ ct

t

du

gk(u)Gk(u)
> 0 for all c > 1;

(19) lim
c↓1

lim sup
t→∞

∫ ct

t

du

gk(u)Gk(u)
= 0.

Theorem 3.1. Let gk and ϕk, k = 1, 2, be such that conditions (16) and (17) hold and
also

(20) lim
t→∞

Φ1(t)
Φ2(t)

= 1.

Then,
1) if condition (18) holds for at least one of k = 1, 2, then

lim
t→∞

G1(t)
G2(t)

= 1 =⇒ lim
t→∞

μ1(t)
μ2(t)

= 1;

2) if condition (19) holds for at least one of k = 1, 2, then

lim
t→∞

G1(t)
G2(t)

= 1 ⇐= lim
t→∞

μ1(t)
μ2(t)

= 1;

3) if condition (18) holds for at least one of k = 1, 2, and condition (19) holds for at
least one of k = 1, 2, then

lim
t→∞

G1(t)
G2(t)

= 1 ⇐⇒ lim
t→∞

μ1(t)
μ2(t)

= 1.

Theorem 3.2. Let gk and ϕk, k = 1, 2, be such that conditions (16) and (17) hold and
also

(21) lim
t→∞

G1(t)
G2(t)

= 1.

Then,
1) if condition (18) holds for at least one of k = 1, 2, then

lim
t→∞

Φ1(t)
Φ2(t)

= 1 =⇒ lim
t→∞

μ1(t)
μ2(t)

= 1;

2) if condition (19) holds for at least one of k = 1, 2, then

lim
t→∞

Φ1(t)
Φ2(t)

= 1 ⇐= lim
t→∞

μ1(t)
μ2(t)

= 1;

3) if condition (18) holds for at least one of k = 1, 2, and also condition (19) holds
for at least one of k = 1, 2, then

lim
t→∞

Φ1(t)
Φ2(t)

= 1 ⇐⇒ lim
t→∞

μ1(t)
μ2(t)

= 1.

Recall the conditions, under which condition (19) holds (see [6], [8]).
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Proposition 3.1. Let g be a positive continuous function such that (11) holds. Assume
that at least one of the following conditions holds:

1) lim infx→∞(g(x)G(x)/x) > 0;
2) g is eventually nondecreasing;
3) there exists α < 1 such that 0 < infx≥1 g(x)x−α, supx≥1 g(x)x

−α <∞;
4) g∗(c) < c for all c > 1, with g∗(c) = lim supx→∞(g(cx)/g(x));
5) g is a regular varying function with index α < 1 (see [11]).
Then condition (19) is satisfied with gk = g.

4. Asymptotic Equivalence of Solutions of SDE’s

In this section, we consider SDE’s (1) and discuss, under which conditions (4) holds
true. This problem is the last one in the list of our problems (see Section 1), and its
solution follows from the results of Sections 2 and 3, since

(22)
η1(t)
η2(t)

=
η1(t)
μ1(t)

· μ1(t)
μ2(t)

· μ2(t)
η2(t)

.

We assume that ϕk and θk, k = 1, 2, are real continuous functions, and gk and σk,
k = 1, 2, are positive continuous functions such that, for each k = 1, 2, SDE (1) has a
continuous Itô-solution ηk. Moreover, we assume that, for each k = 1, 2, the function gk
has the derivative g′k(x), x ∈ R.

In this section, we use four following conditions: for k = 1, 2,

(23) lim sup
t→∞

(Φk)+(t)
Φk(t)

<∞;

(24)
∞∑
n=0

∫ 2n+1

2n
θ2k(s)ds

(Φk)2+(2n)
<∞;

(25) the function
σk
gk

is bounded;

(26) lim
t→∞

∫ t
0
g′k(ηk(s))θ

2
k(s)ds

(Φk)+(t)
= 0 a.s. on the set

{
lim
t→∞ ηk(t) = ∞

}
.

Theorem 4.1. Assume that, for each k = 1, 2, conditions (16), (17), (20), and (23)–(26)
hold. Then

1) if condition (18) holds for at least one of k = 1, 2, and if condition (21) holds, then
(4) follows, i.e.

lim
t→∞

η1(t)
η2(t)

= 1 a.s. on the set
2⋂

k=1

{
lim
t→∞ ηk(t) = ∞

}
;

2) if condition (19) holds for at least one of k = 1, 2, and if (4) holds with

(27) P

(
2⋂

k=1

{
lim
t→∞ ηk(t) = ∞

})
> 0,

then (21) follows;
3) if (27) holds and if condition (18) holds for at least one of k = 1, 2, and if condition

(19) holds for at least one of k = 1, 2, then

lim
t→∞

G1(t)
G2(t)

= 1⇐⇒ lim
t→∞

η1(t)
η2(t)

= 1 a.s. on the set
2⋂

k=1

{
lim
t→∞ ηk(t) = ∞

}
.
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Theorem 4.2. Assume that, for each k = 1, 2, conditions (16), (17), (21), and (23)–(26)
hold. Then

1) if condition (18) holds for at least one of k = 1, 2, and if condition (20) holds, then
(4) follows, i.e.

lim
t→∞

η1(t)
η2(t)

= 1 a.s. on the set
2⋂

k=1

{
lim
t→∞ ηk(t) = ∞

}
;

2) if condition (19) holds for at least one of k = 1, 2, and if conditions (4) and (27)
hold, then (20) follows;

3) if (27) holds and if condition (18) holds for at least one of k = 1, 2, and if condition
(19) holds for at least one of k = 1, 2, then

lim
t→∞

Φ1(t)
Φ2(t)

= 1 ⇐⇒ lim
t→∞

η1(t)
η2(t)

= 1 a.s. on the set
2⋂

k=1

{
lim
t→∞ ηk(t) =∞

}
.

5. Proofs of the Main Results

Proof of Lemma 2.1. We have

ζ(t) = ζ(0) +
∫ t

0

g̃ (ζ(s))ϕ(s)ds+
∫ t

0

g̃1 (ζ(s)) θ2(s)ds+
∫ t

0

σ̃ (ζ(s)) θ(s)dw(s).

To prove Lemma 2.1, it is sufficient to show, by conditions (9) and C1), that

(28) lim
t→∞

1
Φ(t)

∫ t

0

g̃(ζ(s))ϕ(s)ds = κ a.s. on the set
{

lim
t→∞ ζ(t) = ∞

}
and

(29) lim
t→∞

1
Φ+(t)

∫ t

0

σ̃(ζ(s))θ(s)dw(s) = 0 a.s..

By A1), we have that, for any ω ∈ {limt→∞ ζ(t) = ∞} and any ε > 0, there exists
sε = sε(ω) > 0 such that |g̃(ζ(s)) − κ| ≤ ε for s ≥ sε. Therefore, for any t ≥ sε,∣∣∣∫ tsε(g̃(ζ(s)) − κ)ϕ(s)ds

∣∣∣
Φ(t)

≤ ε
∫ t
sε
|ϕ(s)| ds
Φ(t)

≤ ε

(
Φ+(t)
Φ(t)

)
and, in view of (8),

lim sup
t→∞

∣∣∣∫ t0 (g̃(ζ(s)) − κ)ϕ(s)ds
∣∣∣

Φ(t)
= lim sup

t→∞

∣∣∣∫ tsε(g̃(ζ(s)) − κ)ϕ(s)ds
∣∣∣

Φ(t)

≤ ε

(
lim sup
t→∞

Φ+(t)
Φ(t)

)
.

Hence, by (9), relation (28) holds.
In order to prove (29), we consider, for any n ≥ 0 and ε > 0, the following two events:

Bn =

{
sup

2n≤t≤2n+1

1
Φ+(t)

∣∣∣∣∫ t

0

σ̃(ζ(s))θ(s)dw(s)
∣∣∣∣ > ε

}
and

Cn =

{
sup

2n≤t≤2n+1

1
Φ+(2n)

∣∣∣∣∫ t

0

σ̃(ζ(s))θ(s)dw(s)
∣∣∣∣ > ε

}
.

Since Φ+ is an increasing function, Bn ⊂ Cn, n ≥ 0. Hence, by (Theorem 1, §3, [9]),

P

{
sup

2n≤t≤2n+1

1
Φ+(t)

∣∣∣∣∫ t

0

σ̃(ζ(s))θ(s)dw(s)
∣∣∣∣ > ε

}
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≤ P

{
sup

2n≤t≤2n+1

1
Φ+(2n)

∣∣∣∣∫ t

0

σ̃(ζ(s))θ(s)dw(s)
∣∣∣∣ > ε

}

≤ 4
Φ2

+(2n)ε2

∫ 2n+1

2n
E |σ̃(ζ(s))|2 θ2(s)ds ≤

4M2
(∫ 2n+1

2n
θ2(s)ds

)
Φ2

+(2n)ε2
,

where M = supx σ̃(x) <∞.
Thus,

(30) P

{
sup

2n≤t≤2n+1

1
Φ+(t)

∣∣∣∣∫ t

0

σ̃(ζ(s))θ(s)dw(s)
∣∣∣∣ > ε

}
≤

4M2
(∫ 2n+1

2n θ2(s)ds
)

Φ2
+(2n)ε2

for any n ≥ 0 and ε > 0.
Now, for any m ≥ 1 and ε > 0, we consider the following event:

B̃m =
{

sup
t≥2m

1
Φ+(t)

∣∣∣∣∫ t

0

σ̃(ζ(s))θ(s)dw(s)
∣∣∣∣ > ε

}
.

It is clear that B̃m =
⋃∞
k=mBk. Therefore, by (30),

P
{

sup
t≥2m

1
Φ+(t)

∣∣∣∣∫ t

0

σ̃(ζ(s))θ(s)dw(s)
∣∣∣∣ > ε

}

≤
∞∑
n=m

P

{
sup

2n≤t≤2n+1

1
Φ+(t)

∣∣∣∣∫ t

0

σ̃(ζ(s))θ(s)dw(s)
∣∣∣∣ > ε

}
≤ Ξm,

where

Ξm =
∞∑
n=m

∫ 2n+1

2n
θ2(s)ds

Φ2
+(2n)

, m ≥ 1.

Thus, for any ε > 0 and m ≥ 1,

(31) P
{

sup
t≥2m

1
Φ+(t)

∣∣∣∣∫ t

0

σ̃(ζ(s))θ(s)dw(s)
∣∣∣∣ > ε

}
≤ 4ΞmM2

ε2
.

By condition A1), Ξm → 0 as m→∞. Hence, by (31),

P

{
lim
m→∞ sup

t≥2m

1
Φ+(t)

∣∣∣∣∫ t

0

σ̃(ζ(s))θ(s)dw(s)
∣∣∣∣ > ε

}

= lim
m→∞P

{
sup
t≥2m

1
Φ+(t)

∣∣∣∣∫ t

0

σ̃(ζ(s))θ(s)dw(s)
∣∣∣∣ > ε

}
≤ lim

m→∞
4ΞmM2

ε2
= 0

for any ε > 0. Therefore,

lim
t→∞

1
Φ+(t)

∣∣∣∣∫ t

0

σ̃(ζ(s))θ(s)dw(s)
∣∣∣∣ = 0 a.s.,

i.e. relation (29) holds, and Lemma 2.1 is proved. �
Proof of Lemma 2.2. Denote ζ(t) = f(η(t)), t > 0. Then η(t) = f−1(ζ(t)), t > 0,

where f−1 is the inverse function for f . It is clear that{
lim
t→∞ η(t) = ∞

}
=
{

lim
t→∞ ζ(t) = ∞

}
.

Using the Itô formula for f(η(t)), we obtain

dζ(t) = [f ′(η(t))g (η(t))ϕ(t) +
1
2
f ′′(η(t))σ2(η(t))θ2(t)]dt+ f ′(η(t))σ (η(t)) θ(t)dw(t)
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= f ′(f−1(ζ(t))g
(
f−1(ζ(t))

)
ϕ(t) +

1
2
f ′′(f−1(ζ(t)))σ2(f−1(ζ(t))θ2(t)]dt

+f ′(f−1(ζ(t))σ
(
f−1(ζ(t))

)
θ(t)dw(t).

Thus, the process ζ is a solution of the SDE

dζ(t) = (g̃(ζ(t))ϕ(t) + g̃1(ζ(t))θ2(t))dt + σ̃(ζ(t))θ(t)dw(t),

where
g̃(x) = f ′(f−1(x))g(f−1(x)),

g̃1(x) =
1
2
f ′′(f−1(x))σ2(f−1(x)),

σ̃(x) = f ′(f−1(x))σ
(
f−1(x)

)
.

Note that this SDE is similar to SDE (15). Hence, we can use Lemma 2.1.
It follows from conditions A2) and C2) that

lim
x→∞ g̃(x) = lim

x→∞ f ′(f−1(x))g(f−1(x)) = lim
x→∞ f ′(x)g(x) = C

and

lim
t→∞

∫ t
0 g̃1 (ζ(s)) θ2(s)ds

Φ+(t)
=

1
2

lim
t→∞

∫ t
0 f

′′(η(s))σ2(η(s))θ2(s)ds
Φ+(t)

= 0

a.s. on the set {limt→∞ η(t) = ∞}. Moreover, it follows from B2) that σ̃ is a bounded
function. Thus, all conditions of Lemma 2.1 hold, and, therefore,

lim
t→∞

f(η(t))
Φ(t)

= C a.s. on the set
{

lim
t→∞ η(t) = ∞

}
.

�
Proof of Theorem 2.1. Let

f(x) =
∫ x

0

du

g(u)
, x ≥ 0, and f(x) = −

∫ 0

x

du

g(u)
, x < 0.

Hence, f ′ = 1/g, limx→∞ f ′(x)g (x) = 1, and the function f ′σ is bounded by condition
a).

Further, it follows from condition b) that f is a twice continuously differentiable
function, and, by a) and b),

lim
t→∞

∣∣∣∫ t0 f ′′(η(s))σ2(η(s))θ2(s)ds
∣∣∣

Φ+(t)
= lim
t→∞

∣∣∣∫ t0 σ2(η(s))
g2(η(s)) · g′(η(s))θ2(s)ds

∣∣∣
Φ+(t)

≤ lim
t→∞

L
∣∣∣∫ t0 g′(η(s))θ2(s)ds∣∣∣

Φ+(t)
= 0

a.s. on the set {limt→∞ η(t) = ∞}, where

L = sup
x

σ2(x)
g2(x)

<∞.

Hence, all conditions of Lemma 2.2 hold with C = 1 and, therefore,

lim
t→∞

G(η(t))
Φ(t)

= lim
t→∞

f(η(t))
Φ(t)

= 1 a.s. on the set
{

lim
t→∞ η(t) =∞

}
.

Thus, Theorem 2.1 is proved. �
Proof of Theorem 2.2. By Theorem 2.1,

lim
t→∞

G(η(t))
Φ(t)

= 1 a.s. on the set
{

lim
t→∞ η(t) =∞

}
.
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Moreover, by conditions (11) and (14) and Lemma 4.3 [6], with f = G and f ′ = 1/g,
we have

lim inf
t→∞

G(ct)
G(t)

> 1 for all c > 1.

Hence, by Theorem 3.2 [6] (see also [3]–[5]), the function G−1 preserves the asymptotic
equivalence of the functions. Therefore,

lim
t→∞

η(t)
μ(t)

= lim
t→∞

G−1(G(η(t)))
G−1(Φ(t))

= 1

a.s. on the set {limt→∞ η(t) = ∞}. Thus, relation (6) holds, and Theorem 2.2 is proved.
�

Proof of Theorem 3.1. Assume that (18) holds for at least one of k = 1, 2. Let, for
example, k = 1. Then, by conditions (16) and (18) and Lemma 4.3 [6], with f = G1 and
f ′ = 1/g1, we have

lim inf
t→∞

G1(ct)
G1(t)

> 1 for all c > 1.

Hence, by Theorem 3.2 [6] (see also [3]–[5]), the function G−1
1 preserves the asymptotic

equivalence of the functions. Therefore, in view of (17) and (20),

lim
t→∞

G−1
1 (Φ1(t))

G−1
1 (Φ2(t))

= 1.

If

lim
t→∞

G1(t)
G2(t)

= 1,

then, by Theorem 3.3 [6] (see also [3]–[5]), we have

G−1
1 (t)

G−1
2 (t)

= 1.

Therefore, in view of (17),

lim
t→∞

G−1
1 (Φ2(t))

G−1
2 (Φ2(t))

= 1.

Finally, we obtain

lim
t→∞

μ1(t)
μ2(t)

= lim
t→∞

G−1
1 (Φ1(t))

G−1
2 (Φ2(t))

= lim
t→∞

(
G−1

1 (Φ1(t))
G−1

1 (Φ2(t))
· G

−1
1 (Φ2(t))

G−1
2 (Φ2(t))

)

lim
t→∞

G−1
1 (Φ1(t))

G−1
1 (Φ2(t))

· lim
t→∞

G−1
1 (Φ2(t))

G−1
2 (Φ2(t))

= 1,

since μj = G−1
j (Φj), j = 1, 2. Thus, statement 1) is proved.

In order to prove statement 2), we assume that (19) holds for at least one of k = 1, 2.
Let, for example, k = 1. We assume also that relation (3) holds, i.e.

lim
t→∞

μ1(t)
μ2(t)

= 1.

Note that limt→∞ μj(t) = ∞, j = 1, 2, since (16) and (17) hold.
By condition (16) and (19) and Lemma 4.1 [6], with f = G1 and f ′ = 1/g1, we have

lim
c→1

lim sup
t→∞

G1(ct)
G1(t)

= 1 for all c > 1.
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Hence, by Lemma 3.1 [6] (see also [3]–[5]), the function G1 preserves the asymptotic
equivalence of the functions. Moreover, in view of (3), we have

lim
t→∞

G1(μ1(t))
G1(μ2(t))

= 1.

This relation in combination with (20) yield

lim
t→∞

G1(μ2(t))
G2(μ2(t))

= 1,

since Φj = Gj(μj), j = 1, 2. Therefore,

lim
t→∞

G1(t)
G2(t)

= 1,

since the continuous function μ2 goes to infinity, as t→∞. Thus, statement 2) is proved.
Statement 3) follows from statements 1) and 2). �
Proof of Theorem 3.2. The proof of Theorem 3.2 is similar to the proof of Theorem 3.1.

�
Proof of Theorem 4.1. Theorem 4.1 follows from Theorems 2.2 and 3.1. �
Proof of Theorem 4.2. Theorem 4.1 follows from Theorems 2.2 and 3.2. �
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