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ELENA V. KARACHANSKAYA (CHALYKH)

DYNAMICS OF RANDOM CHAINS OF FINITE SIZE WITH AN
INFINITE NUMBER OF ELEMENTS IN R2

A finite chain with infinitely many units within the stochastic dynamical model in �2

is considered. The equation for the probability distribution density of chain lengths
is constructed. This equation is a function of the parameter t which stands for the
time. This research is a sequel to work [1].

1. Formulation of the problem

In Feller’s book [2], the problem of the length of a random chain is considered. This
chain is described in the following way: the number of elements is equal to n, the length of
all its elements is equal to one, the angle of one component with respect to the previous is
always the same up to a sign (the probability of each angle is equal to 1/2), the distance
between the end points of the chain (length of the chain) is defined by means of the
average square length

M[L2
n] = n

1 + cosα
1− cosα

− 2 cosα
1− cosn α

(1 − cosα)2
.

We will consider the following chain: the length of the chain is finite, the number of
components is infinite, the length of each component is a random variable, the angle of
each component with respect to the previous one is also random.

The physical model can be a rope in a medium of Brownian particles. We can understand
the modulus of the vector joining the starting point and the end point of the chain as
the chain length.

Let l ∈ [0, L] be a parameter, L a constant, l1, l2, . . . the values of the parameter,
l1 < l2 < . . . ≤ L, Δ = L/N , lj = j · Δ. We will consider the model of the chain
described by the following system of equations:

(1) xN (t) =
∑N
s=1 a(ls)Δ · cosϕs(t), yN (t) =

∑N
s=1 a(ls)Δ · sinϕs(t),
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where a(ls), ϕs(t) are, in general, random processes, a(l) > 0, ϕs(t) is the angle between
the s-th component with respect to the previous one, ϕ1(t) is the angle of the first
component of the chain with respect to the positive direction of the x-axis.

If we denote the length of the chain consisting of n elements by |xn(t)|2 + |yn(t)|2,
then the length �(l) of the real component of the chain is expressed by the variable

�(l) = a(l)Δ, a(l) > 0,
� L

o

a(l)dl = L.

Models of type (1) describe the distribution of the length L(t) of the chain in the case
where the following inequality is satisfied:

L2(t) = |xN (t)|2 + |yN(t)|2 ≤ const.

From the point of view of the representation of the phenomenon of turbulent diffusion,
model (1) can be useful for some generalizations of the passive displacement under the
action of vortices of different sizes [3].

Let n < N (i.e., we consider not the whole chain but its part), N → ∞. Since the
coordinates of the initial point and the end point of each component depend on time t
and on the parameter l, we introduce some changes in model (1):

(2) xn(l; t) =
∑n
s=1 a(ls)Δ · cosϕs(t), yn(l; t) =

∑n
s=1 a(ls)Δ · sinϕs(t).

In this way, the random field {xn(l; t); yn(l; t)} is a dynamical stochastic process. We
will study its limit behavior as n→∞.

2. Assumptions on the model

In order to obtain the coefficient of the limit equation in analytical form, we restrict
ourselves to the model satisfying the following assumptions:

(3)

a(l) > 0, l ∈ [0, L],

ϕs(t) =
s∑

k=1

η(lk; t)Δ(w(lk)), t ∈ [0, T ],

η(lk; t) =
� t
0 σ(lk; τ) dwk(τ),

where �(w(lk)), �(wk(τ)) are independent among themselves and for different s, and τ
are anticipating increments of the corresponding Wiener processes defined on the product
of independent probability spaces

{Ω1, �l, P1} × {Ω2, �t(n), P2}.
Here, �l, and �t(n) are the corresponding flows of sigma algebras generated by the
processes w(l) and w(t) ∈ Rn; the functions a(l) ∈ C1

[0,L] and σ(l; t) ∈ C2
[0,L]×[0,T ] are

deterministic functions depending on l and t, and η(ls; t) is the intensity of the angle.
Therefore, we have

(4)
xn(l; t) =

∑n
s=1 a(ls)Δ · cos

[
s∑

k=1

(� t
0 σ(lk; τ) dwk(τ)

)
�(w(lk))

]
yn(l; t) =

∑n
s=1 a(ls)Δ · sin

[
s∑

k=1

(� t
0
σ(lk; τ) dwk(τ)

)
�(w(lk))

]
.

Under the condition of a bounded length of the chain, we can define the limit for the
random function ϕs(t) as n→∞. In this context, the variable l appears as a parameter.
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3. Transition to auxiliary processes

Let us transform (2) by means of the Euler representation:

xn(l; t) =
∑n

s=1 a(ls)Δ · cosϕs(t) =
∑n

s=1 a(ls)Δ · exp{iϕs(t)}+exp{−iϕs(t)}
2 =

= 1
2

∑n
s=1 a(ls)Δ · exp{iϕs(t)} + 1

2

∑n
s=1 a(ls)Δ · exp{−iϕs(t)},

yn(l; t) =
∑n

s=1 a(ls)Δ · sinϕs(t) =
∑n
s=1 a(ls)Δ · exp{iϕs(t)}−exp{−iϕs(t)}

2i =
= 1

2i

∑n
s=1 a(ls)Δ · exp{iϕs(t)} − 1

2i

∑n
s=1 a(ls)Δ · exp{−iϕs(t)}.

By introducing the auxiliary process

z1(s; t) = exp{−i∑s
j=1 �w(lj)

� t
0
σ(lj ; τ) dwj(τ)},

zn,1(l, t) =
∑n

s=1 a(ls)Δ · exp{−iϕs(t)} =
∑n

s=1 a(ls)Δ · z1(s; t), Δ = O(n−1)

and using the Euler representation, we rewrite the process {xn(l; t); yn(l; t)} in the form

xn(l; t) =
1
2
(zn,1(l, t) + z∗n,1(l, t)), yn(l; t) =

i

2
(zn,1(l, t)− z∗n,1(l, t)).

For the construction of the characteristic function of the random field {xn(l; t); yn(l; t)},
we define the form of the function exp{i(αxn(l; t) + βyn(l; t))}:

exp{i(αxn(l; t) + βyn(l; t))} =
= exp

{
iα

zn,1(l;t)+z
∗
n,1(l;t)

2 − β zn,1(l;t)−z
∗
n,1(l;t)

2

}
=

=
∞∑

m,r=1

(iα−β)m(iα+β)r

2m+rm!r! zmn,1(l; t)z
∗r
n,1(l; t).

Moreover, the analysis of the process {xn(l; t); yn(l; t)} requires to study the process
zmn,1(l; t)z

∗r
n,1(l; t).

Since the summation and the integration operations have similar properties, we replace
(in a symbolic form for Δ→ 0, which corresponds to n→∞) the process

zn,1(l, t) =
n∑
s=1

a(ls)Δ · exp

⎧⎨⎩−i
s∑
j=1

⎛⎝ t�

0

σ(lj ; τ) dwj(τ)

⎞⎠ �w(lj)

⎫⎬⎭
by the process

z,1 =
n∑
s=1

a(ls)Δ · exp

{
−

s∑
j=1

η(ls, t)�w(ls)

}
=

l�
0

a(u) exp
{
−i

u�
0

η(θ, t)dw(θ)
}
du,

where η(u, t) =
� t
0
σ(u, τ)dτ . We do not lose any generality in the analysis with this

assumption, and, in what follows, we use the symbol
�

instead of
∑

.1

4. Degree transformation

By considering the continuity of the process zn,1(l; t) and, consequently, of the process
z ,1(l; t) with respect to both variables l and t, we define the degree transformation

(5)

zm,1 (l; t) =
[� l

0
a(u) exp

{−i � u
0
η(θ; t) dw(θ)

}
du
]m

=

= m!
� l
0 a(u1) du1 exp

{−im � u1

0 η(θ1; t) dw(θ1)
}×

× � l
u1
a(u2) du1 exp

{
−i(m− 1)

� u2

u1
η(θ2; t) dw(θ2)

}
× . . . ×

× � l
um−1

a(um) dum exp
{
−i � umum−1

η(θm; t) dw(θm)
}
,

where 0 < u1 < . . . < um < l. In different intervals, we have different dw(θ) for every
time instant t.

1This symbol does not concern known designations. It is a label only.
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5. Determination of moments

Since the process zm,1 (l; t)z∗r,1 (l; t) depends on two variables, for the calculation of the
mean M [zm,1 (l; t)z∗r,1 (l; t)], it is necessary to carry out the averaging for t constant (on
the space Ω1) and then Ωl.

5.1. Averaging with respect to l. On the disjoint intervals [ui, ui+1) forall i , for
all i, the processes

f(ui, ui+1) =
� ui+1

ui

η(θi+1; t) dw(θi+1)

are independent by construction (since dw(θ) are Wiener processes, η(θ; t) for fixed t is
a non-random function depending on θ). Because of this, since a(l) is also a non-random
function, the mathematical mean of each factor is defined in the following way:

(6)

Mt [zm,1 (l; t)] = m!
l�
0

a(u1) du1 Mt

[
exp

{−im � u1

0 η(θ1; t) dw(θ1)
}]×

× � l
u1
a(u2) du2 Mt

[
exp

{
−i(m− 1)

� u2

u1
η(θ2; t) dw(θ2)

}]
× . . . ×

× � l
um−1

a(um) dumMt

[
exp

{
−i � umum−1

η(θm; t) dw(θm)
}]
.

In this way, it is necessary to find the mean of an expression of the following type:

exp

{
−i(m− j)

� uj+1

uj

η(θ; t) dw(θ)

}
.

Lemma 5.1. The following equality holds:

(7) Mt

[
exp

{
α

� b

a

η(u; t) dw(u)

}]
= exp

{
1
2
α2

� b

a

η2(u; t) du

}
.

Proof. We denote

(8) q(a, b; t) =
� b

a

η(u; t) dw(u)

and differentiate q(a, b; t) with respect to the upper limit b. As a result, we obtain

db q(a, b; t) = η(b; t) dw(b).

Therefore, by the Itô formula, the stochastic differential of the expression

exp

{
α

� b

a

η(u; t) dw(u)

}
= exp {αq(a, b; t)}

with respect to b is equal to

db exp {αq(a, b; t)} = exp {αq(b; t)}αη(b; t) dw(b) +
1
2
α2η2(b; t) exp {αq(a, b; t)}db.

We compute the average with respect to l of the obtained expression:

(9) dbMt [exp {αq(a, b; t)}] =
1
2
α2η2(b; t)Mt [exp {αq(a, b; t)}] db.

We denote

(10) I1(a, b; t) = Mt [exp {αq(a, b; t)}.]
Let η(b; t) be independent of the stochastic process w(u). In view of (9), we obtain the
differential equation

dI1(a, b; t)
db

=
1
2
α2η2(b; t)I1(a, b; t).
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Its solution

I1(a, b; t) = exp

{
1
2
α2

� b

a

η2(u; t) du

}
satisfies the initial condition I1(a, a; t) = 1. In view of (8), (10), the statement of the
lemma is proved. �

As a consequence of Lemma 5.1, the mathematical mean (6) takes the form (for
constant t)

Mt [zm,1 (l; t)] = m!
� l
0
a(u1) du1 exp

{
−m2

2

� u1

0
η2(θ; t) dθ

}
×

× � l
u1
a(u2) du2 exp

{
− (m−1)2

2

� u2

u1
η2(θ; t) dθ

}
× . . . ×

× � l
um−1

a(um) dum exp
{
− 1

2

� um
um−1

η2(θ; t) dθ
}
.

5.2. Averaging with respect to t. Now we average the process zm,1 (l; t) on the space
Ω2. Since ws(t) for all s are independent Wiener processes, η2(ls; t) are independent, and
the average of the product is therefore equal to the product of the means. As a result,
we obtain

M
[
Mt [zm,1 (l; t)]

]
= m!

� l
0 a(u1) du1 M

[
exp

{
−m2

2

� u1

0 η2(θ; t) dθ
}]
×

× . . .
� l
um−1

a(um) dumM
[
exp

{
− 1

2

� um
um−1

η2(θ; t) dθ
}]

.

Lemma 5.2. The following relation holds:

M

[
exp

{
−α

2

2

� b

a

η2(u; t) du

}]
= exp

{
−α

2

4

� b

a

(� t

0

σ2(u; τ) dτ
)
du

}
.

Here, η(u; t) =
� t
0 σ(u; τ) dw(τ), and σ(u; t) is a non-random function.

Proof. We use the representation
� b

a

η2(u; t) du =
b− a
N

N∑
k=1

η2(uk; t)

which is valid due to the model assumptions. By definition, the processes η2(uk; t)
(k = 1, N) are independent for different values of k. We introduce the notation

Pk(t) = η(uk; t) =
� t

0

σ(uk; τ) dwk(τ),

where σ(uk; t) is a non-random function depending on uk and t. We consider now two
cases.

A. Let σ(uk; t) be constant. For the sake of simplicity, we assume that σ(uk; t) = 1
and study the problem for the processes

(11) η(uk; t) =
� t

0

dwk(τ) = P̃k(t).

By considering the representation of the integral in the form of sums, we carry out the
transformation

exp
{
−α

2(b− a)
2N

η2(uk, t)
}

= exp

{
−α

2(b− a)
2N

[� t

0

dwk(τ)
]2
}

=

= exp
{
−α

2(b− a)
2N

P̃ 2
k (t)

}
.



DYNAMICS OF RANDOM CHAINS 63

Therefore,

exp

{
−α

2(b − a)
2N

N∑
k=1

P̃ 2
k (t)

}
=

N∏
k=1

exp
{
−α

2(b− a)
2N

P̃ 2
k (t).

}
We denote

exp

{
−α

2(b− a)
2N

N∑
k=1

P̃ 2
k (t)

}
= IN (k, α2).

Since
M [exp {αq(a, b; t)}] = M [exp {−αq(a, b; t)}] ,

the following relations hold:

M
[
N∏
k=1

exp
{
−α2(b−a)

2N P̃ 2
k (t)

}]
=

=
N∏
k=1

M
[
exp

{
−α2(b−a)

2N P̃ 2
k (t)

}]
→qm M [exp {αq(a, b; t)}] .

Then we carry out the Itô differentiation:

dP̃k(t) = dwk(t),

(12) dP̃ 2
k (t) = dt+ 2wk(t) dwk(t)

and in view of (11) we have that:

dt exp
{
−α2(b−a)

2N P̃ 2
k (t)

}
= − exp

{
−α2(b−a)

2N P̃ 2
k (t)

}
α2(b−a)

2N dP̃ 2
k (t)+

+α4(b−a)2
2N2 P̃ 2

k (t) exp
{
−α2(b−a)

2N P̃ 2
k (t)

}
dt.

In the last differential, we introduce expression (12):

dt exp
{
−α2(b−a)

2N P̃ 2
k (t)

}
= − exp

{
−α2(b−a)

2N P̃ 2
k (t)

}
×

×
[
α2(b−a)

2N 2P̃k(t) dwk(t)− α(b−a)
2N

(
−1 + α2(b−a)

N P̃ 2
k (t)

)
dt
]
.

We calculate the mean for the last expression by denoting

I2(t;α2) = M
[
exp

{
−α

2(b− a)
2N

P̃ 2
k (t)

}]
.

We obtain the equation

dI2(t;α2) = I2(t;α2)
α2(b− a)

2N
dt+

α4(b− a)2
2N2

M
[
P̃ 2
k (t) exp

{
−α

2(b− a)
2N

P̃ 2
k (t)

}]
dt.

By considering the differentiation of the expression

exp
{
−α

2(b− a)
2N

P̃ 2
k (t)

}
with respect to α2, the last equation can be represented as a partial differential equation
with constant coefficients:

(13)
dI2(t;α2)

dt
= −α

2(b− a)
2N

I2(t;α2)− α4(b − a)
N

∂

∂α2
I2(t;α2).

The solution of this equation will be obtained by exploiting the properties of the sto-
chastic processes. With this purpose, we evaluate the mean of the function

exp
{
−α

2(b − a)
2N

P̃ 2
k (t)

}
.
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By considering that the process is a Wiener process (that is, a Gaussian process) we have

M
[
exp

{
−α

2(b − a)
2N

P̃ 2
k (t)

}]
=

� ∞

−∞
exp

{
−α

2(b − a)
2N

x2

}
× 1√

2π t
exp

{
−x

2

2t

}
dx =

=
1√
2π t

� ∞

−∞
exp

{
−
(
α2(b − a)

2N
x2 +

x2

2t

)}
dx.

Furthermore,

M
[
exp

{
−α

2(b − a)
2N

P̃ 2
k (t)

}]
=

1√
2π t

·
√

2π ·
√
t
/(α2(b− a)

2N
t+ 1

)
=

=
(
α2(b − a)

2N
t+ 1

)−1/2

.

In this way, the obtained expression I2(t;α2) =
(
α2(b−a)

2N t+ 1
)−1/2

is a solution of the
differential equation (13). In addition, in view of Lemma 5.1, we have

Mt [exp {−αq(a, b; t)})] = exp

{
−α

2

2

� b

a

η2(u, t)

}
= exp

{
−α

2(b− a)
2N

N∑
k=1

η2(uk, t)

}

=
N∏
k=1

exp
{
−α

2(b− a)
2N

η2(uk, t)
}
.

Therefore,

M [Mt [exp {−αq(a, b; t)})]] →qm
N∏
k=1

M
[
exp

{
−α2(b−a)

2N P̃ 2
k (t)

}]
=

=
N∏
k=1

(
α2(b−a)

2N t+ 1
)−1/2

=
(
α2(b−a)

2N t+ 1
)−N/2

.

Passing to the limit, we obtain the complete averaging with respect to both components:

M [I1(a, b; t)] = lim
N→∞

(
α2(b− a)

2N
t+ 1

)−N/2
= exp

{
−α

2(b− a)t
4

}
.

B. We now consider the case σ(uk; t) 
= 1. For Pk(t), we obtain the expression

dt Pk(t) = σ(uk; t) dwk(t).

In this way, we have

dtP
2
k (t) =

σ2(uk; t)
2

2dt+ 2Pk(t)σ(uk; t) dwk(t)

and
dt exp

{
−α2(b−a)

2N P 2
k (t)

}
= − exp

{
−α2(b−a)

2N P 2
k (t)

}
×

×α2(b−a)
2N

[
σ2(uk; t) dt+ 2Pk(t)σ(uk; t) dwk(t)

]
+

+α4(b−a)2
2N2 P 2

k (t)σ2(uk; t) · exp
{
−α2(b−a)

2N P 2
k (t)

}
dt.

Therefore,
dtIt(k;α2) = ∂tM

[
exp

{
−α2(b−a)

2N P 2
k (t)

}]
=

= −M
[
exp

{
−α2(b−a)

2N P 2
k (t)

}
α2(b−a)

2N σ2(uk; t)
]
dt.

By exploiting the possibility of the differentiation with respect to the parameter α2, we
arrive at the equation

(14)
∂tIt(k;α2)

∂t
= −α

2(b− a)
2N

σ2(uk; t) It(k;α2)− α4(b − a)
N

σ2(uk; t)
∂It(k;α2)
∂α2

.



DYNAMICS OF RANDOM CHAINS 65

We divide both terms by σ2(uk; t) and denote

θ(t) =
� t

0

σ2(uk; τ) dτ.

So, we pass to the auxiliary equation

(15)
∂Iθ(k;α2)

∂θ
= −α

2(b− a)
2N

Iθ(k;α2)− α4(b − a)
N

∂Iθ(k;α2)
∂α2

.

Equation (15) is a differential equation with constant coefficients which is stochastically
equivalent to Eq. (13) . Therefore, its solution has the form

Iθ(k;α2) =
(
α2(b − a)

2N
θ + 1

)−1/2

.

Hence, the solution of Eq. (14) reads

It(k;α2) =
(
α2(b− a)

2N

� t

0

σ2(uk; τ) dτ + 1
)−1/2

.

As a consequence, we have

(16) M
[
IN (k;α2)

]
=

N∏
k=1

It(k;α2) =
N∏
k=1

(
α2(b− a)

2N

� t

0

σ2(uk; τ) dτ + 1
)−1/2

.

In order to evaluate I1(a, b; t), we take the logarithm of (16):

lnM
[
IN (k;α2)

]
= ln

N∏
k=1

(
α2(b−a)

2N

� t
0
σ2(uk; τ) dτ + 1

)−1/2

=

= − 1
2

N∑
k=1

ln
(
α2(b−a)

2N

� t
0
σ2(uk; τ) dτ + 1

)
.

By using the expansion of ln (x+ 1) in a series, we obtain

lnM
[
Ĩ1(b; t)

]
= − 1

2

N∑
k=1

[
α2(b−a)

2N

� t
0
σ2(uk; τ) dτ−

− 1
2
α4(b−a)2

4N2

(� t
0 σ

2(uk; τ) dτ
)2

+O(N−3)
]
.

We calculate the limit as N →∞:

limN→∞ lnM
[
IN (k, α2)

]
= − 1

2 limN→∞
N∑
k=1

[
α2(b−a)

2N

� t
0
σ2(uk; τ) dτ−

− 1
2 · α

4(b−a)2
4N2

(� t
0 σ

2(uk; τ) dτ
)2

+O(N−3)
]

=

= − 1
2 limN→∞

N∑
k=1

α2(b−a)
2N

� t
0
σ2(uk; τ) dτ = −α2

4

� b
a

(� t
0
σ2(u; τ) dτ

)
du.

By using the limit and by passing to the antilogarithm, we prove that Lemma 5.2 holds,
and

M

[
exp

{
−α

2

2

� b

a

η2(u; t) du

}]
= exp

{
−α

2

4

� b

a

(� t

0

σ2(u; τ) dτ
)
du

}
. �



66 ELENA V. KARACHANSKAYA (CHALYKH)

5.3. Passage to the limiting process. The field {xn(l; t); yn(l; t)} is defined by the
model assumption (3):

η(ls; t) =
� t

0

σ(ls; τ) dw(τ).

We change the model assumption

η̃(ls; t) =
(

1
2

� t

0

σ2(ls; τ) dτ
)1/2

and consider the field {x̂n(l; t); ŷn(l; t)} of the form

(17)
x̂n(l; t) =

n∑
s=1

a(ls) cos

[
s∑
j=1

�(w(lj))
(

1
2

� t
0
σ2(lj ; τ) dτ

)1/2
]

Δ,

ŷn(l; t) =
n∑
s=1

a(ls) sin

[
s∑
j=1

�(w(lj))
(

1
2

� t
0
σ2(lj ; τ) dτ

)1/2
]

Δ,

where �(w(lj)) is an increment of the Wiener process on the interval [lj ; lj+1]. This
means that the variable t is not a random variable. From the analysis of the process on
the flow of the σ-algebras �t(n) ⊕ �l, it is possible to pass to the process defined on
the flow of the σ-algebras �(l), ∀t = const . Averaging with respect to t has already
been carried out. We observe that the fields {xn(l; t); yn(l; t)} and {x̂n(l; t); ŷn(l; t)} are
defined on different spaces. We consider the processes

z2(k; t) = exp

⎧⎨⎩−i
k∑
j=1

�w(lj)
(

1
2

� t

0

σ2(lj ; τ) dτ
)1/2

⎫⎬⎭,
zn,2(l; t) =

n∑
k=1

z2(k; t) a(lk) ·Δ, Δ = O(n−1).

In view of the Euler representation, the components of fields (17) take the form

x̂n(l; t) = 1
2

(
zn,2(l; t) + z∗n,2(l; t)

)
,

ŷn(l; t) = i
2

(
zn,2(l; t)− z∗n,2(l; t)

)
.

We now construct the characteristic functions: gn(α;β; t) for the field {xn(l; t); yn(l; t)}
and ĝn(α;β; t) for the field {x̂n(l; t); ŷn(l; t)}:

gn(α;β; t) = M
[
exp

{
i

2
(α+ i β) zn,1(l; t) +

i

2
(α− i β) z∗n,1(l; t)

}]
,

ĝn(α;β; t) = M
[
exp

{
i
2
(α+ i β) zn,2(l; t) +

i

2
(α− i β) z∗n,2(l; t)

}]
.

For the continuation of the research, the next lemma is necessary.

Lemma 5.3. Under the model assumptions for the random fields {xn(l; t); yn(l; t)} and
{x̂n(l; t); ŷn(l; t)} and for a fixed integer m, there exists a number n′ such that, for all
n > n′, the following relations hold:

(18) M[zm,2 (l; t)] = M[z∗m,2 (l; t)] = M[zm,1 (l; t)] = M[z∗m,1 (l; t)].
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Proof. We calculate all increments in the series of equalities (18) by having in mind

the lemmas. We introduce the notation η̃(θ, t) =
(

1
2

� t
0 σ

2(θ, τ)dτ
)1/2

. We have

M[zm,2 (l; t)] = m!
� l
0 a(u1) du1 M

[
exp

{−im � u1

0 η̃(θ1, t) dw(θ1)
}]×

× . . . × � l
um

a(um) dum)M
[
exp

{
−i � umum−1

η̃(θm, t) dw(θm)
}]

=

= m!
(� l

0
a(u1) du1 exp

{
−m2

2

� u1

0
η̃2(θ1, t) dθ1

})
×

× . . . ×
(� l

um
a(um) dum) exp

{
− 1

2

� um
um−1

η̃2(θm, t) dθm
})

=

= m!
(� l

0
a(u1) du1 exp

{
−m2

2

� u1

0

(
1
2

� t
0
σ2(θ1, τ)dτ

)
dθ1

})
× . . . ×

×
(� l

um
a(um) dum) exp

{
− 1

2

� um
um−1

(
1
2

� t
0 σ

2(θm, τ)dτ
)
dθm

})
= M[zm,1 (l; t)].

Then, by virtue of (5) and (7), we have

M[zm,1 (l; t)] = M[z∗m,1 (l; t)].

In this way, we complete the proof of the lemma. �
Lemma 5.4. The characteristic functions of the fields {xn(l; t); yn(l; t)} and {x̂n(l; t);
ŷn(l; t)} for n→∞ coincide for all l and t.

Proof. The proof is based on the coincidence of the representations for the character-
istic functions gn(α, β, t) and ĝn(α, β, t) by means of the Maclaurin expansion (inside the
mean) with respect to z,1(l; t) and z∗,1(l; t), and z,2(l; t), z∗,2(l; t), respectively, and on the
conclusions of Lemma 5.3. �

Lemma 5.4 allows us to pass to the study of the limit behavior of the field {x̂n(l; t);
ŷn(l; t)} for n→∞ exclusively.

Theorem 5.1. Let us assume that, for the field {xn(l; t); yn(l; t)}, the model assumptions
(17) are satisfied:

x̂n(l; t) =
n∑
s=1

a(ls) cos

[
s∑
j=1

�(w(lj))
(

1
2

� t
0
σ2(lj ; τ) dτ

)1/2
]

Δ,

ŷn(l; t) =
n∑
s=1

a(ls) sin

[
s∑
j=1

�(w(lj))
(

1
2

� t
0
σ2(lj ; τ) dτ

)1/2
]

Δ.

We also assume that the field {x(l; t); y(l; t)} is defined in the following way:

(19)
x(l; t) =

� l
0
a(u) cos

[� u
0

1
2

(� t
0
σ2(θ, τ)dτ

)
dw(θ)

]
du,

y(l; t) =
� l
0
a(u) sin

[� u
0

1
2

(� t
0
σ2(θ, τ)dτ

)
dw(θ)

]
du.

Under these conditions, the characteristic functions of the processes {x(l; t); y(l; t)} and
{xn(l; t); yn(l; t)} coincide.

Proof. The comparison of the characteristic functions for {x̂n(l; t), ŷn(l; t)} and {x(l; t),
y(l; t)} for all values of t ∈ [0, T ], as n→∞ leads to the proof of the theorem. �
Theorem 5.2. The stochastic process {x(l; t); y(l; t)} is a solution to the Cauchy problem
for the Itô stochastic differential equations
(20)

dlp(l; t) =
[
p(l; t) ∂∂l ln a(l)− p(l;t)

4

t�
0

σ2(l; τ)dτ
]
dl −

(
1
2

t�
0

σ2(l; τ)dτ
)0,5

q(l; t)dw(l),

dlq(l; t) =
[
q(l; t) ∂∂l ln a(l)− q(l;t)

4

t�
0

σ2(l; τ)dτ
]
dl +

(
1
2

t�
0

σ2(l; τ)dτ
)0,5

p(l; t)dw(l),

dlx(l; t) = q(l; t) dl, dly(l; t) = p(l; t) dl
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satisfying the boundary conditions

x(0; t) = 0, y(0; t) = 0, p(0; t) = a(0), q(0; t) = 0.

Proof. We differentiate x(l; t) and y(l; t) in (19) with respect to l:

∂x(l; t)
∂l

= a(l) sin

[� l

0

1
2

(� t

0

σ2(θ, τ)dτ
)
dw(θ)

]
= q(l; t),(21)

∂y(l; t)
∂l

= −a(l) cos

[� l

0

1
2

(� t

0

σ2(θ, τ)dτ
)
dw(θ)

]
= p(l; t).(22)

The obtained expressions are now differentiated by the Itô formula with respect to the
variable l:

dl

(
∂x(l;t)
∂l

)
= 1

a(l)
∂a(l)
∂l a(l) cos

[� l
0

1
2

(� t
0 σ

2(θ, τ)dτ
)
dw(θ)

]
dl−

− a(l) sin
[� l

0
1
2

(� t
0 σ

2(θ, τ)dτ
)
dw(θ)

]
· 1

2

(� t
0 σ

2(θ, τ)dτ
)
dw(l)−

− 1
2 cos

[� l
0

1
2

(� t
0
σ2(θ, τ)dτ

)
dw(θ)

]
·
(

1
2

� t
0
σ2(θ, τ)dτ

)2

dl.

Taking (21) and (22) into account, we obtain the last equation of system (20) . In a
similar way, we get the second expression of the system. The functions x(l; t), y(l; t),
p(l; t), q(l; t) defined by (19), (21), and (22) satisfy the given initial conditions. �

Within the framework of the given formulation (L is constant), we have found
Ft(x; y;L) for different values of t.

Theorem 5.3. The distribution function of the process {x(l; t); y(l; t)} can be obtained
by integrating the Kolmogorov equation of system (20) with respect to the variables p
and q.

Proof. After the enlargement of the space obtained by introducing the new variables
p and q, the compound process {x(l; t); y(l; t); p(l; t); q(l; t)} becomes a Markov process.
This means that it is possible to obtain a Kolmogorov equation for the density function
ρ(x, y, p, q, l, t) and then, by integrating with respect to p and q, infer the density function
of the distribution ρ(x, y, l, t) for all l and t. �
Theorem 5.4. The distribution function of the original process {xn(l; t); yn(l; t)} under
the model conditions (4) coincides with the distribution function of the Markov process
{x(l; t); y(l; t)} (19).

Proof. The proof is based on the conclusions of Theorem 5.1 and Theorem 5.2. �
Remark 5.1. The character of the analysis doesn’t substantially changes when, for exam-
ple, a = a(l, t) (vibrating chain), σ(l; t) is a non-anticipating measurable random func-
tion with respect to independent flows of σ-algebras governed by independent Wiener
processes w(l) and w(t).

In this way, we arrive at a coherent representation of distribution: the parameter t
defines also the structure of the chain.
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