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PETER M. KOTELENEZ

STOCHASTIC FLOWS AND SIGNED MEASURE VALUED
STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

Let N point particles be distributed over R, d € N. The position of the i-th
particle at time ¢ will be denoted 7(t,q?) where ¢’ is the position at ¢t = 0. m; is
the mass of the i-th particle. Let §, be the point measure concentrated in r and

XN (0) := Z,{il m;6,: the initial mass distribution of the N point particles. The

empirical mass distribution (also called the “empirical process”) at time ¢ is then
given by !

N
XN (1) =Y il gy = /6r<t,q>XN(0: dq),
=1

i.e., by the N—particle flow. In Kotelenez (2008) the masses are positive and the
motion of the positions of the point particles is described by a stochastic ordinary
differential equation (SODE). Further, the resulting empirical process is the solution
of a stochastic partial differential equation (SPDE) which, by a continuum limit, can
be extended to an SPDE in smooth positive measures. Some generalizations to the
case of signed measures with applications in 2D fluid mechanics have been made.?2 We
extend some of those results and results of Kotelenez (2008), showing that the signed
measure valued solutions of the SPDEs preserve the Hahn-Jordan decomposition of
the initial distributions which has been an open problem for some time.

1. INTRODUCTION

(Q, F,F:, P) is a stochastic basis with right continuous filtration, and the measure P
is complete. All our stochastic processes are assumed to live on € and to be Fy-adapted,
including all initial conditions in stochastic ordinary differential equations (SODEs) and
stochastic partial differential equations (SPDEs). Moreover, the processes are assumed
to be dP ® dt-measurable, where dt is the Lebesgue measure on [0, c0). !

The stochastic component of the displacement of r(¢,q’) in a short time increment
should be Brownian (multiplied by some diffusion coefficient, which may depend both on
r(t,q") and on Xn(t)).

Following Kotelenez (1995a,b) we employ i.i.d. Gaussian standard white noise random
fields we(dg,dt) on R* x Ry, ¢ =1,...,d, as a stochastic perturbation for the positions
of the particles.? We list some of the properties of wy(dr, dt):

Denote the Lebesgue measure of a Borel set B € R* by |B|. Let A; € B (the Borel sets
in R?) with finite Lebesgue measure |4;|, and [s;, ;] be intervals in Ry, i = 1,2. Then
[ [pwe(dr,du), B € {A;,i =1,2} and [u,v] € {[ss,t:],i = 1,2} are Gaussian random
random variables with mean 0 and covariance |Ay N Aa||[s1, 1] N [s2,t2]]. [, we(dg,t) :=
fot [ 4 we(dgq, du) is F-measurable for any A € B* with |A] < oo and any ¢. The stochastic
integration with respect to wy(dr,dt) follows the pattern established by Walsh (1986),
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1Cf.7 e.g., Metivier and Pellaumail (1980), Ch. 1.2

2Note that wy(dgq, dt) may be considered space-time differentials of properly defined Brownian sheets
with parameters R% x Ry . Cf. Kotelenez (2008), Ch. 2, 15.
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where wy(dr, dt) was used as a driving term for stochastic partial differential equations
(SPDEs). Set w(dr,t) := (wyi(dr,t),...,wa(dr,t))T where CT denotes the transpose of
a matrix C. Further, let My 4 denote the d x d matrices over R. Let J.(r,q, p,t) be
a “nice” Mgxq valued function, jointly measurable in all arguments, depending on the
position of the particle, the spatial noise coordinate, the (finite signed measure valued) p
and time ¢ and a correlation parameter € > 0.2 In addition to Lipschitz and measurability
assumptions, “nice” means here that the one-dimensional components of J.(r,q,...,t)
have to be square integrable in ¢ with respect to the Lebesgue measure dq. Similar
conditions are assumed for the one-dimensional component of the R?-valued function F.
Consider the following system of SODEs driven by w(dr, dt):*

driN = PN (), X n (), )dt + [ T-(roN (), p, Xen (), Dw(dp, dt),

ri’ﬁ(s) = q¢,,i=1,...,N, X.n(t):= Zf\; m;0 m; € R\ {0}.

N ()

Under appropriate Lipschitz conditions (cf. (2.3)) Kotelenez (1995b) shows that (1.1)
has a unique strong It6 solution which is an R%V-valued diffusion process. The two-
particle® and one-particle diffusion matrices of the noise are given by:

D.(r', 1, p,t) := [T p, )T p, i, t)dp Vi, j=1,...,N,
(2) i
D(r, p,t) := D(r,7, i, t),

where “AB” denotes the matrix multiplication of matrices A. Further, “Ag,” will
denote the entries of the matrix A, and p is a finite signed Borel measure on R?. For
m € NU{0} let C™(R%;R) be the space of m times continuously differentiable functions
from R? into R. Further, let CZ*(R% R) be the subspace of C™(R?;R), whose elements
together with all their derivatives vanish at infinity. We denote by “e” the inner product
in R and by 0y and 0%, the first and second partial derivatives w.r.t. the spatial
coordinates 7 and 7,1, respectively. Itd’s formula, applied to (X: n(t),¢) for ¢ €
C2(R% R), yields the quasilinear SPDE associated with (1.1) where the derivatives are
taken in the distributional sense.%

X = {5305 01 ORe(Deee(Xey ) Xe) =7 @ (XF (-, X, 1))}t
(3)
— v (X [T(-p, Xe, t)w(dp, dt)).
For notational convenience we will in what follows suppress the dependence on ¢ in the
coefficients and solutions.” Let us first assume that the weights m; in (1.1) are positive

and derive appropriate metrics for (1.1)/(1.3).% Let | - | denote the Euclidean metric on
R? and “A” denote “minimum”. Set
(4) plr—q):=Ilr—al A1, p() e{l-],p()}

3Ct. Kotelenez (2008), Ch. 5.

4We abbreviate r;N(t) =1 n(t ).

5The two-particle diffusion matrix, describing the pair correlations of the noise perturbations, is the
time derivative of the mutual (tensor) quadratic variation of the noise.

6Cf. the following Lemma 1.3.

"If ¢ — 0 Kotelenez and Kurtz (2010) show that positive solutions of (1.3) converge towards the
solution of a deterministic quasilinear SPDE, provided the initial conditions converge appropriately. For
fixed € > 0 Kotelenez, Leitman and Mann (2009) analyze the short and long time behavior of the flow
of correlated Brownian motions and show that correlated Brownian motions exhibit the depletion effect
which has been experimentally observed in colloids.

8For positive mass distributions in a one-dimensional domain the relation between flows and SPDEs
has been investigated by Dorogovtsev (2007).
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The space of all continuous Lipschitz functions f from R? into R will be denoted
Cr(R%;R). Further, set
B = OL.oo(R%:R)
which is the space of all uniformly bounded Lipschitz functions f from R? into R. We

endow By o with the norm?
£l 2,00 = A1l VLA
(5) [f(r)—f(a)]
where. 1111+ sup, /@l 1715 5= b a1y L=,
Set
(6) My := {p : p is a finite Borel measure on Rd}.

We define a metric on My by °

() vla=v)= sw | [ -]
HfHL,oc Sl
and we conclude that (My,vy) is a complete separable metric space. '

We now define the space of finite signed Borel measures

Mys:={p:p=py—p—, pxr € My},
(8)

denoting by u* the Hahn-Jordan decomposition of .

The metric v may obviously be extended to My ,.
Lemma 1.1 (My, v¢) is not complete.
Proof: Set i, =y p_,(—1 )ké( L 0,...,0) With 0 in the coordinates from 2 to d. Take an

arbitrary f € B oo such that ||f||z,cc < 1. Then for n > m

| [ ) (= ) ()| = 1 3252 (1) f (557,05, 0)]

< S (0 0) = F( 00 O S i 1§~

F
t\

i 3

gzzzmﬂm — 0, asn— 00 .
Hence,
= 1
v (/~Ln - ,um) = sup \/f(r)(,un — ,um)(d:r)‘ < -
! 1 fllz,00 <1 k:;rl k(k+1)

It follows that {u,,} is a Cauchy sequence in (My g, vy).
Suppose there is a (finite) signed measure p such that

Y (ptn —p) — 0, asn — o0 .

Then for any f € B o with ||f| 1,00 < 1 we must have

[ 0l = )] < 35l = ) — 0, a1 — 0.

9In the definition of the Lipschitz norm (1.5) we may, without loss of generality, restrict the quotient
to |r —gq| < 1, since for values |r —g| > 1 the quotient is dominated by 2||| f|||. This implies, in particular,
that the Lipschitz norm is independent of the choice p(-).

HOsince || - l,00 does not depend on the choice p(-) from (1.1), the same holds for ().

L1Cf. Kotelenez (2008), Ch. 15.1.4, Th. 15.9.
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However, choosing f(r) = 1 we have'? [ 1ga(r)p,(dr) = —1 if n is odd and 0 if n is
even. [ lga(r)u(dr) =: ¢, € R, Therefore, for f(r) =1

14cul, n=2k+1,

| [ 15 = )| =
leul, n = 2k.
Therefore, this functional does not converge to 0, which completes the proof. (]
We next proceed as in Kotelenez (1995a,b) and consider in the first step the product
space!?
M := M x My = {fi:= (g, p) : pix € My}
(9) with metric

Vg (ha, fiz) : \/vf fir — po4) + (- — p2-).

We obtain that (M, A¢(,-)) is a complete separable metric space, and we may identify
the Hahn-Jordan decomposition u* of a signed measure p with the element (ut, ™) €
M. Define the following map @:

P (Mv“AYf) - (Mf,S”Yf)
(10)
foi= (pgey p) > = pgp — p

Lemma 1.2

(11) Y (@), ®(9)) < V245 (f, D),
whence @ is uniformly continuous.
Proof: For f € Br o and i := (p4, pi— = (vy,v_)eM

[ 1) u+—u——V++V—|<|/f (i = vl + | [ 10 = o).

|
Remark 1.3 For finite N the Hahn-Jordan decomposition of the original distribution
X+ (0) is preserved through the flow of point measures for ¢ > 0 because solutions starting
at different locations do not coalesce in finite time.'* However, convergence in the metric
4s does not, in general, preserve the Hahn-Jordan decomposition in the limit.*® To see
this, it suffices to construct a convergent sequence of signed measures u,, such that the
Hahn-Jordan decompositions ;- both converge toward the same positive measure g with
pw(R?) > 0. E.g., choose p;t := (L 0,000 M = (5(%707 oy and g :=d(o,.... 0)- O
Hence, generalizing Kotelenez (2008), we show first that:

e (i) The pair of the positive and negative empirical processes (X5, Xy )(t) con-
verges towards a pair of finite Borel measures (X4, X_)(¢) in the metric 4(-,-)
forallt >0 .

e (ii) The resulting limit satisfies: X4 (t) = X*(t), i.e., it is the Hahn-Jordan
decomposition of the signed measure X (t) for all t > 0, provided X4 (0) = X*(0).

129 ) (r) is the indicator function of a Borel set A in R,

13We use subscripts £ to indicate that we are not restricting the set to the Hahn-Jordan decompo-
sition of My ;. For more details cf. Seadler (2010).

14 The proof of this statement follows from Theorem 2.1 in the next section.

15The author wants to thank T. Kurtz for pointing out this fact to him.
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Since (i) has been solved in under fairly general assumptions the only problem remains
(if). We will solve (ii) as follows: The flows generated by the SODEs map disjoint sets
into disjoint sets. We then use the following representation for the solutions of SPDEs,
provided in Kotelenez (2008) p. 59, (4.1), and p. 187, (8.50)-(8.51):

f5 Xq X+ O dq)
(12)
= [ o, ~(0,dg).

Here
(13)e
r(t, X,q) = q+ [y F(r(s,X,q), X(s),s)ds + [} [ T(r(s,X,q),p, X(s), s)w(dp, ds),

i.e., the coeflicients in (1.13) are all the same (depending on the same X’) and the only
difference is the starting point ¢, and we need to show

(14) Xy () = XF().

2. FLows orF SODESs
Hypothesis 2.1 Suppose
F:RYx Qx[0,00) — R?
and
J:RYx R x Q x [0,00) — Maxd

such that both functions are adapted to a filtration Fg C F;. Further, suppose there is
a sequence of bounded stopping times 7, T co a.s. as n — oo and a sequence of positive
constants K, with K, < oo a.s. such that'®

|F(7‘,t/\7’n) - F(Qat/\Tn| S Knﬁ(r - Q)v
4 = 2 ~
Zi,@:l f (Jk’((’f',p,t/\ Tn) - Jk,f(‘]vpvt/\ Tn) dp < KTQLPQ(T - q)v
15 ~ .
U B e nm)l < KL+ 500

|3 imt (Tt pyt A7) (@ pyt A7) dpl < K2(14+ p(r))(1+ p(q)).

O

Consider the stochastic ordinary differential equation (SODE) with random coefhi-
cients
dr = F(r,t)dt + [ J(r,p,tyw(dp, dt)
r(s) =4

Theorem 2.1 Suppose (2.1). Then the following holds:

(i) (2.2) has a unique solution for all ¢ € R? and also for all adapted initial conditions
Ts.

(ii) Denote the solutions of (2.2) with starts in (adapted) r
by r(-,r%). Then for any T > 0 and any n € N,

(17) Esupocycrpg, Pt r)) = r(t,r2) < K2ZE((rl —12)).
(iii) Suppose

(16)
1 =1,2, at time s > 0

,57

Plw: ri(w) —r(w)| =0} = 0.

16As customary, we will mostly suppress the dependence on w in the following notation.



STOCHASTIC FLOWS AND SIGNED MEASURE VALUED SPDES 91

Then
(18) P{Usso{w : [r(t,w,r3) — r(t,w,72)| = 0}} = 0.

Proof. Steps (i) and (ii) are standard and follow from the contraction mapping prin-
ciple.!” We will now prove (iii).'® Suppose without loss of generality s = 0 and set

=inf{t > 0: |r(t,ry) —r(t,r5)| = 0},

where, as customary, we set 7 = oo if the set in the right hand side is empty. 7 is a
stopping time. ' We need to show 7 = 0o a.s.

Considering a general twice continuously differentiable y which is odd, concave mono-
tone increasing such that?°

x(u) =u Yue[-1,1],
X' (u) >0 YueR,

X" (wu?] < erlx (wu| < ealx(u)] Yu € R,

p2(r) < x(Irl?) < 3p%(r).

where ¥’ and x” are the first and second derivatives of , respectively, and where 0 <
c1 < ¢y < 0.
Set for t < T

St rg), r(t,13),t) =

X (Ir(trg) =r(trg)[*)2(r(t,rg)—r(trg)) o (F(r(trg) ) = F(r(t,rg) 1)
x(Ir(t,rg)—r(t.r$)?)

X (r(tad)=rta)D Tf oy [ (Teelrtrd) ) =Jne(r(tad)pd)) 2dp
(=GP ’

+2 3000 o Xt ) — e ) B (rat, ) = ralt v) (ry (1) — (1, 78)) X

X [(Tia(r(t,r),p,t) = Fi(r(t,16), 1)) (Tie(r (8, 76). P, ) = Tje(r(t, 76), p, 1)) dpdt

_|_

and
gX(T(tv T(1))7 T(t, T%),p, t) =

T
K () —r(trD22(rad) —r@ad) (Totrd) o) =T p)
A (Erg)—r(tr) ) '

17Ct. Kotelenez (2008), Ch. 4.

18The proof is an adaptation of a proof provided by Krylov (2005).
19Cf. Liptser and Shiryayev (1974), Ch. 1.3, Lemma 1.11.

20For the bounded metric p(+) we take, e.g.,

z, lz| <1,
x(z) := 1+ arctan(z — 1), x> 1,

—1—arctan(z + 1), =< -1,

and we have p?(r) < x(|r|?) < 3p2(r).
For the unbounded (Euclidean) metric |- | we choose x(z) := |z|.
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Fort > 7 and 7 < oo we set

fx(r(t,r(l)),r(t,rg),t) =0= gX(r(t,ré),r(t,rg),p, t).

Hence, the It6 formula yields
dx(Jr(t,rg) —r(t,7§)[%)

(20) = x(Ir(t,75) = r(&;7)*) ([ gu(r(t75), 7(t,78), . t) @ w(dp, dt)

Hfx(r(trg), r(t, 78, t))dt).

Employing the properties of x from (2.5) and the Lipschitz assumptions there are
finite positive constants ¢;, 7 = 1,2 such that

t
/ / gy (P(s AT AToy10), 7 (S AT ATy 1), 0y S AT A Tn)|2dpd8 < cleLt Vt.
0

and
|fx(rEAT AT 1), T(EAT AT, 13) E AT AT)| < c2K2.
Consequently, x(|r(t A7,r§) —r(t AT,73)|?) is the solution of a bilinear SODE, driven

by a “nice” semi-martingale. Letting 7,, — oo, we verify the following representation by
1t6’s formula:

X(Ir(ATrg) —r(E AT 16)[?) = x(Ir6 — 5|*) expley (¢, 75, 75)]
where
(21) "
ox(t.15,78) = [ [ 9x(r(s,75),7(5,73), . 5) @ w(dp, ds)
o (s, 1), 7(5,78),8) = 5 [ g (r(s,78), 7(5,78), p. ) Pdp) .
Therefore, for any choice of g € {| - |, p( )}
(22) PPt AT rg) —r(t AT,r))? > (g — 18)? exploy (t, 5, 78)]- }
We obtain from (2.8) and the assumption that 7 = oo a.s. O

B* denotes the Borel sets in R* and ’I"N N elements of RN .
Theorem 2. 2 Suppose (2.1). Then, for any N € N there is a R?V-valued map in the

variables (t,w,rV,s), 0 < s <t < oo such that for any fixed s > 0
(0 8) s QX RW — O([s, T R™Y),
and the following holds: .

(i) For any t € [s,T] TN(t,-,s) is Fi © BN — B*N_measurable.

(ii) The i-th d-vector of 7V = (7!,...,7,...7"), denoted 7" =: 7, depends only
on the i-th d-vector initial condition 7{ € Lo # (R?) in addition to its dependence on
w(dg, dt), and with probability 1 (uniformly in ¢ € [s, 00))

(23) PN (8,0, 8) = (k1 8),

where the right hand side of (2.9) is the ith d-dimensional component of the solution of
(2.2).
(iii) If w > s is fixed, then with probability 1 (uniformly in ¢ € [u, 00))

(24) PN (Y ) ) =7V (),
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If N =1 we will just write 7(-,-, -, ), and since for N > 1 the corresponding system
is a system of N identical equations, indexed by possibly different initial conditions it
suffices in what follows to formulate conditions and results for N = 1.

The proof is provided in the Appendix. O

Denote for m € N and sufficiently often differentiable f : R — R :

111l == max]]|ad ]

j|<k
oo WIS

where j = (jo,, - - -, je,,) is a multiindex of non-negative integers with |j| = >"7", js, and

& is the corresponding partial differential operator with respect to the space variable 7.
Hypothesis 2.2 Suppose that for some m > 1

(25)

d
max ess su Fo( u,w + max /BJjQ D, U, w)d, < 0.
s, ess s (Bl + e 13 @D Cop )il

|

Remark 2.3 Hypothesis 2.2 obviously implies 2.1. O

Let Lo(2; C(R? x [0,T); RY) denote the set of all C(R? x [0, T]; R¢)-valued random
variables.

Proposition 2.4 Assume Hypothesis 2.2. Then for any multiindex j with |j| < m —1

(26) (@F) (-, -) € Lo(Q C(R x [0, T];RY) VT > 0.

Proof. Cf. Kotelenez, loc. cit. Ch. 6, Corollary 6.11. (]

In what follows we wish to show that V¢ > 0 7(¢,w, -) maps disjoint Borel sets A(w)
and B(w) onto disjoint Borel sets A;(w) and B;(w) a.s. To this end we introduce the
following notation:

(27) Dag = {(q1,---,9d: Qa+1s----q2a) : (q1,-- -, qa) = (qd+1,----q2a)}-
We then have for A, B € B%:
ANB=0< Ax BcCDj,,
where the latter set is the complement of Doy in R?4. Let
Qyots == {w : 7(t,w, ) is continuous as a function of ¢}

where by (2.12) P(Qy,t5) = 1.
Theorem 2.5 Assume Hypothesis 2.2 with m = 1. Then

Q ={w: (F(t,w,a),7(t,w,b)) € D5; V¥(a,b) € D53} Ny c1s € .7:"8

and
(28) P(y) =1.
Proof: (i) We first define a convenient partition of Dag, setting
Sto={(aqr,-- - q2a) s @t > qar1}, ST ={(q1,-- - q2d) : @1 < qas1},
Sy = {(a1, - ®2a) : @1 = qat1, 92 > qat2},

Sy ={(q1,---,q24) : @1 = qa+1, 2 < qa+2},

(q1s---,024) : i = Qatiri=1,..,d — 1,494 > q2a},

Sy ={(q1,---,q2d) : ¢ = qatisi=1,..,d — 1,94 < qaa}-
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Let n € N and define approximations of the above partition by compact sets for
1=1,...,d:

S:_n = {(q17'~'vq2d) S Sj_ L qi Z qd+i + %v |(q17~~~vq2d)‘ S n}v

Sini={A(q1,- . q2a) €57 :qayi > i+, (@1, qea)l <}
We then have
(29) Dog.en = Uiy Ug an 1T DS4, asn — oo,
and Dsg ¢ n, as a finite union of compact sets, is compact.
(ii) Abbreviate
r(t,w,q) :=7(t,w,q), f(w,a,b):=F(t,w,a)—TF(t,w,d)|
and employ the notation: .
a,beR?, abe Q.
By the continuity of the field r(t,w, ) and the compactness of Dag ¢ p, for each n € N
and each w € Q4 s there is an n(n,w) > 0 such that
Qo i={w € Qs : flw,a,b) >n(n,w) >0Va,b€ Dagent,
(30) 3 ) .
= Qi ={w € Qs : f(w,a,b) >n(n,w) >0Va,be Dagent
By the countability {(a,b) € Q% : (a,b) € Dagen}, Qin € F, whence by (2.16) we
also have €, ,, € F¢. Now Proposition 2.1 in addition to (2.16) implies

P{Qt)n} =1 Vn.
Further, € ,, | (4, as n — oco. Hence,

O

Corollary 2.6 Assume Hypothesis 2.2 with m > 1. Let S* € B¢ ®ﬁ8 be the random

supports of Xoi and A(w), B(w) the w—sections of ST and S~ respectively such that
A(w) x B(w) € DS, a.s. Then ¥Vt > 0

(32) (F(t,w, A(w)),7(t,w, Bw))) € DY, a.s.

Proof: Fix w € Q; from (2.14). Then, 7(t,w, a),7(t,w,b)) € DS, V(a,b) € DS,. Hence,
we must also have (F(t,w,a),7(t,w,b)) € DS, V(a,b) € Ax Bif Ax B C D},. In
particular, it follows for the w—sections of ST and S~ which are in B%.2! Setting

Qap ={we€ Qs : (Ft,w,a),7(t,w,b)) € D, V(a,b) € A(w) x B(w)},
it follows from the previous argument that Q: 4.5 DO €. Hence, by (2.14) and the
completeness of P, P{Q; 4,g} = 1, which implies (2.18). O

Let K be a metric space with metric dx. If f is a stochastic process on [s,00) with

values in K, we set for t > s

(5,6 ) () = flunt), (u=s)
Lo, 7,(K) is the space of K—valued Fs-adapted random variables £, and Lo 7, (K) C
Lo, 7. (K) such that for £ € Ly 7 (K) Ed2(&,m) < oo where n € K is an arbitrary fixed
element. Similarly, Lo #(C([s,T];K)) is the space of random variables with values in
C([s, T]; K) which as processes are adapted to the filtration F, and Lo #(C([s, T]; K)) C

Lo, 7(C([s,T];K)) is the space of square integrable random variables with values in
C([s,T};K). Lioe2,7(C([s,T); K)) is the space of processes £(-) such that there are

21cf Bauer (1968), Section 22, Lemma 22.1.
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localizing stopping times 7 with £(- A7) € Lo #(C([s, T]; K)). Similar is the definition of
Lioc,2,7(C((s, T}; K)).
The coefficients for (1.1) are

F:R%x My x [0,00) — R%

J :REXRYx My, x [0,00) — Maxa.

In the following stochastic ordinary differential equation (2.19) the empirical process
from (1.1) has been replaced by the signed measure valued process Y(-): 2.
dri(t) = F(ri(t), Y(t),t)dt + [ T(r'(£),p, V(t), t)w(dp, dt)
(33)
TZ(S) = 7‘2 € L27fs (Rd)v Ye LlOC,27-7:(C((SaT]; Mf,S))v 1=1,..., Na

(2.19) is a special case of (2.2) if N = 1,23 setting
F(r,t) == F(r,(t),t), J(r,p,t) := T (r,p, V(1) 1).

Hypothesis 2.3 Suppose (r¢, us,t) € R x My x R, £ = 1,2. Let cpg € (0,00).
Working, if necessary, with a sequence of stopping times 7,, as in (2.1) we assume global
Lipschitz and boundedness conditions, working with the metric p(-):
(34)

(@) [F(ryi,pa,t) = F(ra, po, t)] < cpg{(37(in) V 4 () p(r1 — r2) + 45 (ia — f2)},

ZZ,ZZI[f(jkf(Tlvpa ,ulat) - jkf(’,?vpa ,uQ’t))2dp

< & AGFH () Vv AF(i2)p? (1 — r2) + A7 (I — fi2) };

(b) ‘F(Tvuat)|2 + Zi,ezl{f j]?((rapvuat)dp} S CF,j'

The constant cp, 7 in (2.20) may also depend on the space dimension d. Alternatively,
if we drop the boundedness assumption on the coefficients in (2.20), we need to impose
a linear growth condition in addition to corresponding Lipschitz conditions from (2.20)
in terms of the Euclidean metric:

(35)
(a) [F(ri,pa,t) — Fra, pe, t)] < cp g {4y (i) VA (fi2)lre — ra| + 5 (n — fi2)},
Zz,e:ﬂf(jkﬂﬁ’p, p1,t) — Tie(ra, p, po,t))?dp
< i G (n) Vv AF(2))|r = r2l® + 47 (i — fi2) };

0) |F(rpmt)| <ecpg(+]r])

|28 S T2 p, p)dp} < (14 [7[?)

O
A solution of the system (2.19), if it exists, is denoted by 7V (t, Y, 7N, s). As for (2.2)

we may formulate the results for the d—dimensional components of r which will be
denoted ¥, k = 1, ..., N. The proofs of the following existence and uniqueness theorems

22(219) describes the motion of a system of diffusing particles in a random environment (represented
by Y, we, £=1,...,d

23This is obvious for N = 1. But for N > 1 the system (2.19) is a system of identical equations,
indexed by possibly different initial conditions.
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are essentially identical to the proofs provided by Kotelenez (2008), Ch. 4, for the case
of positive measures and may be omitted here.

Theorem 2.7 Assume either (2.20) or (2.21) and p(-) € {p(*), |- |}. Then:

1) To each s > 0, 7% € Loz,(RY), ¥ € Lipe2.7(C((s,T]; My;.5)) (2.19) has a unique
solution 7% [ V, 75, 5) € Lipea.7(C([s, T]; RY)).

2) Let V; € Lipe2.7(C((s,T); My)) and 78, € Ly 7 (R?), i = 1,2. Then for any
T > s and any stopping time 7 > s, which is localizing for Y , 1=1,2,
(36)

EX

E SUPs<t<TAT ﬁQ (rk (ta Vi, rf,l? s) —rk (t7 Vs, 7"’;2, S))l{T>S}

T/\T

< CTFJ)JT{E( (91_r92)1{T>9} +Ef ;yl( u) — 572(u))1{T>S}du}.

Further, with probability 1 uniformly in ¢ € [s, 00)
(37) R, Y, rf,l, s) = rk(t,ﬂ&t)},rf’l, s). O

Next, we consider the R%-valued system of coupled SODEs (1.1). Since for each w
the initial measure is a finite sum of point measures, it is finite. Therefore,

N
XN(S) = Zmi(sri(s)v € LO,]‘—S (Mf79)

i=1
Further, a solution of (1.1), if it exists, preserves the initial positive and negative mass,
e, Xy(RY) = Zf\il L, >omi and Xy (-, R?) = _sz\il 1, <om;, where Xy (t) =
Zﬁil mibyi(y. 2* Therefore, we may take V(t) = Xn(t) = Zf\; m;0yi() in Theorem
2.7. We endow R4 with the metric
N N

() = max p(ri, qi),
where 7V = (r! ™), @Y = (q1,...,qn) € RV,

Theorem 2.8 Assume (2.20) or (2.21) in addition to Xn(s) € Lo #,(My) . Then, to

each initial condition r ﬂ( ) € Lor (R™) (1.1) has a unique solution rY (-, 7y(s)) €
Lo 7(C([s,00); R¥V)) which is a Markov process on RV,
Proof: Cf. Kotelenez (2008). Ch. 4, Theorem 4.7. O

Remark 2.9 We finally provide a useful representation for the perturbation by Gaussian
white noises. Let Hy be the space of measurable functions on R? which are square
integrable with respect to the Lebesgue measure with norm | - |p and scalar product
<+, - >0. Let {én}nen be a complete orthonormal system (CONS) in Hy and define an
M xq-valued function qi?n() by

b0 O ... 0
0 ¢ 0
(38) Gi= | ]
...... PPN

24This follows from Theorem 2.1 since by Hypothesis 2.3 d—dimensional solutions of (2.19) with
different starts do not coalesce. Cf. also our Remark 1.3.
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ie., an() is a d X d matrix-valued function whose entries on the main diagonal are all
¢n(+) and whose other entries are all 0. Set

n t n
(39) B (t) = [ | én(p)w(dp,ds).
Then the 8" (-) are i.i.d. standard R%valued Brownian motions (or Wiener processes).

Moreover, for any Y € Lige2,7(C((s,T); My.5)) and 7(-) € Lo, #(C([0, 00); RY)) (the space
of R%valued adapted continuous processes)

J T (r(t),p, Y(8), w(dp, dt) = 3207 on(r(t), Y(1),1)d6™ (dt)

(40) where

a1, ) = [ T (r,p, i, t) b (p)dp.

The right hand side of the first line in (2.26) defines the increment of an R%valued
square integrable continuous martingale m(-).2® In particular, Hypothesis 2.3 implies for
the mutual quadratic variation of the one-dimensional components of

m(t) = m(r(-),Y(-),1)
the following estimate:
(41) [mp(t), me(t)] < cgt, with 0<cs < 0.

([l

Remark 2.10 We wish to compare our results to results on homeomorphisms of

stochastic flows proved by Kunita (1990), Ch. 4.5, pp. 154-164. To this end we need

to rewrite our equation (2.2) into the notation of Kunita. We define the R%valued

semi-martingale H(r,t) := (Hy(r,t), ..., Haq(r,t)), depending on the spacial parameter r
by

t t
)= [ B+ [ [T spwidpds).
0 0
The local characteristics of H(z,t) are given by?°

a(r,q,s) == [ J(r,p,s)J (¢, p, s)dp

b(r,s) :== F(r,s).

Let K be a compact set in R%. Define the metrics

T~ a(r,g,t d =
la()ll1, i = D, gex T + Dot SUPrgex | 5o 7 8(7, 0, 1)]

o b(r.t d a7
|1,k = SUD, e g 300 + S, sup, e [52b(r, )|

Ib(t)

where |a(r, ¢, t)] := ZZI |Gk, e(r, q,t)| is the sum of the absolute values of all entries of a
d x d-matrix a(r, q,t).

Our Lipschitz assumption in (2.1) on the diffusion coefficients is, in the terminology
of Kunita, equivalent to

‘d(ra T,t A Tn) + a(quat /\Tn) - 2&(7", qat /\Tn)| S K'r27,ﬁ2(r - Q)

which is weaker than Kunita’s Lipschitz assumption.?”

25The statement follows from Doob’s inequality and the fact that the terms in the right hand side of
(2.26) are uncorrelated martingales,.

26Cf. Kunita, pp. 79, 85, 101.

27¢f. also Kotelenez and Kurtz (2010), Section 4.4, for a general comparison with Kunita’s approach.
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Apart from the fact that in Kotelenez (2008) a direct proof of the homeomorphism
has been provided, it appears to be not completely trivial to apply the homeomorphism
property to obtain (2.14). |

3. STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS (SPDES)

The general conditions of Theorem 2.7 on initial values and input processes will be
assumed throughout this Section.

Let Y(:) be as in (2.13) and

7(t,w, Y(w), q) = 7(t,w,q,0),
where 7(t,w, q,0) is the flow solution of (2.2) with
F(r,w,t) == F(t,Yw,t), J(rpw,t):=T(rpY,t).
Recall that by Theorem 2.2 7(¢,w, j(w), q) is measurable in (f,w, ¢).?8 The map
(@, 9) = 00 9(0).0))

Q xR — My,

is F, @ B — BMf measurable, where BMf is the Borel o— algebra on M.
Next, let &y an Fy measurable My ;-valued random measure. Define the “flow of
particles” governed by the flow of SODEs (2.19) and with initial distribution X by:

(42) y(tv w) = y(tv W, j}(w)v Xo(w)) = /5{F(t7u75;(u)7q)}‘){0(dq»w)~

Lemma 3.1 (i) Y(-), given by the first line in (3.1), is a weak solution?? of the following
(bilinear) stochastic partial differential equation (SPDE) with random coefficients:

dy = (A0, 02,(YDre(- D,1)) — v o (VE(-, D, t))dt
(43)

— VeV [TV, p, t)yw(dp,dt))
with initial condition &) at s = 0 and Hahn-Jordan decomposition Xoi. Further,
(44) Dye(r, Y, t) := Dye(r,r, D, t),

where Dyo(r,r, Y, t) denotes the two-particle diffusion matrix.
(ii) In addition to the conditions of Theorem 2.7 assume Hypothesis 2.2 with m > 1.
Then

(45) y:l: (tv w) = y:l: (tv w, j(w), Xo(w)) = /'5{?(t,w,5)(w),q)}‘){()i (dqvw)v

ie., f6{;(t)w)3;(w),q)}XOi(dq,w) is the Hahn-Jordan decomposition Y*(t) of Y(t) for all
t>0.

Proof. Take a test function ¢ € C3(R? R) and let < -,- > denote the duality between
measures and continuous test functions with compact supports (extending the Hy inner
product), i.e.,

<%ww>=/wmywmy

28The measurability in all three parameters, including ¢ is a consequence of the continuity of the
sample paths.

29«Weak solution” is here to be understood in the sense of partial differential equations (PDEs), not
in the sense of stochastic differential equations.
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To simplify the notation we abbreviate

) =7t F.0), mlr(s,)d) i= [ T(r(5.0).T(6) 9 (dp ).
The incremental mutual quadratic variations now satisfy

[m (7 (s, 4)), me( (s, 4))](ds) = Dre(7(s, q), V(s), s)ds.

Hence, we obtain

<@, V() >= [@(r) [ 0r(1.4)(dr)Xo(dg)
(by It6’s formula)
= [ (@)X (dq) + [ [5(V)((5,)) & F(7(5,q), V(s), 5)dsXo(dg)
+ [ Jo (Vo) (F(s,)) e m(7(s, 9), ds) Xo (dg)
+5 S0 i Jo (9200)(7(5, 9)) Die (7(s, ), V(5), 5)dsXo (dg)

=T+ TI(t)+ III(t)+ IV (¢).
Note that by (2.26)

oo d
(7 (5,0),d5) = 3 3 0 se (75, ), F(5), 5) B e(ds).

n=1/¢=1

Hence,

TIT(t) = [ fy oy (Op) (r)my (7, ds) [ 85(s,q) (dr) Xo(dg)

= 0 Shimr [ So (0k0) (1) ke (7, V(5), 9) B o(ds) [ G (s.q) (dr) Ko (dg)
= 0 Skt Jo S (@k0) (1) ke (r, D(s), )V (s, dr) B (ds)

= Yol X Jo < (Ok) () 0n e, V() 8)V(s) > Bue(ds)

= = 0 Y Jy <9() 0k (ke (5 V(5), 9)V(s)) > Bae(ds)
(integrating by parts in the sense of distributions)

=< (- fo Zk 1 a’c{ V() 2onia Z?:1 (Un,kl('v:)}(s)vs)) }ﬁn,f(ds) >

<o) JI T o { = Vs) [ TC IS, shuldp,ds)} >
Similarly, we may rewrite I7(t) and I V( ) Consequently,
< V(1) >

=<, X > — < p, fot Ve (y(s)F(,)}(s),s)ds) >
- < <p,f0tV . ()}(s) fj(-,j)(s),p, s)w(dp, ds)) >

<o B 82, (Y () D V(s), 5)ds) > .

(46)
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Since the measures are uniquely determined by the duality < -,- > with test functions
¢ € C2(RY, R), (3.5) implies (3.2).

(ii) is a consequence of Corollary 2.6. O

Observe that Y(t) given by (3.1) depends on the measure valued input process Y in
addition to the initial distribution Xj.

Lemma 3.2 Suppose y(t,jﬁ) and Y(¢, )72) are two solutions of (3.2) with represen-
tations (3.1). Then VT > 0 there is a positive ¢y < oo such that

(47) Esupgercr 32V I1), Dt 32)) < er il BA2(Vi(s), Va(s)) ds.

Proof: Truncating the initial distribution X'*(0,w) if necessary, we may without loss
of generality assume that

(48) €88 SUP, nyf(Xi(O,w)) < ¢ < oo.
T

Hence,

Esupyc,cr 33 (V(t,21), V(t, 32))

= Esupgey<rsup| g, <1 2w L (F(r(8,V1.0) = f(r(t: Y2, 0))) Xy (dg)]?
< Esupgeyer Sou | [(Ir(t, V1,9) = r(t, V2, 0)) X5 (dg) |2

<er Yoy [ EXo(RY) supgeior |(r(t, D1, q) — 7(t, Vo, q)|2 X5 (dg)

(by the Cauchy Schwarz inequality)

< & [ 421 (w), Ya(u))du

(by (2.22) and the assumption on the boundedness of all measures. )

O
Theorem 3.3 In addition to the conditions of Theorem 2.7 assume Hypothesis 2.2
with m > 1. Then the following holds:
(i) There is a weak solution of the following quasi-linear SPDE (1.3) with initial
condition Xy and Hahn-Jordan decomposition ;.
(ii) This solution, X' (t, X', Xp), has the representation

(49) X(t) = X(tv X? XO) = /5{F(t,w,X(u),q)}XO (dq)
Further,
(50) EW) = (02, 0) = [ Sirtavioan it (d0)

ie., fé{y(tw’x(w)’q)}.)ﬁoi(dq) is the Hahn-Jordan decomposition X*(¢) of X(t) for all
t>0.
Proof: (i) Define recursively

Volt) = Ko, Vult) = / Sy 1.y Xo(dg)-

By possibly truncating the initial measure we may without loss of generality assume
that the total variation of initial distribution is bounded uniformly in w?® and, conse-
quently by mass conservation, the same holds for the measures Y, (t). Therefore, by (3.6)

30¢t. (3.7).
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in Lemma 3.2

Esupg<,<r 77 (Pnlt), Y (t)) < er foT E43 (Yo-1(5), Ym—1(5))ds

T N A ~
<er [y Esupge,ci A7 (Vn-1(5); Ym-1(s))ds.
The contraction mapping principle yields a unique adapted M-valued process X (-) €
C([0.00); M) a.s. such that

(51) E sup 4F(Vu(t), X(t)) — 0, asn — oo.
0<t<T

Further, observe that the Hahn-Jordan decomposition for Y, (t) is given by (3.4) with
Y(t) == Yn(t) and Y(t) := Vn-1(t).
(ii) Setting X := X" — X, we now define

?E(t) = /5{?(t,X,q)}XO(dQ),

and by (3.4) we have the Hahn-Jordan decomposition

(52) (1) = / St Xt (da)-

Again by Lemma 3.2

— 0, asn — oo.

By the uniqueness of limit in (3.10) we have X (t) = X(t). Hence, by (3.11) we obtain
(3.8) and (3.9). Finally, Lemma 3.1 implies that X'(-) is a weak solution of (1.3). O

Remark 3.4 Under additional smoothness assumptions on the coefficients F and J3!
smoothness of the initial conditions implies smoothness of the solutions, where smooth-
ness is derived in appropriate Sobolev spaces of functions. Moreover, if the smoothness
of the coefficients is sufficiently large then the solution of (1.3) is unique with continuous
paths in Hg.3? O

4. APPENDIX - PROOF OF THEOREM 2.2

For this proof we may, without loss of generality, assume N = 1.

(i) We next adjust the classical proof of the Markov property for certain SODEs to
our setting.®® Let “diameter” be defined as usual for metric spaces, i.e., for a Borel set
A C R? we set

diam (A) := sup |b—bl.
r,rEA

By the separability of R?, there is a sequence of countable decompositions {E]" }ken,
where EJ" are non-empty Borel sets of diameter < 37™ for all k € Nand m € N. In
each E}" we choose an arbitrary but fixed element 7}, k,m € N. Now we define maps:

53 fm :RE—=RE £ (r) =7, ifre BT, k,=1,2,...
k k
(ii) Let 7(t,w, fim(q),s) be the solution of (2.2)3* with start in f,,(q) at time s. Set
(54) Tm(t,w,q, ) :=r(t,w, fm(q),s).

3lcy, Hypothesis 2.2.

320f. Kotelenez (1995b) and Kotelenez (2008), Chapter 8.

33Cf., e.g., Dynkin (1965), Ch. VI, §2 as well as Arnold, Curtain and Kotelenez (1980).
34We will always use continuous versions of solutions of (2.2).
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We claim that for fixed 0 < s < t T (t,-,-, ) is F¢ @ B — B%-measurable. To this
end take A € B¢ and set

C:={(w,q) : Fn(t,w,q,s) € A}.
If C' = 0 we are done; otherwise take (wo, o) € C' and observe
Coo = {w: (w,q0) € O} ={w: r(t,w, fin(a0), 5) € A} € F§

since 7(t,w, fm(qo), s) is an It6 solution of (2.2) with start in f,,,(¢) at time s. There is
a ko such that o € E;”. Hence,

’Fm(ta w4, S) = ’Fm(ta W, qo, S) vq € Elycré
Thus,
Bt x Cyy ={(w,q): q€ By, (w,q) € C} CC.
In the same way we find for any (w,q) € C a k4 such that
Ef' x Cy CC, Cqe F.
Hence, there is a subsequence of positive integers {k,, p € N} such that
C= Ug: (w,q)ECEIZZ X Cq = Ugo:lE,?; X qup,
since every ¢ is contained in some E;". Since E" x Cy, € Ft @ B? we obtain
(55) Ce Fto B
(iii) For fixed ¢ 7., (¢, -, q, $) solves (2.2) for the initial value (f,,(q), s). Comparing this
solution with the solution of (2.2) for the initial value (g, s), 7(¢t,, q, ), we obtain from
(2.3) that for any T > s
P{w $SUPs<t<T ﬁ(Fm(tvwa q, 8) - T(t,w, q, S)) < 27%}
(56) m
S 2mE SupsStST 52 (’Fm(ta 4, S) - T(t, 4, S)) S Con3t<§) .
Thus, by the Borel-Cantelli Lemma sup,<,<7 p(Tm(t, -, q,5) —(t, -, ¢,5)) as., as n —
00. Set

D :={(w,q) : Flimy—00 7 (t, w, ¢, s) uniformly for ¢ € [s,T|}
(57)
=N Um mm{(wv q) FSUPs<i<T ﬁ(Fm(taquv 8) - ’ferm(t,w, q, S)) < %}

By the ]:'8 ® B¢ — B? measurability of 7,,(t,-, -, s)

1 ~
(58) Dt = m@ Um mfn{(waQ) : ﬁ(”jm(tvwv(bs) - 'Fm-‘rfn(tawaQ7S)) < Z} € ‘7:8 ® Bd'

Define
limyy, o0 7 (,w, ¢, 8), V(w,q) € D uniformly for ¢ € [s, T,
(59) 7(t,w,q,s):=
0 otherwise.
By (4.6) 7(t,-,-,s) is Ft @ B — B%.
(iv) For fixed ¢ step (iii) implies the existence of an €, € F§ with P(Q4.5) = 1
such that

(60) F(tv 4, S) = T(t, 4, 8) Yw € Qt,q,s~
Set

)= [ E(F(u, 0. 8) u)du + / t [ 3(rtu.a.9).p.0w(ap,du).
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An Tté-Riemann approximation to the right hand side of the previous equation may
be written as

(61) Z G(F(uf, 54, S)v u?—&-l - ’LL;(L, ’U)(d, u?+1) - ’U)(d, u;n)v
i=1

where the function G is an abbreviation for the Ité-Riemann approximations of the de-
terministic and the stochastic integrals. The same partition {u!'} yields an Ité6-Riemann
approximation of the solution of (2.2), r(¢,-,q, s):

(62) Z G(T(u?v 4, 8)7 u?—&-l - ’U,?, w(dv u?—&-l) - w(dv ’LL?))
=1

At least for all w € N{_; Qym 4 s the values in (4.9) and (4.10) are identical. Hence, the

limits are the same for all w € NJ2 1 N7y Qym 4 s with P(N32 N7y Qym 4 ) = 1. However,

the limit of (4.10) equals a.s. r(t,-,q, s) which itself equals a.s. 7(t,-,q,s). Recall that
our processes have continuous sample paths. Hence, with probability 1, uniformly in
tels,T)forall T > s

(63) ’F(ta'aQ7S) ZQ+/ F(F(uv'vlbs)’u)du_'_/ /j(?(u,~,q,s),p,u)w(dp,du),

i.e., 7(t,-, q,s) is another version of the solutions of (2.2) with initial value (g, s).

(v) Next, we show that 7(¢,-, fim(rs),s) is a version of the unique solution of (2.2),
r(t, -, fm(rs), s) for the initial valued (rs, s) where rg is Fs-measurable and square inte-
grable. Abbreviate

f(t) = f(ta Bl fm(rs), S)v T(t) = T(t, Bl fm(rs)y 5)7 ’Fk(t) = F(ta " 7’21’ S)
Set Ay := r; (EJ"). Further, let G have the same meaning as in (4.10) and denote

by 7 (t), r™(t) the processes used in the Picard-Lindelof approximation of the solutions
7r(t) and r(t), respectively. We then have

r(t) = f(rs) + [ Gr(w), du, w(-, du))
(64) = S0 a, + [ 14, G(r(u), du, w(d-, du))}
= 0 Ly, Flim o [ 14, G (u), du, w(d-, du))}.

Further, by (4.11) in addition to the properties of the approximations we have with
probability 1

P(1) = SR s+ fy 14 Grv () du, w(d-, du)}
(65)
= Y il + lima o [} 14, G (w), du, w(d:, du))}.
We show by induction that with probability 1 for all k

lAk,T(t) = 1Akfk(t).
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The equality holds for n = 0. Assume that it also holds for n — 1, n > 1. Then, with
probability 1,

Lar™(t) = 17 + [T 14, GO (w), du, w(d-, du))
=r+ f: 1Aké(1Akr"_1(u),du,w(d~,du))
= rp o+ 114, G(La, 7y (w), du, w(de, du))

by induction hypothesis

e D1, G (), du, w(d- du))

lAkFZ(t)'

Thus, r"(t) = 7(t) := Y poq 14,7 (t) a.s., whence

(66)

(L, -, fm(rs),s) =7r(t, -, fm(rs),s) a.s.

(vi) As in (4.4), comparing 7(t, -, fm(rs), s) with r(t, -, rs, s) we obtain an ET-measur-
able set Qr s with P(Qr ) = 1 such that

(67) lim sup p(F(t,w, fm(rs(W)),s) — r(t,w,rs(w),s)) =0 Vw € QT,S-
M—00 g4 T
Note that

fn(rs(w)) — rs(w) Yo

Therefore, by (4.2) and (4.5),

(68)

{(w,rs(w)) rw € QT,S} cD.

Altogether, we obtain with probability 1

(69)

F(ta 5 Tsy S) = hmm—>00 ’F(ta " fm(rs), S) = T(t, 5 Tsy S)a

uniformly in t € [s,T], T > s,

whence, as in step (iv), 7(, -, 75, $) is a version of the the unique solution of (2.2) with
continuous sample paths for t € [s,T] and all T > s. O
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