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PETER M. KOTELENEZ

STOCHASTIC FLOWS AND SIGNED MEASURE VALUED
STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

Let N point particles be distributed over �d, d ∈ �. The position of the i-th
particle at time t will be denoted r(t, qi) where qi is the position at t = 0. mi is
the mass of the i-th particle. Let δr be the point measure concentrated in r and

XN (0) :=
�N

i=1 miδqi the initial mass distribution of the N point particles. The

empirical mass distribution (also called the “empirical process”) at time t is then

given by 1

XN (t) :=
N�

i=1

miδr(t,qi) =

�
δr(t,q)XN (0, dq),

i.e., by the N−particle flow. In Kotelenez (2008) the masses are positive and the
motion of the positions of the point particles is described by a stochastic ordinary
differential equation (SODE). Further, the resulting empirical process is the solution
of a stochastic partial differential equation (SPDE) which, by a continuum limit, can
be extended to an SPDE in smooth positive measures. Some generalizations to the
case of signed measures with applications in 2D fluid mechanics have been made.2 We
extend some of those results and results of Kotelenez (2008), showing that the signed
measure valued solutions of the SPDEs preserve the Hahn-Jordan decomposition of
the initial distributions which has been an open problem for some time.

1. Introduction

(Ω,F ,Ft, P ) is a stochastic basis with right continuous filtration, and the measure P
is complete. All our stochastic processes are assumed to live on Ω and to be Ft-adapted,
including all initial conditions in stochastic ordinary differential equations (SODEs) and
stochastic partial differential equations (SPDEs). Moreover, the processes are assumed
to be dP ⊗ dt-measurable, where dt is the Lebesgue measure on [0,∞). 1

The stochastic component of the displacement of r(t, qi) in a short time increment
should be Brownian (multiplied by some diffusion coefficient, which may depend both on
r(t, qi) and on XN (t)).

Following Kotelenez (1995a,b) we employ i.i.d. Gaussian standard white noise random
fields w�(dq, dt) on Rd × R+, � = 1, . . . , d, as a stochastic perturbation for the positions
of the particles.2 We list some of the properties of w�(dr, dt):

Denote the Lebesgue measure of a Borel setB ∈ Rk by |B|. Let Ai ∈ Bd (the Borel sets
in Rd) with finite Lebesgue measure |Ai|, and [si, ti] be intervals in R+, i = 1, 2. Then∫ v
u

∫
B
w�(dr, dũ), B ∈ {Ai, i = 1, 2} and [u, v] ∈ {[si, ti], i = 1, 2} are Gaussian random

random variables with mean 0 and covariance |A1 ∩A2||[s1, t1]∩ [s2, t2]|.
∫
A
w�(dq, t) :=∫ t

0

∫
A
w�(dq, du) is Ft-measurable for any A ∈ Bd with |A| <∞ and any t. The stochastic

integration with respect to w�(dr, dt) follows the pattern established by Walsh (1986),
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1Cf., e.g., Metivier and Pellaumail (1980), Ch. 1.2
2Note that w�(dq, dt) may be considered space-time differentials of properly defined Brownian sheets

with parameters �d × �+. Cf. Kotelenez (2008), Ch. 2, 15.
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where w�(dr, dt) was used as a driving term for stochastic partial differential equations
(SPDEs). Set w(dr, t) := (w1(dr, t), . . . , wd(dr, t))T where CT denotes the transpose of
a matrix C. Further, let Md×d denote the d × d matrices over R. Let Jε(r, q, μ, t) be
a “nice” Md×d valued function, jointly measurable in all arguments, depending on the
position of the particle, the spatial noise coordinate, the (finite signed measure valued) μ
and time t and a correlation parameter ε > 0.3 In addition to Lipschitz and measurability
assumptions, “nice” means here that the one-dimensional components of Jε(r, q, . . . , t)
have to be square integrable in q with respect to the Lebesgue measure dq. Similar
conditions are assumed for the one-dimensional component of the Rd-valued function F .
Consider the following system of SODEs driven by w(dr, dt):4

(1)
dri,

�N
ε = F (ri, �Nε (t),Xε,N (t), t)dt+

∫ Jε(ri, �Nε (t), p,Xε,N (t), t)w(dp, dt),

ri,
�N

ε (s) = qiε, i = 1, . . . , N, Xε,N (t) :=
∑N

i=1miδri, �Nε (t)
, mi ∈ R \ {0}.

⎫⎪⎬⎪⎭
Under appropriate Lipschitz conditions (cf. (2.3)) Kotelenez (1995b) shows that (1.1)

has a unique strong Itô solution which is an RdN -valued diffusion process. The two-
particle5 and one-particle diffusion matrices of the noise are given by:

(2)
D̃ε(ri, rj , μ, t) :=

∫ Jε(ri, p, μ, t)J T
ε (rj , p, μ, t)dp ∀ i, j = 1, . . . , N,

D(r, μ, t) := D̃(r, r, μ, t),

⎫⎬⎭
where “AB” denotes the matrix multiplication of matrices A. Further, “Ak�” will

denote the entries of the matrix A, and μ is a finite signed Borel measure on Rd. For
m ∈ N∪ {0} let Cm(Rd; R) be the space of m times continuously differentiable functions
from Rd into R. Further, let Cm0 (Rd; R) be the subspace of Cm(Rd; R), whose elements
together with all their derivatives vanish at infinity. We denote by “•” the inner product
in Rd and by ∂k and ∂2

k� the first and second partial derivatives w.r.t. the spatial
coordinates rk and rk, r�, respectively. Itô’s formula, applied to 〈Xε,N (t), ϕ〉 for ϕ ∈
C2

0 (Rd; R), yields the quasilinear SPDE associated with (1.1) where the derivatives are
taken in the distributional sense.6

(3)
dXε = { 1

2

∑d
k,�=1 ∂

2
k�(Dε,k�(Xε, t)Xε)−# • (XεF (·,Xε, t))}dt

− # • (Xε
∫ Jε(·, p,Xε, t)w(dp, dt)).

⎫⎬⎭
For notational convenience we will in what follows suppress the dependence on ε in the

coefficients and solutions.7 Let us first assume that the weights mi in (1.1) are positive
and derive appropriate metrics for (1.1)/(1.3).8 Let | · | denote the Euclidean metric on
Rd and “∧” denote “minimum”. Set

(4) ρ(r − q) := |r − q| ∧ 1, ρ̃(·) ∈ {| · |, ρ(·)}.

3Cf. Kotelenez (2008), Ch. 5.
4We abbreviate ri

ε,N (t) := rε,N (t, qi).
5The two-particle diffusion matrix, describing the pair correlations of the noise perturbations, is the

time derivative of the mutual (tensor) quadratic variation of the noise.
6Cf. the following Lemma 1.3.
7If ε → 0 Kotelenez and Kurtz (2010) show that positive solutions of (1.3) converge towards the

solution of a deterministic quasilinear SPDE, provided the initial conditions converge appropriately. For
fixed ε > 0 Kotelenez, Leitman and Mann (2009) analyze the short and long time behavior of the flow
of correlated Brownian motions and show that correlated Brownian motions exhibit the depletion effect
which has been experimentally observed in colloids.

8For positive mass distributions in a one-dimensional domain the relation between flows and SPDEs
has been investigated by Dorogovtsev (2007).
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The space of all continuous Lipschitz functions f from Rd into R will be denoted
CL(Rd; R). Further, set

BL,∞ := CL,∞(Rd; R)

which is the space of all uniformly bounded Lipschitz functions f from Rd into R. We
endow BL,∞ with the norm9

(5)
‖f‖L,∞ := ‖f‖L ∨ |‖f |‖

where |‖f |‖ := supq |f(q)|; ‖f‖L := sup{r �=q,|r−q|≤1}
|f(r)−f(q)|
ρ(r−q) .

⎫⎬⎭
Set

(6) Mf := {μ : μ is a finite Borel measure on Rd}.
We define a metric on Mf by 10

(7) γf (μ− ν) := sup
‖f‖L,∞≤1

|
∫
f(r)(μ− ν)(dr)|,

and we conclude that (Mf , γf ) is a complete separable metric space. 11

We now define the space of finite signed Borel measures

(8)
Mf,s := {μ : μ = μ+ − μ−, μ± ∈Mf},

denoting by μ± the Hahn-Jordan decomposition of μ.

⎫⎬⎭
The metric γf may obviously be extended to Mf,s.
Lemma 1.1 (Mf,s, γf ) is not complete.
Proof: Set μn :

∑n
k=1(−1)kδ( 1

k+1 ,0,···,0) with 0 in the coordinates from 2 to d. Take an
arbitrary f ∈ BL,∞ such that ‖f‖L,∞ ≤ 1. Then for n > m

| ∫ f(r)(μn − μm)(dr)| = |∑n
k=m+1(−1)kf( 1

k+1 , 0, · · ·, 0)|

≤∑n
k=m+1 |f( 1

k , 0, · · ·, 0)− f( 1
k+1 , 0, · · ·, 0)| ≤∑n

k=m+1 | 1k − 1
k+1 |

≤∑n
k=m+1

1
k(k+1) −→ 0, as n −→∞ .

Hence,

γf (μn − μm) = sup
‖f‖L,∞≤1

|
∫
f(r)(μn − μm)(dr)| ≤

n∑
k=m+1

1
k(k + 1)

.

It follows that {μn} is a Cauchy sequence in (Mf,s, γf ).
Suppose there is a (finite) signed measure μ such that

γf (μn − μ) −→ 0, as n −→∞ .

Then for any f ∈ BL,∞ with ‖f‖L,∞ ≤ 1 we must have

|
∫
f(r)[μn − μ](dr)| ≤ γf (μn − μ) −→ 0, as n −→∞ .

9In the definition of the Lipschitz norm (1.5) we may, without loss of generality, restrict the quotient
to |r−q| ≤ 1, since for values |r−q| > 1 the quotient is dominated by 2|‖f |‖. This implies, in particular,
that the Lipschitz norm is independent of the choice ρ̃(·).

10Since ‖ · ‖L,∞ does not depend on the choice ρ̃(·) from (1.1), the same holds for γf (·).
11Cf. Kotelenez (2008), Ch. 15.1.4, Th. 15.9.
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However, choosing f(r) ≡ 1 we have12
∫

1Rd(r)μn(dr) = −1 if n is odd and 0 if n is
even.

∫
1Rd(r)μ(dr) =: cμ ∈ R, Therefore, for f(r) ≡ 1

|
∫

1Rd(r)[μn − μ](dr)| :=
⎧⎨⎩
|1 + cμ|, n = 2k + 1,

|cμ|, n = 2k.

Therefore, this functional does not converge to 0, which completes the proof. �
We next proceed as in Kotelenez (1995a,b) and consider in the first step the product

space13

(9)

M̂ := Mf ×Mf = {μ̂ := (μ+, μ−) : μ± ∈Mf}

with metric

γ̂f (μ̂1, μ̂2) :=
√
γ2
f (μ1+ − μ2+) + γ2

f (μ1− − μ2−).

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
We obtain that (M̂, γ̂f (·, ·)) is a complete separable metric space, and we may identify

the Hahn-Jordan decomposition μ± of a signed measure μ with the element (μ+, μ−) ∈
M̂. Define the following map Φ:

(10)
Φ : (M̂, γ̂f )→ (Mf ,s, γf )

μ̂ := (μ+, μ−) �→ μ := μ+ − μ−.

⎫⎬⎭
Lemma 1.2

(11) γf (Φ(μ̂),Φ(ν̂)) ≤
√

2γ̂f (μ̂, ν̂),

whence Φ is uniformly continuous.
Proof: For f ∈ BL,∞ and μ̂ := (μ+, μ−), ν̂ := (ν+, ν−) ∈ M̂

|
∫
f(r)(μ+ − μ− − ν+ + ν−)| ≤ |

∫
f(r)(μ+ − ν+)|+ |

∫
f(r)(μ− − ν−)|.

�
Remark 1.3 For finite N the Hahn-Jordan decomposition of the original distribution

X±(0) is preserved through the flow of point measures for t > 0 because solutions starting
at different locations do not coalesce in finite time.14 However, convergence in the metric
γ̂f does not, in general, preserve the Hahn-Jordan decomposition in the limit.15 To see
this, it suffices to construct a convergent sequence of signed measures μn such that the
Hahn-Jordan decompositions μ±

n both converge toward the same positive measure μ with
μ(Rd) > 0. E.g., choose μ+

n := δ( 1
2n ,0,...,0)

, μ−
n := δ( 1

2(n+1) ,0,...,0)
and μ := δ(0,....,0). �

Hence, generalizing Kotelenez (2008), we show first that:

• (i) The pair of the positive and negative empirical processes (X+
N ,X−

N )(t) con-
verges towards a pair of finite Borel measures (X+,X−)(t) in the metric γ̂(·, ·)
for all t > 0 .

• (ii) The resulting limit satisfies: X±(t) ≡ X±(t), i.e., it is the Hahn-Jordan
decomposition of the signed measure X (t) for all t > 0, provided X±(0) = X±(0).

121A(r) is the indicator function of a Borel set A in �d.
13We use subscripts ± to indicate that we are not restricting the set to the Hahn-Jordan decompo-

sition of Mf,s. For more details cf. Seadler (2010).
14The proof of this statement follows from Theorem 2.1 in the next section.
15The author wants to thank T. Kurtz for pointing out this fact to him.
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Since (i) has been solved in under fairly general assumptions the only problem remains
(ii). We will solve (ii) as follows: The flows generated by the SODEs map disjoint sets
into disjoint sets. We then use the following representation for the solutions of SPDEs,
provided in Kotelenez (2008), p. 59, (4.1), and p. 187, (8.50)-(8.51):

(12)
X+(·) =

∫
δr(·,X ,q)X+(0, dq)

X−(·) =
∫
δr(·,X ,q)X−(0, dq).

⎫⎬⎭
Here

(13)
r(t,X , q) = q +

∫ t
0
F (r(s,X , q),X (s), s)ds +

∫ t
0

∫ J (r(s,X , q), p,X (s), s)w(dp, ds),

i.e., the coefficients in (1.13) are all the same (depending on the same X ) and the only
difference is the starting point q, and we need to show

(14) X±(·) ≡ X±(·).

2. Flows of SODEs

Hypothesis 2.1 Suppose

F̃ : Rd × Ω× [0,∞) −→ Rd

and
J̃ : Rd × Rd × Ω× [0,∞) −→Md×d

such that both functions are adapted to a filtration F̃ t0 ⊂ Ft. Further, suppose there is
a sequence of bounded stopping times τn ↑ ∞ a.s. as n→∞ and a sequence of positive
constants Kn with Kn <∞ a.s. such that16

(15)

|F̃ (r, t ∧ τn)− F̃ (q, t ∧ τn| ≤ Knρ̃(r − q),∑d
k,�=1

∫ (
J̃k,�(r, p, t ∧ τn)− J̃k,�(q, p, t ∧ τn

)2
dp ≤ K2

nρ̃
2(r − q),

|F̃ (r, t ∧ τn)| ≤ Kn(1 + ρ̃(r)),

|∑d
k,�=1

∫ (
J̃k,�(r, p, t ∧ τn)J̃k,�(q, p, t ∧ τn)

)
dp| ≤ K2

n(1 + ρ̃(r))(1 + ρ̃(q)).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
�

Consider the stochastic ordinary differential equation (SODE) with random coeffi-
cients

(16) dr = F̃ (r, t)dt+
∫
J̃(r, p, t)w(dp, dt)

r(s) = q.

Theorem 2.1 Suppose (2.1). Then the following holds:
(i) (2.2) has a unique solution for all q ∈ Rd and also for all adapted initial conditions

rs.
(ii) Denote the solutions of (2.2) with starts in (adapted) ris, i = 1, 2, at time s ≥ 0

by r(·, ris). Then for any T ≥ 0 and any n ∈ N,

(17) E sup0≤t≤T∧τn ρ̃
2(r(t, r1s)− r(t, r2s)) ≤ K2

nE(ρ̃2(r1s − r2s)).
(iii) Suppose

P{ω : |r1s(ω)− r2s(ω)| = 0} = 0.

16As customary, we will mostly suppress the dependence on ω in the following notation.
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Then

(18) P{∪t≥0{ω : |r(t, ω, r1s)− r(t, ω, r2s)| = 0}} = 0.

Proof: Steps (i) and (ii) are standard and follow from the contraction mapping prin-
ciple.17 We will now prove (iii).18 Suppose without loss of generality s = 0 and set

τ := inf{t > 0 : |r(t, r10)− r(t, r20)| = 0},
where, as customary, we set τ = ∞ if the set in the right hand side is empty. τ is a
stopping time. 19 We need to show τ = ∞ a.s.

Considering a general twice continuously differentiable χ which is odd, concave mono-
tone increasing such that20

(19)

χ(u) = u ∀u ∈ [−1, 1],

χ′(u) > 0 ∀u ∈ R,

|χ′′(u)u2| ≤ c1|χ′(u)u| ≤ c2|χ(u)| ∀u ∈ R,

ρ̃2(r) ≤ χ(|r|2) ≤ 3ρ̃2(r).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
where χ′ and χ′′ are the first and second derivatives of χ, respectively, and where 0 <
c1 ≤ c2 <∞.

Set for t < τ

fχ(r(t, r10), r(t, r20), t) :=

χ′(|r(t,r1
0)−r(t,r2

0)|2)2(r(t,r1
0)−r(t,r2

0))•(F̃ (r(t,r1
0),t)−F̃ (r(t,r2

0),t))

χ(|r(t,r1
0)−r(t,r2

0)|2)

+
χ′(|r(t,r1

0)−r(t,r2
0)|2)

�d
k,�=1

� (
J̃k,�(r(t,r

1
0),p,t)−J̃k,�(r(t,r

2
0),p,t)

)
2
dp

χ(|r(t,r1
0)−r(t,r2

0)|2)
,

+2
∑d
�=1

∑d
i,j=1 χ

′′(|r(t, r10)− r(t, r20)|2)(ri(t, r10)− ri(t, r20))(rj(t, r10)− rj(t, r20))×

× ∫ (Ji,�(r(t, r10), p, t)− Ji,�(r(t, r20), p, t))(Jj,�(r(t, r10), p, t)− Jj,�(r(t, r20), p, t))dpdt

and
gχ(r(t, r10), r(t, r20), p, t) :=

χ′(|r(t,r1
0)−r(t,r2

0)|2)2
(

r(t,r1
0)−r(t,r2

0)
)T(

J̃(r(t,r1
0),p,t)−J̃(r(t,r2

0),p,t)
)

χ(|r(t,ri
0)−r(t,rj

0)|2)
.

17Cf. Kotelenez (2008), Ch. 4.
18The proof is an adaptation of a proof provided by Krylov (2005).
19Cf. Liptser and Shiryayev (1974), Ch. 1.3, Lemma 1.11.
20For the bounded metric ρ(·) we take, e.g.,

χ(x) :=

������
�����

x, |x| ≤ 1,

1 + arctan(x − 1), x > 1,

−1 − arctan(x + 1), x < −1,

and we have ρ2(r) ≤ χ(|r|2) ≤ 3ρ2(r).
For the unbounded (Euclidean) metric | · | we choose χ(x) := |x|.
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For t ≥ τ and τ <∞ we set

fχ(r(t, r10), r(t, r20), t) := 0 =: gχ(r(t, r10), r(t, r20), p, t).

Hence, the Itô formula yields

(20)

dχ(|r(t, r10)− r(t, r20)|2)

= χ(|r(t, r10)− r(t, r20)|2)( ∫ gχ(r(t, r10), r(t, r20), p, t) • w(dp, dt)

+fχ(r(t, r10), r(t, r20 , t))dt
)
.

Employing the properties of χ from (2.5) and the Lipschitz assumptions there are
finite positive constants ci, i = 1, 2 such that∫ t

0

∫
|gχ(r(s ∧ τ ∧ τn, ri0), r(s ∧ τ ∧ τn, rj0), p, s ∧ τ ∧ τn)|2dpds ≤ c1K

2
nt ∀t.

and
|fχ(r(t ∧ τ ∧ τn, r10), r(t ∧ τ ∧ τn, r20), t ∧ τ ∧ τn)| ≤ c2K

2
n.

Consequently, χ(|r(t∧ τ, r10)− r(t∧ τ, r20)|2) is the solution of a bilinear SODE, driven
by a “nice” semi-martingale. Letting τn →∞, we verify the following representation by
Itô’s formula:

(21)

χ(|r(t ∧ τ, r10)− r(t ∧ τ, r20)|2) = χ(|r10 − r20 |2) exp[ϕχ(t, r10 , r
2
0)]

where

ϕχ(t, r10 , r
2
0) :=

∫ t∧τ
0

∫
gχ(r(s, r10), r(s, r20), p, s) • w(dp, ds)

+
∫ t∧τ
0

(fχ(r(s, r10), r(s, r20), s)− 1
2

∫ |gχ(r(s, r10), r(s, r20), p, s)|2dp)ds.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
Therefore, for any choice of ρ̃ ∈ {| · |, ρ(·)}

(22) ρ̃2(r(t ∧ τ, r10)− r(t ∧ τ, r20))2 ≥ 1
3 ρ̃(r

1
0 − r20)2 exp[ϕχ(t, r10 , r

2
0)].

}
We obtain from (2.8) and the assumption that τ =∞ a.s. �
Bk denotes the Borel sets in Rk and r �N , q �N elements of RdN .
Theorem 2.2 Suppose (2.1). Then, for any N ∈ N there is a RdN -valued map in the

variables (t, ω, r �N , s), 0 ≤ s ≤ t <∞ such that for any fixed s ≥ 0

r
�N (·, ·, s) : Ω× RdN → C([s, T ]; RdN),

and the following holds:
(i) For any t ∈ [s, T ] r

�N (t, ·, s) is F̃ t0 ⊗ BdN − BdN -measurable.
(ii) The i-th d-vector of r �N = (r1, . . . , ri, . . . rN ), denoted ri,

�N =: ri, depends only
on the i-th d-vector initial condition ris ∈ L2,Fs(Rd) in addition to its dependence on
w(dq, dt), and with probability 1 (uniformly in t ∈ [s,∞))

(23) ri,
�N (t, ris, s) ≡ ri(t, ris, s),

where the right hand side of (2.9) is the ith d-dimensional component of the solution of
(2.2).

(iii) If u ≥ s is fixed, then with probability 1 (uniformly in t ∈ [u,∞))

(24) r
�N (t, ·, r �N (u, ·, r �Ns , s), u) ≡ r

�N (t, ·, r �Ns , s).
�
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If N = 1 we will just write r(·, ·, ·, ·), and since for N > 1 the corresponding system
is a system of N identical equations, indexed by possibly different initial conditions it
suffices in what follows to formulate conditions and results for N = 1.

The proof is provided in the Appendix. �
Denote for m ∈ N and sufficiently often differentiable f : Rd → R :

|‖f |‖m :=
m∑
k=0

max
|j|≤k

|‖∂j
rf |‖

where j = (j�1 , . . . , j�m) is a multiindex of non-negative integers with |j| = ∑m
i=1 j�i and

∂j
r is the corresponding partial differential operator with respect to the space variable r.
Hypothesis 2.2 Suppose that for some m ≥ 1

(25)

max
1≤k,�≤d

ess sup
ω∈Ω, 0≤u≤T

{|‖F̃k(·, u, ω)|‖m + max
|j|≤m+1

|‖
d∑
�=1

∫
(∂j
rJ̃ )2k�(·, p, u, ω)dp|‖} <∞.

�
Remark 2.3 Hypothesis 2.2 obviously implies 2.1. �
Let L0(Ω;C(Rd × [0, T ]; Rd) denote the set of all C(Rd × [0, T ]; Rd)-valued random

variables.
Proposition 2.4 Assume Hypothesis 2.2. Then for any multiindex j with |j| ≤ m− 1

(26) (∂j
qr)(·, ·, ·) ∈ L0(Ω;C(Rd × [0, T ]; Rd) ∀T > 0.

Proof: Cf. Kotelenez, loc. cit. Ch. 6, Corollary 6.11. �
In what follows we wish to show that ∀t > 0 r(t, ω, ·) maps disjoint Borel sets A(ω)

and B(ω) onto disjoint Borel sets At(ω) and Bt(ω) a.s. To this end we introduce the
following notation:

(27) D2d := {(q1, . . . , qd, qd+1, . . . .q2d) : (q1, . . . , qd) = (qd+1, . . . .q2d)}.
We then have for A,B ∈ Bd:

A ∩B = ∅ ⇔ A×B ⊂ Dc
2d,

where the latter set is the complement of D2d in R2d. Let

Ωt,cts := {ω : r(t, ω, ·) is continuous as a function of q}
where by (2.12) P (Ωt,cts) = 1.

Theorem 2.5 Assume Hypothesis 2.2 with m = 1. Then

Ωt := {ω : (r(t, ω, a), r(t, ω, b)) ∈ Dc
2d ∀(a, b) ∈ Dc

2d} ∩ Ωt,cts ∈ F̃ t0
and

(28) P (Ωt) = 1.

Proof: (i) We first define a convenient partition of D2d, setting

S+
1 := {(q1, . . . ., q2d) : q1 > qd+1}, S−

1 := {(q1, . . . ., q2d) : q1 < qd+1},
S+

2 := {(q1, . . . ., q2d) : q1 = qd+1, q2 > qd+2},
S−

2 := {(q1, . . . , q2d) : q1 = qd+1, q2 < qd+2},
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S+
d := {(q1, . . . , q2d) : qi = qd+i, i = 1, .., d− 1, qd > q2d},
S−
d := {(q1, . . . , q2d) : qi = qd+i, i = 1, .., d− 1, qd < q2d}.
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Let n ∈ N and define approximations of the above partition by compact sets for
i = 1, . . . , d:

S+
i,n := {(q1, . . . , q2d) ∈ S+

i : qi ≥ qd+i + 1
n , |(q1, . . . , q2d)| ≤ n},

S−
i,n := {(q1, . . . , q2d) ∈ S−

i : qd+i ≥ qi + 1
n , |(q1, . . . , q2d)| ≤ n}.

We then have

(29) D2d,c,n := ∪ni=1 ∪± S±
i,n ↑ Dc

2d, as n→∞,
and D2d,c,n, as a finite union of compact sets, is compact.

(ii) Abbreviate

r(t, ω, q) := r(t, ω, q), f(ω, a, b) := |r(t, ω, a)− r(t, ω, b)|
and employ the notation:

a, b ∈ Rd, ã, b̃ ∈ Qd.

By the continuity of the field r(t, ω, ·) and the compactness of D2d,c,n, for each n ∈ N

and each ω ∈ Ωt,cts there is an η(n, ω) > 0 such that

(30)
Ωt,n := {ω ∈ Ωt,cts : f(ω, a, b) ≥ η(n, ω) > 0 ∀a, b ∈ D2d,c,n},

= Ω̃t,n := {ω ∈ Ωt,cts : f(ω, ã, b̃) ≥ η(n, ω) > 0 ∀ã, b̃ ∈ D2d,c,n}.

⎫⎬⎭
By the countability {(ã, b̃) ∈ Qd : (ã, b̃) ∈ D2d,c,n}, Ω̃t,n ∈ F̃ t0, whence by (2.16) we

also have Ωt,n ∈ F̃ t0. Now Proposition 2.1 in addition to (2.16) implies

P{Ωt,n} = 1 ∀n.
Further, Ωt,n ↓ Ωt, as n→∞. Hence,

(31) 1 = lim
n→∞P{Ωt,n} = P{Ωt}.

�
Corollary 2.6 Assume Hypothesis 2.2 with m ≥ 1. Let S± ∈ Bd⊗F̃0

0 be the random
supports of X±

0 and A(ω), B(ω) the ω−sections of S+ and S−, respectively such that
A(ω)×B(ω) ∈ Dc

2d a.s. Then ∀t > 0

(32) (r(t, ω,A(ω)), r(t, ω,B(ω))) ∈ Dd
2d a.s.

Proof: Fix ω ∈ Ωt from (2.14). Then, r(t, ω, a), r(t, ω, b)) ∈ Dc
2d ∀(a, b) ∈ Dc

2d. Hence,
we must also have (r(t, ω, a), r(t, ω, b)) ∈ Dc

2d ∀(a, b) ∈ A × B if A × B ⊂ Dd
2d. In

particular, it follows for the ω−sections of S+ and S− which are in Bd.21 Setting

Ωt,A,B := {ω ∈ Ωt,cts : (r(t, ω, a), r(t, ω, b)) ∈ Dc
2d ∀(a, b) ∈ A(ω)×B(ω)},

it follows from the previous argument that Ωt,A,B ⊃ Ωt. Hence, by (2.14) and the
completeness of P , P{Ωt,A,B} = 1, which implies (2.18). �

Let K be a metric space with metric dK . If f is a stochastic process on [s,∞) with
values in K, we set for t ≥ s

(πs,tf)(u) := f(u ∧ t), (u ≥ s).

L0,Fs(K) is the space of K−valued Fs-adapted random variables ξ, and L2,Fs(K) ⊂
L0,Fs(K) such that for ξ ∈ L2,Fs(K) Ed2

k(ξ, η) < ∞ where η ∈ K is an arbitrary fixed
element. Similarly, L0,F(C([s, T ];K)) is the space of random variables with values in
C([s, T ];K) which as processes are adapted to the filtration Ft, and L2,F(C([s, T ];K)) ⊂
L0,F(C([s, T ];K)) is the space of square integrable random variables with values in
C([s, T ];K). Lloc,2,F(C([s, T ];K)) is the space of processes ξ(·) such that there are

21Cf. Bauer (1968), Section 22, Lemma 22.1.
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localizing stopping times τ with ξ(· ∧ τ) ∈ L2,F(C([s, T ];K)). Similar is the definition of
Lloc,2,F(C((s, T ];K)).

The coefficients for (1.1) are

F : Rd ×Mf,s × [0,∞)→ Rd;

J : Rd × Rd ×Mf,s × [0,∞)→Md×d.

In the following stochastic ordinary differential equation (2.19) the empirical process
from (1.1) has been replaced by the signed measure valued process Ỹ(·): 22.

(33)
dri(t) = F (ri(t), Ỹ(t), t)dt+

∫ J (ri(t), p, Ỹ(t), t)w(dp, dt)

ri(s) = ris ∈ L2,Fs(Rd), Ỹ ∈ Lloc,2,F(C((s, T ];Mf,s)), i = 1, . . . , N,

⎫⎬⎭
(2.19) is a special case of (2.2) if N = 1,23 setting

F̃ (r, t) := F (r, Ỹ(t), t), J̃(r, p, t) := J (r, p, Ỹ(t), t).

Hypothesis 2.3 Suppose (r�, μ�, t) ∈ Rd × Mf,s × R, � = 1, 2. Let cF,J ∈ (0,∞).
Working, if necessary, with a sequence of stopping times τn as in (2.1) we assume global
Lipschitz and boundedness conditions, working with the metric ρ(·):
(34)
(a) |F (r1, μ1, t)− F (r2, μ2, t)| ≤ cF,J {(γ̂f (μ̂1) ∨ γ̂f (μ̂2))ρ(r1 − r2) + γ̂f (μ̂1 − μ̂2)},∑d

k,�=1[
∫
(Jk�(r1, p, μ1, t)− Jk�(r2, p, μ2, t))2dp

≤ c2F,J {(γ̂2
f (μ̂1) ∨ γ̂2

f (μ̂2))ρ2(r1 − r2) + γ̂2
f (μ̂1 − μ̂2)};

(b) |F (r, μ, t)|2 +
∑d

k,�=1{
∫ J 2

k�(r, p, μ, t)dp} ≤ cF,J .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The constant cF,J in (2.20) may also depend on the space dimension d. Alternatively,

if we drop the boundedness assumption on the coefficients in (2.20), we need to impose
a linear growth condition in addition to corresponding Lipschitz conditions from (2.20)
in terms of the Euclidean metric:
(35)

(a) |F (r1, μ1, t)− F (r2, μ2, t)| ≤ cF,J {γ̂f (μ̂1) ∨ γ̂f (μ̂2)|r1 − r2|+ γ̂f (μ̂1 − μ̂2)},∑d
k,�=1[

∫
(Jk�(r1, p, μ1, t)− Jk�(r2, p, μ2, t))2dp

≤ c2F,J {(γ̂2
f (μ̂1) ∨ γ̂2

f (μ̂2))|r1 − r2|2 + γ̂2
f (μ̂1 − μ̂2)};

(b) |F (r, μ, t)| ≤ cF,J (1 + |r|) ,

|∑d
k,�=1{

∫ J 2
k�(r,p, μ, t)dp} ≤ c2F,J (1 + |r|2) .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

�
A solution of the system (2.19), if it exists, is denoted by r �N (t, Ỹ, r �Ns , s). As for (2.2)

we may formulate the results for the d−dimensional components of r �N which will be
denoted rk, k = 1, . . . , N. The proofs of the following existence and uniqueness theorems

22(2.19) describes the motion of a system of diffusing particles in a random environment (represented

by Ỹ, w�, � = 1, . . . , d
23This is obvious for N = 1. But for N > 1 the system (2.19) is a system of identical equations,

indexed by possibly different initial conditions.
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are essentially identical to the proofs provided by Kotelenez (2008), Ch. 4, for the case
of positive measures and may be omitted here.

Theorem 2.7 Assume either (2.20) or (2.21) and ρ̃(·) ∈ {ρ(·), | · |}. Then:
1) To each s ≥ 0, rks ∈ L2,Fs(R

d), Ỹ ∈ Lloc,2,F(C((s, T ];Mf,s)) (2.19) has a unique
solution rk(·, Ỹ, rks , s) ∈ Lloc,2,F(C([s, T ]; Rd)).

2) Let Ỹi ∈ Lloc,2,F(C((s, T ];Mf,s)) and rks,i ∈ L2,Fs(Rd), i = 1, 2. Then for any
T ≥ s and any stopping time τ ≥ s, which is localizing for Ỹi , i = 1, 2,
(36)

E sups≤t≤T∧τ ρ̃2(rk(t, Ỹ1, r
k
s,1, s)− rk(t, Ỹ2, r

k
s,2, s))1{τ>s}

≤ cT,F,J ,Ỹ,τ{E(ρ̃2(rks,1 − rks,2)1{τ>s}) + E
∫ T∧τ
s

(γ̂2
f (

ˆ̃Y1(u)− ˆ̃Y2(u))1{τ>s}du}.

⎫⎪⎬⎪⎭
Further, with probability 1 uniformly in t ∈ [s,∞)

(37) rk(t, Ỹ, rks,1, s) ≡ rk(t, πs,tỸ, rks,1, s). �

Next, we consider the RdN -valued system of coupled SODEs (1.1). Since for each ω
the initial measure is a finite sum of point measures, it is finite. Therefore,

XN (s) :=
N∑
i=1

miδri(s),∈ L0,Fs(Mf,s).

Further, a solution of (1.1), if it exists, preserves the initial positive and negative mass,
i.e., X+

N (·,Rd) ≡ ∑N
i=1 1mi>0mi and X−

N (·,Rd) ≡ −∑N
i=1 1mi<0mi, where XN (t) :=∑N

i=1miδri(t). 24 Therefore, we may take Ỹ(t) := XN (t) :=
∑N

i=1miδri(t) in Theorem
2.7. We endow RdN with the metric

ρ̃N (r �N , q �N ) := max
1≤i≤N

ρ̃(ri, qi),

where r �N := (r1, . . . , rN ), q �N := (q1, . . . , qN ) ∈ RdN .

Theorem 2.8 Assume (2.20) or (2.21) in addition to XN (s) ∈ L0,Fs(Mf ) . Then, to
each initial condition r

�N (s) ∈ L0,Fs(RdN ) (1.1) has a unique solution r
�N
ε (·, rN (s)) ∈

L0,F(C([s,∞); RdN )) which is a Markov process on RdN .
Proof: Cf. Kotelenez (2008). Ch. 4, Theorem 4.7. �

Remark 2.9 We finally provide a useful representation for the perturbation by Gaussian
white noises. Let H0 be the space of measurable functions on Rd which are square
integrable with respect to the Lebesgue measure with norm | · |0 and scalar product
< ·, · >0. Let {φn}n∈N be a complete orthonormal system (CONS) in H0 and define an
Md×d-valued function φ̂n(·) by

(38) φ̂n :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

φn 0 . . . . . . 0
0 φn . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . . . . φn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

24This follows from Theorem 2.1 since by Hypothesis 2.3 d−dimensional solutions of (2.19) with
different starts do not coalesce. Cf. also our Remark 1.3.
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i.e., φ̂n(·) is a d × d matrix-valued function whose entries on the main diagonal are all
φn(·) and whose other entries are all 0. Set

(39) βn(t) :=
∫ t
0

∫
φ̂n(p)w(dp, ds).

Then the βn(·) are i.i.d. standard Rd-valued Brownian motions (or Wiener processes).
Moreover, for any Ỹ ∈ Lloc,2,F(C((s, T ];Mf,s)) and r(·) ∈ L0,F(C([0,∞); Rd)) (the space
of Rd-valued adapted continuous processes)

(40)

∫ J (r(t), p, Ỹ(t), t)w(dp, dt) =
∑∞

n=1 σn(r(t), Ỹ(t), t)dβn(dt)

where

σn(r, μ, t) :=
∫ J (r, p, μ, t)φ̂n(p)dp.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
The right hand side of the first line in (2.26) defines the increment of an Rd-valued

square integrable continuous martingale m(·).25 In particular, Hypothesis 2.3 implies for
the mutual quadratic variation of the one-dimensional components of

m(t) := m(r(·), Ỹ(·), t)
the following estimate:

(41) [mk(t),m�(t)] ≤ cJ t, with 0 < cJ <∞.
�

Remark 2.10 We wish to compare our results to results on homeomorphisms of
stochastic flows proved by Kunita (1990), Ch. 4.5, pp. 154-164. To this end we need
to rewrite our equation (2.2) into the notation of Kunita. We define the Rd-valued
semi-martingale H(r, t) := (H1(r, t), . . . , Hd(r, t)), depending on the spacial parameter r
by

H(r, t) :=
∫ t

0

F̃ (r, s)ds+
∫ t

0

∫
J̃(r, p, s)w(dp, ds).

The local characteristics of H(x, t) are given by26

ã(r, q, s) :=
∫
J̃(r, p, s)J̃T (q, p, s)dp

b̃(r, s) := F̃ (r, s).

Let K be a compact set in Rd. Define the metrics

‖̃ã(t)‖̃1,K := supr,q∈K
|ã(r,q,t)|

(1+|r|)(1+|q|) +
∑d

k=1 supr,q∈K | ∂∂rk ∂
∂qk

ã(r, q, t)|

‖b̃(t)‖1,K := supr∈K
b̃(r,t)
1+|r| +

∑d
k=1 supr∈K | ∂∂rk b̃(r, t)|

⎫⎪⎬⎪⎭
where |ã(r, q, t)| := ∑d

k,� |ãk,�(r, q, t)| is the sum of the absolute values of all entries of a
d× d-matrix ã(r, q, t).

Our Lipschitz assumption in (2.1) on the diffusion coefficients is, in the terminology
of Kunita, equivalent to

|ã(r, r, t ∧ τn) + ã(q, q, t ∧ τn)− 2ã(r, q, t ∧ τn)| ≤ K2
nρ̃

2(r − q).
which is weaker than Kunita’s Lipschitz assumption.27

25The statement follows from Doob’s inequality and the fact that the terms in the right hand side of
(2.26) are uncorrelated martingales,.

26Cf. Kunita, pp. 79, 85, 101.
27Cf. also Kotelenez and Kurtz (2010), Section 4.4, for a general comparison with Kunita’s approach.
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Apart from the fact that in Kotelenez (2008) a direct proof of the homeomorphism
has been provided, it appears to be not completely trivial to apply the homeomorphism
property to obtain (2.14). �

3. Stochastic Partial Differential Equations (SPDEs)

The general conditions of Theorem 2.7 on initial values and input processes will be
assumed throughout this Section.

Let Ỹ(·) be as in (2.13) and

r(t, ω, Ỹ(ω), q) := r̄(t, ω, q, 0),

where r̄(t, ω, q, 0) is the flow solution of (2.2) with

F̃ (r, ω, t) := F (t, Ỹω, t), J̃ (r, p, ω, t) := J (r, p, Ỹ, t).
Recall that by Theorem 2.2 r(t, ω, Ỹ(ω), q) is measurable in (t, ω, q).28 The map

(ω, q) �→ δ{r(t,ω,Ỹ(ω),q)},

Ω× Rd �→Mf ,

is Ft ⊗ Bd − BMf
measurable, where BMf

is the Borel σ− algebra on Mf .
Next, let X0 an F0 measurable Mf,s-valued random measure. Define the “flow of

particles” governed by the flow of SODEs (2.19) and with initial distribution X0 by:

(42) Y(t, ω) := Y(t, ω, Ỹ(ω),X0(ω)) :=
∫
δ{r(t,ω,Ỹ(ω),q)}X0(dq, ω).

Lemma 3.1 (i) Y(·), given by the first line in (3.1), is a weak solution29 of the following
(bilinear) stochastic partial differential equation (SPDE) with random coefficients:

(43)
dY = (1

2

∑d
k,�=1 ∂

2
k�

(YDk�(·, Ỹ, t)
)−# • (YF (·, Ỹ , t))dt

−# •(Y ∫ J (·, Ỹ , p, t)w(dp, dt))

⎫⎬⎭
with initial condition X0 at s = 0 and Hahn-Jordan decomposition X±

0 . Further,

(44) Dk�(r, Ỹ, t) := D̃k�(r, r, Ỹ, t),
where D̃k�(r, r, Ỹ , t) denotes the two-particle diffusion matrix.

(ii) In addition to the conditions of Theorem 2.7 assume Hypothesis 2.2 with m ≥ 1.
Then

(45) Y±(t, ω) := Y±(t, ω, Ỹ(ω),X0(ω)) =
∫
δ{r(t,ω,Ỹ(ω),q)}X±

0 (dq, ω),

i.e.,
∫
δ{r(t,ω,Ỹ(ω),q)}X±

0 (dq, ω) is the Hahn-Jordan decomposition Y±(t) of Y(t) for all
t > 0.

Proof: Take a test function ϕ ∈ C2
0 (Rd,R) and let < ·, · > denote the duality between

measures and continuous test functions with compact supports (extending the H0 inner
product), i.e.,

< ϕ,Y(t) >:=
∫
ϕ(r)Y(t, dr).

28The measurability in all three parameters, including t is a consequence of the continuity of the
sample paths.

29“Weak solution” is here to be understood in the sense of partial differential equations (PDEs), not
in the sense of stochastic differential equations.
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To simplify the notation we abbreviate

r̄(t, q) := r(t, Ỹ, q), m(r̄(s, q), ds) :=
∫
Jε(r̄(s, p), Ỹ(s), p, s)w(dp, ds).

The incremental mutual quadratic variations now satisfy

[mk(r̄(s, q)),m�(r̄(s, q))](ds) = Dk�(r̄(s, q), Ỹ(s), s)ds.

Hence, we obtain

< ϕ,Y(t) >=
∫
ϕ(r)

∫
δr̄(t,q)(dr)X0(dq)

(by Itô’s formula)

=
∫
ϕ(q)X0(dq) +

∫ ∫ t
0 (∇ϕ)(r̄(s, q)) • F (r̄(s, q), Ỹ(s), s)dsX0(dq)

+
∫ ∫ t

0
(∇ϕ)(r̄(s, q)) •m(r̄(s, q), ds)X0(dq)

+ 1
2

∑d
k,�=1

∫ t
0 (∂2

k�ϕ)(r̄(s, q))Dk�(r̄(s, q), Ỹ(s), s)dsX0(dq)

= I + II(t) + III(t) + IV (t).

Note that by (2.26)

mk(r̄(s, q), ds) =
∞∑
n=1

d∑
�=1

σn,k�(r̄(s, q), Ỹ(s), s)βn,�(ds).

Hence,

III(t) =
∫ ∫ t

0

∑d
k=1(∂kϕ)(r)mk(r, ds)

∫
δr̄(s,q)(dr)X0(dq)

=
∑∞

n=1

∑d
k,�=1

∫ ∫ t
0 (∂kϕ)(r)σn,k�(r, Ỹ(s), s)βn,�(ds)

∫
δr̄(s,q)(dr)X0(dq)

=
∑∞

n=1

∑d
k,�=1

∫ t
0

∫
(∂kϕ)(r)σn,k�(r, Ỹ(s), s)Y(s, dr)βn,�(ds)

=
∑∞

n=1

∑d
k,�=1

∫ t
0 < (∂kϕ)(·), σn,k�(·, Ỹ(s), s)Y(s) > βn,�(ds)

= −∑∞
n=1

∑d
k,�=1

∫ t
0
< ϕ(·), ∂k

(
σn,k�(·, Ỹ(s), s)Y(s)

)
> βn,�(ds)

(integrating by parts in the sense of distributions)

=< ϕ(·), ∫ t0 ∑d
k=1 ∂k

{− Y(s)
∑∞

n=1

∑d
�=1

(
σn,k�(·, Ỹ(s), s)

)}
βn,�(ds) >

=< ϕ(·), ∫ t
0
∇ • {− Y(s)

∫ J (·, Ỹ(s), p, s)w(dp, ds)
}
> .

Similarly, we may rewrite II(t) and IV (t). Consequently,

(46)

< ϕ,Y(t) >

=< ϕ,X0 > − < ϕ,
∫ t
0
∇ • (Y(s)F (·, Ỹ(s), s)ds

)
>

− < ϕ,
∫ t
0
∇ • (Y(s)

∫ J (·, Ỹ(s), p, s)w(dp, ds)
)
>

+ < ϕ, 1
2

∑d
k,�=1

∫ t
0 ∂

2
k�

(Y(s)Dk�(·, Ỹ(s), s)ds
)
> .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Since the measures are uniquely determined by the duality < ·, · > with test functions
ϕ ∈ C2

0 (Rd,R), (3.5) implies (3.2).
(ii) is a consequence of Corollary 2.6. �
Observe that Y(t) given by (3.1) depends on the measure valued input process Ỹ in

addition to the initial distribution X0.
Lemma 3.2 Suppose Y(t, Ỹ1) and Y(t, Ỹ2) are two solutions of (3.2) with represen-

tations (3.1). Then ∀T > 0 there is a positive cT <∞ such that

(47) E sup0≤t≤T γ̂2
f

(Ŷ(t, Ỹ1), Ŷ(t, Ỹ2)
) ≤ cT

∫ T
0
Eγ̂2

f

( ˆ̃Y1(s),
ˆ̃Y2(s)

)
ds.

Proof: Truncating the initial distribution X±(0, ω) if necessary, we may without loss
of generality assume that

(48) ess supω
∑
±
γf (X±(0, ω)) ≤ c <∞.

Hence,

E sup0≤t≤T γ̂
2
f

(Ŷ(t, Ỹ1), Ŷ(t, Ỹ2)
)

= E sup0≤t≤T sup‖f‖L,∞≤1

∑
±[
∫
(f(r(t, Ỹ1, q))− f(r(t, Ỹ2, q)))X±

0 (dq)]2

≤ E sup0≤t≤T
∑

± |
∫
(|r(t, Ỹ1, q)− r(t, Ỹ2, q))X±

0 (dq)|2

≤ cT
∑

±
∫
EX0(Rd) sup0≤t≤T |(r(t, Ỹ1, q)− r(t, Ỹ2, q)|2X±

0 (dq)

(by the Cauchy Schwarz inequality)

≤ c̃TE
∫ T
0
γ̂2
f (

ˆ̃Y1(u), ˆ̃Y2(u))du

(by (2.22) and the assumption on the boundedness of all measures. )

�
Theorem 3.3 In addition to the conditions of Theorem 2.7 assume Hypothesis 2.2

with m ≥ 1. Then the following holds:
(i) There is a weak solution of the following quasi-linear SPDE (1.3) with initial

condition X0 and Hahn-Jordan decomposition X±
0 .

(ii) This solution, X (t,X ,X0), has the representation

(49) X (t) := X (t,X ,X0) =
∫
δ{r(t,ω,X (ω),q)}X0(dq).

Further,

(50) X±(t) := X±(t,X ,X0) =
∫
δ{r(t,ω,X (ω),q)}X±

0 (dq),

i.e.,
∫
δ{r(t,ω,X (ω),q)}X±

0 (dq) is the Hahn-Jordan decomposition X±(t) of X (t) for all
t > 0.

Proof: (i) Define recursively

Y0(t) ≡ X0, Yn(t) :=
∫
δ{r(t,Yn−1,q)}X0(dq).

By possibly truncating the initial measure we may without loss of generality assume
that the total variation of initial distribution is bounded uniformly in ω30 and, conse-
quently by mass conservation, the same holds for the measures Yn(t). Therefore, by (3.6)

30Cf. (3.7).
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in Lemma 3.2

E sup0≤t≤T γ̂2
f

(Ŷn(t), Ŷm(t)
) ≤ cT

∫ T
0 Eγ̂2

f

(Ŷn−1(s), Ŷm−1(s)
)
ds

≤ cT
∫ T
0
E sup0≤s≤t γ̂

2
f

(Ŷn−1(s), Ŷm−1(s)
)
ds.

The contraction mapping principle yields a unique adapted M̂-valued process X̂ (·) ∈
C([0.∞); M̂) a.s. such that

(51) E sup
0≤t≤T

γ̂2
f

(Ŷn(t), X̂ (t)
)→ 0, as n→∞.

Further, observe that the Hahn-Jordan decomposition for Yn(t) is given by (3.4) with
Y(t) := Yn(t) and Ỹ(t) := Yn−1(t).

(ii) Setting X := X̂+ − X̂−, we now define

X̃ (t) :=
∫
δ{r(t,X ,q)}X0(dq),

and by (3.4) we have the Hahn-Jordan decomposition

(52) X̃±(t) =
∫
δ{r(t,X ,q)}X±

0 (dq).

Again by Lemma 3.2

E sup0≤t≤T γ̂
2
f

(Ŷn(t), ˆ̃X (t)
) ≤ cT

∫ T
0
Eγ̂2

f

(Ŷn−1(s), X̂ (s)
)
ds

→ 0, as n→∞.
By the uniqueness of limit in (3.10) we have ˆ̃X (t) ≡ X̂ (t). Hence, by (3.11) we obtain

(3.8) and (3.9). Finally, Lemma 3.1 implies that X (·) is a weak solution of (1.3). �
Remark 3.4 Under additional smoothness assumptions on the coefficients F and J 31

smoothness of the initial conditions implies smoothness of the solutions, where smooth-
ness is derived in appropriate Sobolev spaces of functions. Moreover, if the smoothness
of the coefficients is sufficiently large then the solution of (1.3) is unique with continuous
paths in H0.32 �

4. Appendix - Proof of Theorem 2.2

For this proof we may, without loss of generality, assume N = 1.
(i) We next adjust the classical proof of the Markov property for certain SODEs to

our setting.33 Let “diameter” be defined as usual for metric spaces, i.e., for a Borel set
A ⊂ Rd we set

diam (A) := sup
r,r̃∈A

|b − b̃|.

By the separability of Rd, there is a sequence of countable decompositions {Emk }k∈N,
where Emk are non-empty Borel sets of diameter ≤ 3−m for all k ∈ N and m ∈ N. In
each Emk we choose an arbitrary but fixed element rmk , k,m ∈ N. Now we define maps:

(53) fm : Rd → Rd, fm(r) = rmk , if r ∈ Emk , k,= 1, 2, . . .

(ii) Let r(t, ω, fm(q), s) be the solution of (2.2)34 with start in fm(q) at time s. Set

(54) r̄m(t, ω, q, s) := r(t, ω, fm(q), s).

31Cf. Hypothesis 2.2.
32Cf. Kotelenez (1995b) and Kotelenez (2008), Chapter 8.
33Cf., e.g., Dynkin (1965), Ch. VI, §2 as well as Arnold, Curtain and Kotelenez (1980).
34We will always use continuous versions of solutions of (2.2).
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We claim that for fixed 0 ≤ s < t r̄m(t, ·, ·, s) is F̃ t0 ⊗ Bd − Bd-measurable. To this
end take A ∈ Bd and set

C := {(ω, q) : r̄m(t, ω, q, s) ∈ A}.
If C = ∅ we are done; otherwise take (ω0, q0) ∈ C and observe

Cq0 := {ω : (ω, q0) ∈ C} = {ω : r(t, ω, fm(q0), s) ∈ A} ∈ F̃ t0
since r(t, ω, fm(q0), s) is an Itô solution of (2.2) with start in fm(q) at time s. There is
a k0 such that q0 ∈ Emk0 . Hence,

r̄m(t, ω, q, s) = r̄m(t, ω, q0, s) ∀q ∈ Emk0 .
Thus,

Emk0 × Cq0 = {(ω, q) : q ∈ Emk0 , (ω, q) ∈ C} ⊂ C.

In the same way we find for any (ω, q) ∈ C a kq such that

Emkq × Cq ⊂ C, Cq ∈ F̃ t0.
Hence, there is a subsequence of positive integers {kp, p ∈ N} such that

C = ∪q: (ω,q)∈CEmkq × Cq = ∪∞
p=1E

m
kp × Cqkp ,

since every q is contained in some Emkp . Since Emkp × Cqkp ∈ F̃ t0 ⊗ Bd we obtain

(55) C ∈ F̃ t0 ⊗ Bd.
(iii) For fixed q r̄m(t, ·, q, s) solves (2.2) for the initial value (fm(q), s). Comparing this

solution with the solution of (2.2) for the initial value (q, s), r(t, ·, q, s), we obtain from
(2.3) that for any T > s

(56)

P{ω : sups≤t≤T ρ̃(r̄m(t, ω, q, s)− r(t, ω, q, s)) < 2−
m
2 }

≤ 2mE sups≤t≤T ρ̃
2(r̄m(t, ·, q, s)− r(t, ·, q, s)) ≤ const

(
2
3

)m
.

⎫⎪⎬⎪⎭
Thus, by the Borel-Cantelli Lemma sups≤t≤T ρ̃(r̄m(t, ·, q, s)− r(t, ·, q, s)) a.s., as n→

∞. Set

(57)
D := {(ω, q) : ∃ limm→∞ r̄m(t, ω, q, s) uniformly for t ∈ [s, T ]}

= ∩� ∪m ∩m̃{(ω, q) : sups≤t≤T ρ̃(r̄m(t, ω, q, s)− r̄m+m̃(t, ω, q, s)) < 1
�}.

⎫⎬⎭
By the F̃ t0 ⊗ Bd − Bd measurability of r̄m(t, ·, ·, s)

(58) Dt := ∩� ∪m ∩m̃{(ω, q) : ρ̃(r̄m(t, ω, q, s)− r̄m+m̃(t, ω, q, s)) <
1
�
} ∈ F̃ t0 ⊗ Bd.

Define

(59) r̄(t, ω, q, s) :=

⎧⎨⎩ limm→∞ r̄m(t, ω, q, s), ∀(ω, q) ∈ D uniformly for t ∈ [s, T ],

0 otherwise.

By (4.6) r̄(t, ·, ·, s) is F̃ t0 ⊗ Bd − Bd.
(iv) For fixed q step (iii) implies the existence of an Ωt,q,s ∈ F̃ t0 with P (Ωt,q,s) = 1

such that

(60) r̄(t, ·, q, s) = r(t, ·, q, s) ∀ω ∈ Ωt,q,s.

Set

r̃(t) := q +
∫ t

s

F̃ (r̄(u, ·, q, s), u)du+
∫ t

s

∫
J̃ (r̄(u, ·, q, s), p, u)w(dp, du).
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An Itô-Riemann approximation to the right hand side of the previous equation may
be written as

(61)
n∑
i=1

G̃(r̄(uni , ·, q, s), uni+1 − uni , w(d·, uni+1)− w(d·, uni ),

where the function G̃ is an abbreviation for the Itô-Riemann approximations of the de-
terministic and the stochastic integrals. The same partition {uni } yields an Itô-Riemann
approximation of the solution of (2.2), r(t, ·, q, s):

(62)
n∑
i=1

G̃(r(uni , ·, q, s), uni+1 − uni , w(d·, uni+1)− w(d·, uni )).

At least for all ω ∈ ∩ni=1Ωumi ,q,s the values in (4.9) and (4.10) are identical. Hence, the
limits are the same for all ω ∈ ∩∞

n=1∩ni=1Ωumi ,q,s with P (∩∞
n=1∩ni=1Ωumi ,q,s) = 1. However,

the limit of (4.10) equals a.s. r(t, ·, q, s) which itself equals a.s. r̄(t, ·, q, s). Recall that
our processes have continuous sample paths. Hence, with probability 1, uniformly in
t ∈ [s, T ] for all T > s

(63) r̄(t, ·, q, s) = q +
∫ t

s

F̃ (r̄(u, ·, q, s), u)du+
∫ t

s

∫
J̃ (r̄(u, ·, q, s), p, u)w(dp, du),

i.e., r̄(t, ·, q, s) is another version of the solutions of (2.2) with initial value (q, s).
(v) Next, we show that r̄(t, ·, fm(rs), s) is a version of the unique solution of (2.2),

r(t, ·, fm(rs), s) for the initial valued (rs, s) where rs is Fs-measurable and square inte-
grable. Abbreviate

r̄(t) := r̄(t, ·, fm(rs), s), r(t) := r(t, ·, fm(rs), s), r̄k(t) := r̄(t, ·, rmk , s).

Set Ak := r−1
s (Emk ). Further, let G̃ have the same meaning as in (4.10) and denote

by r̄nk (t), rn(t) the processes used in the Picard-Lindelöf approximation of the solutions
r̄k(t) and r(t), respectively. We then have

(64)

r(t) = fm(rs) +
∫ t
s G̃(r(u), du, w(·, du))

=
∑∞

k=1{rmk 1Ak +
∫ t
s

1AkG̃(r(u), du, w(d·, du))}

=
∑∞

k=1{rmk 1Ak + limn→∞
∫ t
s 1AkG̃(rn(u), du, w(d·, du))}.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Further, by (4.11) in addition to the properties of the approximations we have with

probability 1

(65)
r̄(t) =

∑∞
k=1{rmk 1Ak +

∫ t
s 1AkG̃(r̄k(u), du, w(d·, du)}

=
∑∞

k=1{rmk 1Ak + limn→∞
∫ t
s

1AkG̃(r̄nk (u), du, w(d·, du))}.

⎫⎬⎭
We show by induction that with probability 1 for all k

1Akr(t) = 1Ak r̄k(t).
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The equality holds for n = 0. Assume that it also holds for n− 1, n ≥ 1. Then, with
probability 1,

1Akr
n(t) = rnk +

∫ t
s

1AkG̃(rn−1(u), du, w(d·, du))

= rnk +
∫ t
s

1AkG̃(1Akr
n−1(u), du, w(d·, du))

= rnk +
∫ t
s 1AkG̃(1Ak r̄

n−1
k (u), du, w(d·, du))

by induction hypothesis

= rnk +
∫ t
s

1AkG̃(r̄n−1
k (u), du, w(d·, du))

1Ak r̄
n
k (t).

Thus, rn(t) = r̄n(t) :=
∑∞

k=1 1Ak r̄
n
k (t) a.s., whence

(66) r̄(t, ·, fm(rs), s) = r(t, ·, fm(rs), s) a.s.

(vi) As in (4.4), comparing r̄(t, ·, fm(rs), s) with r(t, ·, rs, s) we obtain an F̃T0 -measur-
able set Ω̃T,s with P (Ω̃T,s) = 1 such that

(67) lim
m→∞ sup

s≤t≤T
ρ̃(r̄(t, ω, fm(rs(ω)), s) − r(t, ω, rs(ω), s)) = 0 ∀ω ∈ Ω̃T,s.

Note that
fm(rs(ω)) → rs(ω) ∀ω.

Therefore, by (4.2) and (4.5),

(68) {(ω, rs(ω)) : ω ∈ Ω̃T,s} ⊂ D.

Altogether, we obtain with probability 1

(69)
r̄(t, ·, rs, s) = limm→∞ r̄(t, ·, fm(rs), s) = r(t, ·, rs, s),

uniformly in t ∈ [s, T ], T > s,

⎫⎬⎭
whence, as in step (iv), r̄(·, ·, rs, s) is a version of the the unique solution of (2.2) with
continuous sample paths for t ∈ [s, T ] and all T > s. �
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