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ALEXANDER MARYNYCH

ON THE ASYMPTOTICS OF MOMENTS OF LINEAR RANDOM
RECURRENCES

We propose a new method of analyzing the asymptotics of moments of certain linear
random recurrences which is based on the technique of iterative functions. By using
the method, we show that the moments of the number of collisions and the absorption
time in the Poisson–Dirichlet coalescent behave like the powers of the ”log star”
function which grows slower than any iteration of the logarithm, and thereby we
prove a weak law of large numbers. Finally, we discuss merits and limitations of the
method and give several examples related to beta coalescents, recursive algorithms,
and random trees.

1. Introduction and main result

A linear random recurrence is a sequence of random variables {Xn, n ∈ N} which satisfies
the distributional equality

X1 = 0, Xn
d= Vn +

K∑
r=1

Ar(n)X(r)
In(r)

, n ≥ 2,(1)

whereXn is some parameter of a problem of size n which splits intoK ≥ 1 subproblems of
random sizes In(r) ∈ {1, . . . , n}. For every r = 1, . . . ,K, the sequence {X(r)

k , k ∈ N} which
corresponds to the contribution of subgroup r is a distributional copy of {Xk, k ∈ N}, Vn
is a random toll term, and Ar(n) > 0 is a random weight of subgroup r. It is assumed
that {(In(1), . . . , In(K), A1(n), . . . , AK(n), Vn), n ≥ 2}, {X(1)

n , n ∈ N}, . . . , {X(K)
n , n ∈ N}

are independent.
Random recurrences (1), often in a simplified form with K = 1, arise in various

areas of applied probability such as random regenerative structures [9, 11], random trees
[5, 7, 25, 26], coalescent theory [6, 10, 12, 16], absorption times in non-increasing Markov
chains [13, 2], recursive algorithms [15, 24, 27, 28], random walks with barrier [17, 18],
to name but a few.

The first step of the asymptotic analysis of recurrences (1) is to find the asymptotics
of moments EXk

n and central moments E(Xn−EXn)k, as n→∞. This problem reduces
to studying the recurrent equations of the form

a1 = 0, an = bn +
n−1∑
k=1

cnkak, n ≥ 2,(2)

where {bn, n ∈ N} and {cnk, n ∈ N, k < n} are given numerical sequences. The purpose
of the present paper is to propose a new method of obtaining the first-order asymptotics
of solutions to (2), as n→∞.

Although the asymptotic analysis of recurrences (2) is a hard analytic problem, some
more or less efficient methods have been elaborated to date. Evidently, the most popular
existing approach is the method of singular analysis of generating functions [5, 8]. The
method gives a very precise information on the asymptotic behavior, whenever there is a
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tractable functional relation between the generating functions of the sequences involved.
The idea of a repertoire method proposed in [15] can be briefly described as follows. First,
we build up a repertoire {b(α)

n , α ∈ A}, where A is a finite set, of inhomogeneous terms of
(2) by choosing sequences {a(α)

n , n ∈ N} such that the sum in (2) is tractable. Then we
construct the solution an to (2) with the inhomogeneous term bn as a linear combination
of solutions a(α)

n , α ∈ A. Finally, we mention a method proposed in [1] and further
developed in [28] which is based on the harmonic analysis and potential theory.

Initially, our method which is based on the technique of iterative functions was de-
veloped in order to find the asymptotics of moments of the number of collisions Xn and
the absorption time Tn in the Poisson–Dirichlet coalescent (this problem was raised by
Martin Möhle in the early 2008). Below, we prove that both EXk

n and ET kn , k ∈ N,
behave like the powers of a ”log star” function which grows slower than any iteration of
the logarithm1. This somewhat exotic behavior of the moments partially explains the
fact that we have not been able to apply either of previously known (to us) methods to
tackle the problem. To our knowledge, the ”log star” asymptotics arises not often. In
particular, we are only aware of two applied models which exhibit such a behavior: (a)
the number of distinguishable alleles according to the Ohta–Kimura model of neutral
mutation [20], and (b) the average complexity of Delaunay triangulation of the Euclid-
ean minimum spanning tree [4]. The number of collisions and the absorption time in the
Poisson–Dirichlet coalescent are interesting, yet particular patterns of recurrence (1).
Thus, after having settled the original problem concerning the Poisson–Dirichlet coa-
lescent, our method was subsequently extended to cover many other linear recurrences
(1).

In this paper, unless stated the contrary, we tacitly suppose that bn ≥ 0 and, hence,
an ≥ 0. However, a perusal of the proofs given below reveals that we could have assumed
that bn is only non-negative or non-positive for large enough n. Under this last assump-
tion, the formulations of results would get cumbersome which has forced us to keep less
generality but more transparency.

Our method can be summarized in the following
ALGORITHM

(1) Using, for example, the method described in [28], obtain the recurrence with
weights reduced to probabilities. As a result, we obtain a recurrence of the form

A1 = 0, An = Bn +
n−1∑
k=1

pnkAk,

where
∑n−1

k=1 pnk = 1 for all n ≥ 2 and Bn ≥ 0. Let In be a random variable with
the distribution P{In = k} = pnk, n ≥ 2, k < n.

(2) Prove the divergence of An using, for example, Proposition 5.1 or other methods.
(3) Find a continuous, strictly increasing, and unbounded function g(x) defined on

R+ and such that g(n) = EIn + o(EIn). Pick x0 as defined in (3). Find a
continuous function h(x) defined on R+ and such that h(n) = Bn.

(4) Find an iterative function g∗ generated by the quadruple (h, g, x0, k), where k is
any function continuous on [0, x0] (see Definition 2.1).

(5) Using, for example, Theorem 5.2, find, if possible, an elementary function f1
such that limx→∞

f1(x)
g∗(x) = 1, and set f := f1. Otherwise, select k such that g∗ is

twice differentiable, and set f := g∗ (see Theorem 2.1).
(6) If f(EIn)− f(g(n)) = o(h(n)), then go to the next step, otherwise go to step 3)

and choose an asymptotically smaller term o(EIn).

1The result for �Xn was conjectured by M. Möhle.
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(7) If Ef(In)−f(EIn) = o(h(n)), then An ∼ f(n). If Ef(In)−f(EIn) ∼ ch(n), then
An ∼ (1− c)−1f(n) (see Theorem 3.2).

We mention, in passing, that iterative functions have already been used in the context
of the divide-and-conquer paradigm [19]. The cited paper is concerned with the stochastic
processes {T (x), x ∈ R+}, whose marginal distributions are given by the equality

T (x) d= a(x) + T ′(t(x)), x ∈ R+,

where a(·) is a non-negative (deterministic) function, and t(·) is a random variable taking
values in [0, ·] which is independent of {T ′(x), x ∈ R+}, an independent copy of {T (x), x ∈
R+}.

The structure of the paper is as follows. Section 2 introduces iterative functions and
investigates their properties. Section 3 carefully describes the algorithm of our new
method. Theorem 3.1 and Theorem 3.2 which are the main results of the section prove
the validity of the algorithm. Section 4 is devoted to applications and also discusses ”ins
and outs” of the method. The paper closes with Appendix which collects proofs of some
technical results concerning the iterative functions and properties of recurrences (2).

Throughout the paper, the notation r(·) ∼ s(·) means that r(·)/s(·) → 1, as the
argument tends to infinity, C(m)(B) denotes the space of functions which are m-times
differentiable on the set B. If B = [a,∞), then the derivatives at point a are assumed
to be the right derivatives. Also we use the notation

r◦(0)(x)
def
= x, r◦(k)(x)

def
= r(r◦(k−1)(x)), k ∈ N.

Finally, we recall the standard notation �x� = sup{k ∈ Z : k ≤ x} and (x) = inf{k ∈ Z :
k ≥ x} for the floor and ceiling functions, respectively.

2. Iterative functions

In this section, iterative functions are defined, and some basic properties of these
functions are given. We start with a formal definition.

Definition 2.1. Suppose that the function g : R+ → R+ is increasing, unbounded, and
continuous and satisfies the following condition: for some x0 > 0 and every x1 > x0,
there exists εx1 > 0 such that

x− g(x) > εx1 for all x ∈ (x0, x1).(3)

Assume that the functions h : R+ → R+ and k : [0, x0] → R are continuous and define
the function g∗ : R+ → R by the equality

g∗(x) =
m0(x)∑
i=1

h(g◦(i−1)(x)) + k(g◦(m0(x))(x)),(4)

where
m0(x) := inf{k ≥ 0 : g◦(k)(x) ≤ x0}.

We call g∗ the iterative function generated by the quadruple (h, g, x0, k) and denote it by
g∗ = Iter(h, g, x0, k).

Note that the technical condition (3) is sufficient for m0(x) to be finite for every
x ∈ R+. This follows from the estimate m0(x) ≤ �x−x0

εx
� + 1, which is implied by the

inequality
x− kεx ≥ g◦(k)(x), x > x0, k = 0, . . . ,m0(x).

which can be obtained, in turn, by induction.
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Remark 2.1. It follows from the definition that g∗ satisfies the functional equation

g∗(x) = h(x) + g∗(g(x)), x > x0,(5)

with the initial condition

g∗(x) = k(x), x ≤ x0.

Below are some examples of iterative functions
Example 1. Let h(x) ≡ 1, g(x) = αx, α ∈ [0, 1), x0 = 1, k(x) ≡ 0. Then g∗(x) =

1 + g∗(αx), x > 1, or
g∗(x) = (log 1

α
x), x > 1.

Example 2. Let h(x) ≡ 1, g(x) = log x, x0 = 1, k(x) ≡ 0. Then g∗(x) = 1 +
g∗(log x), x > 1, or

g∗(x) = log∗ x,
the log-star function which is arguably the best known non-trivial iterative function. It
is clear that Iter(1, g, x0, 0) = m0(x). In particular, this equality holds for the log-star
function.
If h(x0) 
= 0, then the iterative functions Iter(h, g, x0, 0) are piecewise continuous. We

prefer, however, to work with smooth iterative functions, which was the main reason
for introducing the functions k in Definition 2.1. It turns out that Iter(h, g, x0, 0)
and Iter(h, g, x0, k) have the same asymptotics, and an appropriate choice of k makes
Iter(h, g, x0, k) smooth enough. Below, we formalize this statement and also describe
how the mentioned smoothness can be obtained by the choice of k.

Introduce the equivalence relation ≈ on the set of iterative functions by the rule

g∗1 ≈ g∗2 ⇐⇒ g∗1 = Iter(h, g, x0, k1), g∗2 = Iter(h, g, x0, k2).

This relation induces partitioning the set of iterative functions into the classes of equiv-
alence.

Definition 2.2. The equivalence class

F := {F = Iter(h, g, x0, k), k ∈ C[0, x0]}
is called the iterative function generated by the triple (h, g, x0). When it does not lead
to ambiguity, we call an iterative function generated by the triple (h, g, x0) an arbitrary
element of this class.

Since |g∗1(x) − g∗2(x)| is bounded on R+, for any g∗1 , g
∗
2 ∈ F , all iterative functions in

the same equivalence class are asymptotically equivalent (provided they diverge).

Definition 2.3. An m-time differentiable modification of the iterative function g∗ is an
arbitrary iterative function ĝ∗ such that ĝ∗ ≈ g∗ and ĝ∗ ∈ C(m)[x0,+∞).

Our first result which is a direct consequence of Lemma 5.1 and Lemma 5.2 given in
the Appendix shows that, provided g and h are smooth enough, one can find a function k
such that the function Iter(h, g, x0, k) is smooth. For a collection of functions f1, . . . , fn,
let W (f1, . . . , fn) denote its Wronskian.

Theorem 2.1. Assume that g, h ∈ C(m)[x0,+∞) and that

W
(
xi − gi(x), i = 0, . . . ,m+ 1

)
(x0) 
= 0.

Then there exists a function k of the form

k(x) =
m+1∑
i=1

αix
i,

such that the iterative function generated by the quadruple (h, g, x0, k) is m-time differ-
entiable on [x0,+∞).
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Remark 2.2. The vector of coefficients (α1, α2, . . . , αm+1) is a solution to the system of
linear equations (see Lemma 5.2) and can be calculated explicitly.

An example of a smoothed iterative function is given as follows.

Example 2.1. Recall that the log-star function is an iterative function generated by the
quadruple (1, log x, 1, 0). A twice differentiable modification F of the log-star function
can be constructed in the following way. According to Lemma 5.2, the corresponding
function k takes the form k(x) = − 2

13x
3 + 3

13x
2 + 12

13x. Therefore,

F (x) =
{

1 + F (log x), x > 1,
− 2

13x
3 + 3

13x
2 + 12

13x, x ∈ [0, 1].

Below are depicted the graphs of the functions log∗ x and F (x) for x > 0.
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3. Asymptotic behavior of (2)

While investigating recurrence (2), without loss of generality, we can assume that, for
every n ≥ 2,

(6)
n−1∑
k=1

cnk = 1 and cnk ≥ 0, k = 1, . . . , n− 1

(see, e.g., p. 9 in [28]). In what follows, recurrences (2) with bn ≥ 0 which satisfy (6) are
referred to as recurrences with weights reduced to probabilities. If (6) holds, we denote,
by In, a random variable with the distribution

P{In = k} = cnk, k = 1, . . . , n− 1.

Theorem 3.1. Assume that the sequence {an, n ∈ N} satisfy recurrence (2) with weights
reduced to probabilities. Let g : R+ → R+ be a continuous, increasing, and unbounded
function such that

g(n) = EIn + o(EIn), n→∞,
and let h : R+ → R+ be a continuous function such that

h(n) = bn, n ≥ 2.

If
• limn→∞ an = +∞,
• g∗(EIn)− g∗(g(n)) = o(h(n)), n→∞,
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where g∗ is an iterative function generated by the triple (h, g, x0), then the following
implications are true

Eg∗(In)− g∗(EIn) = o(h(n)), n→∞ =⇒(7)
an ∼ g∗(n), n→∞,

Eg∗(In)− g∗(EIn) ∼ dh(n), n→∞, for some d < 1 =⇒(8)
an ∼ (1 − d)−1g∗(n), n→∞.

Proof. Set a′n := an − g∗(n), n ∈ N. The sequence {a′n, n ∈ N} satisfies the recurrence

(9) a′1 = −g∗(1), a′n = bn − g∗(n) + Eg∗(In) +
n−1∑
k=1

cnka
′
k, n ≥ 2.

If Eg∗(In)−g∗(EIn) = o(h(n)) and g∗(EIn)−g∗(g(n)) = o(h(n)), then the inhomogeneous
term of (9) is o(h(n)). Therefore, applying part (II) of Theorem 5.1 yields a′n = o(an)
which implies an ∼ g∗(n).

If Eg∗(In) − g∗(EIn) ∼ dh(n) for some d ∈ (0, 1) and g∗(EIn) − g∗(g(n)) = o(h(n)),
then the inhomogeneous term of (9) is asymptotically equal to dh(n). Therefore, applying
part (I) of Theorem 5.1 yields a′n ∼ dan which implies an ∼ (1− d)−1g∗(n).

Finally, if Eg∗(In)−g∗(EIn) ∼ dh(n) for some d < 0,we can apply part (II) of Theorem
5.1 to the sequences {g∗(n) − an} and {an} to conclude that g∗(n) − an ∼ −dan. The
latter is equivalent to an ∼ (1 − d)−1g∗(n). The proof is complete. �

Theorem 3.2. Assume that the sequence {an, n ∈ N} satisfy recurrence (2) with weights
reduced to probabilities. Let g : R+ → R+ be a twice differentiable, increasing, and
unbounded function such that

g(n) = EIn + o(EIn), n→∞,
and h : R+ → R+ be a twice differentiable function such that

h(n) = bn, n ≥ 2.

If the conditions
(C1) limn→∞ an = +∞
(C2) There exists a continuous function k such that the iterative function F generated

by the quadruple (h, g, x0, k) is twice differentiable
(C3) F (EIn)− F (g(n)) = o(h(n)), n→∞
(C4) There exists M > 0 such that for all n ∈ N

Var In ≤MEIn

(C5) limn→∞ supx≥EIn/2 |F ′′(x)|Var In
h(n)

= 0

(C6) limn→∞
sup1≤x≤n |F (x)|
h(n)Var In

= 0

(C7) limn→∞
F ′(EIn)
h(n)

= 0

hold, then

an ∼ F (n), n→∞.
Proof. Since conditions (C1) and (C3) hold, according to implication (7) in Theorem 3.1,
it is enough to show that

αn := EF (In)− F (EIn) = o(h(n)).
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With κ := 1
2M and An := {|In − EIn| > κVar In}, we have

|αn| ≤ |E(F (In)− F (EIn))1An |+ |E(F (In)− F (EIn))1Acn | =: βn + γn.

The application of Chebyshev’s inequality yields

βn ≤ 2 sup
1≤x≤n

|F (x)|P(An) ≤ 2Var In sup1≤x≤n |F (x)|
(κVar In)2

,

which is o(h(n)) by condition (C6).
Using the Taylor expansion around EIn leads to

γn =
∣∣∣E(F ′(EIn)(In − EIn) +

1
2
F ′′(θn)(In − EIn)2

)
1Acn

∣∣∣
≤

∣∣∣F ′(EIn)E(In − EIn)1An
∣∣∣+ 1

2

∣∣∣EF ′′(θn)(In − EIn)21Acn
∣∣∣ = γ1,n + γ2,n,

where θn ∈ [EIn−κVar In,EIn+κVar In]. Consequently, by Cauchy–Schwarz and Cheby-
shev’s inequalities, we obtain

γ1,n = |F ′(EIn)E(In − EIn)1An | ≤ |F ′(EIn)|
√

E(In − EIn)2
√

P(An)

≤ |F ′(EIn)|
√

Var In

√
Var In

(κVar In)2
=

1
κ
|F ′(EIn)|,

which is o(h(n)) by condition (C7).
Finally, the appeal to condition (C4) allows us to conclude that

S4 ≤ 1
2

sup
x≥EIn/2

|F ′′(x)|Var In,

which is o(h(n)) by condition (C5). The proof is complete.
�

Theorem 3.1 and Theorem 3.2 justify the algorithm given in Introduction.

4. Applications

4.1. Exchangeable coalescents.

4.1.1. Number of collisions in beta(a, 1)-coalescents. Let Xn be the number of collisions
in beta(a, 1)-coalescent, a > 0, restricted to the set {1, . . . , n}. Many results concerning
the asymptotics of EXk

n, k ∈ N, are known [3, 6, 7, 12, 16, 22, 25], but we partially derive
them again just in order to show how our method works.

It is known (see, e.g., [17, Section 7]) that the sequence {Xn, n ∈ N} satisfies the
distributional equality

X1 = 0, Xn
d= 1 +XIn , n ≥ 2,

where In is a random variable with the distribution

P{In = n− k} =
(2−a)Γ(a+k−1)

Γ(a)Γ(k+2)

1− Γ(a+n−1)
Γ(a)Γ(n+1)

, k = 1, . . . , n− 1, n ≥ 2,

if a 
= 2, and

P{In = n− k} =
1

(hn − 1)(k + 1)
, k = 1, . . . , n− 1, n ≥ 2,

where hn =
∑n
k=1 k

−1, if a = 2.
By Proposition 5.1, it follows that limn→∞ EXn = +∞. It is also clear that no

reduction of weights to probabilities in the recurrence is needed.
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Case 0 < a < 1 [3, 12, 17]. Since

EIn = n− (1− a)−1 + o(1),

we can choose
g(x) = x− 1

1− a and h(x) = 1.

Then the functional equation (5) has an elementary solution g∗(x) = (1 − a)x. By
Theorem 3.1, EXn ∼ g∗(n) ∼ (1 − a)n.

Case a = 1 (Bolthausen–Sznitman coalescent) [6, 17, 22, 25]. Since

EIn = n− logn+O(1),

we can choose
g(x) = x− log x and h(x) = 1.

From the relation x
log x = 1 + o(1) + x−log x

log(x−logx) and Theorem 5.2, it follows that
Iter(h, g, 2)(x) ∼ x

log x . The application of Theorem 3.22 gives EXn ∼ n
logn .

Case a = 2 [16]. Since

EIn = n− n

logn
+O

(
n

log2 n

)
,

we can choose

g(x) =
(
x− x

log x

)
1(e,∞)(x) and h(x) = 1.

From the relation 1
2 log2 x = 1 + o(1) + 1

2 log2
(
x− x

log x

)
and Theorem 5.2, we conclude

that Iter(h, g, 2)(x) ∼ 1
2 log2 x. Direct calculations show that

log2
EIn − log2 g(n) = O

(
1

logn

)
and

lim
n→∞

1
2

(
E log2 In − log2

EIn

)
= 1− π2

6
,

which, in view of implication (8), yields EXn ∼ 3
π2 log2 n.

4.1.2. Functionals acting on the Poisson–Dirichlet coalescent. Unlike the beta coales-
cents, the asymptotics of the moments of the number of collisions Xn in the Poisson–
Dirichlet coalescent do not seem to have been known so far (we refer to [23, 29] for the
extensive information about this particular coalescent with simultaneous multiple colli-
sions). We recall that this fact has served as an initial motivation for developing the
method reported in this article.

It can be checked that the sequence {Xn, n ∈ N} satisfies the distributional equality

X1 = 0, Xn
d= 1 +XIn , n ≥ 2,

where

P{In = k} =
θk

[θ]n − θn s(n, k), k = 1, . . . , n− 1, n ≥ 2,

s(n, k) is the unsigned Stirling number of the first kind, and [θ]n = θ(θ+1) . . . (θ+n−1).
This implies that

EIn = θ logn+O(1), Var In = θ logn+O(1).

2The only thing which may require a verification is condition C3. In the present situation, �In −
g(n) = O(1), and the derivative of F (x) = x/ log x tends to zero, as x → ∞. Therefore, condition C3
follows by the application of the mean value theorem.
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Set
g(x) := θ log x, h(x) = 1 and g∗(x) = Iter(h, g, x0)

for some x0 > exp(2θ∨ 1). Notice that g∗ is a generalized log-star function which can be
defined via the functional equation

g∗(x) = 1 + g∗(θ log x), x > x0.

Let F be a twice differentiable modification of g∗ of the form

F (x) =
{

1 + F (θ log x), x > x0,
α1x

3 + α2x
2 + α3x, x ∈ [0, x0],

for some constants α1, α2, α3. It follows that, for every fixed j ∈ N,

F ′(x) = o

(
1

x log x · · · log◦(j)(x)

)
and F ′′(x) = o

(
1

x2(log x)2 · · · (log◦(j)(x))2

)
.

The application of Theorem 3.2 yields EXn ∼ g∗(n) ∼ F (n). Analogously, we obtain

EXk
n ∼ (g∗(n))k, k ∈ N.

Other important functionals acting on the Poisson–Dirichlet coalescent are the absorp-
tion time Tn (in the biological context, Tn is the time back to the most recent common
ancestor of a sample of size n) and the total branch length Ln of the coalescent tree.

The corresponding distributional recurrences are

T1 = 0, Tn
d= τn + TIn , n ≥ 2,

L1 = 0, Ln
d= nτn + LIn , n ≥ 2,

where τn is a random variable with the exponential law with the parameter gn = 1− θn

[θ]n
which is independent of everything else.

Using induction on k, the fact that limn→∞ gn = 1, and Theorem 5.1, we conclude
that

ET kn ∼ (g∗(n))k, k ∈ N.

The application of Chebyshev’s inequality immediately leads to the following weak laws
of large numbers.

Theorem 4.1. As n→∞,

Xn

g∗(n)
P→ 1 and

Tn
g∗(n)

P→ 1.

As far as Ln is concerned, we can prove that

ELkn ∼ k!nk, k ∈ N.

By the method of moments, this immediately gives the following weak convergence result.

Proposition 4.1. As n→∞,

Ln
n

d→ L,

where L is a random variable with the standard exponential law.

In a recent preprint [23], the same result was obtained by a different method. We thus
omit further details.

4.2. Examples from the analysis of algorithms. We will give new proofs of the
results from [24], [21], and [27], respectively, by using our method.
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4.2.1. The Quickselect algorithm. Let Xn be the number of comparisons that the Quick-
select algorithm needs to find min(x1, . . . , xn) of a sample x1, . . . , xn. Then

X1 = 0, Xn
d= n− 1 +XIn , n ≥ 2,

where In = Jn ∨ 1, and Jn is uniformly distributed on {0, . . . , n− 1}. Since

EIn =
n− 1

2
+

1
n
,

we can choose
g(x) =

x+ 1
2

and h(x) = x− 1.

Then the functional equation (5) has elementary solutions g∗(x) = 2x + c, c ∈ R. By
Theorem 3.1, EXn ∼ g∗(n) ∼ 2n.

4.2.2. The depth of a random node in a random binary search tree. The corresponding
recurrence is

X0 = −1, X1 = 0, Xn
d= 1 +XIn , n ≥ 2,

where P{In = k} = 2k/n2 for k ∈ {1, . . . , n− 1} and P{In = 0} = 1/n. Since

EIn =
(n− 1)(2n− 1)

3n
,

we can choose
g(x) = 2x/3 and h(x) = 1.

According to Example 1, the corresponding iterative function is

g∗(x) = (log 3
2
x), x > 1.

Since limn→∞(E log+ In − logn) = −1/2, it follows that limn→∞(Ef(In) − f(EIn)) =
1− 1

2 log(3/2) , where

f(x) =
log+ x

log(3/2)
.

Since f(x) ∼ g∗(x) then, according to the algorithm, EXn ∼ 2 log(3/2)f(n) ∼ 2 logn.

4.2.3. The Quicksort algorithm. Let Xn denote the random number of comparisons
needed to sort a list of length n by the Quicksort. Then X0 = X1 = 0, and

Xn
d= n− 1 +XIn−1 +X ′

n−In , n ≥ 2,

where {X ′
n, n ∈ N0} is an independent copy of {Xn, n ∈ N0} which is independent of In

having the uniform distribution on {1, . . . , n}. Set an := EXn. Then a0 = a1 = 0 and

an = n− 1 +
n−1∑
k=0

2
n
ak, n ≥ 2.

The reduction of weights to probabilities can be made by the substitution a′n := an/(n+1)
which yields

a′n =
n− 1
n+ 1

+
n−1∑
k=0

2(k + 1)
n(n+ 1)

a′k, n ≥ 2.

Using the same arguments as in the previous example, we obtain a′n ∼ 2 logn. Therefore,
EXn ∼ 2n logn, which is the well-known asymptotics for the Quicksort. 3

3The first result concerning the complexity of the (non-randomized) Quicksort algorithm with
O(n log n) asymptotics goes back to the pioneer work by Hoar [14]. For a complete analysis of the
Quicksort and its different modifications, we refer to survey [30].
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4.3. Limitations of the method.

(a) An indispensable requirement of our method to work is the divergence of an, the
solution to (2). In particular, our method cannot detect the convergence of an
to a constant.

(b) It may be difficult to guess which elementary function has the same asymptotics
as a given iterative function.

(c) If condition (8) holds for some c 
= 0, it may be hard to calculate the constant c
explicitly. Therefore, it seems that a natural assumption for the method to work
is (7) rather than (8). Condition (7) holds if the solution is nearly linear and the
variance of index In grows not too fast (precise statements are made in Theorem
3.2). For instance, the mean number of collisions in the Bolthausen–Sznitman
and Poisson–Dirichlet coalescents exhibit the asymptotic behavior of this type.

5. Appendix.

5.1. Some properties of iterative functions. For the given strictly increasing contin-
uous function g, there exists the unique inverse function g−1 which defines the sequence
{An, n ∈ N0} as follows:

A0 = 0, Ai := (g−1)◦(i−1)(x0), i ∈ N.(10)

Lemma 5.1. Assume that g, h, k ∈ C(m)[x0,+∞), and F = Iter(h, g, x0, k) is m-time
differentiable at x0. Then F is m-time differentiable on [x0,+∞).

Proof. We only treat the casem = 1, as, form = 2, 3, . . ., the proof is the same. Since F is
a sum of compositions of C(1)[x0,+∞) functions, it is differentiable on [x0,+∞)\{Ai, i ∈
N}. Therefore, we only have to check the continuity and the differentiability at points
{Ai, i ∈ N}.
First step. Proof of the continuity. By assumption, F is continuous at A1 = x0, i.e.,

k(x0) = h(x0) + k(g(x0)).(11)

For fixed k ≥ 2, (4) yields

F (Ak − 0) =
k−1∑
i=1

h(g◦(i−1)(Ak − 0)) + k(g◦(k−1)(Ak − 0))(12)

and

F (Ak + 0) =
k∑
i=1

h(g◦(i−1)(Ak + 0)) + k(g◦(k)(Ak + 0)).(13)

Use now (11) and the continuity of h and g to obtain

F (Ak + 0)− F (Ak − 0)

= h(g◦(k−1)(Ak)) + k(g◦(k)(Ak))− k(g◦(k−1)(Ak))

= h(x0) + k(g(x0))− k(x0)
(11)
= 0.

Second step. Proof of the differentiability. The differentiability of F at x0 implies that

k′(x0) = h′(x0) + k′(g(x0))g′(x0).(14)
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For k ≥ 2, using (12) and (13) yields

F ′
−(Ak) = lim

x→Ak−0

d

dx

( k−1∑
i=1

h(g◦(i−1)(x)) + k(g◦(k−1)(x))
)
,

F ′
+(Ak) = lim

x→Ak+0

d

dx

( k∑
i=1

h(g◦(i−1)(x)) + k(g◦(k)(x))
)
.

Consequently,

F ′
+(Ak)− F ′

−(Ak)

= lim
x→Ak+0

d

dx
h(g◦(k−1)(x)) + k(g◦(k)(x)) − lim

x→Ak−0

d

dx
k(g◦(k−1)(x)).

Set u(x) := g◦(k−1)(x). Then u(Ak + 0) = u(Ak − 0) = u(Ak) = x0 and

F ′
+(Ak)− F ′

−(Ak)

= lim
x→Ak+0

d

dx
h(u(x)) + k(g(u(x)))− lim

x→Ak−0

d

dx
k(u(x))

= lim
x→Ak+0

(h′(u(x)) + k′(g(u(x)))g′(u(x)))u′(x) − lim
x→Ak−0

k′(u(x)))u′(x)

= (h′(x0) + k′(g(x0))g′(x0)− k′(x0))u′(x0) = 0,

by (14). The proof is complete. �

From this lemma, it follows that the function F is m-time differentiable, provided it
satisfies the conditions

k(x0) = h(x0) + k(g(x0)),
k′(x0) = h′(x0) + k′(g(x0))g′(x0),
. . . . . . . . . . . . . . . . . . . . . . . . . . .
k(m)(x0) = h(m)(x0) + (k(g(x0)))(m).

(15)

The following lemma proves the existence of such a function k(x).

Lemma 5.2. Assume that W
(
x − g(x), . . . , xm+1 − gm+1(x)

)∣∣∣
x=x0


= 0. Then there

exists a function k(x) =
∑m+1
i=1 αix

i which satisfies (15).

Proof. Plugging the representation k(x) =
∑m+1

i=1 αix
i into (15) gives the system of linear

equations(
α1(x0 − g(x0)) + . . .+ αm+1(xm+1

0 − gm+1(x0))
)

= h(x0),(
α1

d
dx(x− g(x)) + . . .+ αm+1

d
dx(x1+m − gm+1(x))

)∣∣∣
x=x0

= h′(x0),

. . . . . . . . . . . . . . . . . . . . . . . . . . .(
α1

dm

dxm (x− g(x)) + . . .+ αm+1
dm

dxm (xm+1 − gm+1(x))
)∣∣∣
x=x0

= h(m)(x0).

The determinant of this system is W (x0) which is not equal to zero by assumption.
Therefore, the system has a unique solution which implies that the function k is well
defined and satisfies conditions (15). �

5.2. Inhomogeneous terms of recursion (2) and iterative functions.

Theorem 5.1. Suppose that {an, n ∈ N} and {a′n, n ∈ N} satisfy the recurrences

an = bn +
n−1∑
k=1

pnkak, n ≥ N(16)
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and

a′n = b′n +
n−1∑
k=1

pnka
′
k, n ≥ N,(17)

respectively. Suppose that bn ≥ 0 for n ≥ N and limn→∞ an = +∞. Then
I. b′n ∼ bn, n→∞ implies a′n ∼ an, n→∞, and
II. b′n = o(bn), n→∞ implies a′n = o(an), n→∞.

Proof of (I). We exploit the idea of the proof of [9, Proposition 3]. Suppose there exists
ε0 > 0 such that an > (1 + ε0)a′n for infinitely many n. Since limn→∞ an = +∞, we
can pick ε ∈ (0, ε0] such that, for any c > 0, the inequality an > (1 + ε)a′n + c holds for
infinitely many n. Let nc be such minimal n. Since limc→∞ nc = +∞, we can assume,
without loss of generality, that nc > N . For n ≤ nc − 1, we have an < (1 + ε)a′n + c,
which implies

(1 + ε)a′nc + c < anc = bnc +
nc−1∑
k=1

pnckak < bnc + c+ (1 + ε)
nc−1∑
k=1

pncka
′
k.

Simplifying the last expression gives 1 + ε < bnc/b
′
nc . Sending c → ∞ leads to ε < 0,

which is a contradiction. Thus, we have proved that

lim sup
n→∞

an
a′n
≤ 1.

A symmetric argument proves the converse inequality for lim inf.
Proof of (II) proceeds by applying the already established part (I) to the sequences

{an, n ∈ N} and {an − a′n, n ∈ N} and noting that the relation bn ∼ bn − b′n implies
an ∼ an − a′n. The proof is complete. �

Using a similar reasoning, one can prove the following.

Theorem 5.2. Let the triples (h1, g, x0) and (h2, g, x0) generate the iterative functions
f1 and f2, respectively. Assume that limx→∞ f1(x) = +∞. Then

I. h2(x) ∼ h1(x), x→∞ implies f2(x) ∼ f1(x), x→∞, and
II. h2(x) = o(h1(x)), x→∞ implies f2(x) = o(f1(x)), x→∞.

5.3. Sufficient condition for the divergence of solutions to (2). A simple sufficient
condition for limn→∞ an = +∞ is given as follows.

Proposition 5.1. Assume that the sequence {an, n ∈ N} satisfies (2). If In
P→ ∞ and

lim infn→∞ bn = b > 0, then limn→∞ an = +∞.

Proof. From recurrence (2), we obtain

an = bn +
n−1∑
k=1

pnkak = bn +
M−1∑
k=1

pnkak +
n−1∑
k=M

pnkak

≥ bn +
(

inf
1≤k<M

ak

)M−1∑
k=1

pnk +
(

inf
M≤k≤n−1

ak

) n−1∑
k=M

pnk.

Sending n → ∞ gives lim infn→∞ an ≥ b + infk≥M ak. Letting M → ∞ leads to
lim infn→∞ an ≥ b+ lim infn→∞ an, which completes the proof. �
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