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G. ALSMEYER, A. IKSANOV, S. POLOTSKIY, AND U. RÖSLER

EXPONENTIAL RATE OF Lp-CONVERGENCE OF INTRINSIC
MARTINGALES IN SUPERCRITICAL BRANCHING RANDOM

WALKS

Let Wn, n ∈ �0 be an intrinsic martingale with almost sure limit W in a supercritical
branching random walk. We provide criteria for the Lp-convergence of the series�

n≥0 ean(W − Wn) for p > 1 and a > 0. The result may be viewed as a statement

about the exponential rate of convergence of �|W − Wn|p to zero.

1. Introduction and main results

We start by recalling the definition of branching random walk. Consider a population
starting from one ancestor located at the origin and evolving like a Galton–Watson
process but with the generalization that individuals may have infinitely many children.
All individuals are residing at points on the real line, and the displacements of children
relative to their mother are described by a copy of a locally finite point process M =∑J

i=1 δXi on R, and, for different mothers, these copies are independent. Note once again
that the random variable J = M(R) giving the offspring number may be infinite with
positive probability. For n ∈ N0 := {0, 1, . . .}, let Mn be the point process that defines
the positions of the individuals of the n-th generation on R. The sequenceMn, n ∈ N0 is
called a branching random walk (BRW). In what follows, we always assume that EJ > 1
(supercriticality) which ensures the survival of the population with positive probability.

Every BRW is uniquely associated with a weighted branching process (WBP) to be
formally introduced next: Let V :=

⋃
n≥0 Nn be the infinite Ulam–Harris tree of all finite

sequences v = v1 . . . vn with root ∅ (N0 := {∅}) and edges connecting each v ∈ V with its
successors vi, i = 1, 2, . . . The length of v is denoted as |v|. Call v an individual and |v| its
generation number. Associate a nonnegative random variable Li(v) (weight) with every
edge (v, vi) of V and define recursively L∅ := 1 and Lvi := Li(v)Lv. The random variable
Lv can be interpreted as the total multiplicative weight assigned to the unique path from
the root ∅ to v. For any u ∈ V, put similarly L∅(u) := 1 and Lvi(u) := Li(v)Lv(u). Then
Lv(u) gives the total weight of the path from u to uv. Provided that Li(v), v ∈ V, i ∈ N,
consists of i.i.d. random variables, the pair (V,L) with L := (Lv(w)), v ∈ V, w ∈ V is
called a WBP with associated BRWMn, n ∈ N0 defined asMn =

∑
|v|=n δlogLv(· ∩R).

The quantities logLv > −∞ for v ∈ Nn are thus the positions of the individuals alive in
the generation n. Note that, if uV := {uv : v ∈ V} denotes the subtree of V rooted at
u, then the WBP on this subtree is given by (uV,L(u)), where L(u) := (Lu(v)), v ∈ V.
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Next, we define

Zn :=
∑
|v|=n

Lv and m(r) := E

∑
|v|=n

Lrv

for n ∈ N0, r > 0 and suppose that m(1) <∞. If m is differentiable at r, then

(1) m′(r) = E

( ∑
|v|=1

Lrv logLv

)
.

In those cases where the right-hand expectation exists but is −∞ or +∞ (which can only
happen when r is a left or right endpoint of the possibly degenerate interval {r : m(r) <
∞}), we take (1) as the definition of m′(r).

Let F0 be the trivial σ-field, Fn := σ(Li(v) : i ∈ N, |v| < n) for n ∈ N and F∞ :=
σ(Fn : n ∈ N0). The sequence (Wn,Fn), n ∈ N0, where

(2) Wn :=
Zn

mn(1)
,

forms a nonnegative martingale with mean one and is thus a.s. convergent to a limiting
variable W , say, satisfying EW ≤ 1. It has been extensively studied in the literature,
but the first results were obtained in [11] and [5]. Note that P{W > 0} > 0 if, and only
if, Wn, n ∈ N0 is uniformly integrable. An ultimate uniform integrability criterion was
given in [1], and the earlier results can be found in [5], [14], [12], and [10].

Possibly after the switching to the WBP (V, (Lv(w)/m|v|(1), v, w ∈ V)), it is no loss
of generality to assume throughout that

m(1) = 1.

We further impose the condition

(3) P{W1 = 1} < 1

which avoids the trivial situation where P{Wn = 1} = 1 for all n ∈ N and hence
P{W = 1} = 1.

Other WBPs appearing in this work are the aforementioned (uV,L(u)) for any u ∈
V and (V,Lr), where Lr := (Lrv(w)), v, w ∈ V. The counterparts of Zn,Wn for
these processes are denoted Zn(u),Wn(u) and Z

(r)
n ,W

(r)
n , respectively, so Zn(u) :=∑

|v|=nLv(u), Z(r)
n :=

∑
|v|=n L

r
v, and W (r)

n := Z(r)
n

mn(r) .
The main results of this paper will provide necessary and sufficient conditions for the

Lp-convergence (p > 1) of the series

(4) A :=
∑
n≥0

ean(W −Wn)

for fixed a > 0. More precisely, we will derive equivalent necessary and sufficient con-
ditions in the simpler case p ≥ 2, while a necessary and a slightly stronger sufficient
condition are presented in the surprisingly intriguing case 1 < p < 2. Plainly, our results
give information on the rate of convergence of E|W −Wn|p to zero, as n → ∞. It is
therefore useful to recall conditions (which can be found in [13, Theorem 2.1], [10, Corol-
lary 5] or [2, Theorem 3.1]) ensuring that this expectation does go to 0 or, equivalently,
that the martingale {Wn : n ∈ N0} converges in Lp.

Proposition 1.1. Suppose (3) and p > 1. Then the conditions

EW p
1 <∞ and m(p) < 1

are necessary and sufficient for

lim
n→∞E|W −Wn|p = 0,
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and the latter is equivalent to sup
n≥0

EW p
n <∞ as well as to EW p ∈ (0,∞).

Now we are ready to formulate our main results.

Theorem 1.1. Suppose (3), a > 0 and p ∈ (1, 2). Then A converges in Lp and almost
surely if

(5) EW r
1 <∞ and eam1/r(r) < 1 for some r ∈ [p, 2].

Conversely, the Lp-convergence of A implies

(6) EW p
1 <∞ and inf

r∈[p,2]
eam1/r(r) ≤ 1.

Remark 1.1. In the case where the function r �→ m1/r(r) attains its minimum at some
θ < p, i.e. m(θ)1/θ < m1/p(p) for some 1 < θ < p, our analysis will actually show that
the Lp-convergence of A even implies

EW p
1 <∞ and eam1/p(p) < 1,

see Remark 4.1 after the proof of Theorem 1.1. Similarly, if the function r �→ m1/r(r)
attains its minimum at some θ ≥ 2, the Lp-convergence of A implies

EW p
1 <∞ and eam1/2(2) < 1.

In other words,
inf

r∈[p,2]
eam1/r(r) = 1

in condition (6) is possible only if the last infimum is attained at some r ∈ [p, 2).

Theorem 1.2. Suppose (3), a > 0 and p ≥ 2. Then A converges in Lp if, and only if,

(7) EW p
1 <∞ and ea(m1/2(2) ∨m1/p(p)) < 1,

and, in this case, A converges also almost surely.

Remark 1.2. Suppose that A in (4) exists in the sense of convergence in probability, and
let A(v) be the corresponding series for the subtree vV. The quantities A(v), |v| = 1,
are independent copies of A and independent of Lv, |v| = 1. Moreover, the equation

(8) A
d= ea

∑
|v|=1

LvA(v) +W − 1

holds true (in fact, even with ”=” instead of ” d=”). Albeit looking like a stochastic fixed
point equation, it is not, for A(v) are not independent of the random variable W .

2. Size-biasing and spinal trees

In the following, we will briefly present some required material on size-biasing and
spinal trees in connection with BRW. Generally speaking, size-biasing has proved to be
a very effective tool from harmonic analysis in the study of various branching models.
Here, we restrict ourselves to a rather informal description of those facts that are needed
in this article.

Let (Ω,F ,P) denote the underlying probability space. As Wn, n ∈ N0 constitutes a
nonnegative mean one martingale, we can uniquely define a new probability measure P̂

on (Ω,F∞) via the projections

d P̂|Fn
= Wn dP|Fn

for all n ∈ N0.
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Fix n and define a random variable Ξn taking values in Vn := {v ∈ V : |v| = n} such
that

P̂(Ξn = v| F∞) =
Lv
Wn

.

Hence, Ξn, n ∈ N picks a node in Vn in accordance with the size-biased distribution
obtained from Lv, v ∈ Vn. Let (Ξ0, . . . ,Ξn) denote the vertices visited by the path
connecting the root Ξ0 := ∅ with Ξn. It is not difficult to verify that, conditioned upon
F∞, this random vector constitutes a Markov chain on the subtree V≤n := {v ∈ V :
|v| ≤ n} with one-step transition probabilities

P (v, vi) :=
Li(v)Wk(v)
Wk+1(vi)

, v ∈ Vk, vi ∈ Vk+1.

Though suppressed in the notation, it should be noticed that P (·, ·) depends on n and on
F∞. The thus obtained random line of individuals (Ξ0, . . . ,Ξn) in V≤n is called its spine,
and the main observation stated in Proposition 2.1 below is that these individuals produce
offspring and pick a position in a different way than the other population members.

Define
Ik :=

{
i ∈ N : Ξk−1i 
= Ξk and Li(Ξk−1) > 0

}
to be the random set of labels i such that Ξk−1i is a nonspinal offspring in the generation
k of the spinal mother Ξk−1. Notice that Ik may be empty. Define further

Gn := σ

((
Ξk, LΞk

, Ik
)

1≤k≤n
,
∑
i∈Ik

δLi(Ξk−1)

)
,

S = {(v, Lv) : v ∈ V} and S≤n := {(v, Lv) : |v| < n}. Following our usual convention, by
S≤n(v), we denote the shifted counterpart of S≤n = S≤n(∅) rooted at v, more precisely

S≤n(v) :=
{
(vw,Lw(v)) : |w| < n

}
.

The following proposition, of which parts (a)–(d) appear in a similar form in [9], provides
all relevant information on the distribution of S≤n and the spine under P̂.

Proposition 2.1. The following assertions hold true under the probability measure P̂

for any fixed n ∈ N:

(a) The random vectors
(∑

i∈Ik
δLi(Ξk−1), LΞk

/LΞk−1

)
, 1 ≤ k ≤ n, are independent

and identically distributed with the same distribution as
(∑

i∈I1
δLi , LΞ1

)
.

(b) Conditioned upon Gn, the shifted weighted subtrees S≤n−|v|(v), v ∈
⋃n
k=1 Ik, are

independent, and P̂(S≤n−|v|(v) ∈ ·|Gn) ≡ P(Sn−|v| ∈ ·).
(c) Putting Πk := LΞk

and Qk :=
∑
i∈N

Li(Ξk−1) for k ∈ N0, the random vectors(
Πk/Πk−1, Qk, |Ik|

)
, 1 ≤ k ≤ n, are independent copies of

(
Π1, Q1, |I1|

)
. More-

over, Ê log Π1 = m′(1) if m′(1) exists, while Ê log Π1 does not exist, otherwise.
(d) For any nonnegative measurable f : [0,∞)→ [0,∞)

(9) Êf(Πn) = E

( ∑
|v|=n

Lvf(Lv)

)
.

(e) For any nondecreasing and concave function f : [0,∞)→ [0,∞),

(10) Êf(Wn) ≤ Êf

(
n−1∑
k=0

ΠkQk+1

)
.
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We omit the proof of this result and mention only that parts (a)–(d) follow along
similar arguments as those provided for supercritical Galton–Watson trees by Lyons et
al. [15]. Equality (9) may also be found in [7]. Part (e) has been derived by Alsmeyer
and Iksanov [1], see their argument to derive formula (60).

For any θ ≥ 0 such that m(θ) <∞, the previously defined size-biasing can clearly be
done as well with respect to W (θ)

n , n ∈ N0 by introducing the probability measure P̂θ on
F∞ defined via the projections

d P̂
(θ)
Fn

= W (θ)
n dP|Fn

for n ∈ N0. Notice that

(11)
d P̂

(θ)
Fn

d P̂|Fn

=
Πθ−1
n

mn(θ)

for each n ∈ N0, because

P̂
(θ)(B) = E

( ∑
|v|=n

Lθv
mn(θ)

1B

)

= E

(
Wn

∑
|v|=n

Lv
Wn

Lθ−1
v

mn(θ)
1B

)

= Ê

( ∑
|v|=n

P̂(Ξn = v|F∞)
Lθ−1
v

mn(θ)
1B

)

= m−n(θ) Ê

(
Πθ−1
n 1B

)
for all B ∈ Fn.

3. Auxiliary results

The next result will be crucial for our further analysis as explained in the subsequent
Remark 3.1.

Lemma 3.1. For any fixed a > 0, the series A in (4) converges a.s. (in Lp for p > 1)
if, and only if, the same holds true for the series

(12) A′ :=
∑
n≥0

bn(Wn+1 −Wn),

where bn :=
∑n

k=0 e
ak = (ea − 1)−1(ea(n+1) − 1) for n ∈ N0. In this case, A′ = A a.s.

Proof. Define Am :=
∑m

n=0 e
an(W −Wn) for m ∈ N0. Then

Am = lim
l→∞

m∑
n=0

ean
l∑

k=n

(Wk+1 −Wk)

= lim
l→∞

l∑
k=0

(Wk+1 −Wk)
k∧m∑
n=0

ean

=
∞∑
k=0

bk∧m(Wk+1 −Wk)

= bm(W −Wm) + A′
m−1 a.s.,(13)

where A′
m−1 :=

∑m−1
k=0 bk(Wk+1 −Wk). Now, if A in (4) converges a.s., then

lim
m→∞ bm(W −Wm) = 0 a.s.
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Thus, by letting m to tend to infinity in (13), we see that A′ converges a.s. and equals
A. Conversely, given the almost sure convergence of A′, a tail sum analog of Kronecker’s
lemma (see [3, Lemma 4.2]) ensures that limn→∞ ean(W −Wn) = 0 a.s. This allows us,
in turn, to read (13) backwards, thus concluding the a.s. convergence of A, as well as
A = A′ a.s.

If A is Lp-convergent for some p > 1, then ||Am −A||p → 0 and, therefore, eam||W −
Wm||p = ||Am+1 − Am||p → 0 as m → ∞. Now use (13) to infer with the help of
Minkowski’s inequality

‖A′
m−1‖p ≤ bm‖W −Wm‖p + ‖Am‖p

and, thereupon, the Lp-boundedness of the martingale A′
n, n ∈ N0. Consequently (see,

e.g., [16, Proposition IV-2-7] and its proof), A′ defined in (12) converges a.s. as well as
in Lp. Conversely, if A′ is Lp-convergent, then, by an appeal to Burkholder’s inequality,
(see Lemma 3.4 below)

bpm E|W −Wm|p ≤ Cbpm E

⎛⎝∑
n≥m

(Wn+1 −Wn)2

⎞⎠p/2

≤ C E

⎛⎝∑
n≥m

b2n(Wn+1 −Wn)2

⎞⎠p/2

≤ C E|A′ −A′
m−1|p → 0 as m→∞,

where C ∈ (0,∞) is a generic constant that may differ from line to line. With this result,
relation (13) yields

‖Am+n −Am‖p
≤ bm‖W −Wm‖p + bm+n‖W −Wm+n‖p + ‖A′

m+n−1 −A′
m−1‖p

≤ 2 sup
k≥m

bk‖W −Wk‖p + ‖A′
m+n−1 −A′

m−1‖p

→ 0 as m,n→∞
and thus the asserted Lp-convergence of A. �

Remark 3.1. (a) As, for each n ∈ N0,

A′
n =

ea

ea − 1

n∑
k=0

eak(Wk+1 −Wk) −
1

ea − 1
(Wn+1 − 1),

the proof of Lemma 3.1 can be easily extended to show further that A converges a.s. (or
in Lp for p > 1) if, and only if, this holds true for

(14) Â :=
∑
n≥0

ean(Wn+1 −Wn).

In this case, Â is readily seen to satisfy

(15) Â
d= ea

∑
|v|=1

LvÂv +W1 − 1,

with Âv being independent copies of Â which are also independent of W1. Hence, unlike
(8) for A, (15) constitutes a proper stochastic fixed point equation.

(b) The motivation behind dealing with Â in (14) hereafter rather than A in (4) stems
from the fact that the partial sums Ân :=

∑n
k=0 e

ak(Wk+1 −Wk), n ∈ N0, constitute
a martingale, whereas those associated with A do not. This entails that Â forms a
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martingale limit (like A′) and, as such, is easier to deal with. Indeed, as far as the
Lp-convergence (p > 1) is concerned, the well-known property of martingales (already
used in the previous proof) tells us that it suffices to prove E|Â|p < ∞ or, equivalently,
Lp-boundedness of Ân (see [16, Proposition IV-2-7]).

The proof of Theorem 1.1 hinges to a large extent on Proposition 3.1 on the func-
tions sn(r) defined below. The connection is provided by an application of Burkholder’s
inequality which, in turn, is stated for reference as Lemma 3.4 at the end of this section.

Lemma 3.2. Let 1 < p < 2, and let Wn, n ∈ N0 be uniformly integrable with EW p
1 <∞.

Then the function

[1, 2] 
 r �→ sn(r) := E
(
Z(r)
n

)p/r = E

( ∑
|v|=n

Lrv

)p/r
is decreasing and bounded by supn≥0 EW p

n for each n ∈ N. Furthermore,

(16) sn(r)

{
≤ sk(r)sn−k(r), if r ∈ [1, p],
≥ sk(r)sn−k(r), if r ∈ [p, 2]

for 0 ≤ k ≤ n, and

(17) lim
n→∞ s1/nn (r)

{
= infj≥1 s

1/j
j (r), if r ∈ [1, p],

= supj≥1 s
1/j
j (r), if r ∈ [p, 2].

Proof. The first assertion follows immediately from sn(1) = EW p
n and

E

( ∑
|v|=n

Lrv

)p/r
= E

( ∑
|v|=n

Lq·(r/q)v

)p/r
< E

( ∑
|v|=n

Lqv

)p/q
for any 1 ≤ q < r ≤ 2, where the supercritical branching and the strict superadditivity
of x �→ xr/q have been utilized. As for (16), we obtain in the case r ∈ [p, 2] with the help
of Jensen’s inequality:

sn(r) = E

( ∑
|v|=k

LrvZ
(r)
n−k(v)

)p/r

= E

⎛⎝(Z(r)
k

)p/r( ∑
|v|=k

Lrv

Z
(r)
k

Z
(r)
n−k(v)

)p/r⎞⎠
≥ E

⎛⎝(Z(r)
k

)p/r ∑
|v|=k

Lrv

Z
(r)
k

(
Z

(r)
n−k(v)

)p/r⎞⎠
= E

⎛⎝(Z(r)
k

)p/r ∑
|v|=k

Lrv

Z
(r)
k

E

((
Z

(r)
n−k(v)

)p/r∣∣∣Fk)
⎞⎠

= E

⎛⎝(Z(r)
k

)p/r ∑
|v|=k

Lrv

Z
(r)
k

sn−k(r)

⎞⎠
= sk(r)sn−k(r)

for all 0 ≤ k ≤ n, and this further yields, by the superadditivity of log sn(r), that
sn(r)1/n converges as n→∞ with a limit satisfying (17). If r ∈ [1, p], and thus x �→ xp/r

is convex, the above estimation holds with reverse inequality sign. �
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Note that log sn(r) is always a superadditive or subadditive function but may be
infinite. Precise information on the asymptotic value of s1/nn (r) as n → ∞ is provided
by the next lemma. Put g(r) := r−1 logm(r) with the derivative

(18) g′(r) =
h(r)
r2

with h(r) :=
rm′(r)
m(r)

− logm(r)

on the interior of D := {r : m(r) < ∞}. Note that [1, p] ⊂ D if Wn, n ∈ N0 is uniformly
integrable and EW p

1 <∞. By supercriticality, the function m is strictly logconvex which,
in turn, implies that h is increasing with at most one zero. Therefore, the function g
possesses at most one minimum. Put

ϑ := 2 ∧ arg inf
r≥1

g(r) and γ := m1/ϑ(ϑ).

If ϑ ∈ int(D) and thus m is differentiable at ϑ, then g′(ϑ) = 0 may be rewritten as

(19)
m′(ϑ)
m(ϑ)

=
1
ϑ

logm(ϑ).

Let us also point out that m(r) < 1 and m′(r) < 0 for all r ∈ (1, ϑ) because g(r) has
the negative (right) derivative m′(1) at 1 as a consequence of the uniform integrability
of Wn, n ∈ N0.

Proposition 3.1. Suppose the assumptions of Lemma 3.2 are true and, furthermore,
m(p) < 1. Let ϑ, γ be as defined above. Then, if p ≤ ϑ,

lim
n→∞ s1/nn (r) =

{
mp/r(r), if r ∈ [1, ϑ)
γp, if r ∈ [ϑ, 2],

while, if p > ϑ,

lim
n→∞ s1/nn (r) =

{
mp/r(r), if r ∈ [1, q)
m(p), if r ∈ [q, 2],

where q is the unique value in (1, ϑ) such that g(q) = g(p), i.e. m1/q(q) = m1/p(p).

Notice that, in both cases above, the obtained limit function s∞(r), say, is continuous
at its ”critical” value ϑ, respectively q. Also, this limit function for p > ϑ converges to
one for p = ϑ, for then q equals ϑ as well.

Proof. Case A. p ≤ ϑ and r ∈ [ϑ, 2]. Lower estimate

Since sn(r) is decreasing in r, it suffices to show that

(20) lim inf
n→∞ s1/nn (2) ≥ γp.

Subcase A.1. γ = m1/ϑ(ϑ) for ϑ ∈ (1, 2).
An old result by Biggins [4],[6] tells us that

logMn

n
→ 1

ϑ
logm(ϑ) a.s. on {W > 0},

where Mn := max|v|=n Lv. By using this fact in combination with the obvious inequality(
Z(2)
n

)p/2 ≥ Mp
n on {W > 0},
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we infer with the help of Jensen’s inequality and Fatou’s lemma that

lim inf
n→∞ s1/nn (2) ≥ lim inf

n→∞ E
1/n

(
Mp
n1{W>0}

)
= lim inf

n→∞ P
1/n{W > 0}E1/n

(
Mp
n

∣∣W > 0
)

≥ lim inf
n→∞ E

(
Mp/n
n |W > 0

)
= mp/ϑ(ϑ) = γp.

Subcase A.2. γ = m1/2(2) (thus ϑ = 2) and W1 is a.s. bounded.
Then m(2) < 1 and m′(2) < 0, as pointed out after (19). Moreover, the almost sure
boundedness of W1 trivially ensures the same for W (2)

1 , in particular, EW
(2)
1 log+W

(2)
1 <

∞. Therefore, the mean one martingale W (2)
n , n ∈ N0 is uniformly integrable (cf. e.g. [1,

Theorem 1.3]) and, hence, convergent a.s. and in L1 to a random variable W (2). Since
p/2 < 1, we have E

(
W

(2)
n

)p/2 → E
(
W (2)

)p/2 and, therefore,

s1/nn (2) = mp/2(2) E
1/n

(
W (2)
n

)p/2 → mp/2(2) = γp,

as n→∞. Notice that we have indeed verified the stronger assertion that

(21) lim
n→∞

sn(2)
mpn/2(2)

= E
(
W (2)

)p/2
.

Subcase A.3. γ = m1/2(2), general situation.
Here, we use a truncation argument. For a constant K > 0, consider the WBP

(V, (Lv(w), v, w ∈ V))

with

(22) Li := Li1{Li≥1/K ,W1(v)≤K}, i ∈ N, v ∈ V.

This provides us with a thinning of the original WBP such that m(θ) := E(
∑

i≥1 L
θ

i )
satisfies

m(θ) <∞ and m(θ) ≤ m(θ)

for all θ > 0. Moreover, in the obvious notation,

sn(θ) ≤ sn(θ)

for all θ ∈ [1, 2]. Plainly, as K → ∞, m converges to m uniformly on compact subsets
contained in the interior of D. Hence, by choosing K large enough, we have, for the
obviously defined γ,

γ ≥ (1− ε)γ
for any fixed ε ∈ (0, 1). By applying the result obtained under Subcase A.2 to the
normalized WBP (V, (Lv(w)/m|v|(1), v, w ∈ V)), we now arrive at the desired conclusion
here as well.

Case A. p ≤ ϑ and r ∈ [ϑ, 2]. Upper estimate
The next step is to verify

(23) lim sup
n→∞

s1/nn (r) ≤ γp

for each r ∈ [ϑ, 2], which, in combination with sn(2) ≤ sn(r) and (20), clearly gives the
assertion of the lemma for r ∈ [ϑ, 2] and p ≤ ϑ.
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Suppose firstly that p < ϑ. Fix any ε > 0 and θ ∈ (p, ϑ) such that m1/θ(θ) ≤ (1+ε)γ < 1.
Then, by another use of Jensen’s inequality,

lim sup
n→∞

s1/nn (r) ≤ lim sup
n→∞

s1/nn (θ)

= lim sup
n→∞

(
mpn/θ(θ) E

(
W (θ)
n

)p/θ)1/n

≤ mp/θ(θ) lim sup
n→∞

E
p/nθW (θ)

n

= mp/θ(θ)

≤ (1 + ε)pγp

which shows (23), as ε > 0 was picked arbitrarily. Now, if p = ϑ, we arrive at the same
conclusion by choosing θ = p and ε = 0 in the above estimation.

Case B. p ≤ ϑ and r ∈ [1, ϑ). Lower estimate
Here, we must verify

(24) lim inf
n→∞ s1/nn (r) ≥ mp/r(r).

In view of the truncation (22) described under Subcase A.3, it is no loss of generality to
assume directly that W1 (and thus W (r)

1 as well) is a.s. bounded, and m(θ) <∞ for all
θ > 0. Write

(25) sn(r) = mpn/r(r) E
(
W (r)
n

)p/r
for n ∈ N0 and consider the WBP (V,Lr). Since

θ �→ m−θ(r) E(
∑
|v|=1

Lrθv ) = m(rθ)/mθ(r)

has the derivative
rm′(rθ)
mθ(r)

− logm(r)
m(rθ)
mθ(r)

taking the value of r
(m′(r)
m(r) − logm1/r(r)

)
= r2g′(r) < 0 at θ = 1, we infer (see [1,

Theorem 1.3]) that W (r)
n converges a.s. and in L1 to the random variable W (r) which

entails, in turn, (24) because, by (25) and an appeal to Jensen’s inequality and Fatou’s
lemma,

lim inf
n→∞ s1/nn (r) = mp/r(r) lim inf

n→∞ E
1/n

(
W (r)
n

)p/r
= mp/r(r) lim inf

n→∞ P
1/n(W (r) > 0) E

1/n
((
W (r)
n

)p/r∣∣∣W (r) > 0
)

≥ mp/r(r) E

(
lim inf
n→∞

(
W (r)
n

)p/rn∣∣∣W (r) > 0
)

= mp/r(r).

Case B. p ≤ ϑ and r ∈ [1, ϑ). Upper estimate
The converse

(26) lim sup
n→∞

s1/nn (r) ≤ mp/r(r)

follows quite easily from (25), for E
(
W

(r)
n

)p/r ≤ Ep/rW
(r)
n = 1 for each n ∈ N0 in the

case r ∈ [p, ϑ] by Jensen’s inequality, while, in the case r ∈ [1, p), we have

sup
n≥0

E
(
W (r)
n

)p/r
<∞
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as a consequence of E
(
W

(r)
1

)p/r ≤ m−p/r(r) EW p
1 <∞ and

E

( ∑
|v|=1

(
Lv
m(r)

W
(r)
1

)p/r)
=

m(p)
mp/r(r)

= ep(g(p)−g(r)) < 1

(apply Proposition 1.1 to W (r)
n , n ∈ N0).

Case C. p > ϑ and r ∈ [1, q). Upper estimate.
Notice that m(ϑ) < ∞. As g(ϑ) < g(p) < 0 = g(1), there exists a unique 1 < q < ϑ
such that g(q) = g(p), i.e. m(q)1/q = m(p)1/p. Then, for r ∈ [1, q), the previously given
arguments are easily seen to carry over to the present situation, thus showing (26).

Case C. p > ϑ and r ∈ [1, q). Lower estimate.
By Jensen’s inequality,

sn(r) ≥ E
p/q
(
Z(r)
n

)q/r
.

But E
(
Z

(r)
n

)q/r, call it s̃n(r), is just the counterpart of sn(r) for q < ϑ instead of p.
Therefore, s̃ 1/n

n (r) → mq/r(r) by what has been shown under Case B. It follows that
s
1/n
n (r) has also the required lower bound, which completes the proof of

lim
n→∞ s1/nn (r) = mp/r(r)

for all r ∈ [1, q).

Case D. p > ϑ and r ∈ [q, 2]. Upper estimate.
Since sn(q) = infθ<q sn(θ), we obtain, as a consequence of Case B,

lim sup
n→∞

s1/nn (r) ≤ lim sup
n→∞

s1/nn (q) ≤ inf
θ∈[1,q)

mp/θ(θ) = mp/q(q) = m(p).

Case D. p > ϑ and r ∈ [q, 2]. Lower estimate.
The proof for Case C will now be completed by showing that

(27) lim inf
n→∞ s1/nn (2) ≥ m(p)

(since sn(r) is decreasing in r), what is the most delicate part of the whole proof. Once
again, possibly after a suitable truncation as described in (22), it is no loss of generality
to assume that W1 ≤ K for some K ≥ 1, J ≤ N for some N ∈ N, and m(θ) <∞ for all
θ > 0. Notice also that, by subadditivity of x �→ xp/2, we find

(28) sn(2) ≤ mn(p)

for all n ∈ N0.

Put β := 1 − (p/2) ∈ (0, 1). Recall the notation introduced in Section 2 in connection
with the size-biased probability measure P̂. We have

(Z(2)
n )p/2 =

(
Π2
n +

n∑
k=1

∑
i∈Ik

L2
vZ

(2)
n−k(Ξk−1i)

)p/2

≤ Kp

(
Πp
n +

n∑
k=1

Πp
k−1(Λ

(2)
n,k)

p/2

)
P̂-a.s.,

where, for 1 ≤ k ≤ n,
Λ(2)
n,k :=

∑
i∈Ik

Z
(2)
n−k(Ξk−1i).
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Use Proposition 2.1(b) to see that, conditioned upon Gn, the Z(2)
n−k(Ξk−1i), i ∈ Ik, are

i.i.d. under P̂ with the same distribution as Z(2)
n−k under P. By combining this with

another subadditivity argument, we obtain P̂-a.s.

Ê
(
(Λ(2)

n,k)
p/2|Gn

)
≤ Ê

(∑
i∈I1

(Z(2)
n−k(Ξk−1i))p/2

∣∣∣∣∣Gn
)
≤ |I1|E(Z(2)

n−k)
p/2

for k = 1, . . . , n. As |I1| ≤ N for some N ∈ N, by truncation, we arrive at

Ê
(
(Z(2)

n )p/2|Gn
)
≤ KpN

(
Πp
n +

n∑
k=1

Πp
k−1 E(Z(2)

n−k)
p/2

)

= KpN

n∑
k=0

Πp
ksn−k(2) P̂-a.s.

Now use E(Z(2)
n )p/2 = Ê

(
Πn(Z

(2)
n )−β

)
, which follows from

E(Z(2)
n )p/2 = Ê

( ∑
|v|=n

L2
v

Wn
(Z(2)

n )−β
)

= Ê

( ∑
|v|=n

P̂(Ξn = v|F∞)Lv(Z(2)
n )−β

)

= Ê

( ∑
|v|=n

1{Ξn=v}Lv(Z(2)
n )−β

)
= Ê

(
Πn(Z(2)

n )−β
)
,

to obtain by an appeal to Jensen’s inequality for x �→ x(p−2)/p

E(Z(2)
n )p/2 = Ê

(
Πn Ê

(
(Z(2)

n )−β |Gn
))

≥ Ê

(
Πn

Ê
(
(Z(2)

n )p/2|Gn
)(2−p)/p

)

≥ C Ê

(
Πn(∑n

k=0 Πp
ksn−k(2)

)(2−p)/p
)

for some C > 0. Recall the definition of P̂p in Section 2 and that (see (11))

P̂
(p)(B) =

1
mn(p)

Ê

(
Πp−1
n 1B

)
for any B ∈ Fn. The last expectation can be further estimated as

Ê

(
Πn(∑n

k=0 sn−k(2)Πp
k

)(2−p)/p
)

= mn(p) Ê
(p)

(
Π2−p
n(∑n

k=0 sn−k(2)Πk
n

)(2−p)/p
)

= mn(p) Ê
(p)

(
1(∑n

k=0 sn−k(2)(Πn/Πk)p
)(2−p)/p

)
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= mn(p) Ê
(p)

(
1(∑n

k=0 sk(2)Πp
k

)(2−p)/p
)

≥ mn(p) Ê
(p)

(
1(∑n

k=0m
k(p)Πp

k

)(2−p)/p
)

≥ mn(p) Ê
(p)

⎛⎝ 1(∑
k≥0

(
Π∗
k

)p)(2−p)/p ,
⎞⎠

where (28) has been utilized for the penultimate inequality and where Π∗
k := Πk/m

k/p(p)
for k ∈ N0. Since Ê(p)Πθ

1 = m(p+θ)
m(p) for all θ ∈ R, we find

Ê
(p) log Π∗

1 =
m′(p)
m(p)

− 1
p

logm(p) =
h(p)
p
.

Now use p > ϑ to infer Ê(p) ln Π∗
1 > 0 and thereupon that

1 < Σ :=
∑
k≥0

(Π∗
k)

−p < ∞ P̂p-a.s.,

in particular ν := Ê(p)Σ−(2−p)/p ∈ (0, 1). We finally arrive at

(29) mn(p) ≥ sn(2) = EZp/2n ≥ ν mn(p)

for all n ∈ N0, which clearly implies the desired assertion (27). The proof of Proposition
3.1 is thus completed. �

The next lemma is needed for the proof of Theorem 1.2 and examines the asymptotic
behavior of EW p

n when EW p
1 < ∞ and m(p) ≥ 1. It may also be viewed as a useful

complement to Proposition 1.1. Let us mention that we have not tried to obtain the
best possible estimates. Actually, for our purposes, only factors of exponential growth
have meaning. Hence, we content ourselves with quite crude estimates when dealing with
factors of subexponential growth.

Lemma 3.3. Let p > 1 and EW p
1 <∞.

(a) If p ∈ (1, 2], then EW p
n = O(n) if m(p) = 1 and EW p

n = O(mn(p)) if m(p) > 1.
(b) If p > 2, then EW p

n = O(np−1) if m(p) = 1 and EW p
n = O(nb(p−1)mn(p)) for

p ∈ (b+ 1, b+ 2], b ∈ N, if m(p) > 1.

We note in advance that the lemma will later be applied to the martingale {W (2)
n :

n ∈ N0} rather than to {Wn : n ∈ N0}.

Proof. (a) Use Proposition 2.1(e) with f(x) = xp−1 to infer

EW p
n ≤ Ê

(
n−1∑
k=0

M1M2 · · ·MkQk+1

)p−1

≤ Ê

(
n−1∑
k=0

(M1M2 · · ·Mk)p−1Qp−1
k+1

)
= ÊQp−1

n−1∑
k=0

Ê
kMp−1,

where the subadditivity of f in the next to last inequality has been utilized, and (M,Q)
denotes a generic copy of (Mn, Qn). In view of Proposition 2.1, ÊQp−1 = EW p

1 and
ÊMp−1 = m(p), and the result follows.
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(b) Put ϕn(s) := Ee−sWn for n ∈ N0 Then

ϕn(s) = E

∏
|v|=1

ϕn−1(sLv), n ∈ N.

Differentiating this equality yields

(30) ϕ′
n(s) =

∑
|v|=1

ϕ′
n−1(sLv)Lv

∏
u
=v

ϕn−1(sLu), n ∈ N.

It is known and readily checked that −ϕ′
n(s) is the Laplace transform of Wn under the

size-biased measure P̂. Let Vn be a random variable with P(Vn ∈ ·) = P̂(Wn ∈ ·) (the
use of Vn is for our convenience and allows us to do all subsequent calculations under P

only). Then (30) is equivalent to the distributional identity

(31) Vn
d= MVn−1 + Tn, n ∈ N,

where (M,Tn) is a random vector independent of Vn−1 and with distribution

P{(M,Tn) ∈ B} = E

⎛⎝∑
|u|=1

Lu1B

(
Lu,

∑
v 
=u

LvWn−1(v)

)⎞⎠
= P̂

{(
Π1,

∑
v∈I1

LvWn−1(v)

)
∈ B

}
, n ∈ N,

(32)

where B ⊂ R2 is any Borel set. An application of Minkowski’s inequality in Lp−1 yields

(33) ||Vn||p−1 ≤ ||M ||p−1||Vn−1||p−1 + ||Tn||p−1.

Arguing in the same way as in the proof of Lemma 4.2 in [13], we find

(34) ||Tn||p−1 ≤ ||Wn−1||p−1(EW
p
1 )1/(p−1).

For the remaining discussion, we distinguish between two cases:

Case 1. m(p) = 1

Note that ||M ||p−1
p−1 = ÊΠp−1

1 = m(p) = 1 and that m(p − 1) < 1 (by log-convexity of
m). Hence, supn≥0 ||Wn||p−1 < ∞ by Proposition 1.1, and we obtain from (33) that
||Vn||p−1 = O(n) or, equivalently,

EW p
n = EV p−1

n = O(np−1).

Case 2. m(p) > 1
Assume first that p ∈ (2, 3]. Then we conclude from (34) and the already established
part of the lemma that ||Tn||p−1 = O(mn/(p−1)(p)), regardless of the (finite) value of
m(p − 1). By (32), ||M ||p−1 = m1/(p−1)(p). We conclude from (33) that ||Vn||p−1 =
O(nmn/(p−1)(p)) or, equivalently, that

EW p
n = EV p−1

n = O(np−1mn(p)).

The subsequent proof proceeds by induction on b. Suppose that we have already verified
that EW p

n = O(nb(p−1)mn(p)) when p ∈ (b + 1, b + 2]. In order to prove EW p
n =

O(n(b+1)(p−1)mn(p)) when p ∈ (b+ 2, b+ 3], it suffices to note that

||Tn||p−1 = O(nbmn/(p−1)(p))

and that any solution to the recursive inequality

cn ≤ dcn−1 +O(nbdn), n ∈ N, c0 = 1,

with d > 1 satisfies cn = O(nb+1dn). This completes the proof. �
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We mention in passing that the distributional identity (31) obtained above with the
help of Laplace transforms (see (30)) can also be derived by a probabilistic argument
using the results stated in Section 2 on size biasing and spinal trees. However, we refrain
from supplying further details.

As we will make the multiple use of a version of Burkholder’s inequality (see [8,
Theorem 1 on p. 396]), it is stated here for ease of reference.

Lemma 3.4. Let p > 1 and {Zn : n ∈ N} be a martingale with Z0 = 0 and a.s. limit Z.

Then E|Z|p < ∞ if and only if E

(∑
n≥0(Zn+1 − Zn)2

)p/2
< ∞. If one of these holds,

then

cp

∥∥∥∥∥∥∥
⎛⎝∑
n≥0

(Zn+1 − Zn)2
⎞⎠1/2

∥∥∥∥∥∥∥
p

≤ ‖Z‖p ≤ Cp

∥∥∥∥∥∥∥
⎛⎝∑
n≥0

(Zn+1 − Zn)2
⎞⎠1/2

∥∥∥∥∥∥∥
p

,

where cp := (p− 1)/(18p3/2) and Cp := 18p3/2/(p− 1)1/2.

4. Proofs of Theorems 1.1 and 1.2

Before proceeding with the proof of the main results, put μp := E|W1 − 1|p, R :=∑
n≥0 e

2an(Wn+1 −Wn)2 and recall that Wn(v) denotes the copy of Wn pertaining to
the subtree vV rooted at v. Then

(35) Wn+1 −Wn =
∑
|v|=n

Lv(W1(v)− 1)

for n ∈ N0. Let us also stipulate hereafter that C ∈ (0,∞) denotes a generic constant
which may differ from line to line.

Proof of Theorem 1.1. In view of Burkholder’s inequality (Lemma 3.4), it is clear that
the Lp-convergence of Â =

∑
n≥0 e

an(Wn+1 −Wn) holds true if, and only if, R exists in
Lp/2. Suppose the latter is true and recall that γ = inf{m1/r(r) : r ∈ [1, 2]}. Then, by a
double use of Jensen’s inequality in combination with Burkholder’s inequality, we obtain

ERp/2 = E

⎛⎝∑
n≥0

( ∑
|v|=n

eanLv(W1(v) − 1)

)2
⎞⎠p/2

≥ Np/2
E

⎛⎝ 1
N

N−1∑
n=0

( ∑
|v|=n

eanLv(W1(v)− 1)

)2
⎞⎠p/2

≥ 1
N1−p/2

N−1∑
n=0

E

∣∣∣∣∣ ∑|v|=n eanLv(W1(v)− 1)

∣∣∣∣∣
p

≥ C

N1−p/2

N−1∑
n=0

E

( ∑
|v|=n

e2anL2
v(W1(v)− 1)2

)p/2

=
1

N1−p/2

N−1∑
n=0

epan E

⎛⎝Z(2)
n

∑
|v|=n

L2
v

Z
(2)
n

(W1(v)− 1)2

⎞⎠p/2

≥ Cμp
N1−p/2

N−1∑
n=0

epan E
(
Z(2)
n

)p/2
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=
Cμp

N1−p/2

N−1∑
n=0

epansn(2).

This proves the necessity of μp < ∞ and limn→∞ epas
1/n
n (2) ≤ 1. But the last limit

equals either epaγp (if p ≤ ϑ) or epam(p) by an appeal to Proposition 3.1. Therefore, we
have proved the necessity of ea infr∈[p,2]m

1/r(r) ≤ 1 as claimed.

Now suppose that μr < ∞ and eam1/r(r) < 1 for some r ∈ [p, 2]. By an appeal to
Burkholder’s inequality in combination with the subadditivity of x �→ xp/2 and x �→ xr/2,
we infer

ERp/2 ≤
∑
n≥0

epan E|Wn+1 −Wn|p

≤ C
∑
n≥0

epan E

( ∑
|v|=n

L2
v(W1(v)− 1)2

)p/2

≤ C
∑
n≥0

epan E

( ∑
|v|=n

Lrv|W1(v)− 1|r
)p/r

.

Use Jensen’s inequality to see that

E

( ∑
|v|=n

Lrv|W1(v)− 1|r
)p/r

≤ μp/rr mp/r(r)

and thus
ERp/2 ≤ Cμp/rr

∑
n≥0

epanmp/r(r) < ∞.

This completes the proof of Theorem 1.1. �

Remark 4.1. If p > ϑ, i.e. m1/ϑ(ϑ) < m1/p(p) = minr∈[p,2]m
1/r(r), the proof of Propo-

sition 3.1 (see (29)) has actually shown that νmn(p) ≤ sn(2) ≤ mn(p) for all n ∈ N0 and
some ν ∈ (0, 1). In this case, we obtain

ERp/2 ≥ μp
N1−p/2

N−1∑
n=0

epansn(2) ≥ νμp
N1−p/2

N−1∑
n=0

epanmn(p)

and thereby conclude that the Lp-convergence of Â or, equivalently, ERp/2 < ∞ can
only hold true if eam1/p(p) < 1. In the case where the function r �→ m1/r(r) at-
tains its minimum at some θ ≥ 2, we arrive at a similar conclusion, because then
limn→∞m−np/2(2)sn(2) exists and is positive by (21). This confirms our assertions
stated in Remark 1.1.

Proof of Theorem 1.2. We show firstly the necessity of condition (7) and thus assume
that the series A in (4) converges in Lp. By Lemma 3.1 and Remark 3.1(a), the same
holds true for Â, and, by an appeal to Lemma 3.4,

(36) ERp/2 <∞.

As p ≥ 2, the function x �→ xp/2 is superadditive and thus

(37)
∑
n≥0

epan E|Wn+1 −Wn|p ≤ ERp/2 <∞.
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It is clear from (35) that Wn+1 −Wn is the a.s. limit of a martingale (see, for example,
[2, Section 3] for more details). Consequently, by another appeal to Lemma 3.4 and the
aforementioned superadditivity, we get

E|Wn+1 −Wn|p ≥ C E

⎛⎝∑
|v|=n

L2
v(W1(v)− 1)2

⎞⎠p/2

≥ C E

⎛⎝∑
|v|=n

Lpv|W1(v)− 1|p
⎞⎠

= Cμpm
n(p)

for n ∈ N0. This inequality together with (37) imply the necessity of EW p
1 < ∞ and

eapm(p) < 1 for the Lp-convergence of A. Moreover, by Jensen’s inequality,

E

⎛⎝∑
|v|=n

L2
v(W1(v)− 1)2

⎞⎠p/2

≥

⎛⎝E

⎛⎝∑
|v|=n

L2
v(W1(v) − 1)2

⎞⎠⎞⎠p/2

= μ
p/2
2 m(2)n,

which together with (37) finally give the asserted necessity of eam1/2(2) < 1.

Let us now turn to the sufficiency of conditions (7). By Lemma 3.1 and Remark 3.1(a),
it suffices to verify the Lp-convergence of Â. By combining (35), another use of Lemma
3.4, the convexity of x �→ xp/2 and a conditioning with respect to Fn, we infer

E|Wn+1 −Wn|p ≤ C E

( ∑
|v|=n

L2
v(W1(v)− 1)2

)p/2

≤ C E

(
Z(2)
n

∑
|v|=n

L2
v

Z
(2)
n

(W1(v)− 1)2
)p/2

≤ Cμp E
(
Z(2)
n

)p/2
.

Whence it is enough to verify

(38) epan E
(
Z(2)
n

)p/2 = O(qn) for some q ∈ (0, 1),

hereafter. Indeed, it then follows that

(39) e2anE
2/p|Wn+1 −Wn|p = O(q2n/p).

Thereby with the help of Minkowski’s inequality in Lp/2 and once more Lemma 3.4,

E|Â|p ≤ C ERp/2 ≤ C

⎛⎝∑
n≥0

e2anE
2/p|Wn+1 −Wn|p)

⎞⎠p/2

< ∞.

So let us prove (38) for the case p > 2, for it trivially holds with q = e2am(2) in the
case p = 2. Notice that E

(
W

(2)
1

)p/2 ≤ m−p/2(2)EW p
1 <∞. For the remaining discussion,

we distinguish two cases:

Case 1. m(p) < mp/2(2).

Then the second condition in (7) reads eam1/2(2) < 1. By Proposition 1.1 applied to
W

(2)
n and p/2 instead of Wn and p, we obtain supn≥0 E

(
W

(2)
n

)p/2
<∞, and this ensures

the validity of (38) with q = eapmp/2(2).
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Case 2. m(p) ≥ mp/2(2).

Then the second condition in (7) takes the form eam1/p(p) < 1. Lemma 3.3 applied to
W

(2)
n and p/2 instead of Wn and p provides us with E

(
W

(2)
n

)p/2 = O(ncmn(p)m(2)−pn/2)

for c > 0. Consequently, E
(
Z

(2)
n

)p/2 = O(ncmn(p)) which proves the validity of (38) with
q = δepam(p) for some δ > 1 sufficiently close to 1. The proof is herewith completed. �
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