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G. ALSMEYER, A. IKSANOV, S. POLOTSKIY, AND U. ROSLER

EXPONENTIAL RATE OF L,-CONVERGENCE OF INTRINSIC
MARTINGALES IN SUPERCRITICAL BRANCHING RANDOM
WALKS

Let Wy,,n € Ng be an intrinsic martingale with almost sure limit W in a supercritical
branching random walk. We provide criteria for the Lj-convergence of the series
Ym0 (W — Why) for p > 1 and a > 0. The result may be viewed as a statement
about the exponential rate of convergence of E|W — Wy|P to zero.

1. INTRODUCTION AND MAIN RESULTS

We start by recalling the definition of branching random walk. Consider a population
starting from one ancestor located at the origin and evolving like a Galton—Watson
process but with the generalization that individuals may have infinitely many children.
All individuals are residing at points on the real line, and the displacements of children
relative to their mother are described by a copy of a locally finite point process M =
Z;jzl 0x, on R, and, for different mothers, these copies are independent. Note once again
that the random variable J = M(R) giving the offspring number may be infinite with
positive probability. For n € Ny := {0,1,...}, let M,, be the point process that defines
the positions of the individuals of the n-th generation on R. The sequence M,,,n € Ny is
called a branching random walk (BRW). In what follows, we always assume that EJ > 1
(supercriticality) which ensures the survival of the population with positive probability.

Every BRW is uniquely associated with a weighted branching process (WBP) to be
formally introduced next: Let V := J,,~, N" be the infinite Ulam-Harris tree of all finite
sequences v = v ... v, with root @ (N? := {@}) and edges connecting each v € V with its
successors vi, i = 1,2, ... The length of v is denoted as |v|. Call v an individual and |v| its
generation number. Associate a nonnegative random variable L;(v) (weight) with every
edge (v, vi) of V and define recursively Ly := 1 and L,; := L;(v)L,. The random variable
L, can be interpreted as the total multiplicative weight assigned to the unique path from
the root & to v. For any u € V, put similarly Lg(u) := 1 and Ly;(u) := L;(v)L,(u). Then
L, (u) gives the total weight of the path from u to uv. Provided that L;(v),v € V,i € N,
consists of i.i.d. random variables, the pair (V,L) with L := (L,(w)),v € V,w € V is
called a WBP with associated BRW M,,,n € Ny defined as M,, = Z|v\=n diog L, (- NR).
The quantities log L, > —oo for v € N™ are thus the positions of the individuals alive in
the generation n. Note that, if «V := {uv : v € V} denotes the subtree of V rooted at
u, then the WBP on this subtree is given by (vV,L(u)), where L(u) := (Ly(v)),v € V.
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Next, we define

Zy = Y L, and m(r) := E Y L}

lv|=n lv|=n

for n € Ny, r > 0 and suppose that m(1) < co. If m is differentiable at r, then

(1) m'(r) = IE( Y L logLU>.

lv|=1

In those cases where the right-hand expectation exists but is —oo or +oco (which can only
happen when 7 is a left or right endpoint of the possibly degenerate interval {r : m(r) <
o0}), we take (1) as the definition of m/(r).

Let Foy be the trivial o-field, F,, := o(Li(v) : i € N,|v| < n) for n € N and F :=
o(Fn : n € Ny). The sequence (W, F,),n € Ny, where

Zy

(2) W, = (1)
forms a nonnegative martingale with mean one and is thus a.s. convergent to a limiting
variable W, say, satisfying EW < 1. It has been extensively studied in the literature,
but the first results were obtained in [11] and [5]. Note that P{W > 0} > 0 if, and only
if, W,,n € Ny is uniformly integrable. An ultimate uniform integrability criterion was
given in [1], and the earlier results can be found in [5], [14], [12], and [10].

Possibly after the switching to the WBP (V, (L, (w)/m!l(1),v,w € V)), it is no loss
of generality to assume throughout that

m(1) = 1.
We further impose the condition
(3) P, =1}<1
which avoids the trivial situation where P{W,, = 1} = 1 for all n € N and hence

P{W =1} =1.

Other WBPs appearing in this work are the aforementioned (uV,L(u)) for any u €
V and (V,L"), where L" := (L} (w)),v,w € V. The counterparts of Z,, W, for
these processes are denoted Z,(u), Wy, (u) and Z Wi | respectively, so Zn(u) =

yAQ
Zlv\=n Ly(u), Zr(lr) = Zlv\=n Ly, and WT(IT) = m":t(r)'
The main results of this paper will provide necessary and sufficient conditions for the

L,-convergence (p > 1) of the series

(4) A=Y (W = Wy)

n>0

for fixed a > 0. More precisely, we will derive equivalent necessary and sufficient con-
ditions in the simpler case p > 2, while a necessary and a slightly stronger sufficient
condition are presented in the surprisingly intriguing case 1 < p < 2. Plainly, our results
give information on the rate of convergence of E|W — W, |P to zero, as n — oco. It is
therefore useful to recall conditions (which can be found in [13, Theorem 2.1], [10, Corol-
lary 5] or [2, Theorem 3.1]) ensuring that this expectation does go to 0 or, equivalently,
that the martingale {W,, : n € No} converges in L,,.

Proposition 1.1. Suppose (3) and p > 1. Then the conditions
EW! < oo and m(p) <1
are necessary and sufficient for
lim E[W — W,|P =0,

n—oo
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and the latter is equivalent to sup EWP < oo as well as to EWP € (0, 00).
n>0

Now we are ready to formulate our main results.

Theorem 1.1. Suppose (3), a > 0 and p € (1,2). Then A converges in L, and almost
surely if

(5) EW! < oo and e*m'"(r) <1 for somer € [p,2].

Conversely, the L,-convergence of A implies

(6) EWP < oo and inf em'/"(r) <1.
r€[p,2]

Remark 1.1. Tn the case where the function r — m!/7(r) attains its minimum at some
0 < p, i.e. m(0)Y/? < m'/P(p) for some 1 < § < p, our analysis will actually show that
the L,-convergence of A even implies

EWP <oo and e*m'/P(p) <1,

see Remark 4.1 after the proof of Theorem 1.1. Similarly, if the function 7 — m!/" (r)
attains its minimum at some 6 > 2, the L,-convergence of A implies

EW?P <oo and e*m'/?(2) < 1.

In other words,

inf e*m!/"(r) =1
re(p,2]

in condition (6) is possible only if the last infimum is attained at some r € [p, 2).
Theorem 1.2. Suppose (3), a >0 and p > 2. Then A converges in L, if, and only if,
(7) EW? < oo and e*(m*?(2) vm!/P(p)) < 1,

and, in this case, A converges also almost surely.

Remark 1.2. Suppose that A in (4) exists in the sense of convergence in probability, and

let A(v) be the corresponding series for the subtree vV. The quantities A(v), |v] = 1,
are independent copies of A and independent of L,, |v| = 1. Moreover, the equation

(8) AL et N LAW) +W -1

lv]=1

holds true (in fact, even with ”=" instead of ” g”). Albeit looking like a stochastic fixed
point equation, it is not, for A(v) are not independent of the random variable W.

2. SIZE-BIASING AND SPINAL TREES

In the following, we will briefly present some required material on size-biasing and
spinal trees in connection with BRW. Generally speaking, size-biasing has proved to be
a very effective tool from harmonic analysis in the study of various branching models.
Here, we restrict ourselves to a rather informal description of those facts that are needed
in this article.

Let (2, F,P) denote the underlying probability space. As W,,, n € Ny constitutes a
nonnegative mean one martingale, we can uniquely define a new probability measure P
on (9, F) via the projections

APz, = W, dPz,
for all n € Nj.
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Fix n and define a random variable E,, taking values in V,, := {v € V : |v| = n} such
that

~ Lv
P(E, =v| Fo) = W

Hence, =,,,n € N picks a node in V,, in accordance with the size-biased distribution
obtained from L,, v € V,. Let (Zo,...,Z,) denote the vertices visited by the path
connecting the root =y := @ with =,. It is not difficult to verify that, conditioned upon

Foo, this random vector constitutes a Markov chain on the subtree V<, := {v € V :
|v| < n} with one-step transition probabilities
Li(v)Wg (v
P(v,vi) := M vE Vi, vi € Viyq.

Wit (vi) 7

Though suppressed in the notation, it should be noticed that P(-,-) depends on n and on

Foo- The thus obtained random line of individuals (Zo, ..., =,) in V<, is called its spine,

and the main observation stated in Proposition 2.1 below is that these individuals produce

offspring and pick a position in a different way than the other population members.
Define

Tr = {Z eN: =g 11 # = and Li(Ekfl) > 0}

to be the random set of labels ¢ such that Z;_14 is a nonspinal offspring in the generation
k of the spinal mother =, 1. Notice that Z; may be empty. Define further

Gn = U((Ek;LEk;Ik)1<k<n7 Z 6Li(5k1)>’
=T €T

S ={(v,L,) : v e V}and S<,, := {(v, Ly) : |v| < n}. Following our usual convention, by
S<n(v), we denote the shifted counterpart of S<,, = S<,, (&) rooted at v, more precisely

S<n(v) = {(vw, Ly, (v)) : Jw| < n}.

The following proposition, of which parts (a)—(d) appear in a similar form in [9], provides
all relevant information on the distribution of S<,, and the spine under P.

Proposition 2.1. The following assertions hold true under the probability measure P
for any fixred n € N:

(a) The random wvectors (ZieIk 6r:zr s Lzo/Lz,_ ), 1 < k <n, are independent
and identically distributed with the same distribution as (Zz‘eIl oL, LEI),

(b) Conditioned upongn, the shifted weighted subtrees S<,,_|,(v), v € Ur_, Zk, are
independent, and P(S<,_j,|(v) € |Gn) =P(Sp_jy| € -).

(c) Putting Iy, := Lz, and Q := Y ;e Li(Ex—1) for k € No, the random vectors
(Hk/Hk,l, Qr, |Ik|), 1 < k < n, are independent copies of (Hl, Q1, |I1|), More-
over, I/[*ilog I, = m/(1) if m'(1) exists, while I/[*ilog Iy does mot exist, otherwise.

(d) For any nonnegative measurable f : [0,00) — [0, 00)

() Ef(I,) = E( > va<Lv)>.

lv|=n

(e) For any nondecreasing and concave function f : [0,00) — [0, 00),

(10) Ef(W,) < Ef (inQkH).

k=0
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We omit the proof of this result and mention only that parts (a)-(d) follow along
similar arguments as those provided for supercritical Galton—Watson trees by Lyons et
al. [15]. Equality (9) may also be found in [7]. Part (e¢) has been derived by Alsmeyer
and Tksanov [1], see their argument to derive formula (60).

For any 6 > 0 such that m(6) < oo, the previously defined size-biasing can clearly be

done as well with respect to Wy(b ), n € Ny by introducing the probability measure Pg on
Foo defined via the projections

APy = W dpy,
for n € Ny. Notice that
dPY o
by, m"(0)

Ly
E( zz:n m”(9)13>

(11)

for each n € Ny, because

@(9)(3)

Il
=
VS
=
3|&
il
S
(==
o]
N———

I
&
i N
E)
[1]

3
I
=
N
8
3 |
Sle
3| L
-
v}
N——

for all B € F,.

3. AUXILIARY RESULTS

The next result will be crucial for our further analysis as explained in the subsequent
Remark 3.1.

Lemma 3.1. For any fized a > 0, the series A in (4) converges a.s. (in L, for p >1)
if, and only if, the same holds true for the series

(12) = D ba(Wags = Wa),

n>0
where by, == 3" _ e = (e® — 1)1 (et — 1) for n € Ny. In this case, A’ = A a.s.
Proof. Define A, := 3" e (W —W,) for m € Ny. Then

m l
A, = IILI& e Z(Wk+1 — Wk)
n=0 k=n
l kAm
= lli}I& (WkJrl — Wk) Z e
k=0 n=0
(oo}
= Zbk/\m(WkJrl - W)
k=0
(13) = b (W—-Wy) + A, _, as.,
where A | = 21:_01 bi(Wit1 — Wi). Now, if A in (4) converges a.s., then

lim b, (W —W,,) =0 a.s.

m—00
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Thus, by letting m to tend to infinity in (13), we see that A’ converges a.s. and equals
A. Conversely, given the almost sure convergence of A’, a tail sum analog of Kronecker’s
lemma (see [3, Lemma 4.2]) ensures that lim, . e*(W — W,,) = 0 a.s. This allows us,
in turn, to read (13) backwards, thus concluding the a.s. convergence of A, as well as
A=A as.

If A is L,-convergent for some p > 1, then ||4,, — A||, — 0 and, therefore, e®™||W —
Willp = [|Am+1 — Amllp — 0 as m — oco. Now use (13) to infer with the help of
Minkowski’s inequality

”Alm—l”p < bm”W - Wm”p + HAm”p
and, thereupon, the L,-boundedness of the martingale A/ ,n € Ny. Consequently (see,
e.g., [16, Proposition IV-2-7] and its proof), A’ defined in (12) converges a.s. as well as

in L,. Conversely, if A" is L,-convergent, then, by an appeal to Burkholder’s inequality,
(see Lemma 3.4 below)

p/2
WLEW — WP < COLE | D (Waga — Wy)?
n>m
p/2
< CE| D bp(Wayr — W)
n>m
< CEJA" — A, [P - 0 asm — oo,

where C' € (0, 00) is a generic constant that may differ from line to line. With this result,
relation (13) yields

||Am+n _Ame
bm”W - Wm”p + bm+nHW - Wm+an + ||A{m+n71 - A'mqllp

<
< 2sup b |[W = Willp + [ A1 — Aallp
k>m

— 0 asm,n — oo

and thus the asserted L,-convergence of A. O
Remark 3.1. (a) As, for each n € N,
o e’ S ak 1
An - ea — 1 ;}e (WkJrl _Wk) - ea_l(WnJrl_]-)v

the proof of Lemma 3.1 can be easily extended to show further that A converges a.s. (or
in L, for p > 1) if, and only if, this holds true for

(14) A= Z e (Why1 — Wh).

n>0

In this case, Ais readily seen to satisfy

o~

(15) AL e N LA+ W -1,
lv]=1
with ED being independent copies of A which are also independent of Wj. Hence, unlike

(8) for A, (15) constitutes a proper stochastic fixed point equation.

(b) The motivation behind dealing with A in (14) hereafter rather than A in (4) stems
from the fact that the partial sums A, = > ,_, e (Wyi1 — Wi), n € Ny, constitute
a martingale, whereas those associated with A do not. This entails that A forms a
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martingale limit (like A’) and, as such, is easier to deal with. Indeed, as far as the
L,-convergence (p > 1) is concerned, the well-known property of martingales (already

used in the previous proof) tells us that it suffices to prove E|E|p < 00 or, equivalently,
L,-boundedness of A, (see [16, Proposition IV-2-7]).

The proof of Theorem 1.1 hinges to a large extent on Proposition 3.1 on the func-
tions s, (r) defined below. The connection is provided by an application of Burkholder’s
inequality which, in turn, is stated for reference as Lemma 3.4 at the end of this section.

Lemma 3.2. Let 1 < p < 2, and let W,,,n € Ny be uniformly integrable with EW?Y < oc.
Then the function

p/r
[1,2] 5 r = so(r) == E(Zz")"" = (Z L”")

lv|=n

is decreasing and bounded by sup,,~ EWE for each n € N. Furthermore,

. (r < sk(r)sn—k(r), if r € [1,p],
(16) n(r) {2 k() Sn_p(7), if r € [p, 2]
for 0 <k <n, and

(17) lim sY/"(r)

n—00

= infj21 S;/j(r)a Zf?" € [Lp]a
= sup;>; s}/j(r), if r € [p, 2].

Proof. The first assertion follows immediately from s, (1) = EW? and

p/T p/T P/
E< > L;) = E( > Lg'“/q)> < E( > L%)

|[v|=n |[v|=n [v|=n

for any 1 < ¢ < r < 2, where the supercritical branching and the strict superadditivity
of z + /% have been utilized. As for (16), we obtain in the case r € [p, 2] with the help
of Jensen’s inequality:

p/r
sulr) = (Z Lz, (v) )
lv]=Fk
p/T
r Ly
- E (Z]ir))p/ (Z Z(z) Zg)k(v)>
lv|=k “k
LT‘
2 B (@)Y 5 @)
lvj|=k “k
T LT T
= B ()" X Z5E((Z00)"|7)
lvj|=k “k
r L
=E (Zli ))p/r Z Z(:i) Sn—k(r)
lvj|=k “k

= $k(r)sp—i(r)
for all 0 < k < n, and this further yields, by the superadditivity of logs,(r), that
5, ()™ converges as n — oo with a limit satisfying (17). If € [1, p], and thus x s zP/"
is convex, the above estimation holds with reverse inequality sign. O
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Note that logs,(r) is always a superadditive or subadditive function but may be
infinite. Precise information on the asymptotic value of si/ "(r) as n — oo is provided

by the next lemma. Put g(r) := r~!logm(r) with the derivative

rm/(r)
m(r)

on the interior of D := {r : m(r) < co}. Note that [1,p] C D if W,,,n € Ny is uniformly
integrable and EWY < co. By supercriticality, the function m is strictly logconvex which,
in turn, implies that h is increasing with at most one zero. Therefore, the function g
possesses at most one minimum. Put

(18) g(r) = @ with h(r) := — logm(r)

¥ = 2Aarg 1I>1f1 g(r) and ~v:= ml/ﬁ(ﬁ)'

If ¥ € int(D) and thus m is differentiable at ¥, then ¢'(9) = 0 may be rewritten as

m) _ l1ogm

m(9) 9 ().

(19)

Let us also point out that m(r) < 1 and m/(r) < 0 for all » € (1,9) because g(r) has
the negative (right) derivative m/(1) at 1 as a consequence of the uniform integrability
of W,,,n € Np.

Proposition 3.1. Suppose the assumptions of Lemma 3.2 are true and, furthermore,
m(p) < 1. Let 9,7 be as defined above. Then, if p <9,

lim sty < 40 i € (L)
Sy 1) = ~P.ifr e [19’2]’

n—00

while, if p > 1,

n—00

gy [m ), el
) = {m(p>, ifr € lg,2),

where q is the unique value in (1,9) such that g(q) = g(p), i.e. m*(q) = m"/?(p).

Notice that, in both cases above, the obtained limit function s (r), say, is continuous
at its 7critical” value 1, respectively ¢. Also, this limit function for p > ¥ converges to
one for p = 99, for then ¢ equals 9 as well.

Proof. CASE A. p < and r € [9,2]. Lower estimate

Since s, (r) is decreasing in r, it suffices to show that

(20) liminf s2/™(2) > AP.
n—oo
SUBCASE A.1. v = m!/?(¥) for 9 € (1,2).
An old result by Biggins [4],[6] tells us that
log M,
n

1
=3 logm(d¥) a.s. on {W > 0},
where M,, := max|,|—, L,. By using this fact in combination with the obvious inequality

(Z2Y? > MP on (W >0},
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we infer with the help of Jensen’s inequality and Fatou’s lemma that

liminf s/™(2) > liminf EY/"(M21{y+0y)

n— oo n—00

= liminf PY/"{W > O}EY/"(ME [W > 0)

n—oo

> liminfE (M;;/”|W > 0)

n—00

= mp/ﬁ(ﬁ) = AP

SUBCASE A.2. v = m!'/2(2) (thus ¢ = 2) and W, is a.s. bounded.
Then m(2) < 1 and m/(2) < 0, as pointed out after (19). Moreover, the almost sure
boundedness of W7 trivially ensures the same for Wl(z), in particular, EWI(Q) log™t Wl(z) <

00. Therefore, the mean one martingale Wy(f), n € Ny is uniformly integrable (cf. e.g. [1,
Theorem 1.3]) and, hence, convergent a.s. and in L; to a random variable W(?). Since

p/2 < 1, we have I[-E(V[/}(f))p/2 — I[-E(W(z))p/2 and, therefore,
si/"(2) = mrPEE (W) o mr2(2) = 47,
as n — 0o. Notice that we have indeed verified the stronger assertion that
: sn(2) (2)\p/2
(1) Jm gy = BV

SUBCASE A.3. v = m!/?(2), general situation.

Here, we use a truncation argument. For a constant K > 0, consider the WBP
(V,(Ly(w),v,w € V))

with

(22) Li == Lil{p,>1/K, wi()<k}, 1€ENveEV.

This provides us with a thinning of the original WBP such that m(0) := E(3_;5, ff)

satisfies
m(f) < oo and mm(0) < m(0)
for all # > 0. Moreover, in the obvious notation,

gn(‘g) < Sn(‘g)

for all 8 € [1,2]. Plainly, as K — oo, ™ converges to m uniformly on compact subsets
contained in the interior of ID. Hence, by choosing K large enough, we have, for the
obviously defined 7,

72 A-e)
for any fixed € € (0,1). By applying the result obtained under Subcase A.2 to the
normalized WBP (V, (L, (w) /"l (1),v,w € V)), we now arrive at the desired conclusion
here as well.

CASE A. p <Y and r € [¢,2]. Upper estimate

The next step is to verify

(23) limsup s/™(r) < AP

n—oo
for each r € [¢, 2], which, in combination with s,(2) < s,(r) and (20), clearly gives the
assertion of the lemma for r € [, 2] and p < 9.
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Suppose firstly that p < 9. Fix any ¢ > 0 and 6 € (p,9) such that m'/?(0) < (1+¢)y < 1.
Then, by another use of Jensen’s inequality,

limsup s/™(r) < limsup s2/™(6)

n—oo n—oo

1/n
= limsup (mp"/e(G)E(W,(LG))p/G) /

n—oo

IN

mP/%(9) lim sup EP/"0 (%)

= mp/e(e)
(L+¢e)Py?

which shows (23), as € > 0 was picked arbitrarily. Now, if p = ¢, we arrive at the same
conclusion by choosing 8 = p and € = 0 in the above estimation.

IN

CASE B. p < ¢ and r € [1,9). Lower estimate

Here, we must verify

(24) liminf s2/(r) > mP/"(r).

n—oo
In view of the truncation (22) described under Subcase A.3, it is no loss of generality to

assume directly that W; (and thus Wl(r) as well) is a.s. bounded, and m(#) < oo for all
0 > 0. Write

(25) sn(r) = mP/T (r) E(WT(LT))I)/T
for n € Ny and consider the WBP (V,L"). Since

0 — m=(r)E( Z L%y = m(r6)/m® (r)

lv|=1
has the derivative (+0) (+9)
rm!(r m(r
—1
o) M ey
taking the value of r(rg((:)) —logm!/7(r)) = r?¢’(r) < 0 at 6 = 1, we infer (see [L,

Theorem 1.3]) that Wi converges a.s. and in L; to the random variable W() which
entails, in turn, (24) because, by (25) and an appeal to Jensen’s inequality and Fatou’s
lemma,

liminf s/ (r) = mP/"(r) lim inf E/" (W,(f))p/r

n
n— oo n— oo

= mP/7(r) liminf P/ (W™ > 0) EL/" ((W,(LT))I)/T

n—oo

w) > 0)

> /" (r)E (Tim inf (W)™

n—oo

w > O)

= mp/r(r).

CASE B. p < ¢ and r € [1,9). Upper estimate

The converse

(26) limsup sy/™(r) < mP/"(r)

n—oo

follows quite easily from (25), for E(Wnr))p/r < E”/TWT(LT) =1 for each n € Ny in the
case r € [p, ] by Jensen’s inequality, while, in the case r € [1,p), we have

sup ]E(W,E”)”/’" < 00
n>0
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as a consequence of E(Wl(r))p/r <mP/7(r) EW} < oo and

Lo o\ _ @) e
E<Z (")) = oy = ¢ <!

jol=1

(apply Proposition 1.1 to Wy(f),n € Np).

Case C. p> ¢ and r € [1,q). Upper estimate.

Notice that m(¥) < oco. As g(¥) < g(p) < 0 = g(1), there exists a unique 1 < ¢ < ¢
such that g(q) = g(p), i.e. m(q)"/? = m(p)'/?. Then, for r € [1,q), the previously given
arguments are easily seen to carry over to the present situation, thus showing (26).

Case C. p> 9 and r € [1,q). Lower estimate.
By Jensen’s inequality,

sp(r) > Ep/q(Z,(f))q/r.
But E(Z,(f))q/r, call it 5,(r), is just the counterpart of s,(r) for ¢ < ¢ instead of p.
Therefore, 5/ "(r) — m%7(r) by what has been shown under Case B. It follows that
si/ "(r) has also the required lower bound, which completes the proof of

hm sYm(r)y = mP/m(r)

for all r € [1,q).

CASe D. p > ¢ and r € [q,2]. Upper estimate.

Since s,,(q) = info<q 55, (0), we obtain, as a consequence of Case B,

limsup s2/™(r) < limsupst/™(¢) < inf mP/?) = mP/(q) = m(p).
n—oo n—oo 0€(1,q)
CASE D. p > 9 and r € [q,2]. Lower estimate.
The proof for Case C will now be completed by showing that

(27) hmlnfsl/”(2) > m(p)

n—oo

(since s, (r) is decreasing in ), what is the most delicate part of the whole proof. Once
again, possibly after a suitable truncation as described in (22), it is no loss of generality
to assume that W7 < K for some K > 1, J < N for some N € N, and m() < oo for all
6 > 0. Notice also that, by subadditivity of & — /2, we find

(28) sn(2) < m"(p)
for all n € Ng.

Put 8 :=1—(p/2) € (0,1). Recall the notation introduced in Section 2 in connection
with the size-biased probability measure P. We have

p/2
(Z2wl2 = <H2 + Z Z 2z% ( :kli)>

k=11i€Z},

< ZH A(2 p/2> @—a.s.7

IN

where, for 1 < k < n,

AD = 3 2P (5 ).
i€L
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Use Proposition 2.1(b) to see that, conditioned upon G, the Zr(f)k(Ek 1%),1 € Iy, are

i.id. under P with the same distribution as Z, (2) i under P. By combining this with

another subadditivity argument, we obtain P-a.s.

E((AZ)P216,) < E(Z(Z” (Ep-1))P/2

€1y

gn) < LBz, )
fork=1,...,n. As |Z1| < N for some N € N, by truncation, we arrive at
R n
E((Z2)2(6,) < KW(H%% + ZH%E(Z%)Z’/?)
k=1

n
= KPNZHisn_k(Z) P-a.s.
k=0

Now use I[-E(Zr(lz))p/2 = (Hn Z(Q)) #), which follows from

E(fo))”/z - < Z(Q)) )
[v]=n

( Z P(E, = v|Fo) L (ZSLQ))_’B)

[vl=

- E( ) {~n—v}Lv<fo>>ﬁ> = B(1,(z)7),

[vl=

Il
&=

to obtain by an appeal to Jensen’s inequality for z — xz(P—=2)/P

E(Z&)? = B E((Z22)"16,))

&

I,
(E((ZT(LQ))p/Q'gn)(?—p)/p)
~ I
> CE n
< ( > k=0 I} sn—k (2)) (2_p)/p>

for some C' > 0. Recall the definition of @p in Section 2 and that (see (11))

@(p)(B) -

) 1)

for any B € F,,. The last expectation can be further estimated as

B I
(Ek ()Sn k Hp (2—p)/p
(S )
2_
Ek ()Sn k )Hg)( p)/p

1
( (37— snil ><Hn/nk>p)(2"””’>

Il
ﬁ)

I
ﬁ)
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=m"(p) E® ( 1 _ )
(S0, sp(2)I) 77

> m”(p)IAE(”)< . - )
(E:Zzonﬁ(p)nz)@ pr

~ 1
>m"(p) E®) —,
(Zkzo (HZ)[))(Q p)/p

where (28) has been utilized for the penultimate inequality and where T} := ITj, /m*/? (p)
for k € Ny. Since Iﬁ(p)ﬂf = % for all § € R, we find
1 h(p)

!
E® logIl¥ = m'(p) — —logm(p) = ——
m(p) p P

Now use p > 9 to infer E® In IT7 > 0 and thereupon that

1 < X = Z(HZ)_” < 0 @p—a.s.7
k>0

in particular v := E®@y-C-p/p ¢ (0,1). We finally arrive at

(29) m™(p) > s5,(2) = EZ/2 > vm™(p)

for all n € Ny, which clearly implies the desired assertion (27). The proof of Proposition
3.1 is thus completed. O

The next lemma is needed for the proof of Theorem 1.2 and examines the asymptotic
behavior of EW? when EW? < oo and m(p) > 1. It may also be viewed as a useful
complement to Proposition 1.1. Let us mention that we have not tried to obtain the
best possible estimates. Actually, for our purposes, only factors of exponential growth
have meaning. Hence, we content ourselves with quite crude estimates when dealing with
factors of subexponential growth.

Lemma 3.3. Let p > 1 and EW} < .
(a) Ifp € (1,2], then EWP = O(n) if m(p) =1 and EWP = O(m"(p)) if m(p) > 1.
(b) If p > 2, then EWP = O(nP~Y) if m(p) = 1 and EWP = O(n*®=Dm"(p)) for
pe(b+1,b+2],beN, if m(p) > 1.

We note in advance that the lemma will later be applied to the martingale {Wy(f) :
n € Ng} rather than to {W,, : n € Ny}.

Proof. (a) Use Proposition 2.1(e) with f(x) = 2P~ to infer

n—1 p—1
E <Z MMy -- 'Mka+1>
k=0

n—1 n—1
B (Snan - anpiont) - B g
k=0

EW?P

IN

IN

k=0 -
where the subadditivity of f in the next to last inequality has been utilized, and (M, @)
denotes a generic copy of (M,,Q,). In view of Proposition 2.1, EQP~* = EW? and
EMP~! = m(p), and the result follows.
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(b) Put ¢, (s) := Ee=*"» for n € Ny Then
on(s)=E H Yn—1(sLy), meN.
|v|=1
Differentiating this equality yields
(30) on(s) = Y ¢ha(sLu)Lo [] ¢n-1(sLu), neN.
[v]=1 uFv

It is known and readily checked that —¢/ (s) is the Laplace transform of W,, under the

size-biased measure P. Let V,, be a random variable with P(V, €)= @(Wn € -) (the
use of V,, is for our convenience and allows us to do all subsequent calculations under P
only). Then (30) is equivalent to the distributional identity

(31) Vi £ MV, +T,, neN,

where (M, T,,) is a random vector independent of V,,_; and with distribution

P{(M,T,) € B} = E( Y Lulg <LU,ZLan1(v)>

(32) |ul=1 vF#U
- @{ (Hl, > LUWn_l(v)> € B} ., neN,
veZy
where B C R? is any Borel set. An application of Minkowski’s inequality in L, yields
(33) Wallp—1 < [IM|lp-al[Va-allp—1 + [[Tullp-1-
Arguing in the same way as in the proof of Lemma 4.2 in [13], we find
(34) ||Tn||p—1 < ||Wn—1||p—1(EWiD)1/(p_l)-

For the remaining discussion, we distinguish between two cases:

Case 1. m(p) =1

Note that ||M||£j = EII"! = m(p) = 1 and that m(p — 1) < 1 (by log-convexity of
m). Hence, sup,,>q|[|[Wn|[p-1 < oo by Proposition 1.1, and we obtain from (33) that
[|Vallp—1 = O(n) or, equivalently,

EW? = EVP~' = O(nP™)).

CASE 2. m(p) > 1

Assume first that p € (2,3]. Then we conclude from (34) and the already established
part of the lemma that ||T,|,—1 = O(m™ ®=Y(p)), regardless of the (finite) value of
m(p —1). By (32), ||M||,—1 = mY®=D(p). We conclude from (33) that ||V,||,—1 =
O(nm™P=1)(p)) or, equivalently, that

EWP = EVP~' = O(n’"'m™(p)).

The subsequent proof proceeds by induction on b. Suppose that we have already verified
that EW? = O(n*®YUm"(p)) when p € (b+ 1,b+ 2]. In order to prove EW? =
O(n+VE=1m"(p)) when p € (b+ 2,b+ 3], it suffices to note that

1 T0llp-1 = O(n*m™ ®~ 1 (p))
and that any solution to the recursive inequality
cn < dep14+0Mmbd™Y), neN, co=1,
with d > 1 satisfies ¢, = O(n®*1d"). This completes the proof. O
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We mention in passing that the distributional identity (31) obtained above with the
help of Laplace transforms (see (30)) can also be derived by a probabilistic argument
using the results stated in Section 2 on size biasing and spinal trees. However, we refrain
from supplying further details.

As we will make the multiple use of a version of Burkholder’s inequality (see [8,
Theorem 1 on p. 396]), it is stated here for ease of reference.

Lemma 3.4. Let p > 1 and {Z,, : n € N} be a martingale with Zo = 0 and a.s. limit Z.

. ) p/2
Then E|Z|P < oo if and only if E (ano(zn-irl — Zn)2> < oo. If one of these holds,
then
1/2 1/2
Cp Z(ZnJrl — Zn)? < Izl < G Z(ZnJrl — Zn)? )

n>0 n>0
p p

where ¢, := (p —1)/(18p/?) and C, := 18p>/2/(p — 1)'/2.

4. PROOFS OF THEOREMS 1.1 AND 1.2

Before proceeding with the proof of the main results, put u, = E|W; — 1P, R :=
o0 €2 (Wig1 — Wy,)? and recall that W, (v) denotes the copy of W, pertaining to
the subtree vV rooted at v. Then

(35) Wi = Wn = Y Ly(Wi(v) — 1)
[v|=n
for n € Ny. Let us also stipulate hereafter that C' € (0,00) denotes a generic constant

which may differ from line to line.

Proof of Theorem 1.1. In view of Burkholder’s inequality (Lemma 3.4), it is clear that
the Lj-convergence of A =3 ;e (Wy11 — Wy) holds true if, and only if, R exists in

L, /2. Suppose the latter is true and recall that v = inf{m!/"(r) : r € [1,2]}. Then, by a
double use of Jensen’s inequality in combination with Burkholder’s inequality, we obtain

2 p/2
ERP?=E | > < > e Ly (Wi (v) — 1))

n>0 \ |v|=n
N-1 2 P/2
1
/2 — _
> NPPE |+ ZO <; €™ Ly (W1 (v) 1))
n= v|l=n

p

N—-1
1
> 7 DB D e Lo(Wiv) — 1)
n=0

|[v]=n

o Nl p/2
> s O E( S M) - 1>2)
n=0

|[v]=n
L N 12 p/2
- - (2) _\2
= 7 Z%eWE A |Z Zfzg) (Wi(v) —1)
N-—1
> s Y e B(ZR)"

n=0
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C,LLp = pan
= D e, (2).
n=0

This proves the necessity of p, < oo and lim, ep“s}/"@) < 1. But the last limit
equals either eP~? (if p < ¥) or eP*m(p) by an appeal to Proposition 3.1. Therefore, we
have proved the necessity of e®inf,.c[, o m/r (r) <1 as claimed.

Now suppose that p, < oo and e®m!'/"(r) < 1 for some € [p,2]. By an appeal to
Burkholder’s inequality in combination with the subadditivity of z — /2 and x — z"/2,
we infer

ERP/?

IN

> P EWg1 — WP
n>0

p/2
CZ@’”‘”E( S B2Wi) - 1>2>

n>0 [v|=n

IN

IA

p/T
CZ@”“”E( > L;|W1(v)—1|r> .

n>0 [v|=n

Use Jensen’s inequality to see that

p/T
E( Z L2|W1(v) — 1|7“> < uzr)/r mp/r(r)

[v|=n
and thus
ERP/2 < CuP/" Z PP/ (r) < oo.
n>0
This completes the proof of Theorem 1.1. |

Remark 4.1. If p > 9, i.e. mY/7(9) < m /P (p) = min,.cp 2 m*/"(r), the proof of Propo-
sition 3.1 (see (29)) has actually shown that vm”™(p) < s,(2) < m™(p) for all n € Ny and
some v € (0,1). In this case, we obtain

u N-1 » N-1
ERP/2 > Pp/Q z:oepansn(Q) > P epanmn(p)
n=

- N1- - Nl—p/2

n=0

and thereby conclude that the L,-convergence of A or, equivalently, ERP/? < oo can
only hold true if e*m!'/P(p) < 1. In the case where the function r — m!/7(r) at-
tains its minimum at some 6 > 2, we arrive at a similar conclusion, because then
lim,, o m~"P/%(2)s,(2) exists and is positive by (21). This confirms our assertions
stated in Remark 1.1.

Proof of Theorem 1.2. We show firstly the necessity of condition (7) and thus assume
that the series A in (4) converges in L,. By Lemma 3.1 and Remark 3.1(a), the same

holds true for A\, and, by an appeal to Lemma 3.4,
(36) ERP/? < co.
As p > 2, the function z — zP/2 is superadditive and thus

(37) > P EWagr — WalP < ERP? < oo

n>0
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It is clear from (35) that W;,11 — W, is the a.s. limit of a martingale (see, for example,
[2, Section 3] for more details). Consequently, by another appeal to Lemma 3.4 and the
aforementioned superadditivity, we get
p/2
EWoir - Wal? > CE [ 3 L2(Wi(0) - 1)?

[v]=n

> CE Z LPIW; (v) — 1|P
|[v|=n
= Cupym"(p)

for n € Np. This inequality together with (37) imply the necessity of EW} < oo and
e?m(p) < 1 for the L,-convergence of A. Moreover, by Jensen’s inequality,

p/2 p/2
E| > LiWi(v) —1)? > [E| Y LiW() - 1)
lv|=n lv|=n
= 5 *m(2)",

which together with (37) finally give the asserted necessity of e*m'/?(2) < 1.

Let us now turn to the sufficiency of conditions (7). By Lemma 3.1 and Remark 3.1(a),
it suffices to verify the Lp-convergence of A. By combining (35), another use of Lemma
3.4, the convexity of z — 2?/2 and a conditioning with respect to F,,, we infer

p/2
E|W, 11 — Wu|P < C]E( > L (Wi(v) - 1)2>

l[v|=n

p/2
< C1E<Z,<3> > L(; (W1 (v) — 1)2>
jol=n Zn

< CupE(Z2)"*.
Whence it is enough to verify
(38) epa"I['E(Z,(Lz))p/2 = O(q") for some q € (0,1),
hereafter. Indeed, it then follows that
(39) 62anE2/p|VVn+1 Wil = O(q%/p)-
Thereby with the help of Minkowski’s inequality in L, /» and once more Lemma 3.4,

p/2
E[AP < CERP? < C (Y e EYP|W,p1 — W,|P) < oo

n>0
So let us prove (38) for the case p > 2, for it trivially holds with ¢ = e2?m(2) in the
case p = 2. Notice that E(Wl(Q))p/2 < m~P/2(2)EW? < co. For the remaining discussion,
we distinguish two cases:

CaSE 1. m(p) < mP/?(2).

Then the second condition in (7) reads e®m!/2(2) < 1. By Proposition 1.1 applied to

,(LQ) and p/2 instead of W, and p, we obtain sup,,> IE( Y(LQ))p/2

the validity of (38) with g = e®™mP/2(2).

< 00, and this ensures
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CASE 2. m(p) > mP/?(2).

Then the second condition in (7) takes the form e*m'/?(p) < 1. Lemma 3.3 applied to
2 and p/2 instead of W,, and p provides us with IE(V[/}(LQ))IJ/2 = O(n°m"(p)m(2)~P"/2)

for ¢ > 0. Consequently, I[‘E(Zr(?))p/2 = O(n°m™(p)) which proves the validity of (38) with
g = deP*m(p) for some § > 1 sufficiently close to 1. The proof is herewith completed. O
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