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IVAN H. KRYKUN

LARGE DEVIATION PRINCIPLE FOR STOCHASTIC EQUATIONS
WITH LOCAL TIME

The large deviation principle for solutions of one-dimensional equations with a lo-

cal time is proved. The explicit form for the rate function is obtained. We also
consider the large deviation principle for solutions of Itô’s stochastic equations with
discontinuous coefficients.

1. Introduction

In this paper, we are concerned with the large deviation principle (LDP) of one-
dimensional stochastic equations with local time and small diffusion

ξε(t) = x+ βLξε(t, 0) +
∫ t

0

b(ξε(s))ds+ ε

∫ t

0

σ(ξε(s))dw(s). (1)

If β = 0, the LDP for the family {ξε, ε > 0} is the well-known result for different classes
of coefficients in Eq. (1). For smooth coefficients, it is a classic result by Freidlin and
Wentzel [4]. Several papers have studied LDP for solutions of Itô stochastic equations
with discontinuous coefficients. In [1,2], the d−dimensional diffusion with coefficients
which are continuous except for a (d − 1)−dimensional hyperplane {x ∈ Ed : x1 > 0}
was considered (see [2] for a more detailed review).

To study Eq. (1) for β 
= 0, we use the method offered in [3, Proposition 4.9], [6], [9,
Proposition 2.2], [10] which reduces the equation with a local time to the Itô’s equation.
We note that even when the coefficients in (1) are continuous functions, the coefficients
corresponding to Itô’s equations are discontinuous functions. For this reason, we apply
ideas developed in [1,2]. But the formal use of these results requires the existence of
two bounded derivatives of coefficients of the equation. In Section 2, we weaken these
conditions up to the Lipschitz conditions.

By IA(x), we denote an indicator of the set A. Equation (1) has a weak solution if, for
given functions b(x) and σ(x) and a constant β, there are a probability space (Ω,�,�t, P )
with the flow of σ-algebras �t, t ≥ 0, continuous semimartingale (ξ(t),�t), and standard
one-dimensional Wiener process (w(t),�t) such that

Lξ(t, 0) = lim
δ→0

1
2δ

∫ t

0

I(−δ,δ)(ξ(s))σ2(ξ(s))ds (2)

exists almost surely, and (1) is valid almost surely.
For the coefficients of Eq. (1), we introduce the following condition ( I ).

Condition ( I ):
I1. The constant |β| < 1.
I2. For the measurable functions b(x) and σ(x), x ∈ R, there are the constants

0 < λ ≤ Λ such that
|b(x)| ≤ Λ, λ ≤ σ2(x) ≤ Λ.
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I3. For the functions b(x) and σ2(x), the Lipschitz condition holds on the semiaxes
(−∞, 0] and (0,+∞).

Under conditions I1 and I2, there exists a unique weak solution of Eq. (1) [3, theorem
4.33].

Let R be a one-dimensional space, and let B(R) be its Borel σ-algebra. By C[0,T],
we denote the space of all functions f(t) continuous on the interval [0,T] with the values
in R, and C is its Borel σ-algebra. For an absolutely continuous function f(t), we

use a standard representation f(t) = f(a) +
∫ t

a

ḟ(s)ds. Let AC+[0,T] denote the set

of all absolutely continuous functions on [0,T] starting from 0 with derivatives in [0,1].
The norms in the spaces C[0,T] and AC+[0,T] are ||x||T = sup

t∈[0,T ]

|x(t)|. We denote

CT = C[0,T]×AC+[0,T], and the norm in this space is ||(x, y)||T = ||x||T + ||y||T .
Let C[0,∞) be the space of all continuous functions f(t) from [0,∞) to R; AC+[0,∞)

denote the set of all absolutely continuous functions on [0,∞) starting from 0 with
derivatives in [0, 1]. For the spaces C[0,∞) and AC+[0,∞), we use the norm

||x||∞ =
∞∑
k=1

2−k
(

min
{

sup
t≤k
|x(t)|, 1

})
. Denote C∞ = C[0,∞) × AC+[0,∞) with norm

||(x, y)||∞ = ||x||∞ + ||y||∞.
For f ∈ C[0,T] or f ∈ C[0,∞), we write g ∈ H+(f) if g(t) is an absolutely continuous

function with derivatives ġ(t) such that ġ(t) = 0 if f(t) < 0, ġ(t) = 1 if f(t) > 0, and
ġ(t) ∈ [0, 1] if f(t) = 0.

Let (X, B(X)) be a metric space with metric ρ, and let I(x) : X → [0,∞] be a
lower semicontinuous functional such that, for any a > 0, the set {x : I(x) ≤ a} is
compact. Here, we consider several functionals I(x) and prove Lemmas 7-9 concerning
their properties.

A family of probability measures με on X is said to satisfy the LDP with the rate
functional I(x) if the following conditions hold:

a) for any open set G ∈ B(X),

lim inf
ε→0

ε2 lnμε(G) ≥ − inf{I(x), x ∈ G};

b) for any closed set F ∈ B(X),

lim sup
ε→0

ε2 lnμε(F ) ≤ − inf{I(x), x ∈ F}.

We now formulate the contraction principle [4, theorem 5.3.1]. Let the measures με
on X induced by random elements Xε satisfy the LDP with a rate functional I(x), and
let F (x) be a continuous function from X to X ′. Then the family of measures μ′

ε on X ′

induced by random elements {F (Xε)} satisfies the LDP with the rate functional
I ′(x) = inf{I(y), y : F (y) = x}.

By uε(t) =
∫ t
0 I(0,∞)(ξε(s))ds, we denote the occupation time of a process ξε(t) on the

positive semiaxis.
Denote

(
f(x)

)+ = max
(
f(x), 0

)
; Leb(A) is Lebesgue’s measure of the set A.

The paper is organized as follows. The LDP for the Itô’s stochastic equation with
discontinuous coefficients is considered in Section 2. In Section 3, we will prove the
theorem as our main result. The auxiliary results are formulated (some of them are also
proved) in Section 4.
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Theorem 1.1. Let Condition (I) be satisfied. Then the measures με induced by the
processes ξε(t) and uε(t) on C∞ satisfy the LDP with the rate function

I∞(φ, ψ) =
∫ ∞

0

L(φ(s), φ̇(s), ψ̇(s))ds, where

L(φ(s), φ̇(s), ψ̇(s)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

(
φ̇(s)− b(φ(s))

)2

σ2(φ(s))
, if φ(s) 
= 0,

1
2
b2(0)
σ2(0)

(
1 + β − 2βψ̇(s)

)2
(1 + β)2 − 4βψ̇(s)

, if φ(s) = 0 and βb(0) < 0,

1
2
b2(0)
σ2(0)

, if φ(s) = 0 and βb(0) ≥ 0,

(3)

for the absolutely continuous φ such that φ(0) = x,
∫∞
0

(
φ̇(s)

)2
ds < ∞, ψ ∈ H+(φ),

ψ(0) = 0, and I∞(φ, ψ) =∞ otherwise.

As a consequence of the contraction principle, we have the following result.

Corollary 1.1. Let conditions of Theorem 1.1 be satisfied. Then the measures με
induced by the process ξε(t) on (C[0,∞), C) satisfy the LDP with the rate function I(φ) =∫∞
0
L(φ(s), φ̇(s))ds, where

L(φ(s), φ̇(s)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

(
φ̇(s)− b(φ(s))

)2

σ2(φ(s))
, if φ(s) 
= 0,

1
2
b2(0)
σ2(0)

(
1− β2

)
, if φ(s) = 0 and βb(0) < 0,

1
2
b2(0)
σ2(0)

, if φ(s) = 0 and βb(0) ≥ 0,

(4)

for the absolutely continuous φ such that φ(0) = x and
∫∞
0

(
φ̇(s)

)2
ds <∞ and∫∞

0
I{φ(s)=0}I{βb(0)<0}ds <∞ and I(φ) =∞ for other φ.

2. LDP for Itô’s equation

Let Bi(x), i = 1, 2, x ∈ R be measurable bounded functions, let B3 be a constant,
and we define

B(x) =

⎧⎪⎨⎪⎩
B1(x), if x < 0,
B3, if x = 0,

B2(x), if x > 0.
(5)

Define the process xε(t) as a solution of the stochastic equation

xε(t) = x+
∫ t

0

B(xε(s))ds+ εw(t), (6)

and let vε(t) =
∫ t
0
I(0,∞)(xε(s))ds =

∫ t
0
v̇ε(s)ds. We consider the LDP for the process

(xε(t), vε(t)).
Define the function B̃(x) :

B̃(x) =

{
B1(x), if x ≤ 0,

B2(x), if x > 0,
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and consider the equation

x̃ε(t) = x+
∫ t

0

B̃(x̃ε(s))ds+ εw(t). (7)

Let ṽε(t) =
∫ t
0 I(0,∞)(x̃ε(s))ds.

The LDP on [0,T] for the pair (x̃ε, ṽε) was proved in [1, theorem 2.1]. Taking into
account that both processes xε and x̃ε spend zero time at the point 0, it should be noted
that the measures induced by them on the space (C[0,T], C) coincide. Conversely, the
LDP on [0,T] for (xε, vε) is valid as well. But, as was specified in Introduction, the
existence of two bounded derivatives of the functions Bi(x) is required in this theorem.
In our case, this condition can be weakened.

Theorem 2.1. Let the function B1(x) satisfy the Lipschitz condition for x ≤ 0, and let
B2(x) satisfy the Lipschitz condition for x ≥ 0. Then the measures με induced by the
processes (xε(t), vε(t)) on C∞ satisfy the LDP with the rate function

Ix∞(φ, ψ) =
∫ ∞

0

M(φ(s), φ̇(s), ψ̇(s))ds, where

M(φ(s), φ̇(s), ψ̇(s)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
2

(
φ̇(s)−B(φ(s))

)2

, if φ(s) 
= 0,

1
2

(
B2(0)ψ̇(s) +B1(0)(1− ψ̇(s))

)2

,
if φ(s) = 0 and

B1(0) > B2(0),

1
2

(
B2

2(0)ψ̇(s) +B2
1(0)(1 − ψ̇(s))

)
,
if φ(s) = 0 and

B1(0) ≤ B2(0),

(8)

for absolutely continuous φ such that φ(0) = x,
∫∞
0

(
φ̇(s)

)2
ds < ∞, and ψ ∈ H+(φ),

ψ(0) = 0. For all other pairs (φ, ψ), we set Ix∞(φ, ψ) =∞.

Corollary 2.1. Let conditions of Theorem 2.1 be satisfied. Then the measures με
induced by the process xε(t) on (C[0,∞), C) satisfy the LDP with the rate function

Ix(φ) =
1
2

∫ ∞

0

I{φ(s) 
=0}

(
φ̇(s)−B(φ(s))

)2

ds+

+
1
2

∫ ∞

0

I{φ(s)=0}dsmin
(
B2

1(0), B2
2(0)

)(
1− I{B1(0)>0>B2(0)}

) (9)

for absolutely continuous φ such that φ(0) = x,
∫∞
0

(
φ̇(s)

)2
ds <∞,

∫∞
0 I{φ(s)=0}ds <∞.

For all other φ, we set Ix(φ) =∞.

Proof of Theorem 2.1.
To prove the theorem, it is sufficient to show that [12, corollary 3.4]
(i) For any a > 0, the set {(φ, ψ) : I(φ, ψ) ≤ a} is compact.

(ii) For any R > 0, there exist a compact set K such that, for any δ > 0, ,

P
{
{||xε − φ||T < δ, ||vε − ψ||T < δ} 
⊆ K

}
≤ exp(−R

ε2
), if ε is small.

(iii) lim
δ→0

lim inf
ε→0

ε2 lnP{||xε − φ||T < δ, ||vε − ψ||T < δ} =

= lim
δ→0

lim sup
ε→0

ε2 lnP{||xε − φ||T < δ, ||vε − ψ||T < δ} = −IT (φ, ψ) =

= −
(

1
2

∫ T

0

|φ̇(s)|2ds−
∫ T

0

B(φ(s))φ̇(s)ds+
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+
1
2

∫ T

0

[
B2

2(φ(s)) −B2
1(φ(s))

]
ψ̇(s)ds+

+
1
2

∫ T

0

B2
1(φ(s))ds − ((B1(0)−B2(0))+)2

2

∫ T

0

ψ̇(s)(1 − ψ̇(s))ds

)
. (10)

Condition (i) is proved in Lemma 4.7.
At first, we prove (iii) - the local LDP for the measures με induced by the processes

(xε(t), vε(t)) on CT with the rate function IT (φ, ψ) for every T>0.
Denote

yε(t) = x+ εw(t) ,

kε(t) =
∫ t

0

I(0,∞)(yε(s))ds,

μxε are the measures on C[0,T] induced by xε(t), and μyε are the measures on C[0,T]
induced by yε(t).

By the Girsanov’s theorem,

ln
dμxε

dμyε

=
1
ε

∫ T

0

B(yε(s))dw(s) − 1
2ε2

∫ T

0

B2(yε(s))ds. (11)

Let us transform this expression. We get∫ T

0

B(yε(s))dw(s) =

=
∫ T

0

[B1(yε(s))I(−∞,0](yε(s)) +B2(yε(s))I(0,∞)(yε(s))+

+(B3(0)−B1(0))I{0}(yε(s))]dw(s). (12)

As E
( ∫ T

0
I{0}(y(s))dw

)2

=
∫ T
0
P{x+ εw(s) = 0}ds = 0 (here and further, E stands for

the mathematical expectation), then relation (12) yields∫ T

0

B(yε(s))dw(s) =
∫ T

0

[
B1(yε(s))I(−∞,0](yε(s))+B2(yε(s))I(0,∞)(yε(s))

]
dw(s). (13)

Reasoning similarly, we conclude that∫ T

0

B2(yε(s))ds =
∫ T

0

[B2
1(yε(s))I(−∞,0](yε(s)) +B2

2(yε(s))I(0,∞)(yε(s))]ds. (14)

From (11), (13), and (14), we have

ln
dμxε

dμyε

=
1
ε

∫ T

0

[B1(yε(s))I(−∞,0](yε(s)) +B2(yε(s))I(0,∞)(yε(s))]dw−

− 1
2ε2

∫ T

0

[B2
1(yε(s))I(−∞,0](yε(s)) +B2

2(yε(s))I(0,∞)(yε(s))]ds.

(15)

Let us transform the stochastic integral in (15) by the Tanaka formula. By Df(x), we
denote the symmetric derivative of a function f(x) :

Df(x) = lim
δ↓0

f(x+ δ)− f(x− δ)
2δ

,

and, by nf (dx) for a function f(x), we denote the signed measure on (R,B(R)) which
is defined from the equality∫

d2H(x)
dx2

f(x)dx =
∫
H(x)nf (dx),

if it is satisfied for any infinitely differentiable function H(x) with a compact support.
Then, for a function f(x), for which there existDf(x) and nf(dx), and for a continuous

semimartingale X(t) with the canonical decomposition X(t) = X(0) + M(t) + A(t),
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where M stands for a continuous local martingale, and A is a continuous process of finite
variation, the Tanaka formula has following form [3, formula 4.3]:

f(X(t)) = f(X(0)) +
∫ t

0

Df(X(s))dX(s) +
1
2

∫
LX(t, y)nf (dy).

We observe that, for an arbitrary measurable function g(x), for which one of the
integrals makes sense, the following formula is valid [13, (VI, Corollary 1.6)]:∫ t

0

g(X(s))d〈M〉s =
∫
g(y)LX(t, y)dy.

Here, 〈M〉 is a continuous increasing process associated to the local martingale M .
Put F (x) =

∫ x
0
B(y)dy. Then

DF (x) =

⎧⎪⎪⎨⎪⎪⎩
B1(x) , if x < 0,

B1(0) +B2(0)
2

, if x = 0,

B2(x) , if x > 0.
Then, for the infinitely differentiable function H(x) with compact supports in (−∞,

∞), using the existence of Sobolev’s derivatives (it comes from the Lipschitz condition)
of the functions Bi(x), we get

nF (dx) = (B2(0)−B1(0))δ0(x)dx + [Ḃ1(x)I(−∞,0](x) + Ḃ2(x)I(0,∞)(x)]dx
with the Dirac-delta function δ0(x). According to the Tanaka‘s formula,

F (yε(T)) =F (x) + ε

∫ T

0

[B1(yε(s))I(−∞,0](yε(s)) +B2(yε(s))I(0,∞)(yε(s))]dw+

+
ε2

2

∫ T

0

[Ḃ1(yε(s))I(−∞,0](yε(s)) + Ḃ2(yε(s))I(0,∞)(yε(s))]ds+

+
B2(0)−B1(0)

2
Lyε(T, 0).

(16)

From (15) and (16), it follows that

ln
dμxε

dμyε

=
1
ε2

[F (yε(T))− F (x)]− B2(0)−B1(0)
2ε2

Lyε(T, 0)−

− 1
2ε2

∫ T

0

[B2
1(yε(s))I(−∞,0](yε(s)) +B2

2(yε(s))I(0,∞)(yε(s))]ds−

− 1
2

∫ T

0

[Ḃ1(yε(s))I(−∞,0](yε(s)) + Ḃ2(yε(s))I(0,∞)(yε(s))]ds.

(17)

In view of (17), taking into account that

F (φ(T))− F (φ(0)) =
∫ T

0

B(φ(s))φ̇(s)ds,

we get

P{||xε − φ||T < δ, ||vε − ψ||T < δ} = EI{||yε−φ||T<δ}(ω)I{||kε−ψ||T<δ}(ω)
dμxε

dμyε

=

= EI{||yε−φ||T<δ}(ω)I{||kε−ψ||T<δ}(ω) exp
{
− B2(0)− B1(0)

2ε2
Lyε(T, 0)+

+
1
ε2

∫ T

0

B(φ(s))φ̇(s)ds − 1
2ε2

∫ T

0

[
B2

1(φ(s))(1 − ψ̇(s)) +B2
2(φ(s))ψ̇(s)

]
ds
}
Jε,

(18)
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where

Jε = exp
{

1
ε2

[F (yε(T))− F (φ(T))] +
1

2ε2

∫ T

0

[B2
1(φ(s))(1 − ψ̇(s)) +B2

2(φ(s))ψ̇(s)]ds−

− 1
2ε2

∫ T

0

[B2
1(yε(s))I(−∞,0](yε(s)) +B2

2(yε(s))I(0,∞)(yε(s))]ds−

− 1
2

∫ T

0

[Ḃ1(yε(s))I(−∞,0](yε(s)) + Ḃ2(yε(s)))I(0,∞)(yε(s))]ds
}
.

Consider now Jε in more details. We denote
A1 =F (yε(T)) − F (φ(T)),

A2 =
∫ T

0

[
B2

1(φ(s))(1 − ψ̇(s)) +B2
2(φ(s))ψ̇(s)−B2

1(yε(s))I(−∞,0](yε(s))−

−B2
2(yε(s))I(0,∞)(yε(s))

]
ds;

A3 =−
∫ T

0

[Ḃ1(yε(s))I(−∞,0](yε(s)) + Ḃ2(yε(s)))I(0,∞)(yε(s))]ds.

It is clear that Jε = exp
{ 1
ε2
A1 +

1
2ε2

A2 +
1
2
A3

}
.

For any γ > 0, there exists δ > 0 such that the conditions ||yε−φ||T < δ, ||kε−ψ||T < δ,
and conditions of the theorem yield (with some constant K)

|A1| = |F (yε(T))− F (φ(T))| ≤ K||yε − φ||T ≤ γ.

Then, by Lemma 4.1 for any γ > 0, there exists δ > 0 such that if ||yε − φ||T < δ,
||kε − ψ||T < δ, we have

|A2| =
∣∣∣∣ ∫ T

0

[
B2

1(φ(s))(1 − ψ̇(s)) + B2
2(φ(s))ψ̇(s)

]
ds−

−
∫ T

0

[
B2

1(yε(s))I(−∞,0](yε(s)) +B2
2(yε(s))I(0,∞)(yε(s))

]
ds

∣∣∣∣ =

=
∣∣∣∣ ∫ T

0

[
B2

1(φ(s))(1 − ψ̇(s)) + B2
2(φ(s))ψ̇(s)

]
ds−

−
∫ T

0

[
B2

1(yε(s))(1 − k̇ε(s)) +B2
2(yε(s))k̇ε(s)

]
ds

∣∣∣∣ < γ.

By conditions of the theorem,

|A3| =
∣∣∣∣ ∫ T

0

[
Ḃ1(yε(s))I(−∞,0](yε(s)) + Ḃ2(yε(s)))I(0,∞)(yε(s))

]
ds

∣∣∣∣ ≤ K.
Hence, on the set ||yε − φ||T < δ, ||kε − ψ||T < δ, we obtain

exp
{
− γ

ε2
−K

}
≤ Jε ≤ exp

{ γ
ε2

+K
}
. (19)

From [1, Lemma 4.5 and formula (5.12)], it follows that

lim
δ→0

lim inf
ε→0

ε2 lnEI||yε−φ||T<δ(ω)I||kε−ψ||T<δ(ω) exp
{
− B2(0)−B1(0)

2ε2
Lyε(T, 0)

}
=

= lim
δ→0

lim sup
ε→0

ε2 lnEI||yε−φ||T<δ(ω)I||kε−ψ||T<δ(ω) exp
{
− B2(0)−B1(0)

2ε2
Lyε(T, 0)

}
=

= −1
2

∫ T

0

|φ̇(s)|2ds+
((B2(0)−B1(0))+)2

2

∫ T

0

ψ̇(s)(1 − ψ̇(s))ds.

(20)
From (18)-(20), we get (10).
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Second, we prove (ii). It is the condition of exponential tightness [11, Chapter 3] (or
strong tightness [12]) of (xε, vε) on CT . We recall [12, Theorem 4.1] that the family of
processes (Xε(t), uε(t)) on the space CT is exponentially tight (of order ε2) if, for any
T > 0, η > 0,

lim
K→∞

lim sup
ε→0

ε2 lnP
(
||(Xε, uε)||T > K

)
= −∞, (21)

lim
Δ→0

lim sup
ε→0

ε2 ln sup
θ≤T

P
(
||
(
Xε(·+ θ), uε(·+ θ)

)
−
(
Xε(θ), uε(θ)

)
||Δ > η

)
= −∞. (22)

We will use the Chebyshev inequality

P
(
|ξ(T)| > K

)
≤ 1
ϕ(K)

Eϕ
(
ξ(T)

)
(23)

for the function ϕ(x) = exp
{ x2

2Tε2
}
.

Let us prove (21). From the inequalities sup
t≤T
|xε(t)| ≤ |x| +

∫ T

0

|B(xε(s))|ds +

sup
t≤T
|εw(t)|

and sup
t≤T
|vε(t)| =

∫ T

0

I(0,∞)(xε(s))ds, we have

P
(
||(xε, vε)||T > K

)
≤ P

(K
2
< sup

t≤T
|xε(t)|

)
+ P

(K
2
< sup

t≤T
|vε(t)|

)
≤

≤ P
(K

4
< |x|+

∫ T

0

|B(xε(s))|ds
)
+P

(K
4
< sup

t≤T

∣∣εw(t)
∣∣)+P

(K
4
<

∫ T

0

I(0,∞)(xε(s))ds
)
.

Denote last three items by P1, P2, and P3 respectively. Then, by (23) and Condition
( I ), we have

P1 ≤ exp
{
− K2

32Tε2
}
E exp

{(|x|+ ∫ T

0

|B(xε(s))|ds
)2

2Tε2

}
≤

≤ exp
{16

(
|x|+ ΛT

)2

−K2

32Tε2

}
;

P3 ≤ exp
{
− K2

32Tε2
}
E exp

{(∫ T

0

I(0,∞)(xε(s))ds
)2

2Tε2

}
≤ exp

{
16T2 −K2

32Tε2

}
.

From [5, Cor. of Theorem 5, p.173], we have

P2 = P
(K

4
< ε
√

T sup
t≤1

∣∣w(t)
∣∣) = P

( K

4
√

T
< ε sup

t≤1

∣∣w(t)
∣∣) ≤ 2 exp

{
− K2

32Tε2
}
.

Then

P
(
||(xε, vε)||T > K

)
≤ exp

{
− K2

32Tε2
}(

exp
{16

(
|x|+ ΛT

)2
32Tε2

}
+ exp

{ 16T2

32Tε2
}

+ 2
)
;

and

lim
K→∞

lim sup
ε→0

ε2 lnP
(
||(xε, vε)||T > K

)
≤ lim

K→∞

(
− K2

32T
+

(
|x|+ ΛT

)2
2T

)
= −∞.

So (21) is proved.
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Let us prove (22). Similarly, we have

P
(
||
(
xε(·+ θ), vε(·+ θ)

)
−
(
xε(θ), vε(θ)

)
||Δ > η

)
≤

≤ P
(

sup
t≤Δ

∣∣∣ ∫ t+θ

θ

B(xε(s))ds + ε
(
w(t+ θ)− w(θ)

)∣∣∣ > η

2

)
+

+P
(

sup
t≤Δ

∣∣∣∣ ∫ t+θ

θ

I(0,∞)(xε(s))ds
∣∣∣∣ > η

2

)
≤

≤ P
( ∫ Δ+θ

θ

∣∣∣B(xε(s))
∣∣∣ds > η

4

)
+ P

(
sup
t≤Δ

∣∣∣ε ∫ t+θ

θ

dw(s)
∣∣∣ > η

4

)
+

+P
(∫ Δ+θ

θ

I(0,∞)(xε(s))ds >
η

4

)
.

By the analogy to the proof of (21), we denote last three items by P4, P5, and P6,
respectively. Then we have

P4 ≤ exp
{16Λ2Δ2 − η2

32Δε2
}
;

P6 ≤ exp
{16Δ2 − η2

32Δε2
}
;

From the property of the �t-stopping time and from [5, Cor. of Theorem 5, p.173],
we have

P5 = P
(

sup
t≤Δ

∣∣∣ε ∫ t

0

dw(s)
∣∣∣ > η

4

)
= P

(
ε
√

Δ sup
t≤1

∣∣∣ ∫ t

0

dw(s)
∣∣∣ > η

4

)
≤ 2 exp

{
− η2

32Δε2
}
.

Further, we obtain

P
(
||
(
xε(·+ θ), vε(·+ θ)

)
−
(
xε(θ), vε(θ)

)
||Δ > η

)
≤

≤ exp
{
− η2

32Δε2
}(

exp
{Λ2Δ

2ε2
}

+ exp
{ Δ

2ε2
}

+ 2
)

and lim sup
ε→0

ε2 ln sup
θ≤T

P
(
||(xε(·+θ), vε(·+θ))−(xε(θ), vε(θ))||Δ > η

)
≤ − η2

32Δ
+

Δ
2

;

lim
Δ→0

lim sup
ε→0

ε2 ln sup
θ≤T

P
(
||
(
xε(·+ θ), vε(·+ θ)

)
−
(
xε(θ), vε(θ)

)
||Δ > η

)
≤

≤ lim
Δ→0

(
− η2

32Δ
+

Δ
2

)
= −∞.

So, (22) is proved, and we prove the exponential tightness of (xε, vε).
So, we have established the local LDP on CT for every T> 0 (Local LDP) and expo-

nential tightness for (xε(t), vε(t)). Using [12, Theorem 4.5],

LDP⇐⇒
{Exponential tightness

Local LDP
we obtain the rate function in such a form: Ix∞(φ, ψ) = sup

T
IT (φ, ψ).

Hence, the measures μxε induced by the processes (xε(t), vε(t)) satisfy the LDP on
C[0,∞)×AC+[0,∞) with the rate function Ix∞(φ, ψ) = sup

T
IT (φ, ψ), where IT (φ, ψ) is de-

fined by (10). Consider now three cases: φ(s) 
= 0; φ(s) = 0 and B1(0) > B2(0); φ(s) =
0 and B1(0) ≤ B2(0). Using the property Leb

(
s ∈ [0,T] : φ(s) = 0, φ̇(s) 
= 0

)
= 0, we

get (8).
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Theorem 2.1 is proved.
Proof of Corollary 2.1. From (8) by the contraction principle, we have

Ix(φ) =
1
2

∫ ∞

0

I{φ(s) 
=0}

(
φ̇(s)−B(φ(s))

)2

ds+

+ inf
ψ∈H+(φ)

(
1
2

∫ ∞

0

I{φ(s)=0}I{B1(0)>B2(0)}
(
B2(0)ψ̇(s) +B1(0)(1 − ψ̇(s))

)2

ds

)
+

+ inf
ψ∈H+(φ)

(
1
2

∫ ∞

0

I{φ(s)=0}I{B1(0)≤B2(0)}
(
B2

2(0)ψ̇(s) +B2
1(0)(1− ψ̇(s))

)
ds

)
.

Let us consider two last items in more details. Using Lemma 4.6, we have

inf
ψ∈H+(φ)

(
1
2

∫ ∞

0

I{φ(s)=0}I{B1(0)>B2(0)}
(
B2(0)ψ̇(s) + B1(0)(1− ψ̇(s))

)2

ds

)
=

=
1
2

inf
a∈[0,1]

(
B2(0)a+B1(0)(1− a)

)2
∫ ∞

0

I{φ(s)=0}I{B1(0)>B2(0)}ds =

=
1
2

inf
a∈[0,1]

(
(B2(0)a+B1(0)(1− a))2I{B1(0)≤0}

) ∫ ∞

0

I{φ(s)=0}I{B1(0)>B2(0)}ds+

+
1
2

inf
a∈[0,1]

(
(B2(0)a+B1(0)(1 − a))2I{B2(0)≥0}

)∫ ∞

0

I{φ(s)=0}I{B1(0)>B2(0)}ds+

+
1
2

inf
a∈[0,1]

(
(B2(0)a+B1(0)(1 − a))I{B1(0)>0>B2(0)}

)2
∫ ∞

0

I{φ(s)=0}I{B1(0)>B2(0)}ds.

In the first and second cases, we reach inf at a = 0 and a = 1, respectively. These two
cases can be united in such a way: inf

a∈[0,1]

(
B2(0)a+B1(0)(1− a)

)2 = min(B2
1(0), B2

2(0)).

In the third case, we reach inf at a = −B1(0)
B2(0)−B1(0)

∈ [0, 1], and it equals 0. By analogy,

inf
ψ∈H+(φ)

(
1
2

∫ ∞

0

I{φ(s)=0}I{B1(0)≤B2(0)}

(
B2

2(0)ψ̇(s) +B2
1(0)(1− ψ̇(s))

)
ds

)
=

=
1
2

inf
a∈[0,1]

((
B2

2(0)a+B2
1(0)(1− a)

)
I{B2(0)≤0}

)∫ ∞

0

I{φ(s)=0}I{B1(0)≤B2(0)}ds+

+
1
2

inf
a∈[0,1]

((
B2

2(0)a+B2
1(0)(1− a)

)
I{B1(0)≥0}

)∫ ∞

0

I{φ(s)=0}I{B1(0)≤B2(0)}ds+

+
1
2

inf
a∈[0,1]

((
B2

2(0)a+B2
1(0)(1− a)

)
I{B1(0)<0<B2(0)}

)∫ ∞

0

I{φ(s)=0}I{B1(0)≤B2(0)}ds.

Here, we reach inf in the first case at a = 1, in the second one at a = 0, and in the
third case either at a = 1 (if B2

2(0) ≤ B2
1(0)) or a = 0 (else). All three cases can be

united in such a way: inf
a∈[0,1]

(
B2

2(0)a+B2
1(0)(1− a)

)
= min(B2

1(0), B2
2(0)).

So,

Ix(φ) =
1
2

∫ ∞

0

I{φ(s) 
=0}

(
φ̇(s)−B(φ(s))

)2

ds+

+
1
2

∫ ∞

0

I{φ(s)=0}

(
1− I{B1(0)>0>B2(0)}

)
min

(
B2

1(0), B2
2(0)

)
ds.
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After simple transformations, we get (9). Corollary 2.1 is proved.

Now let us consider the solution of the equation

ζε(t) = x+
∫ t

0

B(ζε(s))ds + ε

∫ t

0

r(ζε(s))w(t), (24)

where the function B(x) has form (5), and the function r(x) has the same construction,
i.e.

r(x) =

⎧⎪⎨⎪⎩
r1(x), if x < 0,
r3, if x = 0,

r2(x), if x > 0,
(25)

where ri(x), i = 1, 2, x ∈ R, are measurable bounded functions, and r3 is a constant.
By analogy with [2, Section 4], we use the random change of time. Denote zε(t) =∫ t
0 I(0,∞)(ζε(s))ds. Let’s prove the next theorem.

Theorem 2.2. In Eq. (24), let r2(x) ≥ λ > 0; for functions Bi(x) and r2i (x), i = 1, 2,
the Lipschitz condition holds on (−∞, 0] and (0,+∞), respectively. Then the measures
με induced by the processes (ζε, zε) on C∞ satisfy the large deviation principle with the
rate function Iζ∞(φ, ψ) =

∫∞
0
N(φ(s), φ̇(s), ψ̇(s))ds, where

N(φ(s), φ̇(s), ψ̇(s)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

(
φ̇(s)−B(φ(s))

)2

r2(φ(s))
, if φ(s) 
= 0,

1
2

(
B2(0)ψ̇(s) +B1(0)

(
1− ψ̇(s)

))2

r22(0)ψ̇(s) + r21(0)(1− ψ̇(s))
,

if φ(s) = 0 and

B1(0)
r21(0)

>
B2(0)
r22(0)

,

1
2

(B2
2(0)
r22(0)

ψ̇(s) +
B2

1(0)
r21(0)

(
1− ψ̇(s)

))
,

if φ(s) = 0 and

B1(0)
r21(0)

≤ B2(0)
r22(0)

,

(26)

for an absolutely continuous φ such that φ(0) = x,
∫∞
0
φ̇2(s)ds < ∞, and ψ ∈ H+(φ)

such that ψ(0) = 0. For all other pairs (φ, ψ), we set Iζ∞(φ, ψ) =∞.

Proof

For this rate function, Condition (i) is proved in Lemma 4.8.
Further, we set

βε(t) =
∫ t

0

r2(ζε(s))ds,

β(t) =
∫ t

0

(
r22(φ(s))ψ̇(s) + r21(φ(s))(1 − ψ̇(s))

)
ds,

(27)

and γε(t) and γ(t) are their inverses, respectively (they exist because βε(t) and β(t)
monotonously increase).

For ζε(t), let us make a random change of time. We have ζε(γε(t)) = πε(t) or ζε(t) =
πε(βε(t)), where

πε(t) = x+
∫ t

0

B(πε(s))
r2(πε(s))

ds+ εŵ(s), (28)

where ŵ(s) is another Wiener process. We now denote zπε (t) =
∫ t
0 I(0,∞)(πε(s))ds.
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By the analogy with [2, Section 4], we set
φπ(t) = φ(γ(t)) ;

φ̇π(t) = φ̇(γ(t))γ̇(t) =
φ̇(γ(t))
β̇(γ(t))

;

ψπ(t) =
∫ γ(t)

0

ψ̇(s)r22
(
φ(s)

)
ds =

∫ t

0

ψ̇(γ(s))r22
(
φ(γ(s))

)
γ̇(s)ds ;

ψ̇π(t) = ψ̇(γ(t))r22
(
φ(γ(t))

)
γ̇(t) = ψ̇(γ(t))

r22

(
φ(γ(t))

)
β̇(γ(t))

.

(29)

We now mark D(x) =
B(x)
r2(x)

. Then

D(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

D1(x) =
B1(x)
r21(x)

, if x < 0,

D3 =
B3

r23
, if x = 0,

D2(x) =
B2(x)
r22(x)

, if x > 0.

Using (8), we can establish the LDP on C∞ for the measures μπε induced by the
processes (πε, zπε ) and obtain its rate function Iπ∞(φπ , ψπ) :

Iπ∞(φπ , ψπ) =
∫ ∞

0

Nπ
s (φπ, φ̇π , ψ̇π)ds =

=
1
2

∫ ∞

0

I{φπ(s) 
=0}

(
φ̇π(s)−D(φπ(s))

)2

ds+

+
1
2

∫ ∞

0

I{φπ(s)=0}I{D1(0)>D2(0)}
(
D2(0)ψ̇π(s) +D1(0)(1− ψ̇π(s))

)2

ds+

+
1
2

∫ ∞

0

I{φπ(s)=0}I{D1(0)≤D2(0)}

(
D2

2(0)ψ̇π(s) +D2
1(0)(1− ψ̇π(s))

)
ds.

(30)

In view of Lemma 4.3, we have, for every T > 0,

IζT (φ, ψ) = lim
δ→0

lim inf
ε→0

ε2 lnP{||ζε − φ||T < δ, ||zε − ψ||T < δ} =

= lim
δ→0

lim inf
ε→0

ε2 lnP{||πε − φπ ||β(T ) < δ, ||zπε − ψπ||β(T ) < δ} = Iπβ(T )(φ
π , ψπ).

Using this result and Lemmas 4.10 and 4.11, we get, by Theorem 4.5 [12],

Iζ∞(φ, ψ) = sup
T
IζT (φ, ψ) = lim

δ→0
lim inf
ε→0

ε2 lnP{||ζε − φ||∞ < δ, ||zε − ψ||∞ < δ} =

= lim
δ→0

lim inf
ε→0

ε2 lnP{||πε − φπ||∞ < δ, ||zπε − ψπ||∞ < δ} =

= sup
β(T)

Iπβ(T )(φ
π , ψπ) = Iπ∞(φπ, ψπ).

Hence, the measures με induced by the processes (ζε(t), zε(t)) satisfy the LDP on
C[0,∞)×AC+[0,∞) with the rate function

Iζ∞(φ, ψ) = Iπ∞(φπ, ψπ).
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Using formulae (29) and (30) and making a change in the integrals, we obtain the
explicit form of I∞(φ, ψ):

Iζ∞(φ, ψ) =
1
2

∫ ∞

0

I{φ(s) 
=0}

(
φ̇(s)−B(φ(s))

)2

r2(φ(s))
ds+

+
1
2

∫ ∞

0

I{φ(s)=0}I{B1(0)
r21(0)

> B2(0)
r22(0)

}(B2(0)
r22(0)

ψ̇(s)
r22(0)
β̇(0)

+

+
B1(0)
r21(0)

(
1− ψ̇(s)

r22(0)
β̇(0)

))2

β̇(0)ds+

+
1
2

∫ ∞

0

I{φ(s)=0}I{B1(0)
r21(0)

≤ B2(0)
r22(0)

}(B2
2(0)
r42(0)

ψ̇(s)
r22(0)
β̇(0)

+

+
B2

1(0)
r41(0)

(
1− ψ̇(s)

r22(0)
β̇(0)

))
β̇(0)ds.

(31)

Using now (27), we obtain (26).
Theorem 2.2 is proved.

3. Proof of Theorem 1.1.

Condition (i) for this rate function is proved in Lemma 4.9.
Let us consider Eq. (1).
Following [10], we introduce a function

κ(x) =

{
(1− β)x, x ≤ 0

(1 + β)x, x ≥ 0.

Let ϕ(x) be the inverse function to κ(x). We put

b̃(x) =
b(κ(x))

1 + βsgnx
,

σ̃(x) =
σ(κ(x))

1 + βsgnx
,

(32)

where

sgnx =

⎧⎪⎨⎪⎩
1, if x > 0,
0, if x = 0,
−1, if x < 0,

and consider now Itô’s stochastic equation

ηε(t) = ϕ(x) +
∫ t

0

b̃(ηε(s))ds+ ε

∫ t

0

σ̃(ηε(s))dw(s). (33)

Equation (33) has a weak solution by [14], and the process
ξε(t) = κ(ηε(t))

is a solution of Eq. (1) [8, Lemma 2], [10, lemma 1]. It is necessary to note that the
functions b̃(x) and σ̃(x) have the form of the functions B(x) from (5) and r(x) from (25).

For the process ηε(t), we denote its occupation time on the positive semiaxis by

vε(t) =
∫ t

0

I(0,∞)(ηε(s))ds.

Then it is possible to apply Theorem 2.2. Using formula (26), we can establish the
LDP on C∞ for the measures μηε induced by the processes (ηε, vε) and obtain its rate
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function Iη∞(φη, ψη) =
∫∞
0
L2(φη, φ̇η, ψ̇η)ds, where

L2(φη, φ̇η, ψ̇η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

(
φ̇η(s)− b̃(φη(s))

)2

σ̃2(φη(s))
, if φη(s) 
= 0,

1
2

(
b̃2(0)ψ̇η(s) + b̃1(0)(1 − ψ̇η(s))

)2

σ̃2
2(0)ψ̇η(s) + σ̃2

1(0)(1− ψ̇η(s))
,

if φη(s) = 0 and

b̃1(0)
σ̃2

1(0)
>
b̃2(0)
σ̃2

2(0)
,

1
2

[
b̃22(0)
σ̃2

2(0)
ψ̇η(s) +

b̃21(0)
σ̃2

1(0)
(1− ψ̇η(s))

]
,

if φη(s) = 0 and

b̃1(0)
σ̃2

1(0)
≤ b̃2(0)
σ̃2

2(0)
,

(34)

Since ξε(t) = κ(ηε(t)) or ηε(t) = ϕ(ξε(t)) and ψη(t) =
∫ t
0
I(0,∞)(φη(s))ds =∫ t

0 I(0,∞)(ϕ(φ(s)))ds =
∫ t
0 I(0,∞)(φ(s))ds = ψ(t), the contraction principle yields

I∞(φ, ψ) = min
{
Iη∞(φη, ψη) : φη = ϕ(φ), ψη = ψ} = Iη∞(ϕ(φη), ψ).

(Here, I∞(φ, ψ) is a rate function for the measures με induced by the processes (ξε, uε)).
From formulae (32) and (34) after a cancellation, we get the statement of the theorem.

Theorem 1.1 is proved.
Proof of Corollary 1.1. From (3) by the contraction principle, we have

I(φ) =
1
2

∫ ∞

0

I{φ(s) 
=0}

(
φ̇(s)− b(φ(s))

)2

σ2(φ(s))
ds+

+ inf
ψ∈H+(φ)

(
1
2

∫ ∞

0

I{φ(s)=0}I{βb(0)<0}
b2(0)
σ2(0)

(
1 + β − 2βψ̇(s)

)2
(1 + β)2 − 4βψ̇(s)

ds

)
+

+
1
2

∫ ∞

0

I{φ(s)=0}I{βb(0)≥0}
b2(0)
σ2(0)

ds.

Consider now the second item in more details. Using (35), we get

inf
ψ∈H+(φ)

1
2

∫ ∞

0

I{φ(s)=0}I{βb(0)<0}
b2(0)
σ2(0)

(
1 + β − 2βψ̇(s)

)2
(1 + β)2 − 4βψ̇(s)

ds =

=
1
2

inf
0≤a≤1

(
1 + β − 2βa

)2
(1 + β)2 − 4βa

∫ ∞

0

I{φ(s)=0}I{βb(0)<0}
b2(0)
σ2(0)

ds.

We reach inf at a =
1 + β

2β
∈ [0, 1] for |β| < 1. Then, after simple transformations, we

get (4). Corollary 1.1 is proved.

4. Auxiliary results.

Lemma 4.1. (Lemma 6.7 from [1]).

Let f(x) be a function such as f(x) =

{
f1(x), if x ≤ 0,

f2(x), if x > 0,
where f1(x) and f2(x) are

bounded and continuous. Then the function

(ϕ, ψ)→
∫ T

0

(
f2(ϕ(t))ψ̇(t) + f1(ϕ(t))

(
1− ψ̇(t)

))
dt

is continuous on the set {(ϕ, ψ), ϕ ∈ C[0,T]; ψ ∈ H+(ϕ)}.
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Four next lemmas are fulfilled under the Lipschitz condition by analogy with Lemmas
4.1-4.4 from [2].

Lemma 4.2. For any γ > 0, there exists a δ0 such that if ||ζε−φ||T < δ0, ||zε−ψ||T < δ0,
then |βε(t) − β(t)| < γ for all t ∈ [0, T ] and |γε(t) − γ(t)| < γ for all t ∈ [0, β(T) − γ]
and ε > 0 .

Proof. By Lemma 4.1, for any γ > 0, there exists a δ > 0 such that if ||ζε − φ||T < δ0
and ||zε − ψ||T < δ0, we have

|βε(t)− β(t)| =

=
∣∣∣∣ ∫ t

0

(
r22(ζε(s))żε(s) + r21(ζε(s))(1 − żε(s))

)
ds−

−
∫ t

0

(
r22(φ(s))ψ̇(s) + r21(φ(s))(1 − ψ̇(s))

)
ds

∣∣∣∣ < γ.

The statement for γε(t) and γ(t) can be proved the same way.
By Lemmas 4.2, 4.4, and 4.5, we have

Lemma 4.3.
Nπ(φπ(s), φ̇π(s), ψ̇π(s)) = N

(
φ(γ(t)), φ̇(γ(t)), ψ̇(γ(t))

)
γ̇(t)

and Iπ(φπ , ψπ) = Iζ(φ, ψ).

Lemma 4.4. For any T> 0 and any γ > 0, there exists δ0 such that ||zπε −ψπ||β(T )−γ ≤ γ
for all ε if ||ζε − φ||T < δ, ||zε − ψ||T < δ, δ < δ0.

Lemma 4.5. For any T> 0 and any γ > 0, there exists θ0 such that, for θ < θ0,
||ζε−φ||T−δ ≤ δ and ||zε−ψ||T−δ ≤ δ if ||πε−φπ||β(T )−θ <
θ, ||zπε − ψπ||β(T )−θ < θ.

Lemma 4.6. For bounded functions f(s) ≥ 0 and g(s) ≥ 0 such as
∫∞
0 f(s)ds <∞, we

have

inf
ψ∈AC+

∫ ∞

0

f(s)g(ψ̇(s))ds = inf
a∈[0,1]

g(a)
∫ ∞

0

f(s)ds. (35)

Proof. On the one hand, inf
a∈[0,1]

g(a) ≤ g(ψ̇(s)),∫ ∞

0

f(s) inf
a∈[0,1]

g(a)ds ≤
∫ ∞

0

f(s)g(ψ̇(s))ds. (36)

Denote g = inf
a∈[0,1]

g(a). Then, for every ε > 0, there exists ψ̇ε(t) ∈ [0, 1] such that

g(ψ̇ε(s)) ≤ g + ε

and ∫ ∞

0

f(s)g(ψ̇ε(s))ds ≤
∫ ∞

0

f(s)gds+ ε

∫ ∞

0

f(s)ds.

Thus, since ε > 0 is arbitrary,∫ ∞

0

f(s)g(ψ̇ε(s))ds ≤
∫ ∞

0

f(s)gds = inf
a∈[0,1]

g(a)
∫ ∞

0

f(s)ds. (37)

From (36) and (37), we get (35).

Lemma 4.7. Let I(φ, ψ) =
∫∞
0 M(φ(s), φ̇(s), ψ̇(s))ds from Theorem 2.1. Then, for any

a > 0, the set A(a) = {(φ, ψ) : I(φ, ψ) ≤ a} is compact.
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Proof. Since the space C is complete, it is sufficiently to prove
1) lower semicontinuity of I(φ, ψ) on C;
2) relative compactness of A(a).
In our case:

1) follows from Lemma 6.3 [1];
2) follows from the Ascoli–Arzela theorem [7; Theorem VI.1.5]: A(a) is relatively compact
if and only if

(i) sup
(x,y)∈A(a)

|x(0), y(0)| <∞;

(ii) lim
δ→0

sup
(x,y)∈A(a)

sup
s,t∈[0,T ];|s−t|<δ

|(x(t), y(t)) − (x(s), y(s))|=0 for all T > 0 .

It is easy to show that both these conditions are satisfied.

Lemma 4.8. Let I(φ, ψ) =
∫∞
0
N(φ(s), φ̇(s), ψ̇(s))ds from Theorem 2.2. Then, for any

a > 0, the set A(a) = {(φ, ψ) : I(φ, ψ) ≤ a} is compact.

Proof. Similarly to the previous lemma:
1) follows from Lemma 6.3 [1] and Lemma 3.9 [2];
2) analogously to the proof of such an item in Lemma 4.7.

Lemma 4.9. Let I(φ, ψ) =
∫∞
0
L(φ(s), φ̇(s), ψ̇(s))ds from Theorem 1.1. Then, for any

a > 0, the set A(a) = {(φ, ψ) : I(φ, ψ) ≤ a} is compact.

Proof. It follows from Lemma 4.8 and the contraction principle [4, Theorem 5.3.1].
The proofs of the following lemmas are similar to the proof of (21) and (22).

Lemma 4.10. (ζε, zε) is exponentially tight on the space CT for every T> 0.

Lemma 4.11. (πε, zπε ) is exponentially tight on the space CT for every T> 0.
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