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IVAN H. KRYKUN

LARGE DEVIATION PRINCIPLE FOR STOCHASTIC EQUATIONS
WITH LOCAL TIME

The large deviation principle for solutions of one-dimensional equations with a lo-
cal time is proved. The explicit form for the rate function is obtained. We also
consider the large deviation principle for solutions of It6’s stochastic equations with
discontinuous coefficients.

1. INTRODUCTION

In this paper, we are concerned with the large deviation principle (LDP) of one-
dimensional stochastic equations with local time and small diffusion

§e(t)=w+6L§E(t,0)+/o b(&=(s))ds + ¢ /0 o (&(s))dw(s). (1)

If 8 = 0, the LDP for the family {&., ¢ > 0} is the well-known result for different classes
of coefficients in Eq. (1). For smooth coefficients, it is a classic result by Freidlin and
Wentzel [4]. Several papers have studied LDP for solutions of Ito stochastic equations
with discontinuous coefficients. In [1,2], the d—dimensional diffusion with coefficients
which are continuous except for a (d — 1)—dimensional hyperplane {z € Ey4 : 1 > 0}
was considered (see [2] for a more detailed review).

To study Eq. (1) for § # 0, we use the method offered in [3, Proposition 4.9], [6], [9,
Proposition 2.2], [10] which reduces the equation with a local time to the It6’s equation.
We note that even when the coefficients in (1) are continuous functions, the coefficients
corresponding to Itd’s equations are discontinuous functions. For this reason, we apply
ideas developed in [1,2]. But the formal use of these results requires the existence of
two bounded derivatives of coefficients of the equation. In Section 2, we weaken these
conditions up to the Lipschitz conditions.

By I4(z), we denote an indicator of the set A. Equation (1) has a weak solution if, for
given functions b(z) and o(x) and a constant 3, there are a probability space (2, S, ¢, P)
with the flow of o-algebras Sy, ¢ > 0, continuous semimartingale (£(t), S¢), and standard
one-dimensional Wiener process (w(t) ) such that

LE(t,0) = hm—/ Ts.5)(E(3))0> (E(s))ds 2)

exists almost surely, and (1) is valid almost surely.
For the coefficients of Eq. (1), we introduce the following condition ( ).
Condition ( I):
I,. The constant |5] < 1.
I5. For the measurable functions b(z) and o(z), € R, there are the constants
0 < A < A such that
lb(z)| <A, A<o?(z) <A
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I3. For the functions b(x) and o?(x), the Lipschitz condition holds on the semiaxes
(—00,0] and (0, +00).

Under conditions I; and I3, there exists a unique weak solution of Eq. (1) [3, theorem
4.33].

Let R be a one-dimensional space, and let B(R) be its Borel o-algebra. By C[0,T],
we denote the space of all functions f(¢) continuous on the interval [0,T] with the values

in R, and C is its Borel o-algebra. For an absolutely continuous function f(t), we
t

use a standard representation f(t) = f(a) +/ f(s)ds. Let ACT[0,T] denote the set

of all absolutely continuous functions on [0,T] gtarting from 0 with derivatives in [0,1].
The norms in the spaces C[0,T] and ACT[0,T] are ||z|[r = sup [|z(t)]. We denote

te[0,T]
Cr = C[0,T] x ACT[0,T], and the norm in this space is ||(z,y)||r = ||z||7 + ||y||-
Let CJ[0, c0) be the space of all continuous functions f(¢) from [0, c0) to R; ACT[0, 00)
denote the set of all absolutely continuous functions on [0,00) starting from 0 with
derivatives in [0, 1]. For the spaces C[0,00) and ACT[0, o), we use the norm

[|z]]oo = Z Q*k(min { sup |z (1), 1}) Denote Co, = C[0,00) x ACT[0, 00) with norm
k=1 t<k

(@, 9)lloo = [12lloc +{[y]]oo-

For f € C[0,T] or f € C[0,00), we write g € HT(f) if g(¢) is an absolutely continuous
function with derivatives ¢(t) such that §(¢t) = 0 if f(¢) < 0, g(¢t) = 1 if f(¥) > 0, and
g(t) € [0,1] if f(t) =0.

Let (X, B(X)) be a metric space with metric p, and let I(xz) : X — [0,00] be a
lower semicontinuous functional such that, for any a > 0, the set {z : I(z) < a} is
compact. Here, we consider several functionals I(z) and prove Lemmas 7-9 concerning
their properties.

A family of probability measures pu. on X is said to satisfy the LDP with the rate
functional I(z) if the following conditions hold:

a) for any open set G € B(X),

11mi(1)1f€2 Inpu.(G) > —inf{I(z),z € G};

b) for any closed set F' € B(X),

limsupe? In p (F) < —inf{I(z),z € F}.
e—0
We now formulate the contraction principle [4, theorem 5.3.1]. Let the measures p.
on X induced by random elements X, satisfy the LDP with a rate functional I(z), and
let F'(z) be a continuous function from X to X’. Then the family of measures u. on X’
induced by random elements {F(X.)} satisfies the LDP with the rate functional

I'(w) = inf{1(y), y: F(y) = «}.
By uc(t) = fot I(0,00)(&c(8))ds, we denote the occupation time of a process & (t) on the

positive semiaxis.
Denote (f(:c))Jr =max (f(z),0); Leb(A) is Lebesgue’s measure of the set A.

The paper is organized as follows. The LDP for the Ito’s stochastic equation with
discontinuous coeflicients is considered in Section 2. In Section 3, we will prove the
theorem as our main result. The auxiliary results are formulated (some of them are also
proved) in Section 4.
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Theorem 1.1. Let Condition (I) be satisfied. Then the measures p. induced by the
processes & (t) and uc(t) on Coo satisfy the LDP with the rate function

o) - [ T L(6(s), d(s).0(s))ds,  where

) 2
! <¢(S)U;(2Ef)(;))) , i 6(5) #0,

L((s), §(s),1(s)) = %:22((%)) 8 i g)g filg(;zij . if é(s) = 0 and Bb(0) <0, )
%gz((%)) , if ¢(s) = 0 and Bb(0) > 0,

for the absolutely continuous ¢ such that ¢(0) = z, [;° (¢(s))2ds < 00, ¥ € HT(¢),
¥(0) =0, and I (p, 1) = oo otherwise.

As a consequence of the contraction principle, we have the following result.

Corollary 1.1. Let conditions of Theorem 1.1 be satisfied. Then the measures fic
induced by the process & (t) on (C[0,00),C) satisfy the LDP with the rate function I(¢) =

IS L(#(s), ¢(s))ds, where

2
! (¢(8)0;(§Ef)(;))) , if 6(s) £ 0
L(6(s), d(s)) = % g% (1-2). if ¢(s) = 0 and Bb(0) <0, 4
%gz((%)) if ¢(s) = 0 and Bb(0) > 0,

. N2
foow; the absolutely continuous ¢ such that $(0) = x and fooo (¢(s)) ds < oo and
Jo Tie(s)=03I{b(0)<0}ds < 0o and I(¢) = oo for other ¢.

2. LDP ror ITO’S EQUATION

Let B;(x), i = 1,2, x € R be measurable bounded functions, let Bs be a constant,
and we define

Bl(l‘), if <0,
Bo(z), if > 0.

Define the process z.(t) as a solution of the stochastic equation
t
ze(t) =z + / B(z.(s))ds + cw(t), (6)
0

and let ve(t) = fot I0,00)(7c(5))ds = f(f Ue(s)ds. We consider the LDP for the process
(e (1), ve(t))-

Define the function B(z) :
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and consider the equation
t
B0 =24 / Ba(s))ds + ew(t). (M)
0

Let 9 (t) = [y T(0,00) (Te(5))ds.

The LDP on [0,T] for the pair (Z.,?9.) was proved in [1, theorem 2.1]. Taking into
account that both processes z. and z. spend zero time at the point 0, it should be noted
that the measures induced by them on the space (C[0,T], C') coincide. Conversely, the
LDP on [0,T] for (z.,v.) is valid as well. But, as was specified in Introduction, the
existence of two bounded derivatives of the functions B;(z) is required in this theorem.
In our case, this condition can be weakened.

Theorem 2.1. Let the function Bi(x) satisfy the Lipschitz condition for x <0, and let
Bs(x) satisfy the Lipschitz condition for x > 0. Then the measures u. induced by the
processes (x:(t),ve(t)) on Co satisfy the LDP with the rate function

F(00) = [ M990, deN)ds. where

1/. 2
5(605) = Blo(s)) if 6(s) # 0,

. . 1 : . 2 if ¢(s) =0and
M(§(6), (), 90) = { 3 (BAOBE) +BOA=96)) ' g " p ()
1 if &(s) =0and

5 (B%(W(s) +B(0)(1 - WS)))’ B, (0) < By(0)

for absolutely continuous ¢ such that ¢(0) = z, fooo (¢(s))2ds < oo, and ¥ € HT(9),
¥(0) = 0. For all other pairs (¢, ¥), we set IZ (¢,1) = oco.

Corollary 2.1. Let conditions of Theorem 2.1 be satisfied. Then the measures fic
induced by the process z.(t) on (C[0,00),C) satisfy the LDP with the rate function

1 [ : 2
*(6) == / Toysoy 3(5) — B(o(s)) ) ds+
j 0 (9)
+3 /0 I 4(s)=0yds min (B3 (0), B3(0)) (1 - I{Bl(o)>o>Bz(0)})

for absolutely continuous ¢ such that $(0) = x, fooo (¢(s))2ds < 00, fooo I 4(s)=0yds < o0.
For all other ¢, we set I*(¢) = co.

Proof of Theorem 2.1.
To prove the theorem, it is sufficient to show that [12, corollary 3.4]

(i) For any a > 0, the set {(¢,v) : I(¢,v) < a} is compact.
(ii) For any R > 0, there exist a compact set K such that, for any § > 0, ,
R, ...
P{{||ze — ¢l|r < & |Jve —¢||r <6} Z K} < exp(—€—2), if £ is small.
(iii) ;ir%limi(r)lfg In P{||z: — @||r < §,||ve — ||7 < 0} =
= lim limsup ® In P{[|z. — ¢|lr <0, |[ve — ¥l|r < 8} = —Ir(¢,%) =

e—0

T T
__G [ s — [ Bonies
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T
w2 [ [Brote) - B0 ] iiorist
’ — 2 T )
+3 /0 B2 (g(s))ds — 21O 232(o>>+> /0 w<s><1—w<s>>d8>, )

Condition (i) is proved in Lemma 4.7.
At first, we prove (iii) - the local LDP for the measures p. induced by the processes
(2:(t),v:(t)) on Cr with the rate function It (¢, 1)) for every T>0.
Denote
yelt) = o+ ew(t),

e(t) = / Lionoey (e () s,

He. are the measures on C[0,T] induced by z.(t), and . are the measures on C[0,T]
induced by y.(t).
By the Girsanov’s theorem,

def—l/JB((@mw@y-i—/TB% (s))ds (11)
dpy. € Jo v 2¢% Jo ve '
Let us transform this expression. We get
T
| Blu-hduts) -
0

= B )10 9) + By () 0 ((5))+
+(B3(0) — B1(0)) I (y= (5))]dw(s). (12)
As E(fOT Iroy (y(s))dw)2 = fOT P{z + ecw(s) = 0}ds = 0 (here and further, E stands for

the mathematical expectation), then relation (12) yields

T T
/0 Bye(s))du(s) = / By (e ()] o0 (0 () + Ba (e (5)) .00 (5 (5))] duo(s). (13)

Reasoning similarly, we conclude that

/O B2 (ye(s))ds = /O [B (9= ()L~ 00,01 (4=(5)) + B3 (4= () L0,00) (y=(5))]ds.  (14)
From (11), (13), and (14), we have

dug, 1

0 S = 2 [ By )1 0(5)) + Bl T (5

1 T

1
(15)
527 ) [BRWe(5) o0} (0e(9) + B (4e()) 0.0 (v (5))]ds.

Let us transform the stochastic integral in (15) by the Tanaka formula. By Df(x), we
denote the symmetric derivative of a function f(z) :
flz+06) = flx =9

20 ’
and, by ny(dz) for a function f(x), we denote the signed measure on (R, B(R)) which
is defined from the equality

[ EEE wyte = [ g a)

dx?
if it is satisfied for any infinitely differentiable function H(x) with a compact support.
Then, for a function f(x), for which there exist D f(z) and n;(dz), and for a continuous
semimartingale X (¢) with the canonical decomposition X (¢t) = X (0) + M(¢t) + A(¢),

Df(x) = lim
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where M stands for a continuous local martingale, and A is a continuous process of finite
variation, the Tanaka formula has following form [3, formula 4.3]:

FEW) = ) + [ DIKE)IX() +5 [ 15wy (a).

We observe that, for an arbitrary measurable function g(z), for which one of the
integrals makes sense, the following formula is valid [13, (VI, Corollary 1.6)]:

/O 9(X ())d(M), = / o) LX (t,y)dy.

Here, (M) is a continuous increasing process associated to the local martingale M.
Put F(z) = [ B(y)dy. Then

By (z) if z <0,
DF(z) = —Bl(m;BQ(O) if o =0,
Bsy(z) if z>0.

Then, for the infinitely differentiable function H (z) with compact supports in (—oo,
o0), using the existence of Sobolev’s derivatives (it comes from the Lipschitz condition)
of the functions B;(x), we get

nr(dx) = (B2(0) — B1(0))do(2)dz + [B(2)I(~c0,0) (%) + Ba(2)1(0,00) ()] dex
with the Dirac-delta function dp(z). According to the Tanaka‘s formula,

F(y=(T)) =F(z) + 6/0 [B1(Yz () (~00,01 (4e(5)) + B2 (ye(5))L(0,00) (y= (5))]dw+

2 [T . )
+5 / (B (0 () —o0,01 (4= () + Ba (b () L, (v ()}l (16)
By(0) — B1(0)

5 LY<(T,0).
From (15) and (16), it follows that
dﬂmg o 1 BQ(O) —Bl(O) Ye .
in 9 = S 1P() - P - 2P o)
- % ; [BE (ye ()1 (—00,0) (4=(5)) + B3 (4= (5)) [ (0,00) (9= (5))]ds— (17)

1 T . )
=5 | 1B (02 9) + By () 0 (5.

In view of (17), taking into account that

F(6(T)) — F(6(0)) = / B(6(5))(s)ds,

we get

dpta,
P{l|ze = ¢llr < 6, [lve = ¥llr < 6} = EIgjy.—gl1r <5y (@) (| k. gl <o} (W) 7 =

dlj’ya
B»(0) — B1(0)
2e2

= B~z <5} (@) 1n—vl1r <5 (@) ex { = LY*(T,0)+ (18)

1
2e2

T T
+§2 /0 B(¢(s))d(s)ds — /0 [B3(6(5))(1 = 0(s)) + B3(6(5))8h(5)] ds } I
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where

5. = e { SIFGLT) ~ PO + 535 [ B0 - 966) + B9 e)lds-

— oz [ B (60) + B3 02050 T 0 ()

T
=5 [ BT 0060 + a6 o (9 .

Consider now J. in more details. We denote
A1 =F(y=(T)) — F(¢(T)),

T
A= [ [BHO)1 = 5(5) + BRO)H5) = B0 () e 0:()) -
— B3 (e () Li0,00) (v 5)) | s

T
Az =— /0 [B1(4e () (00,01 (4= (8)) + B2(ye (8)))L(0,00) (4 ()] ds.

1 1 1
It is clear that J, = exp{—Al + —A5 + —Ag}.
g2 2e2 2

For any v > 0, there exists § > 0 such that the conditions ||y.—¢||r < &, ||ke—||r < 4,
and conditions of the theorem yield (with some constant K)

[Ar] = [F(ye(T)) — F(¢(T))| < Klly — ¢llr <.

Then, by Lemma 4.1 for any v > 0, there exists 6 > 0 such that if ||y. — ¢||z < 6,
||k — |7 <, we have

4] = / [BR(6(5))(1 = 0(s) + B3 (6(3))ib(5) | ds—

T
- / | B2 (05D o0.0) () + B3 (=) (o,00) (v (5)) ] ds

T
/0 B2 (6(3))(1 = (s) + B3 (6(5))ib(s) | ds—

T
- [ [Brop 0~ helo)) + B o)) s
By conditions of the theorem,
T
| (BN e (o) + Bt 0 060 5
0
Hence, on the set ||ye — ¢||r < 0, ||ke — ¥||r < §, we obtain
2l A
exp{—;—K}nggexp{€2+K}. (19)
From [1, Lemma 4.5 and formula (5.12)], it follows that

<.

|As| =

< K.

B - B
1iir(1) 1i£11_§nf62 In Eljjy, — |1z <5 (@) ||k —p||p <5 (@) exp{ - wﬂk (T,O)} =
B - B
= lig%)lirerlj(t)lpe-:2 In Eljjy. — )10 <5 (W) ||k —p||p <5 (@) exp{ — wLyf (T,O)} =
T B _ B +2 T .
=3 | 19()Pas + (20 = B2 O)7) | 0= ias
(20)

From (18)-(20), we get (10).
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Second, we prove (ii). It is the condition of exponential tightness [11, Chapter 3] (or
strong tightness [12]) of (z.,v.) on Cp. We recall [12, Theorem 4.1] that the family of
processes (X.(t),uc(t)) on the space Cr is exponentially tight (of order £2) if, for any
T>0,n>0,

hm lim sup £ 1nP(||(X€,u€)||T > K) —00, (21)

K—oo e—0

Jim Tim sup < In sup P(||( (4 0),uc(- +0)) — (X(0), uc(0))]]a > n) — 0. (22)

A—0 -,

We will use the Chebyshev inequality
1
< _
P> K) < o Be(E(D) (23)

22
for the functi —exp {573 |
or the function p(x) = exp 5Te?

T
Let us prove (21). From the inequalities sup |z ()| < |z| —|—/ |B(zc(s))|ds +
0

t<T
sup |ew(t)]
t<T
T
and sup |ve (t)] = / I(0,00) (wc(5))ds, we have
t<T 0

P(I(ae.volir > K) < P( <suple(0)) + P <suple)]) <

< (X <ol [ 1Bt oias) £ (5 <slewl)+ (5 < [ Tt o)as).

Denote last three items by P;, P», and P; respectlvely. Then, by (23) and Condition
(1), we have

(1e1+ [ 1BGetopias)’

K2
P <ewp{-grmiBew { 2Te? } =
2
16(|a:| + AT) _K?
< .
=P { 32Te2 }

T 2
xXp { — X Xp{ ————— .
3= OPAT 5o IH AP 2Te2 =P T aaTe2
From [5, Cor. of Theorem 5, p.173], we have
K2

K K
P=P( < e\/Tiléﬂw(t)D = P15 < eswlul) <200 { - 5}

4T <1

Then
K? 16(jz| + AT) 16T?
P(||(x€’”€)”T>K) SQXP{_ 32T62}(8Xp{ 30T¢2 }+eXp{32Tg2}+2);

and

K2 (|| +AT)2) o

hm lim sup £2 1nP(||(a:€,v€)||T >K) < hmoo(_?)Q—T T

K—oo ¢0

So (21) is proved.
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Let us prove (22). Similarly, we have

P(|l(we(- +0),v:(- +6)) = (w:(6), v:(0)lla > ) <
532‘/ $))ds + e(w(t +0) - w(0))]| > T)+
+P((sup /aw T(0,00) (@=(5))ds| > g) <
r([ a2« gl | ] -

+P</9A+9 T0.00 (2(5))ds > g)

By the analogy to the proof of (21), we denote last three items by Py, Ps, and Ps,
respectively. Then we have

16A2A2 —n?

Prsep{—p o)

16A2% — 2 .

32Ag2 V7

From the property of the $4-stopping time and from [5, Cor. of Theorem 5, p.173],
we have

Ps < exp{

2
1
su dw(s - 6 Asu ‘/ dw(s <2e — .
t<£‘ / t<lf < { 32A52}

Further, we obtain

P(ll(e(- +6),vo(- +6)) = (2:(6),v-(8)) l|a > ) <

<ol = i) (o0 {3} + o0 (53} +2)
2

A
and lim sup 2 lnsup P<||(:E6( +0),v:(-+0)) — (2= (0),v:(8))||a > n) < —77—-1-—
e—0 32A

i timsup <2 sup P (|| (= (- +0), v+ 0)) = (a=(0),v2(©)lla > 1) <

<lim(—n—2+A) —00.
T A—0 32A
So, (22) is proved, and we prove the exponential tightness of (x., ve).
So, we have established the local LDP on Cr for every T> 0 (Local LDP) and expo-
nential tightness for (x(t),ve(t)). Using [12, Theorem 4.5],

Exponential tightness

Local LDP

we obtain the rate function in such a form: IZ (¢, ) = sup I7($, ).
T

LDP<:>{

Hence, the measures p,. induced by the processes (z.(t), v (t)) satisfy the LDP on
C[0,00)x AC™T |0, 00) with the rate function IZ (¢, 1) = sup It (¢,v), where I (¢, 1)) is de-
T

fined by (10). Consider now three cases: ¢(s) # 0; ¢(s) = 0 and B1(0) > Bz(0); ¢(s) =
0 and B1(0) < B3(0). Using the property Leb(s € [0,T] : ¢(s) = 0, d(s) # 0) =0, we
get (8).
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Theorem 2.1 is proved.
Proof of Corollary 2.1. From (8) by the contraction principle, we have

10 = 4 [ o (6060~ Bt ) ot

1 [ . . 2
weglf(@ <§/0 I{¢(s):0}1{31(0)>32(0)}(Bz(o)w(s)+Bl(0)(1—w(s))) d5>+

YeH* ()

Let us consider two last items in more details. Using Lemma 4.6, we have

1 [>® . .
inf (5 /O I g(5)=01 L( B, (0)< B2 (0)} (B%(OW(s) + B (0)(1 - w(s))> dS)-

. L[~ : . 2
weglf(aﬂ (5/0 It o(s)=031{B1 (0)>B2(0)} (BQ(OW(S) + B1(0)(1 - w(s))> dS) =

1 . 2 [
2.0 (B0 + BI(O)(1 ~a) / Iio(y=0 L1 0)> By o)) ds =
1

o
=g nf ((B2(0)a+ Bi(0)(1 - a))21{31<o>s0}>/ Hg(5)=01 (1 (0)> Ba(0)} A5+
a€l0,1] 0

1 >
+g nf ((Bz(O)a+Bl(0)(1—a))21{32<o>20})/ Io(s)=01 (81 (0)>Ba(0)y A5+
a€l0,1] 0

1 . 2 [
+§ mf ((BQ (O)G + 31 (0)(1 — a’))I{Bl(O)>O>BQ(O)}) / I{¢(s)=O}I{Bl(O)>BQ(0)}dS-
a€l0,1] 0

In the first and second cases, we reach inf at ¢ = 0 and a = 1, respectively. These two
cases can be united in such a way: ir[lf | (B2(0)a + B1(0)(1 — a))2 = min(B3(0), B3(0)).
ac|0,1

In the third case, we reach inf at a = ﬁlg(o) € [0, 1], and it equals 0. By analogy,

1 [ . .
weglf(@ (5/0 Ito(s)=03L( By (0)<B2(0)} <B§(0W(S) +B(0)(1 - 1/)(5))>d5> =

1 . >
=3 inf <<B§(O)a + B2(0)(1 — a))I{B2(o)go}> / It g(s)=01 L( B, (0)< B2 (0)} dS+
a€[0,1] 0

. >
+5 inf ((33(0)a+3f(0)(1 —a)>1{31<o>>0}>/ Lg(s)=01L (31 (0)<Ba(0)y A5+
acl0.1] 0

1 . e
+§ inf ((B%(O)a—i—Bf(O)(l — a’))I{Bl(O)<O<BQ(O)}) / I{¢(s)=O}I{Bl(O)gBQ(O)}dS-
a€(0,1] 0

Here, we reach inf in the first case at a = 1, in the second one at a = 0, and in the
third case either at a = 1 (if B3(0) < B#(0)) or a = 0 (else). All three cases can be

united in such a way: ir[lfl] (Bg(O)a + B¥(0)(1 — a)) = min(B?(0), B2(0)).

a€lo0,
So,
1 [ , ?
1) =5 [ Ttorim (90) ~ Blo(e)) ) ds+
1 * : 2 2
T3 ), Tew=0r {1~ Lipi0>0>B:0) min (B7(0), B3(0))ds.
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After simple transformations, we get (9). Corollary 2.1 is proved.

Now let us consider the solution of the equation

¢ ¢
) =2+ [ Bletsds+e [ rica(s)ute), 29
0 0
where the function B(z) has form (5), and the function r(z) has the same construction,
ie.
ri(x), if z <0,
r(z) =14 73, if =0, (25)
ro(x), if = >0,

where r;(z),i = 1,2, z € R, are measurable bounded functions, and r3 is a constant.
By analogy with [2, Section 4], we use the random change of time. Denote z.(t) =

fot I(0,50)(¢:(5))ds. Let’s prove the next theorem.

Theorem 2.2. In Eq. (24), let r*(z) > X > 0; for functions B;(z) and r?(z), i = 1,2,
the Lipschitz condition holds on (—o00,0] and (0,400), respectively. Then the measures
e induced by the processes ((c,z:) on Cs satisfy the large deviation principle with the

rate function IS, (¢,v0) = [;° N(¢(s), é(s), ¥ (s))ds, where

(é66) = o) |
72(é(s)) ) if ¢(s) #0,

|~

(B20)i(s) + Bu0)(1 = () )* #f 91) = 0amd

; 1
N(op(s),d(s),¥(s)) =< = - - , 26
R PR TR DT TATR U TR
if ¢(s) =0and
LB, L B0
5(r5(0) P(s) + 20) (1 —w(s))), Bi(0) _ B:(0)

for an absolutely continuous ¢ such that ¢(0) = x, fooo gf)Q(s)ds < 00, and Y € HT(9)
such that 1(0) = 0. For all other pairs (¢, 1), we set IS (¢, 1) = oo.

Proof

For this rate function, Condition (i) is proved in Lemma 4.8.
Further, we set

5.0 = [ (o)),

0 (27)

8(t) = / (3(6(s))h(5) + r3(6(s)) (1 = () ) ds,

and ~.(t) and 7(¢) are their inverses, respectively (they exist because (.(t) and [3(¢)
monotonously increase).

For ((t), let us make a random change of time. We have (. (7:(t)) = m(t) or ((t) =
7e(B:(t)), where

=x tiB(ﬂe(s)) S w(s
me(t) = +/0 Tz(ﬂe(s))d + e (s), (28)

where w(s) is another Wiener process. We now denote 27 (t) = fot L (0,00 (mc(5))ds.
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By the analogy with [2, Section 4], we set
P (t) = o(7(1)) ;
i ; oy 00(0)
¢"(t) = o(v(1)¥(t) = 5000)
7(®) t
T(t) = i(s)r2(p(s))ds = h(~(s))r2 s5)))y(s)ds ; (29)
v (1) = / d(s)r3 (¢(s))d / b(v()r3 (e(r(5)) ) (s)ds
0 = 93 (666))360) = a0 (¢00)
R AN IO
We now mark D(z) = 7“’2((2 Then
Dy (z) = leT(;:))’ if <0,
D(z) = D3:B—23, if =0,
3
Dy(z) = fj((;”)) if > 0.

2
Using (8), we can establish the LDP on C. for the measures p7 induced by the

processes (e, 2X) and obtain its rate function IZ (¢™,¢™) :

I7,(67 v) = / N (67, 67, §7)ds

1 oo . 2
:g/ Tgm(s)20) <¢”(S)—D(¢”(S))> ds+
1 P . . 2 (30)
+§/ f{¢w<s>=0}f{D1<o>>D2<o>}(Dz(O)W(S)+D1(0)(1—¢“(8))) ds+
0
41

5 /0 g (9)=03 L{D1(0)< D20} (DS(O)W(S) +D1(0)(1 - W(S))) ds.

In view of Lemma 4.3, we have, for every T' > 0,
I3(6,¢) = lim lim inf * In P{|¢: — ||z < 6, ][z —vl|z < 6} =

= lim liminf & In P{[|7e — 67 |g(r) < 61127 = " [|aer) < 0} = Iy (67, 47).

Using this result and Lemmas 4.10 and 4.11, we get, by Theorem 4.5 [12],
I5(9,%) = sup I3(6,¥) = lim liminf e In P{JIC = 6loc < 8,22 = ¥lloe < 0} =

= ;irr(l)limi(r)leZ In P{||me — ¢™|]oo < 0,128 — 9" ||oo < 6} =
= sup IE(T) (7, ™) = I, (87, 97).
B(T)

Hence, the measures p. induced by the processes ((c(t),zc(t)) satisfy the LDP on
C[0,0) x ACT[0,00) with the rate function

IS (6,9) = IZ(¢7, ¥™).
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Using formulae (29) and (30) and making a change in the integrals, we obtain the

explicit form of I (¢, ):

1 [ é(s) —B(¢(s))>2
() = 3 /O e (O aat
+ %/Ooo I{¢(s):0}l{f§(8)) B0 (%WS)?((S;JF
" ffl(((()))) <1 - ¢(8)7§((8)))>25(0)ds+
+ %/000 IWS):O}I{E%((&) . fg(‘gf} (fg((g))w( )7;((3)>+
+§$ﬂﬁ—w$§$)>mm@.

Using now (27), we obtain (26).
Theorem 2.2 is proved.

3. PROOF OF THEOREM 1.1.

Condition (i) for this rate function is proved in Lemma 4.9.
Let us consider Eq. (1).
Following [10], we introduce a function

(1-p)x, =<0
w) = (14+p8)x, z=>0.
Let ¢(x) be the inverse function to x(x). We put

1+ fOsgnz
5oy — )
1+ Bsgnzx
where
1, if x>0,
sgny = 0, Zf T = 0,
-1, if =<0,

and consider now It6’s stochastic equation

00) = pla) + [ B(s)ds+e [ Fn(s))dus).
Equation (33) has a weak solution by [14], and the process
£(t) = r(n:(1))

(33)

is a solution of Eq. (1) [8, Lemma 2], [10, lemma 1]. It is necessary to note that the
functions b(z) and &(x) have the form of the functions B(x) from (5) and r(x) from (25).

For the process 7. (t), we denote its occupation time on the positive semiaxis by

%mzlammww&

Then it is possible to apply Theorem 2.2. Using formula (26), we can establish the
LDP on C for the measures ! induced by the processes (7., v:) and obtain its rate
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function I (4", ") = fooo Lo(¢", ", 4p")ds, where
. - 2
1 (47(5) = b(e(s)))
2 S2es)
(‘62<o>¢"<s> L h(0)(1 - Ws)))

1
2 52(0)gn(s) + 52(0)(1 — gn(s)

L2(¢77, énﬂbn) =

Since &(t) = k(no(£) or ne(t) = P(&(t) and ¥I(t)

fot I(0,00) ((¢(s)))ds = fot I(0,00)(¢(s))ds = 1(t), the contraction principle yields

if ¢"(s) #0,

if ¢"(s) =0and
b1(0) _ by(0)
51(0) ~ 3(0)°
if ¢"(s) =0and
b ba(0)
53(0)’

<
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= fot I(0700)(¢n(8))ds =

Ioo(¢, ) = min { I, (¢",4") : ¢" = p(¢), " = b} = IL(p(¢"), ¥).
(Here, Io(¢, 1) is a rate function for the measures u. induced by the processes (&, uc)).
From formulae (32) and (34) after a cancellation, we get the statement of the theorem.

Theorem 1.1 is proved.

Proof of Corollary 1.1. From (3) by the contraction principle, we have

(d(s) — bio(s)))”
16) = 5 /0 I{(s)0} ds+

2 a2(¢(s))

b2(0) (148 —284(s))”

+ inf 1/OOI I ds |+
vert @)\ 2 Jy TP G2 0) (1 )2 4pi(s)

1 [ b2(0)
+§/0 Lrotr=0 Liav20y 72 gy 45

Consider now the second item in more details. Using (35), we get

B(0) (1+6-280()"

inf = [ Iipe—or]
vt 2/0 tot=01 o0 <0} 30y T gy -

1+ 3—26a)° [
1+ )2 —48a J, Tig(s)=0yL{pb(0)<0

g

_|_
=

434 (s)

2

b2(0)

We reach inf at a = 5 € [0,1] for |5] < 1. Then, after simple transformations, we

get (4). Corollary 1.1 is proved.

4. AUXILIARY RESULTS.
Lemma 4.1. (Lemma 6.7 from [1]).
fl(x)a Zf xSO,
falz), if >0,
bounded and continuous. Then the function

(o) = [ (Palel)(e) + Fle) (1 =
is continuous on the set {(p,¢), ¢ € C[0,T]; v € H(¢)}.

Let f(x) be a function such as f(x) =

))dt

where f1(z) and fa(x) are
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Four next lemmas are fulfilled under the Lipschitz condition by analogy with Lemmas
4.1-4.4 from [2].

Lemma 4.2. For anyy > 0, there exists a dg such that if ||(c — é||r < o, ||ze— |7 < do,
then |Be(t) — B(t)| < 7 for all t € [0,T] and |y:(t) — y(t)| < v for all t € [0,5(T) — 7]
and e >0 .

Proof. By Lemma 4.1, for any v > 0, there exists a § > 0 such that if ||{: — ¢||7 < o
and [|ze — || < do, we have

|Bs(t) - ﬁ(t)l =
| (B2 + (G 1 = 25—

<.

_ /Ot (r§(¢(s))¢(s) +12(g(s))(1 — ¢(s))>ds

The statement for . (¢) and (t) can be proved the same way.
By Lemmas 4.2, 4.4, and 4.5, we have

Lemma 4.3.
NT(67(5), 67 (5), 07 (5)) = N (6(x(1), 61 (£)), ¥ (1(1)) ) (1)
and I™(¢™, 7)) = I(¢, ).

Lemma 4.4. For any T> 0 and anyy > 0, there exists 5o such that ||2I —Y7||gry—y <y
for all e if ||Cc — Bl|r < 8, ||ze — Y||lr < I, 0 < do.

Lemma 4.5. For any T> 0 and any v > 0, there exists 0y such that, for 0 < 0y,
1¢c = @llr—s <0 and [|ze =Y[|r—5 < 6 if llme = o™ lla(r)—-0 <
0,112 —¥7|lgry—o < 0.

Lemma 4.6. For bounded functions f(s) >0 and g(s) > 0 such as fo s)ds < 0o, we
have
Lt [ eationds = it o) [ reas (33)
Proof. On the one hand, H[%)f1 g(a) < g(w( ))s
a€
/ f(s) inf g(a)ds < / f(s (36)
0 a€l0,1]

Denote g = aeir[%)fl} g(a). Then, for every € > 0, there exists Q/JE( ) € [0, 1] such that

g(=(s)) <g+e

lwfwmwaﬁws<Awfwﬁ@+sAwf@Ms

Thus, since € > 0 is arbitrary,

| r@atiends < [ pormas = it a(o) [ ssias (37
From (36) and (37), we get (35).

and

Lemma 4.7. Let I(¢,) = fo ), d(s),1(s))ds from Theorem 2.1. Then, for any
a >0, the set A(a) = {(é, ) : (¢ w) < a} is compact.



LDP FOR STOCHASTIC EQUATIONS WITH LOCAL TIME 155

Proof. Since the space C is complete, it is sufficiently to prove
1) lower semicontinuity of I(¢,v) on C;
2) relative compactness of A(a).
In our case:
1) follows from Lemma 6.3 [1];
2) follows from the Ascoli-Arzela theorem [7; Theorem VI.1.5]: A(a) is relatively compact
if and only if
(i) sup  [x(0),y(0)| < oo;
(z,y)€A(a)
(ii) im  sup sup [(z(t),y(t)) — (x(s),y(s))|=0 for all T >0 .
0=0 (2,y)€A(a) 5,t€[0,T);|s—t| <5
It is easy to show that both these conditions are satisfied.

Lemma 4.8. Let I(¢,v) = fooo N(¢(s), d(s),(s))ds from Theorem 2.2. Then, for any
a >0, the set A(a) = {(¢,v) : I(¢, ) < a} is compact.

Proof. Similarly to the previous lemma:
1) follows from Lemma 6.3 [1] and Lemma 3.9 [2];
2) analogously to the proof of such an item in Lemma 4.7.

Lemma 4.9. Let I(¢,9) = fooo L(¢(s), ¢(s),%(s))ds from Theorem 1.1. Then, for any
a >0, the set A(a) = {(¢,v¢) : I(¢,9) < a} is compact.

Proof. Tt follows from Lemma 4.8 and the contraction principle [4, Theorem 5.3.1].
The proofs of the following lemmas are similar to the proof of (21) and (22).

Lemma 4.10. ((.,z.) is exponentially tight on the space Cr for every T> 0.
Lemma 4.11. (7., zT) is exponentially tight on the space Cr for every T> 0.
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