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P. BABILUA, B. DOCHVIRI, AND B. MELADZE

ON OPTIMAL STOPPING FOR TIME-DEPENDENT GAIN
FUNCTION

General questions of optimal stopping for an inhomogeneous Markov process for a
time-dependent gain function are investigated. The connection between the optimal
stopping problems for an inhomogeneous standard Markov process and the corre-
sponding homogeneous Markov process constructed in the extended state space is
established. A detailed characterization of a value-function and the limit procedure
for its construction in the problem of optimal stopping of an inhomogeneous Markov
process is given. The form of ε-optimal (optimal) stopping times is also found.

1. Introduction

General questions of the theory of optimal stopping of a homogeneous Markov process
are set forth in monograph [1]. An excessive characterization of the payoff, the methods
of its construction, the form of ε-optimal and optimal stopping times are given in various
restrictions on the gain function. Excessive and also supermartingale characterizations
of costs present two fundamental directions in the theory of optimal stopping [3,5].

In the present work, the questions of the optimal stopping theory for an inhomogeneous
(with infinite lifetime) Markov process for a time-dependent gain function and with the
observation cost are studied. By extending the state space and the space of elementary
events, the problems of optimal stopping for the inhomogeneous case can be reduced to
the corresponding problems for homogeneous standard Markov processes, from which an
excessive characterization of a value-function, the method of its construction, and the
form of ε-optimal (optimal) stopping times for the initial problem are found.

It should be noted that the form of ε-optimal stopping times was established in the case
of the optimal stopping of homogeneous Markov processes on a bounded time interval in
papers [2,5,7] with the use of the method of state space extension.

Here, we consider an inhomogeneous (with infinite lifetime) Markov process

X = (Ω,Ms,Ms
t , Xt, Ps,x), 0 ≤ s ≤ t < +∞,

in the state space (E,B), i.e., it is assumed that (see [3,6])
1) E is a locally compact Hausdorff space with a countable base, B is the σ-algebra

for Borel sets of the space;
2) for every s ≥ 0, x ∈ E, Ps,x is a probability measure on the σ-algebra Ms, Ms

t ,
t ≥ s, is the increasing family of sub-σ-algebras of the σ-algebraMs, where

Ms1 ⊇Ms2 , Ms
t ⊆Mu

v for s1 ≤ s2, u ≤ s ≤ t ≤ v,

it is assumed as well that

M s
=Ms, M s

t =Ms
t =Ms

t+, 0 ≤ s ≤ t <∞,
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whereM s
is a completion ofMs with respect to the family of measures {Pu,x, u ≤ s, x ∈

E}, M s

t is the completion of Ms
t in M s

with respect to the same family of measures
([3], Ch. 1, Sect. 5);

3) the paths of the process X = (Xt(ω)), t ≥ 0, are right continuous on the time
interval [0,∞);

4) for each t ≥ 0, the random variables Xt(ω) (with values in (E,B)) are Ms
t -

measurable, t ≥ s, where it is supposed that

Ps,x(ω : Xs(ω) = x) = 1,

and the function Ps,x(Xs+h ∈ B) is measurable in (s, x) for the fixed h ≥ 0, B ∈ B (with
respect to B[0,∞)⊗ B);

5) the process X is strong Markov: for every Ms
t , t ≥ s-stopping time τ (i.e. τ(ω),

{ω : τ(ω) ≤ t} ∈ Ms
t , t ≥ s), we should have

Ps,x(Xτ+h ∈ B| Ms
τ ) = P (τ,Xτ , τ + h,B) ({τ <∞}, Ps,x-a.s.),

where
P (s, x, s+ h,B) ≡ Ps,x(Xs+h ∈ B);

6) the process X is quasi-left-continuous: for every non-decreasing sequence of (Ms
t ),

t ≥ s-stopping times τn ↑ τ should be

Xτn → Xτ ({τ <∞}, Ps,x-a.s.).

Let the gain function ϕ(t, x) and the observation cost c(t, x) ≥ 0 be Borel measurable
functions (i.e. measurable with respect to the product σ-algebra B′ = B[0,+∞) ⊗ B)
which is defined on E′ = [0,+∞) × E, and ϕ(t, x) takes its values in (−∞,+∞]. It is
assumed that, for the observation stopping time t, we obtain a gain

g(t, x) = ϕ(t, x)−
t∫

0

c(s,Xs) ds.

It is further assumed that the following integrability condition of a random process
g(t,Xt(ω)), t ≥ 0, is fulfilled:

(1) Ms,x sup
t≥s

g−(t,Xt) < +∞, s ≥ 0, x ∈ E.

The optimal stopping problem for the process X with gain g(t, x) is stated as follows:
the value-function (payoff) v(s, x) is introduced in the form

(2) v(s, x) = sup
τ∈Ms

Ms,xg(τ,Xτ ),

where Ms is the class of all finite (Ps,x-a.s.) M s
t , t ≥ s-stopping times; it is required to

find the stopping time τε (for each ε ≥ 0), for which

Ms,xg(τε, Xτε) ≥ v(s, x) − ε

for any x ∈ E.
Such a stopping time is called ε-optimal. In the case where ε = 0, it is called simply

an optimal stopping time.
To construct ε-optimal (optimal) stopping times, it is necessary to characterize the

value v(s, x). For this purpose, the following notion of an excessive function turns out to
be fundamental.

A function f(t, x) which is given on E′, takes its values in (−∞,+∞], and is measurable
with respect to the universal completion B′∗ of the σ-algebra B′ is called excessive (with
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respect to X) if

(3)

1) Ms,xf
−(t,Xt) < +∞, 0 ≤ s ≤ t < +∞, x ∈ E,

2) Ms,xf(t,Xt) ≤ f(s, x), t ≥ s, x ∈ E,

3) Ms,xf(t,Xt)→ f(s, x), if t ↓ s, x ∈ E.

2. Construction of a Homogeneous Standard Markov Process in the

Extended State Space

Let us introduce now a new space of elementary events Ω′ = [0,+∞)×Ω with elements
ω′ = (s, ω), a new state space (extended state space) E′ = [0,+∞)×E with the σ-algebra
B′ = B[0,+∞)⊗ B, the new random process X ′ with values in (E′,B′)

X ′
t(ω

′) = X ′
t(s, ω) = (s+ t,Xs+t(ω)), s ≥ 0, t ≥ 0,

and the translation operators Θ′
t

Θ′
t(s, ω) = (s+ t, ω), s ≥ 0, t ≥ 0,

where it is obvious that

X ′
u(Θ

′
t(ω

′)) = X ′
u+t(ω

′), u ≥ 0, t ≥ 0.

In the space Ω′, we introduce an σ-algebra

N0 = σ(X ′
u, u ≥ 0), N0

t = σ(X ′
u, 0 ≤ u ≤ t).

On the σ-algebra N0, the probability measures

P ′
x′(A) = P ′

(s,x)(A) ≡ Ps,x(As),

where A ∈ N0, and As is the section of A at the point s,

As =
{
ω : (s, x) ∈ A

}
,

where it is easy to see that As ∈ Fs ≡ σ(Xu, u = s), and if a ∈ N0
t , then As ∈ Fss+t ≡

σ(Xu, s ≤ u ≤ s+ t).
Consider the function

P ′(h, x′, B′) ≡ P ′
x′(X ′

h ∈ B′).

We have to verify that this function is measurable in x′ for a fixed h ≥ 0. For the
rectangles B′ = Γ×B which generate the σ-algebra B′, we have

P ′(h, x′, B′) = Ps,x
(
ω : (s+ h,Xs+h(ω)) ∈ Γ×B

)
=

= I(s+h∈Γ)Ps,x(Xs+h ∈ B).

The function P ′(h, x′, B′) is measurable in x′, and, hence, we can introduce measures
P ′
μ′ on (E′,B′). Let us perform the completion of the σ-algebra N0 with respect to the

family of all measures P ′
μ′ . We denote this completion by N ′ and then perform the

completion of each σ-algebra N0
t in N ′ with respect to the same family of measures, by

denoting them by N ′
t.

The following key result (in a somewhat different form) was proved in [2].

Theorem 1. The random process

X ′ = (Ω′, N ′, N ′
t, X

′
t,Θ

′
t, P

′
x′), t ≥ 0,

is a homogeneous standard Markov process in the space (E′,B′).



ON OPTIMAL STOPPING FOR TIME-DEPENDENT GAIN FUNCTION 57

Proof. The main step in the proof is to verify that the processX ′
t, t ≥ 0 is strong Markov,

i.e. we have to show that

(4) M ′
x′
[
f ′(X ′

τ ′+h) · I(τ ′<∞)

]
= M ′

x′
[
M ′
X′

τ′ f
′(X ′

h)I(τ ′<∞)

]
,

where f ′(x′)is an arbitrary bounded B′-measurable function, and τ ′ is an arbitrary N0
t+-

stopping time. Using the monotone class theorem, it suffices to prove this relation for
the indicator functions

f ′(x′) = I(s∈Γ) · I(x∈B).

Note that if τ ′(ω′) is an N0
t+-stopping time, then τ(ω) = s+ τ ′(s, ω) is a F0

t+, t ≥ s-
stopping time, where Fst = σ(Xu, s ≤ u ≤ t), t ≥ s.

We have (
ω : τ(ω) < t

)
=
(
ω : τ ′(s, ω) < t− s

)
=

=
(
ω′ : τ ′(ω′) < t− s

)
s
,

but (ω′ : τ ′(ω′) < t− s
)
∈ N0

t−s. Therefore, the section (ω′ : τ ′(ω′) < t− s)s belongs to
Fst . Thus, τ(ω) is a Fst+, t ≥ s-stopping time, and the variable τ(ω) = s + τ ′(s, ω) is a
Ms

t , t ≥ s-stopping time.
We know from Proposition 7.3, Ch. I in [3] that the strong Markov property (4) of the

process X ′ remains true for arbitraryN ′
t, t ≥ 0-stopping times τ ′. From Proposition 8.12,

Ch. I in [3], we get N ′
t = N ′

t+. The quasi-left-continuity of the process X ′ now easily
follows from the same property of X . Theorem 1 is proved.

3. The Optimal Stopping Problem for Processes X and X ′
and the

Connection Between Them

Let f(x′) = f(s, x) be an arbitrary Borel measurable function (i.e. B′-measurable)
which is given on E′ and takes its values in (−∞,+∞]. Consider the sets

A =
{
ω′ : lim

t↓0
f(X ′

t) = f(X ′
0)
}
,

B =
{
ω′ : the path f(X ′

t(ω
′)) is right continuous on [0,+∞)

}
.

Obviously, the sections As and Bs can be written in the form

As =
{
ω : lim

t↓s
f(t,Xt(ω)) = f(s,Xs(ω))

}
,

Bs =
{
ω : the path f(t,Xt(ω)) is right continuous on [s,+∞)

}
.

Theorem 2. The sets A and B belong to N0∗ (N0∗ is the universal completion of
N0), and the sections As and Bs belong to Fs∗ (Fs∗ is the universal completion of
Fs = σ(Xu, u ≥ s)).

Further, we have

(5) P ′
s,x(A) = Ps,x(As), P ′

s,x(B) = Ps,x(Bs).

Proof. The set A can be written as

A =
{
ω′ : lim

k→∞
sup

0<t< 1
k

f(X ′
t(ω

′)) = lim
k→∞

inf
0<t< 1

k

f(X ′
t(ω

′)) = f(X ′
0(ω

′))
}
.

We get from Theorem 13, Ch. III in [4] that the latter sets are N0-analytic, and, hence,
they belong to the universal completion of N0. Thus, the set A itself belongs to N0∗.
As for the set B, we get from Theorem 34, Ch. IV in [4] that this set is a completion of
the N0-analytic set; hence, B ∈ N0∗. The same reasoning shows that As and Bs belong
to the universal completion Fs∗ of the σ-algebra Fs. For the measure P ′

s,x and for the
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sets A and B belonging to the universal completion of N0, there obviously exist sets A1,
A2, B1, and B2 belonging to N0 such that

A1 ⊆ A ⊆ A2, B1 ⊆ B ⊆ B2,

P ′
s,x(A

1) = P ′
s,x(A) = P ′

s,x(A
2),

P ′
s,x(B

1) = P ′
s,x(B) = P ′

s,x(B
2).

But, by the definition of the measure P ′
s,x, we have

P ′
s,x(A

1) = P ′
s,x(A

1
s), P ′

s,x(A
2) = Ps,x(A2

s),

P ′
s,x(B

1) = P ′
s,x(B

1
s ), P ′

s,x(B
2) = Ps,x(B2

s ).

From these relations and the inclusions A1
s ⊆ As ⊆ A2

s, B1 ⊆ B ⊆ B2, it easily follows
that

(6) P ′
s,x(A) = P ′

s,x(As), P ′
s,x(B) = Ps,x(Bs).

Theorem 2 is proved.

Let us consider the optimal stopping problem for the process X ′ with the same gain
g(x′) = g(s, x) (x′ = (s, x)) satisfying the conditions

M ′
x′ sup
t≥0

g−(X ′
t) <∞, x′ ∈ E′,(7)

P ′
x′
{
ω′ : lim

t↓0
g(X ′

t) = g(x′)
}

= 1, x′ ∈ E′,(8)

and with the value v′(x′) defined by

(9) v′(x′) = v′(s, x) = sup
τ ′∈M′

M ′
x′g(X ′

τ ′),

where M′ is the class of all finite (P ′
x′ -a.s.) N ′

t, t ≥ 0-stopping times.
Our next step consists in establishing the connection between the value-functions

v(s, x) and v′(s, x).

Theorem 3. The values of the initial optimal stopping problem (9) coincide

(10) v(s, x) = v′(s, x), s ≥ 0, x ∈ E.

Proof. First, consider the N ′
t, t ≥ 0-stopping time τ ′. By Proposition 7.3, Ch. I in

[3], for τ ′ and fixed x′ = (s, x), there exists an N0
t+, t ≥ 0-stopping time τ̃ ′ such that

P ′
x′(τ ′ = τ̃ ′) = 1. We have

M ′
x′g(X ′

�τ ′) = Ms,xg
(
s+ τ̃ ′(s, ω), Xs+�τ ′(s,ω)

)
=

= Ms,xg
(
τ(ω), Xτ(ω)

)
,

where s+ τ̃ ′(s, ω) ≡ τ(ω) is an Ms
t , t ≥ s-stopping time. Hence, it is obvious that

(11) v′(s, x) ≤ v(s, x).
It remains to establish that the opposite inequality it true. Denote, by Mn

s , the class of
allMs

t , t ≥ s-stopping times taking their values from the finite set

s, s+ 2−n, . . . , s+ k · 2−n, . . . , s+ n.

Obviously,
Mn
s ⊆Mn+1

s , n = 1, 2, . . . .
For every τ ∈Ms, we define the sequence τn of stopping times

τn =

{
s+ k2−n, if s+ (k − 1)2−n ≤ τ < s+ k2−n,
s+ n if τ ≥ s+ n.
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It is clear that τn ∈Mn
s , and the sequence τn(ω) decreases to τ(ω) starting from some

n(ω). Using the right continuity of paths g(t,Xt(ω)), t ≥ s (Ps,x-a.s.), we can write

g(τ,Xτ ) = lim
n→+∞ g(τn, Xτn) (Ps,x-a.s.).

Hence, by Fatou’s lemma, we get

Ms,xg(τ,Xτ ) ≤ lim
n
Ms,xg(τn, Xτn).

Consequently,

v(s, x) = sup
τ∈�

n
Mn

s

Ms,xg(τ,Xτ ) = lim
n→+∞ sup

τ∈Mn
s

Ms,xg(τ,Xτ ).

Consider the expression

sup
τ∈Mn

s

Ms,xg(τ,Xτ ),

for which the optimal stopping problem represents the value of the sequence{
g(s+ k2−n, Xs+k2−n),Ms+k2−n

}
, k = 0, 1, . . . , n2−n.

It is well known that, for this problem, there always exists an optimal stopping time
having form

σn = min
{
s+ k2−n : γnk = g(s+ k2−n, Xs+k2−n)

}
,

where the sequence γnk is constricted recursively:

γnk = max
{
g(s+ k2−n, Xs+k2−n),Ms,x(γnk+1/Ms+k2−n)

}
.

It easily follows from these recursion relations that γnk is a Borel function of Xs+k2−n .
Therefore, σn has the form

σn = min
{
s+ k2−n : Xs+k2−n ∈ Bnk

}
,

where the sets Bnk belong to the σ-algebra B.
Thus, we get

v(s, x) = lim
n→+∞ ↑Ms,xg(σn, Xσn).

We now define the corresponding N0
t , t ≥ 0-stopping times

σ′
n = min

{
k2−n : X ′

k2−n ∈ [0,+∞)×Bnk
}
.

We have

M ′
s,xg(X

′
σ′

n
) = Ms,xg

(
X ′
σ′

n(s,ω)(s, ω)
)

=

= Ms,xg
(
s+ σ′

n(s, ω), Xs+σ′
n(s,ω)(ω)

)
= Ms,xg(σn, Xσn)

as s+ σ′
n(s, ω) = σn(ω). Therefore,

Ms,xg(σn, Xσn) = M ′
s,xg(X

′
σ′

n
) ≤ v′(s, x).

Thus, v(s, x) ≤ v′(s, x) and, finally, v(s, x) = v′(s, x). Theorem 3 is proved.

The next purpose is the excessive characterization of a payoff v(s, x). Let us note
(as can be easily seen) that our definition of an excessive function (with respect to X)
coincides exactly with the usual definition of an excessive function (with respect to X ′).
Therefore, we can directly use Theorem 1, Ch. III in [1] and get the following result.
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Theorem 4. Suppose that condition (1) is satisfied. Then the value v(s, x) is a mini-
mal excessive majorant of the function g(s, x). The value v(s, x) is a Borel measurable
function (i.e. B′-measurable) which can be found by the limit procedure

(12) v(s, x) = lim
n→+∞ lim

N→+∞
QNn g(s, x),

where
Qng(s, x) = max

{
g(s, x),Ms,xg(s+ 2−n, Xs+2−n)

}
,

and QNn is the N -th power of the operator Qn.

Proof. The assertion is a consequence of the coincidence of the values v(s, x) and v′(s, x)
and of Lemma 3, Ch. III in [3] which states that

v′(x′) = lim
n→+∞ lim

N→+∞
QNn g(x

′),

where
Qng(x′) = max

{
g(x′),M ′

x′g(X ′
2−n)

}
.

Note also that M ′
x′g(X ′

2−n) is B′-measurable in x′. Hence, the functions Qng(x′),
QNn g(x

′) and the function v′(x′), being the limit of these functions, are also B′-measurable.
Thus, the value v′(x′) is a Borel measurable excessive function (with respect to X ′)

which obviously satisfies the condition

M ′
x′ sup
t≥0

v′(X ′
t) < +∞, x′ ∈ E′.

Then, as is well known (Theorem 2.12, Ch. II in [3]), the paths v(X ′
t(ω

′)) are right
continuous with the left-hand limits on [0,+∞) (P ′

x′ -a.s.). Using Theorem 2, we obtain

Ps,x

{
ω : the path v(t,Xt(ω)) is right continuous on [s,∞)

}
= 1,

s ≥ 0, x ∈ E.

To prove the main result of the present work, we can now apply Theorem 3, Ch. III in
[1]. Theorem 4 is proved.

Theorem 5. Let the gain g(t, x) satisfy (with respect to X) the conditions
1) Ms,x sup

t≥s
|g(t,Xt)| < +∞, s ≥ 0, x ∈ E;

2) Ps,x
{
ω : lim

t↓s
g(t,Xt(ω)) = g(s, x)

}
= 1, s ≥ 0, x ∈ E.

Then
i) for every ε > 0, the stopping times

(13) τε = inf
{
t ≥ s : v(t,Xt) ≤ g(t,Xt) + ε

}
are ε-optimal;

ii) if the function g(t, x) is upper semicontinuous, i.e.

g(s, x) ≥ lim
t→s
y→x

g(t, y),

and the stopping time

(14) τ0(ω) = inf
{
t ≥ s : v(t,Xt) = g(t,Xt)

}
is finite (Ps,x-a.s.), then τ0(ω) is an optimal stopping time.

Proof. From Theorem 3, Ch.III in [1], we know that, for every ε > 0, the stopping time

τ ′ε = inf
{
t : v(X ′

t) ≤ g(X ′
t) + ε

}
is ε-optimal:

M ′
x′g(X ′

τ ′
ε
) ≥ v(x′)− ε, x′ ∈ E′,
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i.e.
Ms,xg

(
s+ τ ′ε(s, ω), Xs+τ ′

ε(s,ω)(ω)
)
≥ v(s, x) − ε.

But it is obvious that s+ τ ′ε(s, ω) = τε(ω); hence,

Ms,xg(τε, Xτε) ≥ v(s, x)− ε.
Assume now the upper semicontinuity of the function g(x′). Then, from the same

theorem, we get again that the stopping time

τ ′0 = inf
{
t ≥ 0 : v(X ′

t) = g(x′t)
}

is optimal:
M ′
x′g(Xτ ′

0
) = v(x′).

From this, similarly to the previous reasoning, we get the optimality of the stopping
time τ0(ω). Theorem 5 is proved.
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