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M-ESTIMATION FOR DISCRETELY SAMPLED DIFFUSIONS

We study the estimation of a parameter in the nonlinear drift coefficient of a sta-
tionary ergodic diffusion process satisfying a homogeneous Itô stochastic differential
equation based on discrete observations of the process, when the true model does not
necessarily belong to the observer’s model. Local asymptotic normality of M -ratio
random fields are studied. Asymptotic normality of approximate M -estimators based
on the Itô and Fisk–Stratonovich approximations of a continuous M -functional are
obtained under a moderately increasing experimental design condition through the
weak convergence of approximate M -ratio random fields. The derivatives of an ap-
proximate log-M functional based on the Itô approximation are martingales, but the
derivatives of a log-M functional based on the Fisk–Stratonovich approximation are
not martingales, but the average of forward and backward martingales. The averaged
forward and backward martingale approximations have a faster rate of convergence
than the forward martingale approximations.

1. Introduction

Drift estimation in diffusion processes based on continuous observations inside a time
interval is now classical, see e.g., Liptser and Shiryaev (1978), Basawa and Prakasa Rao
(1980), Arato (1982), Prakasa Rao (1999), Kutoyants (1984, 2003), and Bishwal (2008)
for the long-time asymptotics and Ibragimov and Has’minskii (1980) and Kutoyants
(1984, 1994) for the small-noise asymptotics of different parametric and nonparametric
estimators. On the other hand, the drift estimation for discretely observed diffusions is
the recent trend of investigations due to the difficulty in observing the diffusion process
continuously throughout a time interval. Several approaches are used for the parametric
estimation based on discrete observations viz., conditional least squares (cf. Dorogov-
cev (1976), Kasonga (1988)), approximating the continuous Girsanov likelihood (cf. Le
Breton (1976), Florens-Zmirou (1989), Genon-Catalot (1990), Yoshida (1992), Mishra
and Bishwal (1995), Harison (1996), Kloeden et al. (1996), Kessler (1997), and Bishwal
(2006, 2007)), approximating the transition densities (cf. Dacunha-Castelle and Florens-
Zmirou, Pedersen (1995a,b), Aı̈t-Sahalia (2002)), martingale estimation function (cf.
Bibby and Sørensen (1995a,b), Kessler and Sørensen (1995)) and generalized method
of moments (cf. Clement (1993, 1995, 1997), Duffie and Glynn (1997)), and indirect
inference method (cf. Gourieroux and Monfort (1995), Gourieroux et al. (1996), Broze
et al. (1998)). Several approaches are used for the nonparametric estimation based on
discrete observations, cf. Pham (1981), Nguyen and Pham (1981), Coutin (1994), Arfi
and Lecoutre (1994), and Arfi (1995). Statistical inference for ergodic diffusions for con-
tinuous time data is studied in detail by Kutoyants (2003). See the new monograph by
Bishwal (2008) for recent results on approximate likelihood asymptotics and approxi-
mate Bayes asymptotics for the drift estimation of discretely observed diffusions based
on high-frequency data.
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However, a gap always exists between the ideal mathematical models and the real
data. One can hardly get clean data generated from the model due to the contam-
ination by some noises and misspecification of the true model. We assume that the
statistician/econometrician does not know the true model and uses a parametric model
with an unknown parameter. The true model does not necessarily belong to the ob-
server’s parametric model. In such a situation, the robust estimation of a parameter
was studied by McKeague (1984). The robust estimation in diffusion processes based on
discrete observations is the focus of this paper. We study the asymptotic behavior of
the approximate M -estimators which maximize two different approximate M -functionals
based on discrete observations. The motivation of using two different approximate M -
functionals comes from the fact that, for the correctly specified model, the estimators
based on one approximate log-likelihood (Fisk–Stratonovich) are known to have faster
rates of convergence than those based on another approximate log-likelihood (Itô) in the
Ornstein–Uhlenbeck process, as shown by Bishwal and Bose (2001), and the approxi-
mants of the Fisk–Stratonovich integral converge to the corresponding integral faster
than the approximants of the Itô integral converge to the corresponding integral for
nonlinear integrators, as shown in Section 7. Our method of proof is through the weak
convergence of approximate M -ratio random fields.

The organization of the paper is as follows : In Section 2, we prepare notations,
assumptions, and preliminaries. In Section 3, we study the weak convergence of ap-
proximate M -ratio random fields. In section 4, we study the asymptotic normality of
approximate M -estimators.

2. Model, Assumptions, and Preliminaries

Let the true process follow the homogeneous nonlinear Itô stochastic differential equation
dXt = g(Xt)dt+ dWt, t ≥ 0
X0 = η,

(2.1)

where {Wt, t ≥ 0} is a one-dimensional standard Wiener process, g is a known real-
valued function defined on R. We assume that the process {Xt, t ≥ 0} is observed at
0 = t0 < t1 < . . . < tn = T with ti − ti−1 = T

n = h.
We assume the parametric form of the Itô stochastic differential equation

dXt = μ(θ,Xt)dt+ dWt, t ≥ 0
X0 = η

(2.2)

estimate θ ∈ Θ from the observations {Xt0 , Xt1 , . . . , Xtn} ≡ Xn,h
0 . Let θ∗ be the quasi-

true parameter defined as

θ∗ := arg inf
θ

1
2

∫
R

(g(x)− μ(θ, x))2ν(dx),

where ν is the invariant measure of the ergodic diffusion process. Suppose that θ∗ lies in
the interior of Θ.

We use the following notations throughout the paper: ΔXi = Xti − Xti−1 , ΔWi =
Wti −Wti−1 , C is a generic constant independent of h, n, and other variables (perhaps,
it may depend on θ). A prime denotes the derivative with respect to θ and a dot denotes
the derivative with respect to x.

Looking back at the Girsanov likelihood, if the continuous observations of {Xt} on
the interval [0, T ] were available, then the M -functional of θ would be

MT (θ) = exp{
∫ T

0

a(θ,Xt)dXt −
1
2

∫ T

0

b(θ,Xt)dt}, (2.3)

and the M -estimate would be
θT = argmax

θ∈Θ
MT (θ),
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where a and b are two given functions on R × Θ with Θ a closed subset of R. The
functions a and b arise from the model misspecification. In practice, we have discrete
data, and we have to approximate the likelihood to get an M -estimate. First, we use an
Itô type approximation of the stochastic integral and the rectangular approximation of
the ordinary integral in (2.3) and obtain an approximate M -functional

Mn,T (θ) = exp

{
n∑
i=1

a(θ,Xti−1)(Xti −Xti−1)−
h

2

n∑
i=1

b(θ,Xti−1)

}
. (2.4)

The approximate M -estimate (AME1) based on Mn,T is defined as
θn,T := arg max

θ∈Θ
Mn,T (θ).

Next, we transform the Itô integral in (2.3) to the Fisk–Stratonovich (FS) integral
and obtain

MT (θ) = exp{
∮ T

0

a(θ,Xt)dXt −
1
2

∫ T

0

·
a(θ,Xt)dt−

1
2

∫ T

0

b(θ,Xt)dt}, (2.5)

where
∮ T
0
a(θ,Xt)dXt is the Fisk–Stratonovich (FS) integral.

We apply the Fisk–Stratonovich approximation of a stochastic integral and the rectan-
gular approximation of ordinary integrals and obtain another approximate M -functional

∼
Mn,T (θ) = exp

{
1
2

n∑
i=1

[
a(θ,Xti−1) + a(θ,Xti)

]
(Xti −Xti−1)

−h
2

n∑
i=1

·
a(θ,Xti−1)−

h

2

n∑
i=1

b(θ,Xti−1)

}
. (2.6)

The approximate M -estimate (AME2) based on
∼
Mn,T is defined as

θ̃n,T := argmax
θ∈Θ

∼
Mn,T (θ).

We assume that the following conditions are satisfied:
(A1) There exists the constants K and K1 such that

|g(x)− g(y)| ≤ K(|x− y|),
|a(θ, x)| ≤ K1(θ)(1 + |x|),
|a(θ, x)− a(θ, y)| ≤ K1(θ)|x − y|.

(A2) The diffusion process X is stationary and ergodic with invariant measure ν, i.e.,
for any φ with E[φ(·)] <∞,

1
n

n∑
i=1

φ(Xti)
P→ Eν [φ(X0)] as T →∞ and h→ 0.

(A3) For each p > 0, sup
t
E|Xt|p <∞.

(A4) a(θ, x) and b(θ, x) are twice continuously differentiable in θ ∈ Θ and, for some
γ > 0,

|a′(θ, x)| + |a′′(θ, x)| ≤ C(θ)(1 + |x|γ),

|a′(θ, x) − a′(θ, y)| ≤ C(θ)|x − y|.
(A5) The functions a, b, and a′ are smooth in x, and their derivatives are of polynomial
growth order in x uniformly in θ.
(A6) We assume

Γ ≡ Γ(θ∗) :=
∫

R

ρ′′(θ∗, x)dν(x) > 0,

where

ρ(θ, x) :=
1
2
b(θ, x)− a(θ, x)g(x).
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(A7) m(θ) has its unique maximum at θ = θ∗ in Θ,
where

m(θ) :=
∫

R

[ρ(θ, x)− ρ(θ∗, x)]ν(dx).

(A8) There exists a twice continuously differentiable function κ(x) satisfying the partial
differential equation

1
2
··
κ(x) + g(x)

·
κ(x) = ρ′(θ, x)

and
1√
T
κ(XT )

P→ 0 as T →∞.

(A9) We assume

β(θ∗) :=
∫

R

[a′(θ∗, x) +
·
κ(x)]2g2(x)dν(x) > 0.

(A10) a is twice continuously differentiable function in x with bounded derivatives up
to the second order.

Remark: Using (2.1), we have

MT (θ) = exp{
∫ T

0

a(θ,Xt)dWt −
∫ T

0

[
1
2
b(θ,Xt)− a(θ,Xt)g(Xt)]dt}

= exp{
∫ T

0

a(θ,Xt)dWt −
∫ T

0

ρ(θ,Xt)dt.}

3. Weak Convergence of Approximate M -Ratio Random Fields

Let θ = θ∗ + T−1/2u, u ∈ R. Consider the approximate M -ratio (AMR) random fields

Zn,T (u) :=
Mn,T (θ)
Mn,T (θ∗)

,
∼
Zn,T (u) :=

∼
Mn,T (θ)
∼
Mn,T (θ∗)

. (3.1)

Let
Aα,T := {u ∈ R : |u| ≤ α, θ∗ + T−1/2u ∈ Θ}, α > 0.

mn,T (θ) :=
1
T

logMn,T (θ),
∼
mn,T (θ) :=

1
T

log
∼
Mn,T (θ).

Da(θ∗, Xti−1 , u) := a(θ,Xti−1)− a(θ∗, Xti−1)− T−1/2ua′(θ∗, Xti−1).

Below, we prove the weak convergence of the random fields Zn,T (·) and
∼
Zn,T (·). We

start with some lemmas.

Lemma 3.1 Under assumptions (A1) - (A9), we have

sup
θ∈Θ
|mn,T (θ) −m(θ)| P→0 as T →∞, n→∞ and

T

n
→ 0.

Proof. Note that
mn,T (θ)

= T−1
n∑
i=1

a(θ,Xti−1)(Xti −Xti−1)−
1
2
T−1h

n∑
i=1

b(θ,Xti−1)

= T−1
n∑
i=1

a(θ,Xti−1)ΔWi +
1
2
T−1

n∑
i=1

∫ ti

ti−1

a(θ,Xti−1)g(Xt)dt

−1
2
T−1h

n∑
i=1

b(θ,Xti−1)

=: H1 +H2 +H3.
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Note that E|H1|2 ≤ C T
n and by the Burkholder–Davis–Gundy inequality

E|H2|2 ≤ CT−1, E|F2|2 ≤ C,E|H3|2 ≤ C.
Thus,

E|mn,T (θ)|2 ≤ C,

E|mn,T (θ2)−mn,T (θ1)|2 ≤ C|θ2 − θ1|

for θ, θ1, θ2 ∈ Θ by (A5). Therefore, the family of distributions of Mn,T (·) on the Banach
space C(Θ) with sup-norm is tight. Since m(·) is a point of C(Θ) and since, by ergodic

property, mn,T (θ)
P→ m(θ) as T →∞ and T

n → 0, this completes the proof of the lemma
using Lemma 3.1 in Yoshida (1990).

The next lemma is a generalization of local asymptotic normality (LAN) for ergodic
diffusions using the random field Zn,T (u).

Lemma 3.2 Under assumptions (A1) - (A9), for all u ∈ R,

logZn,T (u) = uΔn,T (θ∗)− 1
2
u2Γ(θ∗) + rn,T (u),

where

Δn,T (θ∗)
D→Δ(θ∗), Δ ∼ N(0, β(θ∗))

and rn,T (u)
P→0 as T →∞ and T

n2/3 → 0.

The next two lemmas give the tightness of the distributions of the AMR random field
Zn,T (u).

Lemma 3.3 Under assumptions (A1) - (A9), for each ε > 0,

lim
δ→0

lim sup
T→∞, T

n2/3 →0

P

{
sup

u1,u2∈Aα,T ,|u2−u1|≤δ
| logZn,T (u2)− logZn,T (u1)| > ε

}
= 0.

Lemma 3.4 Under assumptions (A1) - (A9), for each ε > 0,

lim
α→∞ lim sup

T→∞, T

n2/3 →0

P

{
sup
|u|≥α

Zn,T (u) > ε

}
= 0.

Lemma 3.5. Under assumptions (A1) - (A9),

sup
θ∈Θ
|∼mn,T (θ)−m(θ)| P→0 as T →∞ and

T

n
→ 0.

Proof : Note that
∼
mn,T (θ) = T−1

n∑
i=1

a(θ,Xti−1) + a(θ, xti )
2

(Xti −Xti−1)−
1
2
T−1h

n∑
i=1

·
a(θ,Xti−1)

−1
2
T−1h

n∑
i=1

b(θ,Xti−1).

=

{
T−1

n∑
i=1

a(θ,Xti−1) + a(θ,Xti)
2

ΔWi −
1
2
T−1h

n∑
i=1

·
a(θ,Xti−1)

}

+
1
2
T−1

n∑
i=1

∫ ti

ti−1

[
a(θ,Xti−1) + a(θ,Xti)

]
g(Xt)dt

−1
2
T−1h

n∑
i=1

b(θ,Xti−1)

=: F1 + F2 + F3.
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Note that

F1 =

[{
T−1

n∑
i=1

a(θ,Xti−1) + a(θ,Xti)
2

ΔWi −
1
2
T−1h

n∑
i=1

·
a(θ,Xti−1)

}

−T−1
n∑
i=1

a(θ,Xti−1)ΔWi

]
+ T−1

n∑
i=1

a(θ,Xti−1)ΔWi

=: G1 +G2.

From Theorem 7.1, it follows that E|G1|2 ≤ C T
n and, by the Burkholder–Davis–Gundy

inequality, E|G2|2 ≤ CT−1, E|F2|2 ≤ C,E|F3|2 ≤ C. Thus,
E|∼mn,T (θ)|2 ≤ C

and
E|∼mn,T (θ2)−

∼
mn,T (θ1)|2 ≤ C|θ2 − θ1|

for θ, θ1, θ2 ∈ Θ by (A5). Now using arguments similar to Lemma 3.1 completes the
proof of the lemma.

The proofs of Lemmas 3.2 - 3.4 are similar and much simpler respectively to the proofs
of three next lemmas. Hence, we omit the details.

The next lemma is a generalization of LAN for ergodic diffusions using the random
field

∼
Zn,T (u).

Lemma 3.6 Under assumptions (A1) - (A10), for all u ∈ R,

log
∼
Zn,T (u) = u

∼
Δn,T (θ∗)− 1

2
u2Γ(θ∗) +

∼
γn,T (u),

where
∼
Δn,T (θ∗)

D→Δ(θ∗), Δ ∼ N(0, β(θ∗)) and
∼
γn,T (u)

P→0 as T →∞ and T
n2/3 → 0.

Proof : For θ = θ∗ + T−1/2u, we have

log
∼
Zn,T (u) = log

∼
Mn,T (θ)
∼
Mn,T (θ∗)

=
n∑
i=1

[
a(θ,Xti) + a(θ,Xti−1)

2
−
a(θ∗, Xti) + a(θ∗, Xti−1)

2

]
ΔXi

−h
2

n∑
i=1

[
ȧ(θ,Xti−1)− ȧ(θ∗, Xti−1)

]
− h

2

n∑
i=1

[
b(θ,Xti−1)− b(θ∗, Xti−1)

]
=

1
2

n∑
i=1

[
{a(θ,Xti)− a(θ∗, Xti)} +

{
a(θ,Xti−1)− a(θ∗, Xti−1)

}]
ΔWi

+
1
2

n∑
i=1

∫ ti

ti−1

[
{a(θ,Xti)− a(θ∗, Xti)}+

{
a(θ,Xti−1)− a(θ∗, Xti−1)

}]
g(Xt)dt

−h
2

n∑
i=1

[
ȧ(θ,Xti−1)− ȧ(θ∗, Xti−1)

]
− h

2

n∑
i=1

[
b(θ,Xti−1)− b(θ∗, Xti−1)

]
(by using (2.1))

= T−1/2u

n∑
i=1

a′(θ∗, Xti−1) + a′(θ∗, Xti)
2

ΔWi

+
1
2

n∑
i=1

[
Da(θ∗, Xti−1 , u) +Da(θ∗, Xti , u)

]
ΔWi

− h

2
T−1/2u

n∑
i=1

a′(θ∗, Xti−1)−
h

2

n∑
i=1

Da(θ∗, Xti−1 , u)



68 JAYA P. N. BISHWAL

+
1
2

n∑
i=1

∫ ti

ti−1

[
{a(θ,Xti)− a(θ∗, Xti)} +

{
a(θ,Xti−1)− a(θ∗, Xti−1)

}]
g(Xt)dt

− h

2

n∑
i=1

[
a(θ,Xti−1)− a(θ∗, Xti−1)

]2
−

n∑
i=1

∫ ti

ti−1

[
a(θ,Xti−1)− a(θ∗, Xti−1)

]
a(θ∗, Xti−1)dt

= u
∼
Δn,T −

1
2
Γn,T +

∼
ρn,T (u)

where
∼
Δn,T =: T−1/2

[
n∑
i=1

a′(θ∗, Xti−1) +
·
κ(Xti−1) + a′(θ∗, Xti) +

·
κ(Xti)

2
ΔWi

−h2
n∑
i=1

a·′(θ∗, Xti−1) +
··
κ(Xti−1)

]
,

Γn,T =: h
n∑
i=1

[
ρ(θ,Xti−1)− ρ(θ∗, Xti−1)

]2
and ∼

ρn,T (u)

=:

{
n∑
i=1

Da(θ∗, Xti−1 , u) +Da(θ∗, Xti , u)
2

ΔWi −
h

2

n∑
i=1

Da(θ∗, Xti−1 , u)

}

+T−1/2u

n∑
i=1

∫ ti

ti−1

a′(θ∗, Xti−1)
[
a(θ∗, Xt)− a(θ∗, Xti−1)

]
dt

+
n∑
i=1

Da(θ∗, Xti−1 , u)
[
a(θ∗, Xt)− a(θ∗, Xti−1)

]
dt

+
1
2

n∑
i=1

∫ ti

ti−1

{
[a(θ,Xti)− a(θ∗, Xti)]−

[
a(θ,Xti−1)− a(θ∗, Xti−1)

]}
g(Xt)dt

=: S1(u) + S2(u) + S3(u) + S4(u).
Thus,

log
∼
Zn,T (u) = u

∼
Δn,T −

1
2
Γn,T +

∼
ρn,T (u)

= u
∼
Δn,T −

1
2
u2Γ− 1

2
(Γn,T − u2Γ) +

∼
ρn,T (u)

= u
∼
Δn,T −

1
2
u2Γ +

∼
γn,T (u)

,

where
∼
γn,T (u) =

∼
ρn,T (u)− 1

2
(Γn,T − u2Γ).

Due to the mean-value theorem and ergodicity, we have

Γn,T − u2Γ
P→0 as T →∞ and

T

n
→ 0.

Notice that
∼
Δn,T =

{
T−1/2

[
n∑
i=1

a′(θ∗, Xti−1 +
·
κ(θ∗, Xti−1) + a′(θ∗, Xti) +

·
κ(θ∗, Xti)

2
ΔWi

−h
2

n∑
i=1

[
·
a
′
(θ∗, Xti−1) +

··
κ(θ∗, Xti−1)]

]
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−T−1/2
n∑
i=1

[a′(θ∗, Xti−1) +
·
κ(θ∗, Xti−1)]ΔWi

}

+ T−1/2
n∑
i=1

[a′(θ∗, Xti−1) +
·
κ(θ∗, Xti−1)]ΔWi

=: H3 + Δn,T .

From Theorem 7.1, it follows that

H3
P→0 as

T

n2/3
→ 0.

Notice that for
ζi(t) = a′(θ∗, Xti−1) +

·
κ(θ∗, Xti−1)− a′(θ∗, Xt)−

·
κ(θ∗, Xt)

with ti−1 ≤ t < ti, i = 1, 2, . . . , n,

E|T−1/2
n∑
i=1

[a′(θ∗, Xti−1) +
·
κ(θ∗, Xti−1)]ΔWi

−T−1/2
∫ T
0 [a′(θ∗, Xt) +

·
κ(θ∗, Xt)]dWt|

= T−1/2E|
n∑
i=1

∫ ti

ti−1

[a′(θ∗, Xti−1) +
·
κ(θ∗, Xti−1)]dWt

−
n∑
i=1

∫ ti

ti−1

[a′(θ∗, Xt) +
·
κ(θ∗, Xt)]dWt|

= T−1/2E|
n∑
i=1

∫ ti

ti−1

[
a′(θ∗, Xti−1) +

·
κ(θ∗, Xti−1)− a′(θ∗, Xt)−

·
κ(θ∗, Xt)

]
dWt|

= T−1/2E|
∫ T

0

ζi(t)dWt| ≤ T−1/2

{
E|
∫ T

0

ζi(t)dWt|2
}1/2

= T−1/2

{∫ T

0

E|ζi(t)|2dt
}1/2

≤ T−1/2

{∫ T

0

CE|Xti−1 −Xt|2dt
}1/2

(by (A4))

≤ CT−1/2

{
n∑
i=1

∫ ti

ti−1

(t− ti−1)dt

}1/2

≤ CT−1/2

{
n

(
T

n

)2
}1/2

≤ C
(
T

n

)1/2

.

Thus,

T−1/2
n∑
i=1

[a′(θ∗, Xti−1) +
·
κ(θ∗, Xti−1)]ΔWi − T−1/2

∫ T

0

[a′(θ∗, Xt) +
·
κ(θ∗, Xt)]dWt

P→0

as T/n→ 0.
On the other hand, using condition (A2) by the Central Limit Theorem for stochastic

integrals (see Basawa and Prakasa Rao (1980, Theorem 2.1, Appendix 2)), we have

T−1/2

∫ T

0

[a′(θ∗, Xt) +
·
κ(θ∗, Xt)]dWt

D→N(0, β(θ∗)) as T →∞.

Hence,

Δn,T = T−1/2
n∑
i=1

[a′(θ∗, Xti−1)+
·
κ(θ∗, Xti−1)]ΔWi

D→N(0, β(θ∗)) as T →∞ and
T

n
→ 0.

Thus, to complete the proof of the lemma, we have to show that
∼
ρn,T (u)

P→0.
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Let us first estimate S1(u).

S1(u) =

{[
n∑
i=1

Da(θ∗, Xti−1 , u) +Da(θ∗, Xti , u)
2

ΔWi −
h

2

n∑
i=1

D
·
a(θ∗, Xti−1 , u)

]

−
n∑
i=1

Da(θ∗, Xti−1 , u)ΔWi

}
+

n∑
i=1

Da(θ∗, Xti−1 , u)ΔWi

=: H4 + r1(u).

From Theorem 7.1, it follows that H4
P→0 as T

n2/3 → 0.
Next,

E(r21(u)) = E

[
n∑
i=1

Da(θ∗, Xti−1 , u)ΔWi

]2

=
n∑
i=1

E|Da(θ∗, Xti−1 , u)|2E|ΔWi|2

= h
n∑
i=1

E|Da(θ∗, Xti−1 , u)|2

(3.9)

But

Da(θ∗, Xt, u) = (θ − θ∗)a′(θ∗, Xt)− T−1/2ua′(θ∗, Xti−1)
(where |θ∗ − θ∗| < T−1/2u)

= T−1/2u [a′(θ∗, Xt)− a′(θ∗, Xt)] .

Hence
E|Da(θ∗, Xti−1 , u)|2 = T−1u2E|a′(θ∗, Xti−1)− a′(θ∗, Xti−1)|2

≤ T−1u2E|J(Xti−1)(θ
∗ − θ∗)|2

≤ T−2u4E[J2(X0)]
≤ CT−2u4.

(3.10)

Substituting (3.10) into (3.9), we obtain
E(r21(u)) ≤ CT−2u4nh ≤ CT−1.

Thus, r1(u)
P→0 as T →∞. Hence,

S1(u)
P→0, as T →∞ and

T

n2/3
→ 0.

Next, let us estimate S2(u). We have, by the Itô formula,
a(θ∗, Xt)− a(θ∗, Xti−1)

=
∫ t
ti−1

·
a(θ∗, Xu)dXu + 1

2

∫ t
ti−1

ä(θ∗, Xu)du

=
∫ t

ti−1

·
a(θ∗, Xu)dWu +

∫ t

ti−1

[
·
a(θ∗, Xu)

·
a(θ∗, Xu) +

1
2
ä(θ∗, Xu)]du

=:
∫ t

ti−1

·
a(θ∗, Xu)dWu +

∫ t

ti−1

A(θ∗, Xu)du.

Thus

E|S2(u)|2 = E|T−1/2u

n∑
i=1

∫ ti

ti−1

a′(θ∗, Xti−1)
[
a(θ∗, Xt)− a(θ∗, Xti−1)

]
dt|2

= E|T−1/2u
n∑
i=1

∫ ti

ti−1

[
a′(θ∗, Xti−1)

·
a(θ∗, Xu)dWu

+
∫ t

ti−1

a′(θ∗, Xti−1)A(θ∗, Xu)du

]
dt|2
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≤ 2T−1u2

{
E|

n∑
i=1

∫ ti

ti−1

∫ t

ti−1

a′(θ∗, Xti−1)
·
a(θ∗, Xu)dWudt|2

+E|
n∑
i=1

∫ ti

ti−1

∫ t

ti−1

a′(θ∗, Xti−1)A(θ∗, Xu)dudt|2
}

=: 2T−1u2(N1 +N2).

Note that, for Bi,t :=
∫ t
ti−1

a′(θ∗, Xti−1

·
a(θ∗, Xu)dWu,

N1 =
n∑
i=1

E

(∫ ti

ti−1

Bi,tdt

)2

+
n∑

j 
=i=1

E

(∫ ti

ti−1

Bi,tdt

)(∫ tj

tj−1

Bj,tdt

)

≤
n∑
i=1

(ti − ti−1)
∫ ti

ti−1

E(B2
i,t)dt

(the last term being zero due to the orthogonality of the integrals)

≤
n∑
i=1

(ti − ti−1)
∫ ti

ti−1

{∫ t

ti−1

E
[
a′(θ∗, Xti−1)

·
a(θ∗, Xu)

]2
du

}
dt

≤ C
T

n

n∑
i=1

∫ ti

ti−1

(t− ti−1)dt (by (A4) and (A3))

≤ C
T

n

n∑
i=1

(ti − ti−1)2 = C
T 3

n2
.

On the other hand, for Ri,t =
∫ t
ti−1

a′(θ∗, Xti−1)a(θ∗, Xu)du,

N2 = E|
n∑
i=1

∫ ti

ti−1

∫ t

ti−1

a′(θ∗, Xti−1)A(θ∗, Xu)dudt|2

= E|
n∑
i=1

∫ ti

ti−1

Ri,tdt|2 =
n∑
i=1

(
∫ ti

ti−1

Ri,tdt)2 +
n∑

j 
=i=1

E

(∫ ti

ti−1

Ri,tdt

)(∫ tj

tj−1

Rj,tdt

)

≤
n∑
i=1

(ti − ti−1)E

(∫ ti

ti−1

Ri,tdt

)2

+
n∑

j 
=i=1

{
E(
∫ ti

ti−1

Ri,tdt)2E(
∫ tj

tj−1

Rj,tdt)2
}1/2

≤
n∑
i=1

(ti − ti−1)
∫ ti

ti−1

E(R2
i,t)dt

+
n∑

j 
=i=1

{
(ti − ti−1)

∫ ti

ti−1

E(R2
i,t)dt(tj − tj−1)

∫ tj

tj−1

E(R2
j,t)dt

}1/2

But E(R2
i,t) ≤ C(t − ti−1)2 using (A4) and (A3). On substitution, the last term is

bounded by

C

n∑
i=1

(ti − ti−1)4 + C

n∑
j 
=i=1

(ti − ti−1)2(tj − tj−1)2

= Cn.
T 4

n4
+ C

n(n− 1)
2

.
T 4

n4
≤ C T

4

n2
.

Thus, E|S2(u)|2

≤ 2T−1u(A1 +A2) ≤ CT−1u(
T 3

n2
) + CT−1u

T 4

n2

≤ C
T 3

n2
= C(

T

n2/3
)3.
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Thus, S2(u)
p→0 as T

n2/3 → 0. Next, let us estimate S3(u).

E|S3(u)| = E|
n∑
i=1

∫ ti

ti−1

Da(θ∗, Xti−1 , u)
[
a(θ∗, Xt)− a(θ∗, Xti−1)

]
dt|

≤
n∑
i=1

∫ ti

ti−1

E|Da(θ∗, Xti−1 , u)||a(θ∗, Xt)− a(θ∗, Xti−1)|dt

≤
n∑
i=1

∫ ti

ti−1

{
E|Da(θ∗, Xti−1 , u)|2E|a(θ∗, Xt)− a(θ∗, Xti−1)|2

}1/2
dt

≤
n∑
i=1

∫ ti

ti−1

{
CT−2u2.E|Xt −Xti−1 |2

}1/2
dt (by (3.10) and (A1))

≤ CT−1u

n∑
i=1

∫ ti

ti−1

(t− ti−1)1/2dt

(since E(Xt −Xti−1)2 ≤ C(t− ti−1) by Gikhman and Skorohod (1972, p. 48))

≤ CT−1u

n∑
i=1

∫ ti

ti−1

sup
ti−1≤t≤ti

(ti − ti−1)1/2dt

≤ CT−1un.

(
T

n

)3/2

≤ C
(
T

n

)1/2

Thus, S3(u)
P→0 as T

n → 0. Next, let us estimate S4(u).

2S4(u) =
n∑
i=1

∫ ti

ti−1

{
[a(θ,Xti)− a(θ∗, Xti)]−

[
a(θ,Xti−1)− a(θ∗, Xti−1)

]}
g(Xt)dt

= T−1/2u
n∑
i=1

∫ ti

ti−1

[
a′(θ∗, Xti)− a′(θ∗, Xti−1)

]
g′(Xt)dt

where |θ∗ − θ∗| < T−1/2u.

Now proceeding similarly as in the proof of convergence of S2(u) to zero in probability,
it can be shown that

S4(u)
P→0 as

T

n2/3
→ 0.

This completes the proof of the lemma

Lemma 3.7 Under assumptions (A1) - (A10), for each ε > 0,

lim
δ→0

lim sup
T→∞, T

n2/3 →0

P

{
sup

u1,u2∈Aα,T ,|u2−u1|≤δ
| log

∼
Zn,T (u2)− log

∼
Zn,T (u1)| > ε

}
= 0.

Proof : From Lemma 3.6, we have∣∣∣log
∼
Zn,T (u2)− log

∼
Zn,T (u1)

∣∣∣
=

∣∣∣∣(u2 − u1)
∼
Δn,T −

1
2
(u2

2 − u2
1)Γ +

∼
γn,T (u2)−

∼
γn,T (u1)

∣∣∣∣
≤ |u2 − u1||

∼
Δn,T |+ C|u2 − u1|+ |

∼
γn,T (u2)|+ |

∼
γn,T (u1)|,

where C is a positive constant.
Therefore,

P

{
sup

u1,u2,∈Aα,T ,|u2−u1|≤δ
| log

∼
Zn,T (u2)− log

∼
Zn,T (u1)| > ε

}
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≤ P
{
|
∼
Δn,T |+B >

ε

3δ

}
+ 2P

{
sup

u∈Aα,T

|
∼
γn,T (u1)| >

ε

3
.

}
Note that

P

{
sup

u∈Aα,T

|
∼
γn,T (u)| > ε

3

}

= P

{
sup
|u|≤α

|S1(u) + S2(u) + S3(u) + S4(u)| > ε

6

}
+ P

{
sup

u∈Aα,T

|Γn,T − u2Γ| > ε

3

≤ P

{
sup
|u|≤α

|S1(u)| > ε

24

}
+ P

{
sup
|u|≤α

|S2(u)| > ε

24

}
+ P

{
sup
|u|≤α

|S3(u)| > ε

24

}

+P

{
sup
|u|≤α

|S4(u)| > ε

24

}
− P

{
sup

u∈Aα,T

|Γn,T − u2Γ| > ε

3

}

→ 0 as T →∞ and
T

n2/3
→ 0.

Since
∼
Δn,T converges in distribution to N(0,Γ), hence

lim
δ→0

lim
T→∞ T

n2/3 →0

P

{
sup

u1,u2∈Aα,T ,|u2−u1|≤δ
| log

∼
Zn,T (u2)− log

∼
Zn,T (u1)| > ε

}
= 0.

Lemma 3.8. Under assumptions (A1) - (A10), we have, for each ε > 0,

lim
α→∞ lim sup

T→∞, T

n2/3 →0

P

{
sup
|u|≥α

∼
Zn,T (u) > ε

}
= 0.

Proof : Since Γ is positive, there exists a number η such that

ηu2 ≤ 1
4
Γu2, u ∈ R.

By Lemma 3.6,

log
∼
Zn,T (u) = u

∼
Δn,T −

1
2
u2Γ +

∼
γn,T (u).

Let

Si(u) =
1

1 + u2
Si(u), i = 1, 2, 3, 4,

and

U1 =
{
u : |u| ≤ δT−1/2

}
for any δ > 0.

For p > 1,
E|S1(u)|2p ≤ CT−p,

E|S1(u2)− S1(u1)|2p ≤ CT−p|u2 − u1|2p.
Therefore,

sup
u1∈U1

|S1(u)| P→0 as T →∞.

It is obvious that

sup
u∈U1

|S3(u)| P→0 as
T

n
→ 0.
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Next,

S2(u) = T−1/2u
n∑
i=1

∫ ti

ti−1

a′(θ∗, Xti−1)
[
a(θ∗, Xt)− a(θ∗, Xti−1)

]
dt

= T−1/2u

n∑
i=1

a′(θ∗, Xti−1)
∫ ti

ti−1

(∫ t

ti−1

·
a(θ∗, Xu)dWu

)
dt

+T−1/2u

n∑
i=1

a′(θ∗, Xti−1)
∫ ti

ti−1

(∫ t

ti−1

[a(θ∗, Xu)
·
a(θ∗, Xu)

+
1
2
ä(θ∗, Xu)]du

)
dt (by the Itô formula)

=: S21(u) + S22(u).
Define

S2j(u) =
1

1 + u2
S2j(u), j = 1, 2.

It is easy to show that

sup
u∈U1

|S22(u)| P→0 as
T

n2/3
→ 0.

As in the estimation of S1, we can show that, for p ≥ 1,

E|S21(u)|2p ≤ C(
T

n
)p,

S21(u2)− S21(u1)|2p ≤ C(
T

n
)2p|u2 − u1|2p

Hence,

sup
u∈U1

|S21(u)| P→0 as
T

n
→ 0.

Thus,

sup
u∈U1

|
∼
ρn,T (u)|
1 + u2

P→0 as T →∞ and
T

n2/3
→ 0.

On the other hand, for any ε > 0, if δ > 0 is small enough, (A2) yields

lim
T→∞,T

n →0
P

{
sup
u∈U1

1
1 + u2

|u2Γ− Γn,T | < ε

}
= 1.

Hence, for any ε > 0 for small δ > 0,
lim
n,T

P{Vn,T } = 0,

where

Vn,T = { sup
u∈U1

1
1 + u2

|
∼
γn,T (u)| < ε}.

Let ε < η. On the event Vn,T , ia |u| ≤ δT 1/2,

log
∼
Zn,T (u) ≤ |u||

∼
Δn,T | −

1
2
u2Γ + |

∼
γn,T (u)|

≤ |u||
∼
Δn,T | −

1
2
u2Γ + ε(1 + u2)

≤ |u||
∼
Δn,T | −

1
2
u2Γ + ηu2 + ε

≤ |u||
∼
Δn,T | −

1
4
u2Γ + ε

≤ |u||
∼
Δn,T | − ηu2 + ε.
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Let U2 := {u : q ≤ |u| ≤ δT 1/2}, where q is a positive number. We have

P

{
sup
u∈U2

∼
Zn,T (u) ≥ exp

(
−ηq

2

2

)}
≤ P (V cn,T ) + P

{
sup
u∈u2

(
|u||

∼
Δn,T | − ηu2

)
+ ε ≥ −ηq

2

2

}
≤ o(1) + P

{
q|

∼
Δn,T | − ηq2 + ε ≥ −ηq2/2

}
+ P

{
|
∼
Δn,T | > 2ηq

}
≤ 2P

{
|
∼
Δn,T | > ηq/2− ε/q

}
+ o(1).

Let χ and τ be arbitrary positive numbers. For large q, exp(−ηq2/2) < τ and

lim sup
T,n

, P
{
|
∼
Δn,T | > ηq/2− ε/q

}
<
χ

3
.

Then

lim sup
T,n

P

{
sup
u∈U2

∼
Zn,T (u) ≥ τ

}
≤ χ.

Define
U3 :=

{
u : |u| ≥ δT 1/2

}
and H1 := {y : |y| ≥ δ} .

Then

lim sup
T→∞, T

n2/3 →0

P

{
sup
u∈U3

∼
Zn,T (u) ≥ τ

}

= lim sup
T→∞, T

n2/3 →0

P

{
sup
y∈H1

[∼
mn,T (θ∗ + y)− ∼

mn,T (θ∗)
]
≥ T−1logτ

}

≤ lim sup
T→∞, T

n2/3 →0

P

{
sup
y∈H1

∼
mn,T (θ∗ + y)− l(θ∗ + y) +

∼
mn,T (θ∗)−m(θ∗) ≥ q

}

+ lim sup
T→∞, T

n2/3 →0

P

{
sup
y∈H1

m(θ∗ + y)−m(θ∗) ≥ T−1 log τ − q
}

If q is small, the second term on the r.h.s. is zero. The first term tends to zero by Lemma
3.5. Therefore, for τ > 0 and χ > 0, if q is large,

lim sup
T→∞, T

n2/3 →0

P

{
sup
|u|≥q

∼
Zn,T (u) > τ

}
≤ χ.

4. Properties of Approximate M -Estimators

Let C0(R) be the Banach space of real-valued continuous functions on R vanishing at
the infinity with sup-norm. Let

Un,T =
{
u : θ∗ + T−1/2u ∈ Θ

}
.

For u ∈ Un,T , Zn,T (u) and
∼
Zn,T (u) have been defined and extend it to an element of

C0(R), whose maximal points are contained in Un,T . Using the weak convergence of the
random field Zn,T (u) (Lemma 3.2, Lemma 3.3 and Lemma 3.4), we obtain the following
results.

Theorem 4.1 Under conditions (A1) - (A9), we have

Zn,T (·)D→Z(·) in C0(R)
as T →∞ and T

n2/3 → 0, where Z(·) = exp(uΔ− 1
2u

2Γ),
i.e., for any continuous functional ψ on C0(R),

E [ψ(Zn,T (·))]→ E[ψ(Z(·))] as T →∞ and
T

n2/3
→ 0.
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In particular, for the AME1,

T 1/2(θn,T − θ∗)
D→ Γ−1Δ ∼ N(0, β(θ∗)Γ−2(θ∗)) as T →∞ and

T

n2/3
→ 0.

Proof follows easily by the application of Theorem 5.3.1 in Kutoyants (1984).
Theorem 4.2 Under conditions (A1) - (A10), we have

∼
Zn,T (·) D→ Z(·) in C0(R)

as T →∞ and T
n2/3 → 0 where Z(u) = exp(uΔ− 1

2u
2Γ),

i.e, for any continuous functional ψ on C0(R),

E
[
ψ(

∼
Zn,T (·))

]
→ E [ψ(Z(·))] | as T →∞ and

T

n2/3
→ 0.

In particular, for the AME2,

T 1/2(θ̃n,T − θ∗)
D→ Γ−1Δ ∼ N(0, β(θ)Γ−2(θ)) as T →∞ and

T

n2/3
→ 0.

Proof : Using the weak convergence of the AMR random field
∼
Zn,T (u) (Lemmas 3.6–3.8),

the theorem follows easily by applying Theorem 5.3.1 in Kutoyants (1984).

5. Approximate Maximum Likelihood Estimation for Misspecified Diffusion

Models

If the parametric model contains the true one, then the maximum likelihood estimator
is efficient. But the maximum likelihood estimator is sensitive to a contamination of data
and a misspecification of the true model. In this section, we study how the difference
between the true model and the parametric model affects the asymptotic behavior of the
approximate maximum likelihood estimators McKeague (1984) and asymptotic proper-
ties of the maximum likelihood estimator in a misspecified diffusion model. As a special
case of our M-estimators, we obtain two approximate maximum likelihood estimators,
when a = μ and b = μ2.

6. Comparison of the AMEs for the Ornstein–Uhlenbeck Process

In this section, we compare the rates of convergence to normality of the Itô AME
and the Stratonovich AME in the Ornstein–Uhlenbeck model, when the model may not
be correctly specified. Bishwal and Bose (2001) showed that, for the correctly specified
Ornstein–Uhlenbeck model, Stratonovich approximate maximum likelihood estimators
have faster rate of convergence than the Itô approximate maximum likelihood estimator.

Suppose the true model is the ergodic and stationary

dXt = −1
2
Xtdt+ dWt, X0 = ξ, ξ ∼ N(0, 1)

which is used to estimate the unknown parameter θ < 0 in the observer’s parametric
model

dXt = −θ(Xt − 1)dt+ dWt, X0 = ξ,

where θ > 0.
The quasi-true parameter is

θ∗ = arg inf
∫

R

[θ(x− 1)− 1
2
x]2ν(dx) =

3
4
,

θn,T = −
∑n
i=1 (Xti−1 − 1)(Xti −Xti−1)∑n

i=1 (Xti−1 − 1)2Δti

,

θ̃n,T = −1
2

∑n
i=1((Xti−1 − 1) + (Xti−1 − 1))(Xti −Xti−1)−

∑n
i=1 Δti∑n

i=1 (Xti−1 − 1)2Δti

= −1
2

X2
T − T − 2∑n

i=1 (Xti−1 − 1)2Δti
.
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Following Bishwal and Bose (2001), it can be shown that θ̃n,T has a faster Berry–
Esseen bound than the θn,T .

7. Rates of Convergence of Approximate Integrals

In this section, we show the mean square rate of convergence of the approximations of
stochastic integrals. We establish the L2 rates of convergence of the Itô approximant and
the Fisk–Stratonovich approximant to the corresponding integrals, when the integrator
is the standard Wiener process.

Throughout the section, we assume that C is a generic constant. We use the following
notations:
fx := ∂f

∂x , ft := ∂f
∂t , fxx := ∂2f

∂x2 , ftt := ∂2f
∂t2 , ftx := ∂2f

∂t∂x .
We assume the following conditions:
(B1) f(·, ·) satisfies the Lipschitz and growth conditions:

|f(t, x)− f(t, y)| ≤ K|x− y|, and |f(t, x)| ≤ K(1 + |x|) for all t ∈ [0, T ]
for some constant K > 0,

(B2) fx(·, ·) satisfies the Lipschitz and growth conditions:
|fx(t, x)− fx(t, y)| ≤ K1|x− y| and |fx(t, x)| ≤ K1(1 + |x|) for all t ∈ [0, T ]

for some constant K1 > 0,
(B3) f(·, ·) is a real-valued function satisfying

Eθ∗

{∫ T

0

f2(t,Xt)dt

}
<∞ for all T > 0,

(B4)j f(·, ·) is j times continuously differentiable in x for j = 1, 2, . . . , 6 and
sup

0≤t≤T
E|fx(t,Xt)|8 <∞, sup

0≤t≤T
E|fxx(t,Xt)|8 <∞,

(B5)k f(·, ·) is k times continuously differentiable in t for k = 1, 2, . . . , 6 and
sup

0≤t≤T
E|ft(t,Xt)|8 <∞, sup

0≤t≤T
E|ftt(t,Xt)|8 <∞,

(B6) sup
0≤t≤T

E|ftx(t,Xt)|8 <∞.

Theorem 7.1 Under assumptions (B1) - (B3), (B4)1, (B5) and (B6), we have

(a) E

∣∣∣∣∣
n∑
i=1

f(ti−1, Xti−1)(Wti −Wti−1)−
∫ T

0

f(t,Xt)dWt

∣∣∣∣∣
2

≤ CT
2

n
.

Under assumptions (B1) - (B3), (B4)2, (B5) and (B6), we have

(b) E

∣∣∣∣∣
n∑
i=1

f(ti−1, Xti−1) + f(ti, Xti)
2

(Wti −Wti−1)−
∮ T

0

f(t,Xt)dWt

∣∣∣∣∣
2

≤ CT
3

n2
.

Proof. Note that the Itô integral is a forward martingale. On the other hand, the FS
integral is the arithmetic average of a forward martingale and a backward martingale.
Let πn be the partition as defined in the previous section. Define F and Fπn as

F :=
∮ T

0

f(t,Xt)dWt (7.1)

and

Fπn :=
n∑
i=1

f(ti−1, Xti−1) + f(ti, Xti)
2

(Wti −Wti−1). (7.2)

Let π′
n be a partition, finer than πn, obtained by choosing the mid-point t̃i−1 from each

of the intervals ti−1 < t̃i−1 < ti, i = 1, 2, . . . , n. Let 0 = t′0 < t′1 < . . . < t′2n = T be
the points of a subdivision of the refined partition π′

n. Define the approximating sum
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Fπ′
n

as before. First, we will obtain bounds on E|Fπn − Fπ′
n
|2 in order to get bounds on

E|Fπn − F |2.
Let 0 ≤ t∗0 < t∗1 < t∗2 ≤ T be three equally spaced points on [0, T ], and let us denote

Xt∗i by Xi and Wt∗i by Wi, i = 0, 1, 2. Define

Z :=
f(t∗2, X2) + f(t∗0, X0)

2
(W2 −W0)

−
{
f(t∗2, X2) + f(t∗1, X1)

2
(W2 −W1) +

f(t∗1, X1) + f(t∗0, X0)
2

(W1 −W0)
}

= (
W1 −W0

2
)(f(t∗2, X2)− f(t∗1, X1)) + (

W2 −W1

2
)(f(t∗0, X0)− f(t∗1, X1)).

(7.3)
Let

I1 :=
∫ t∗1

t∗0

f(t,Xt)dt, I2 :=
∫ t∗2

t∗1

f(t,Xt)dt. (7.4)

Clearly, by the Taylor expansion,
f(t∗2, X2)− f(t∗1, X1)

= (X2 −X1)fx(t∗1, X1) + (t∗2 − t∗1)ft(t∗1, X1) +
1
2
(X2 −X1)2fxx(τ1, ν1)

+
1
2
(t∗2 − t∗1)2ftt(τ1, ν1) + (t∗2 − t∗1)(X2 −X1)ftx(τ1, ν1)

= (W2 −W1 + I2)fx(t∗1, X1) + (t∗2 − t∗1)ft(t∗1, X1) +
1
2
(X2 −X1)2fxx(τ1, ν1)

+
1
2
(t∗2 − t∗1)2ftt(τ1, ν1) + (t∗2 − t∗1)(X2 −X1)ftx(τ1, ν1),

(7.5)
where |X1 − ν1| < |X2 −X1|, |t∗1 − τ1| ≤ |t∗2 − t∗1|, and

f(t∗0, X0)− f(t∗1, X1)

= (X0 −X1)fx(t∗1, X1) + (t∗0 − t∗1)ft(t∗1, X1) +
1
2
(X0 −X1)2fxx(τ2, ν2)

+
1
2
(t∗0 − t∗1)2ftt(τ2, ν2) + (t∗0 − t∗1)(X0 −X1)ftx(τ2, ν2)

= −(W1 −W0 + I1)fx(t∗1, X1) + (t∗0 − t∗1)ft(t∗1, X1) +
1
2
(X0 −X1)2fxx(τ2, ν2)

+
1
2
(t∗0 − t∗1)2ftt(τ2, ν2) + (t∗0 − t∗1)(X0 −X1)ftx(τ2, ν2),

(7.6)
where |X1 − ν2| < |X0 −X1|, |t∗1 − τ2| < |t∗0 − t∗1|.

Relations (7.3) to (7.6) show that

Z =
(
W1 −W0

2

)
I2fx(t∗1, X1) +

(
W1 −W0

2

)
(t∗2 − t∗1)ft(t∗1, X1)

+
(
W1 −W0

4

)
(X2 −X1)2fxx(τ1, ν1) +

(
W1 −W0

4

)
(t∗2 − t∗1)2ftt(τ1, ν1)

+
(
W1 −W0

2

)
(X2 −X1)(t∗2 − t∗1)ftx(τ1, ν1)−

(
W2 −W1

2

)
I1fx(t∗1, X1)

+
(
W2 −W1

2

)
(t∗0 − t∗1)ft(t∗1, X1) +

(
W2 −W1

4

)
(X0 −X1)2fxx(τ2, ν2)

+
(
W2 −W1

4

)
(t∗0 − t∗1)2ftt(τ2, ν2)

+
(
W2−W1

2

)
(X0 −X1)(t∗0 − t∗1)ftx(τ2, ν2)

≡ M1 +M2,
(7.7)
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where

M1 := (W1 −W0)
{
I2
2
fx(t∗1, X1) +

(t∗2 − t∗1)
2

ft(t∗1, X1) +
(X2 −X1)2

4
fxx(τ1, ν1)

+
(t∗2 − t∗1)2

4
ftt(τ1, X1) +

1
2
(X2 −X1)(t∗2 − t∗1)ftx(τ1, ν1)

}
,

(7.8)

M2 := (W2 −W1)
{
−I1

2
fx(t∗1, X1) +

(t∗0 − t∗1)
2

ft(t∗1, X1) +
(X1 −X0)2

4
fxx(τ2, ν2)

+
(t∗0 − t∗1)2

4
ftt(τ2, X2) +

1
2
(X0 −X1)(t∗0 − t∗1)ftx(τ2, ν2)

}
.

(7.9)
Clearly, E(Z2) ≤ 2

[
E(M2

1 ) + E(M2
2 )
]
. Notice that M2 corresponding to different

subintervals of [0, T ]-generated by πn form a martingale difference sequence, and M1

corresponding to different subintervals of [0, T ] generated by πn form a reverse martingale
difference sequence.

Observe that
E|M2|2

= E(W2 −W1)2E
{
−I1

2
fx(t∗1, X1) +

(t∗0 − t∗1)
2

ft(t∗1, X1) +
(X1 −X0)2

4
fxx(τ2, ν2)

+
(t∗0 − t∗1)2

4
ftt(τ2, ν2) +

1
2
(X0 −X1)(t∗0 − t∗1)ftx(τ2, ν2)

}2

≤ 4(t∗2 − t∗1)
{
E(−I1

2
fx(t∗1, X1))2 +

(t∗0 − t∗1)2
4

E(ft(t∗1, X1))2

+E
{

(X1−X0)4

16 (fxx(τ2, ν2))2
}

+ (t∗0−t∗1)2

16 E(ftt(τ2, ν2))2

+
1
4
(t∗0 − t∗1)2E{(X0 −X1)ftx(τ2, ν2)}2

}
≤ 4(t∗2 − t∗1)

{
E(I1)4

16
E(fx(t∗1, X1))4

}1/2

+
(t∗0 − t∗1)2

4
E(ft(t∗1, X1))2

+
{
E(X1−X0)8

256 E(fxx(τ2, ν2))2
}1/2

+ (t∗0−t∗1)2

16 E(ftt(τ2, ν2))2

+
1
4
(t∗0 − t∗1)2E(X0 −X1)4E(ftx(τ2, ν2))4

}1/2

≤ C (t∗2 − t∗1)
[
{E(I1)4}1/2 + {E(X1 −X0)8}1/2

]
(7.10)

by (B4)2.
By Theorem 4 of Gikhman and Skorohod (1972, p. 48), there exists C > 0 such that

E(X1 −X0)2p ≤ C(E(X4p
0 ) + 1)(t∗1 − t∗0)p, p ≥ 1 (7.11)

and, by (B4)2,

E(I4
1 ) = E

(∫ t∗1

t∗0

f(t,Xt)dt

)4

≤ K4E

(∫ t∗1

t∗0

(1 + |Xt|)dt
)4

≤ 4K4(t∗1 − t∗0)4 sup
0≤t≤T

E(1 + |Xt|)4)

≤ C(t∗1 − t∗0)4.

(7.12)

Relations (7.10) - (7.12) prove that
E(M2

2 ) ≤ C(t∗2 − t∗1)(t∗1 − t∗0)2 (7.13)
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for some constant C > 0 independent of t∗0, t
∗
1 and t∗2. Let us now estimate E(M2

1 ). Note
that

E(M2
1 )

= E

[
(W1 −W0)

{
I2
2
fx(t∗1, X1) +

(t∗2 − t∗1)
2

ft(t∗1, X1) +
(X2 −X1)2

4
fxx(τ1, ν1)

+
(t∗2 − t∗1)2

4
ftt(τ1, X1) +

1
2
(X2 −X1)(t∗2 − t∗1)ftx(τ1, ν1)

}]2

≤ E

[
(W1 −W0)4E

{
I2
2
fx(t∗1, X1) +

(t∗2 − t∗1)
2

ft(t∗1, X1) +
(X2 −X1)2

4
fxx(τ1, ν1)

+
(t∗2 − t∗1)2

4
ftt(τ1, X1) +

1
2
(X2 −X1)(t∗2 − t∗1)ftx(τ1, ν1)

}4
]1/2

(by the Cauchy-Schwarz inequality)

≤ C(t∗1 − t∗0)2
{
E(I2fx(t∗1, X1)4

16
+

(t∗2 − t∗1)4
16

E(ft(t∗1, X1))4

+
E((X2 −X1)fxx(τ1, ν1))4

256
+

(t∗2 − t∗1)8
256

E(ftt(τ1, X1))4

+
1
16

(t∗2 − t∗1)E((X2 −X1)ftx(τ1, ν1))4
}1/2

(by Cr - inequality and the fact that E(W1 −W0)4 = 3(t∗1 − t∗0)2 )

≤ C(t∗1 − t∗0)2
{
E(I2fx(t∗1, X1))4

16
+

(t∗2 − t∗1)4
16

E(ft(t∗1, X1))4

+
E((X2 −X1)fxx(τ1, ν1))4

256
+

(t∗2 − t∗1)8
256

E(ftt(τ1, X1))4

+
1
16

(t∗2 − t∗1)4E((X2 −X1)ftx(τ1, ν1))4
}1/2

≤ C(t∗1 − t∗0)2
{
{E(I2)8E(fx(t∗1, X1))8}1/2

16
+

(t∗2 − t∗1)4
16

E(ft(t∗1, X1))4

+
{E(X2 −X1))8E(fxx(τ1, ν1))8}1/2

256
+

(t∗2 − t∗1)8
256

E(ftt(τ1, X1))4

+
1
16

(t∗2 − t∗1)4{E((X2 −X1)8E(ftx(τ1, ν1))8}1/2
}1/2

(by the Cauchy–Schwarz inequality)
(7.14)

Note that there exists a constant C > 0 such that
E(X2 −X1)8 ≤ C(t∗2 − t∗1)4 (7.15)

by Theorem 4 of Gikhman and Skorohod (1972, p. 48).
Furthermore, by (A5)

E(I2)8 = E

[∫ t∗2

t∗1

f(t,Xt)dt

]8

≤ CE
[∫ t∗2

t∗1

(1 + |Xt|)dt
]8

by (A1)

≤ CE

⎡⎣{∫ t∗2

t∗1

(1 + |Xt|)dt
}2
⎤⎦4

≤ CE
[
(t∗2 − t∗1)

{∫ t∗2

t∗1

(1 + |Xt|)2dt
}]4

≤ C(t∗2 − t∗1)4E
[∫ t∗2

t∗1

(1 + |Xt|2)dt
]4

≤ C(t∗2 − t∗1)7
∫ t∗2

t∗1

E(1 + |Xt|8)dt

= C(t∗2 − t∗1)8 (by (AB)2).
(7.16)
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Relations (7.14) - (7.16) prove that
E(M2

1 ) ≤ C(t∗1 − t∗0)(t∗2 − t∗1)2 (3.17)
for some constant C > 0 independent of t∗0, t

∗
1 and t∗2. Inequalities (7.13) and (7.17) prove

that there exists a constant C > 0 independent of t∗0, t
∗
1, and t∗2 such that

E(M2
i ) ≤ C(t∗2 − t∗1)3, i = 1, 2. (7.18)

Using the property that M2 corresponding to different subintervals form a martingale
difference sequence, and M1 form a reverse martingale difference sequence, it follows that

E|Fπn − Fπ′
n
|2 ≤ CT

3

n2
(7.19)

for some constant C > 0.
Let {π(q)

n , q ≥ 0} be the sequence of partitions such that π(i+1)
n is a refinement of π(i)

n

by choosing the mid-points of the subintervals generated by π
(i)
n . Note that π(0)

n = πn
and π(1)

n = π′
n. The analysis given above proves that

E|Fπn(q)− Fπn(q + 1)|2 ≤ C T 3

2qn2
, (7.20)

where Fπn(q) is the approximant corresponding to π(q)
n and F (0)

πn = Fπn . Therefore,

E|Fπn − Fπn(q + 1)|2 = E

{
q∑

k=0

[Fπn(k)− Fπn(k + 1)]

}2

≤
{

q∑
k=0

(
E|Fπn(k)− Fπn(k + 1)|2

) 1
2

}2

≤
{

q∑
k=0

(
CT 3

2kn2

)1/2
}2

≤ C T
3

n2

for all q ≥ 0. Let q → ∞. Since the integral F exists, Fπn(q + 1) converges in L2 to F
as q → ∞. Note that {πn(q + 1), q ≥ 0} is a sequence of partitions such that the mesh
of the partition tends to zero as q →∞ for any fixed n. Therefore,

E|Fπn − F |2 ≤ C
T 3

n2
≤ Ch2, (7.21)

where

F = lim
n→∞Fπn =

∮ T

0

f(t,Xt)dWt.

To prove (a), let πn be the partition as defined previously, and let Iπn and I be defined
by

Iπn :=
n∑
i=1

f(ti−1, Xti−1)(Wti −Wti−1 ), I :=
∫ T

0

f(t,Xt)dWt.

By arguments used to establish (3.2) and by noting that {Iπn , n ≥ 1} is a martingale,
it can be easily shown that (in this case, we need the conditions of existence and finite
moments for the first derivative of f only)

E|Iπn − I|2 ≤ C
T 2

n
. (7.22)

This completes the proof of the theorem.

Remarks
(1) The partial differential equation defined in (A8) is an elliptic type equation. If the

model is correctly specified, condition (A8) can be eliminated for approximate maximum
likelihood estimators since, in this case, ρ′(θ, x) = 0. Moreover, the approximate maxi-
mum likelihood estimators (AMLEs) are consistent with asymptotic variance Γ−1(θ∗).

(2) The problem of obtaining the rates of convergence (both large deviations and
Berry–Esseen type bounds) of the AMEs now remains open. Note that if the model
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contains the true model, then, in the linear case, it is known that AME2 has a faster
rate of convergence than AMLE1 (see Bishwal and Bose (2001)). We conjecture that, in
the general case, AME2 would have a faster rate of convergence than the AME1.

(3) It remains open to obtain the asymptotic normality of AMEs under the SIED
condition.

(4) Generalization of the results of this paper to multiparameter case is worth inves-
tigating.
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