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M-ESTIMATION FOR DISCRETELY SAMPLED DIFFUSIONS

We study the estimation of a parameter in the nonlinear drift coefficient of a sta-
tionary ergodic diffusion process satisfying a homogeneous Ité stochastic differential
equation based on discrete observations of the process, when the true model does not
necessarily belong to the observer’s model. Local asymptotic normality of M-ratio
random fields are studied. Asymptotic normality of approximate M-estimators based
on the It6 and Fisk—Stratonovich approximations of a continuous M-functional are
obtained under a moderately increasing experimental design condition through the
weak convergence of approximate M-ratio random fields. The derivatives of an ap-
proximate log-M functional based on the It6 approximation are martingales, but the
derivatives of a log-M functional based on the Fisk—Stratonovich approximation are
not martingales, but the average of forward and backward martingales. The averaged
forward and backward martingale approximations have a faster rate of convergence
than the forward martingale approximations.

1. INTRODUCTION

Drift estimation in diffusion processes based on continuous observations inside a time
interval is now classical, see e.g., Liptser and Shiryaev (1978), Basawa and Prakasa Rao
(1980), Arato (1982), Prakasa Rao (1999), Kutoyants (1984, 2003), and Bishwal (2008)
for the long-time asymptotics and Ibragimov and Has'minskii (1980) and Kutoyants
(1984, 1994) for the small-noise asymptotics of different parametric and nonparametric
estimators. On the other hand, the drift estimation for discretely observed diffusions is
the recent trend of investigations due to the difficulty in observing the diffusion process
continuously throughout a time interval. Several approaches are used for the parametric
estimation based on discrete observations viz., conditional least squares (cf. Dorogov-
cev (1976), Kasonga (1988)), approximating the continuous Girsanov likelihood (cf. Le
Breton (1976), Florens-Zmirou (1989), Genon-Catalot (1990), Yoshida (1992), Mishra
and Bishwal (1995), Harison (1996), Kloeden et al. (1996), Kessler (1997), and Bishwal
(2006, 2007)), approximating the transition densities (cf. Dacunha-Castelle and Florens-
Zmirou, Pedersen (1995a,b), Ait-Sahalia (2002)), martingale estimation function (cf.
Bibby and Sgrensen (1995a,b), Kessler and Sgrensen (1995)) and generalized method
of moments (cf. Clement (1993, 1995, 1997), Duffie and Glynn (1997)), and indirect
inference method (cf. Gourieroux and Monfort (1995), Gourieroux et al. (1996), Broze
et al. (1998)). Several approaches are used for the nonparametric estimation based on
discrete observations, cf. Pham (1981), Nguyen and Pham (1981), Coutin (1994), Arfi
and Lecoutre (1994), and Arfi (1995). Statistical inference for ergodic diffusions for con-
tinuous time data is studied in detail by Kutoyants (2003). See the new monograph by
Bishwal (2008) for recent results on approximate likelihood asymptotics and approxi-
mate Bayes asymptotics for the drift estimation of discretely observed diffusions based
on high-frequency data.
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However, a gap always exists between the ideal mathematical models and the real
data. Omne can hardly get clean data generated from the model due to the contam-
ination by some noises and misspecification of the true model. We assume that the
statistician/econometrician does not know the true model and uses a parametric model
with an unknown parameter. The true model does not necessarily belong to the ob-
server’s parametric model. In such a situation, the robust estimation of a parameter
was studied by McKeague (1984). The robust estimation in diffusion processes based on
discrete observations is the focus of this paper. We study the asymptotic behavior of
the approximate M-estimators which maximize two different approximate M-functionals
based on discrete observations. The motivation of using two different approximate M-
functionals comes from the fact that, for the correctly specified model, the estimators
based on one approximate log-likelihood (Fisk—Stratonovich) are known to have faster
rates of convergence than those based on another approximate log-likelihood (Itd) in the
Ornstein—Uhlenbeck process, as shown by Bishwal and Bose (2001), and the approxi-
mants of the Fisk—Stratonovich integral converge to the corresponding integral faster
than the approximants of the Itd integral converge to the corresponding integral for
nonlinear integrators, as shown in Section 7. Our method of proof is through the weak
convergence of approximate M-ratio random fields.

The organization of the paper is as follows : In Section 2, we prepare notations,
assumptions, and preliminaries. In Section 3, we study the weak convergence of ap-
proximate M-ratio random fields. In section 4, we study the asymptotic normality of
approximate M-estimators.

2. MODEL, ASSUMPTIONS, AND PRELIMINARIES

Let the true process follow the homogeneous nonlinear It6 stochastic differential equation
Y. (2.1)
0 m,
where {W;,t > 0} is a one-dimensional standard Wiener process, ¢ is a known real-
valued function defined on R. We assume that the process {Xy,¢ > 0} is observed at
O=to<t1<...<tp=T witht;—t;_1 =L =h.
We assume the parametric form of the It6 stochastic differential equation
dXy = p0,X)dt+dWy, t>0
Xo =17
estimate 0 € © from the observations {X;,, X¢,,..., X, } = Xg’h. Let 6* be the quasi-
true parameter defined as

0" = argint . / (9(x) — (6, 2)) 2w (de),

where v is the invariant measure of the ergodic diffusion process. Suppose that 8* lies in
the interior of ©.

We use the following notations throughout the paper: AX; = Xy, — Xy, |, AW, =
Wy, — Wy,_,, C is a generic constant independent of h,n, and other variables (perhaps,
it may depend on ). A prime denotes the derivative with respect to 6 and a dot denotes
the derivative with respect to x.

Looking back at the Girsanov likelihood, if the continuous observations of {X;} on
the interval [0, 7] were available, then the M-functional of § would be

T T
1
MT(Q) = exp{/ G(Q,Xt)dXt - 5/ b(g,Xt)dt}, (23)
0 0
and the M-estimate would be

(2.2)

= M
Or argreneaé( 7(0),
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where a and b are two given functions on R x © with © a closed subset of R. The
functions a and b arise from the model misspecification. In practice, we have discrete
data, and we have to approximate the likelihood to get an M-estimate. First, we use an
1t6 type approximation of the stochastic integral and the rectangular approximation of

the ordinary integral in (2.3) and obtain an approximate M-functional
n

h n
M, 7(0) = exp {Z} a(0, Xo ) (Xe, = Xu) — 5 Z; b(®, Xti_l)} : (2.4)
The approximate M-estimate (AME1) based on M, r is defined as
0,1 = arg IaneanMn’T(e)'
Next, we transform the It6 integral in (2.3) to the Fisk—Stratonovich (FS) integral
and obtain

Mr(6) :exp{jg a(f, X;)dX; — %/0 a(f, X;)dt — %/0 b0, X,)dt}y,  (2.5)

where fOT a(f, X;)dX; is the Fisk—Stratonovich (FS) integral.
We apply the Fisk—Stratonovich approximation of a stochastic integral and the rectan-

gular approximation of ordinary integrals and obtain another approximate M-functional
n

MH,T(Q) = €xp {% Z [a(gv Xti—l) + a’(@a th):l (th‘ - Xti—l)

i=1
b~ - h
_5 Za(eﬂXti—l) - 5 Zb(97Xti—1) . (26)
i=1 i=1

The approximate M-estimate (AME2) based on M n,7 18 defined as
0 = Y 0).
w1 = Argmax Mo,z (6)
We assume that the following conditions are satisfied:

(A1) There exists the constants K and K; such that

lg(x) — 9(y)| < K(|z —yl),

|a(0,2)] < K1(0)(1 + |x),

|a(0, ) — a(0,y)| < Ki(0)]x —yl.
(A2) The diffusion process X is stationary and ergodic with invariant measure v, i.e.,
for any ¢ with E[¢(-)] < oo,

%Z o(Xt,) 5 E,[¢(Xo)] as T — oo and h — 0.
i=1

(A3) For each p > 0,sup F| X[’ < oo.
¢

(A4) a(f,z) and b(,z) are twice continuously differentiable in § € © and, for some
7 >0,

|a’ (0, )| + |a" (0, 2)| < C(O)(1 + |]7),
la'(0,2) —a'(0,y)] < C(O)|x -yl

(A5) The functions a, b, and a’ are smooth in z, and their derivatives are of polynomial
growth order in x uniformly in 6.
(A6) We assume

r=r"):= /Rp"(H*,x)dl/(x) >0,

where

p(0,x) = %b(@,m) —a(f,x)g(x).



M-ESTIMATION FOR DIFFUSIONS 65

(A7) m(0) has its unique maximum at 6 = 6* in O,
where

m(®) = [ 9(6.2) = 0" a) ().
(A8) There exists a twice continuously differentiable function k(z) satisfying the partial
differential equation
(@) + g(@)r(@) = p'(0, )
and )
—k(X7) L 0asT — oco.

VT

(A9) We assume
56 i= [ 16 2) + k(@) @vla) >
R

(A10) a is twice continuously differentiable function in = with bounded derivatives up
to the second order.

Remark: Using (2.1), we have

T 1

Mr(0) = eXp{/0 a(e,Xt)th—/O [55(‘9,Xt)—a(eaXt)g(Xt)]dt}

T T
= exp{/0 a(f),Xt)th—/O p(0, X¢)dt.}

3. WEAK CONVERGENCE OF APPROXIMATE M-RATIO RANDOM FIELDS

Let 6 =60*+ T2y, u € R. Consider the approximate M-ratio (AMR) random fields

ZJW%_%%%%azﬂW%_g%i%~ (3.1)

Let
Agr ={ueR:|u < a0 +T Y?uecO}, a>0.

1 ~ 1 ~
mp,7(0) = T log My, 7(0),  mp7(0) = 7 108 Mn,r(0).
Da(0", X¢,_,,u) == a0, X, ) —a(0*, Xz, ) — T71/2ua/(9*,Xti_1).

Below, we prove the weak convergence of the random fields Z,, r(-) and EHT() We
start with some lemmas.

Lemma 3.1 Under assumptions (A1) - (A9), we have
T
sup |m., v(0) — m(9)|£>0 as T — oo,n — oo and — — 0.
0co n

Proof. Note that

M, 7(0)
n 1 n
= 7! X, )Xy — X, )—=T71 X,
;a(@ ti1) (Xt ti1) > h;b(97 tii1)

n 1 n ts
= T’IZa(f),Xt,-,l)AWi-FiT’lZ/ a(8, Xi,_, )g(X,)dt
i=1 i=1Yti—1

1 n
T'hY b0, Xy,_,)

_5 .
=1

=: H;+ Hy+ Hs.
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Note that E|H;|?> < C % and by the Burkholder-Davis—Gundy inequality
E|H2|2 < CT_l,E|F2|2 < C,E|H3|2 <C.
Thus,

Elm,r(0)* < C,

E|mp,1(02) — mn,1(61)]* < C|62 — 64
for 6,0, 02 € © by (A5). Therefore, the family of distributions of M,, 7(-) on the Banach
space C'(©) with sup-norm is tight. Since m(-) is a point of C'(©) and since, by ergodic

property, my, 7(6) il m(0) as T — oo and % — 0, this completes the proof of the lemma
using Lemma 3.1 in Yoshida (1990).

The next lemma is a generalization of local asymptotic normality (LAN) for ergodic
diffusions using the random field Z, r(u).

Lemma 3.2 Under assumptions (A1) - (A9), for all v € R,

1
log Z,, 7(u) = ulA, 7(6%) — §u2f(9*) + o1 (u),

where
Anz(07)2A07), A~ N(0,4(07))
and rmT(u)iO as T — oo and % — 0.

The next two lemmas give the tightness of the distributions of the AMR random field
Zn,T(U')-

Lemma 3.3 Under assumptions (A1) - (A9), for each € > 0,

lim limsup P{ sup |log Zy, 1 (u2) — log Zp, r(u1)| > e} =0.
0

—0 T—oo0, uy,uz €A, 1, uz—u1 |<6

T
273
Lemma 3.4 Under assumptions (A1) - (A9), for each € > 0,

lim  limsup P< sup Z,r(u)>ep=0.
Q=00 T—)OO,#‘)O |u| >
Lemma 3.5. Under assumptions (A1) - (A9),
~ T
sup |my,(0) — m(9)|£>0 as T — oo and — — 0.
n

6co
Proof : Note that

- . a’(97Xti— )+a(9ﬂxti) 1. -
T ! ; - 2 (XtL - Xti—l) - §T 1h;a/(97Xti—l)

P
—5T hYy b0, X, ).

i=1

a(f, X 0, X “. .
- { 12 t“”( ”Am—%T—thaw,Xti_l)}

i=1

mpr(f) =

+5 Lp- 12/ a(0, Xy, ) + a0, X,,)] g(Xy)dt

1 1
-1~ th 0, X, )

i=1
= P+ F+ F;.
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Note that
P =

i=1

{T Zae ta) + 0l t>AWi_%T—1hZa(e,Xﬁ_l>}

n

-7~ 1Za 0, X, )AW;| +T~ 12 (0, Xy, ) AW;
i=1
= G1 + GQ.
From Theorem 7.1, it follows that E|G1|> < C % and, by the Burkholder-Davis—Gundy
inequality, E|Gz2|*> < CT~ Y E|F;|? < C, E|F3|* < C. Thus,
Elm,r(0)*<C
and
E|T7Ln,T(92) - ﬁ”bn,T(el)P < (02 — 04|

for 0,0,,05 € © by (A5). Now using arguments similar to Lemma 3.1 completes the
proof of the lemma. 0

The proofs of Lemmas 3.2 - 3.4 are similar and much simpler respectively to the proofs
of three next lemmas. Hence, we omit the details.
The next lemma is a generalization of LAN for ergodic diffusions using the random

field Zp, 7 (u).
Lemma 3.6 Under assumptions (A1) - (A10), for all v € R,
log Zn,r(u) = uln,r(6%) — guT(0%) + (1),
where zn’T(f)*)gA(f)*) A ~ N(0,5(6%)) and ?n,T(u)ﬂo as T — oo and —= — 0.

Proof : For 6 = 0* + T_1/2u we have

Mn,T(0 )
= zn: |:a(97Xta‘,) + a(evXta‘,—1) _ a(e*vXta‘,) + a(e*aXti—l)] AX'L
; 2 2
=1
h n

_ﬁ Z [d(97Xti—1) - d(ﬁ*, Xti—l)] Y Z [b(@, Xti—l) - b(9*7Xti—1)]
2 p 2

i=1

log %nT( ) =log

n

- % 1 {a(8, X)) — a(0, X¢,)} + {a(0, X¢,_,) — a(0, Xy,_,) }] AW;
+% XE /:1 [{a(6, X1,) — a(6%, X3,)} + {a(6, Xo, ) — a(6%, Xy, _,)}] 9(Xp)dt
_g i (6, Xe,y) = a(07, X, y)] = % En; [b(6, Xi,_,) — b(6*, X¢,_,)]
(by using (2. )) o o
- T—l/zu; a'(0 ,Xt,;_l);' a'(0 ,Xti)AWi

+ =3 [Da(07, Xy, u) + Da(0", Xy, u)] AW;

i=1

N =

hop ) hy .
_5 1/2uz 0, Xy, 5ZDa(Q,Xti,1,u)
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+1 Z/’ [{a(0, X0) — a(6%, X,)} + {a(6, Xo,) — a6, X0 )} g(X0)dt

ti—1

_ _ Z 9 Xt - a(e*; Xtifl)}2

93 / a0, X0, ) — a0, X, )] a0, X, )t

—UAnT QFnT“‘pnT( w)
where
AnT =: T71/2 Z a/(9*7Xta‘,—1) + H(Xti—l) + al(e*vXta‘,) + H(Xta‘,)AWi
i=1 2
_% Z a./(g*’ Xti—l) + A(Xti—l) )
i=1
Fn,T = hz [p(@, Xti—l) - p(g*, Xti—l):lQ
i=1
and
pn/T(u)
" Da(0*, X, ,,u) + Da(0*, Xs,,u) h
= ‘ ‘ A P — = D *7X 1
{; 5 %% 5 ; a(0*, Xy, ,,u)
+T~ WuZ/ (0%, X, ) [a(6%, Xy) — a(0%, Xy, )] dt
ti—1
+Z Da(6*, Xy, ,,u) [a(@*, X:) —a(0”, Xti_l)} dt
1ga (b
o 20 [ Hlal6.X0) — a6, X0)] - [al6, X)) - (6" Xe, )]} g(Xe)i
i=17ti-1
= S1(u) + S2(u) + S3(u) + Sa(u).
Thus,
~ ~ 1 ~
log Znr(u) = uAnr— zIn1+ Pnr(u)
~ 1 ~
= UAnT — —u’T — §(Fn7T —u’T) + Pnr(u)
= Ugn,T - §u2r + PNyn,T(u)
where

~ ~ 1
Vna(w) = Pnr(u) — §(Fn,T —u’T).
Due to the mean-value theorem and ergodicity, we have
T
Cnor— w50 as T — 0o and — — 0.
n

Notice that
n a 9* Xt1 1+/€(9 Xt7 1) +a’(9*,Xt.)+/{(9*,Xti)

Z 2 : AWIL

i=1

__Z 9* Xt +K/(9*7Xt171)]

/2

An,T =
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—T- 1/22 0", X, )+ r(6%, Xy, 1)]AW}

+ T71/2 Z[a,(0*7 Xti—l) + K(e*a Xti—l )]AW%
i=1
= H3 + An,T-
From Theorem 7.1, it follows that

P T
H3_)O as m — 0.

Notice that for
Ci(t) = a/(9*7Xti—1) + H(e*vXta‘,—l) - al(e*’ Xt) - H(e*a Xt)
with t;_1 <t <t;,i=1,2,...,n,

E|T71/2 Z[a/(e*a Xti,—l) + H(e*’ Xt’—l)]Am
i=1

TR [ a'(0%, X0) R0, X)W
_ 1/2E|Z / 40, X ) + RO, X AW,
—Z [ e X i xojam,

_ 1/2E|Z Q0% Xi,) + RO, X, ) — (07, X0) = R(6°, X0)| W

ti—1

T 1/2
— T’1/2E|/ Q(t)th|<T1/2{E|/ Q(t)thF}
0 0
1/2

T 1/2 T
= Tl/Q{/ E|Q(t)|2dt} <T1/2{/ CE|X;, , —Xt|2dt} (by (A4))
on , 2 0
cT /2 {Z/ (t—til)dt}
i=1 7 ti—1
- o 1/2{ (Z>2}1/2§C<Z>1/2.
n n

Thus,
T
1/22 (0%, X0, )+ H(0%, X0, AW, — T~ 1/2/ (0%, X2) + #(0%, X)]dW, 20
0

IA

as T'/n — 0.
On the other hand, using condition (A2) by the Central Limit Theorem for stochastic
integrals (see Basawa and Prakasa Rao (1980, Theorem 2.1, Appendix 2)), we have

T D
T,l/g/ (6%, X,) + 1(6%, X,)|dW: 2N (0, 8(6%)) as T — oc.
0

Hence,
n

. T
Apr=T"Y2 Z[a'(@*,Xti71)+/£(9*,Xtifl)]AWigN(O,ﬂ(O*)) asT — oo and ol 0.
i=1

Thus, to complete the proof of the lemma, we have to show that

~ P
pnT(u)_)O
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Let us first estimate S7(u).

", Da(6*, X4, Da(60*, Xy, n .
Sl(u) = { lz a’( ) t1717u) + a’( ) tmu)AWi . gzDa(e*vXtinu)]

; 2 ;
=1 =1

— Z Da(6*, X3, ., u)AWi} + Z Da(0", Xy, ., u)AW;

i=1 i=1
= H4 + 7 (’U,)
From Theorem 7.1, it follows that H4£>0 as % — 0.
Next,
" 2
E(ri(w) = E|Y_ Da(6", Xy _,,u)AW;
i=1
= Y E|Da(6", X,,_,,u)?E|AW;|? (3.9)
i=1
= hY_ EDa(*, X, ,,u)|?
i=1
But
Da(60*, Xy, u) = (0 —6%)d' (0", X,) — T~V ?ud (0%, X;,_,)
(where |6 — 6% < T~1/2u)
T=V2u]d (0, X,) — d' (0%, X1)] .
Hence
E|Da(9*7Xta‘,—17u)|2 = T 1u2E|a ( Xt1 1) al(e*aXti—l)lz
< TTWPE[J(Xy, )07 - 60)
< T 2U4E[J2(X )] (310)
< CT %t

Substituting (3.10) into (3.9), we obtain
B(ri(u)) < CT?u'nh < CT™ 1.

Thus, (u)io as T — oo. Hence,

T
S (u )i as T — oo and —7= — 0.
n2/3

Next, let us estimate Sz(u). We have, by the It6 formula,
a(6*, Xt) — a0, X¢,_,)
= ft X,)dX, —|— 2ft 0%, X,)du

)
- / (0", X, )W, + / ae" u>a<9*,xu>+§a<9*,xu)1du

qi—

t
—. / (0", X)dWa + [ A", Xu)du,
ti—1

ti—1
Thus
ElSy(u)|? = E|T- 1%2/ (0%, Xo,) [al67, X0) — a(6%, X)) di?
ti—1
ti
= E|T~ 1%2 a (6%, Xy, )a(0*, X,))dW,
ti—1

t
+/ a' (0%, Xy, ) A0, Xu)du] dt|?
ti—1
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123
< 2T~ 1u2{E|Z/ "6, Xy, )a(0*, X,)dW, dt|?

t11t71

+E|Z/ / (0%, Xy, )A(@*,Xu)dudﬂ?}

Note that, for B, —ft "6, Xy, _,a(0*, X,,)dW,,

n n ts t;
Ny ZE ( / Ltdt) + > E( Bi,tdt> ( / Bjﬂ:dt)
ti—1 s ti—1 ti

J#i=1 it
n t;

< ) (ti- ti_l)/ B(B?,)dt

i=1 ti-1

(the last term being zero due to the orthogonality of the integrals)

n ti t . 2
< Sttt [ 4] B X e X))

i=1 ti—1 ti—1

T Y
< C_Z/ (t—ti—1)dt (by (A4) and (A3))
3
< o= Z CT—
On the other hand, for th = ft a'(0%, Xy, _,)a(0", X,)du,

Ny = E|Z/ / (0%, Xy, VA0, X)) dudt]?

t; t; n t; tj
_E|Z/t R, 1dt)? _Z( 5 Ryt + > E (/t Ri7tdt> (/t Rjﬂ:dt)

i=1 j#i=1

<Zt—t11 (/ tht) +Z{ /1t R;dt)? /letdt } "

J#i=1 L
< Z ti—ti / E(R?,)dt

ti—1
. t 1/2
+ Z {t —tiq / BE(R?)dt(t; —tj_1) E(Rjt)dt}
jAi=1 ti—1 ti—1
But E(R},) < C(t —t;—1)* using (A4) and (A3). On substitution, the last term is
bounded by
CZt—tH +CZ - =t )2
4 i 4
T nn—1) T T
= — — < (C—.
Cn nt +C 2 nt — Cn2
Thus, E|Ss(u)|?
T3 T
< 2T (A + Ag) < CT 'u(=) + CT 'u—
n? n
T3 T .
< Cn_ _C(n2/3) .
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Thus, Sg(u)&() as % — 0. Next, let us estimate Sz(u).

n t
Blsa(w)] = EIY [ Dal",Xiy ) 6", X0) ~ alo", Xi,_)] dt
n t;
< Z/ EDa(0", X,, . u)l[a(0", X)) — a(6, Xy, ,)|dt
ti
< Z/ (E|Da(6°, X,._,, w)PEla(6", X,) — (6%, X,,_)2} "/ dt
ti—1
n t;
< S| {CT22EX, - X, [} dt (by (3.10) and (A1)
i=17ti-1
<

n t;
CT*luZ/ (t —t; 1) %dt
i=1"ti—1

(since B(X; — Xy, ,)? < C(t —t;—1) by Gikhman and Skorohod (1972, p. 48))

< CT 'u / sup t—t-_ V2t
S
3/2 1/2
T T
< OT 'un. <—> <C<—>
n n

Thus, Ss(u )£>0 as £ — 0. Next, let us estimate Sy(u).

25u(u) = Z/’ {a(6, X0,) — a(6", X0,) — [a(6, X,_,) — a6%, X._)]} g(X0)dt

ti—1
WuZ/ a' (0%, Xy,) — a' (07, Xe,,)] 9'(Xy)dt

where |0* — 0| < T~/?u.
Now proceeding similarly as in the proof of convergence of Sa(u) to zero in probability,
it can be shown that

P T
Sa(u)—0 as 5 0.

This completes the proof of the lemma, 0
Lemma 3.7 Under assumptions (A1) - (A10), for each € > 0,
%im lim sup P{ sup | log %n7T(U,2) — log %nT(u1)| > e} =0.

T4>oo,—g>3 —0 up,u2 €Aq 1, us—u1 |<6
n

Proof : From Lemma 3.6, we have

108 Zn1(12) — og Znr(u1)

~ 1 ~ ~
(ug2 —u1)An1 — 5(“3 = u)T + Vo1 (u2) — Vo, (ur)

< ue —wl|Anr| 4 Clug — ua] + Vo2 (u2)| + [Vn 1 (ua)l;
where C' is a positive constant.
Therefore,

P{ sup |log %n,T(U2) —log 2nT(U1)| > e}

uy,uz,€EAq, 1, uz—u1| <3
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SP{|&7L,T|+B> i}—l—ZP sup |’Nyn7T(u1)|> <.
30 B 3

Note that
P{ sup |’7nT(u)| > E}

u€EAq,T 3

lu|<a u€Aq,T

= P{ sup |S1(u) + Sa(u) + S3(u) + Sa(u)| > é} +P{ sup [T —u’T| > g

IN

€ € €
P — P — P —
{zrfa'w' ” } ! {|:“fa'52<“>' ” } ! {liufa'53<“>' ” }

+P< sup |Sy(u)| > ‘b p sup |1 —u’T| > <
|u|<a 24 uEAg. T 3

T
— 0 asT — andmﬂo.

Since ZmT converges in distribution to N(0,T"), hence

lim lim P sup |log Znr(u2) —log Znr(u1)| >e€p =0.
6—0 Tﬂm%ﬁo uy,us€Aa, 1, uz—u1|<8

Lemma 3.8. Under assumptions (Al) - (A10), we have, for each € > 0,

lim  limsup P{ sup %nT(u) > e} = 0.
0

a— 00 T
T~>oo,77/2/3~> \u|2(y

Proof : Since T is positive, there exists a number 7 such that

1
77u2 < ZFUQ, u € R.

By Lemma 3.6,
~ ~ 1 ~
log Zn.1(v) = uAp 1 — §u2f + Vo, 1 ().
Let
_ 1 ,
Sz(u) = 1+ u2 S’L(u)ﬂ L= ]-a 273a47
and
U, = {u Hul < 5T*1/2} for any d > 0.
For p > 1,
E[Si(u)]** < CTP,
E|§1(U2) — §1(U1)|2p S CT_p|U,2 — U1 2p.
Therefore,

sup |§1(u)|£>0 as T — oc.
u1 €UL

It is obvious that

sup |§3(u)|£>0 as — — 0.

uelUy

SHES
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Next,

Define

SQ (’U,)
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1/2u2/1 "0%, Xy, 1)[ (0%, X¢) —a(0%, X, 1)}d

ti—1

ti t
WuZ (0%, Xy, / </ d(f)*,Xu)qu> dt
ti—1 ti—1
ti t )
+T~ WuZ (0%, X, / (/ [a(6*, X.)a(0, X.,)
ti—1 ti—1

+§d(9*, Xu)]du) dt  (by the It6 formula)
Sgl(u) + Soo (’U,)

1

Sa5(u) = 77352 (w) J=1.2

It is easy to show that

= P T
S —0 —7= — 0.
sup BulwI=0 as oz —

As in the estimation of S;, we can show that, for p > 1,

Hence,

Thus,

- T
B[S (u)] < (=),

- - T
Sa1(ug) — Sa1(u1)[* < C(E)QPIUQ —uy[?P

— T
sup |521(u)|£>0 as — — 0.

uclU;
p T
supwpo asT — oo and — 0.
uelU; 1+u ’I’L/B

On the other hand, for any € > 0, if § > 0 is small enough, (A2) yields

lim P { sup

T—00,L—0 ueUs

= |u’T —Tr| < e} =1.

Hence, for any € > 0 for small § > 0,

where

lim P{V,..r} =0,

1 ~
Vi = - <)
T {5351 T [Vn,r(u)] < €}

Let € < 7. On the event V,, 7, ia |u| < 6T'/2,

~ ~ 1 ~
log Zn,r(u) < |u||An,T|—§u2F+|7n,T(u)|

~ 1
< fullAnr] = SuT +e(l + %)

~ 1

< lullAnr| = GuT +u? + e
~ 1

< JullAnr| = JuiT +e

< lullAng| =’ +e
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Let Us := {u: q < |u| < dT"/?}, where ¢ is a positive number. We have

N 2
P { sup Zn,r(u) > exp (—ﬂ) }
ueUsz 2

< P( nC’T)—i-P{sup <|u||£nT|— ) Te>— nq- }
uCu 2
< ol)+P {q|£nT| —ng® +e> —nq2/2} +P {|£nT| > 2nq}

< 2P {|Anzl > na/2— ¢/a} +o(1).
Let x and 7 be arbitrary positive numbers. For large ¢, exp(—ng?/2) < 7 and

limsup,P{lﬁn,Tl >nq/2 — 6/q} < %
T,n
Then
1imsupP{ sup %nT(u) > T} <x.
Tn u€Us
Define
u:|ul > (5T1/2} and Hy :={y: |y| > d}.
Then

T—o0, u€Us

. 2/3

= limsup P

Taoo,’ 2/34>0

hmsup P { sup Zn r(u) > T}

sup mnT 0" +y)— T?’LMT(Q*)} >TllogT}
yEH,

< limsup P { sup T?’Ln’T(f)* +y) =0 +y)+ T%n’T(f)*) —m(6*) > q}
T—o0, T/ —0 yEH,

+ limsup P{ sup m(0* +y) — m(0”) >T110g7'—q}

yE€H:

T—o0, n;f/3 —0
If ¢ is small, the second term on the r.h.s. is zero. The first term tends to zero by Lemma
3.5. Therefore, for 7 > 0 and x > 0, if ¢ is large,

limsup P { sup %nT(u) > T} <x. 0

Tﬂm,ﬁ%ﬂo |u|>q

4. PROPERTIES OF APPROXIMATE M-ESTIMATORS

Let Co(R) be the Banach space of real-valued continuous functions on R vanishing at
the infinity with sup-norm. Let

Up.r = {u 0+ TV e @}.

For v € Uy 1, Zy,r(u) and %nT(u) have been defined and extend it to an element of
Cy(R), whose maximal points are contained in U,, r. Using the weak convergence of the
random field Z, r(u) (Lemma 3.2, Lemma 3.3 and Lemma 3.4), we obtain the following
results.

Theorem 4.1 Under conditions ( 1) - (A9), we have
D .
n1()=2() in Co(R)
as T'— oo and % — 0, where Z( ) = exp(uA — 1uT),
i.e., for any continuous functional ¢ on Cy(R),

B[ Zo 1)) — ER(Z())] a8 T — o0 and - 0,
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In particular, for the AME1,

D — * — * T
TY%(0, 1 — 6*) = T LA ~ N(0, B(0")T72(0")) as T — oo and —75 = 0.
Proof follows easily by the application of Theorem 5.3.1 in Kutoyants (1984).

Theorem 4.2 Under conditions (A1) - (A10), we have
~ D .
Zn,r() = Z(-) in Co(R)
as T'— oo and # — 0 where Z(u) = exp(uA — $u°T),
i.e, for any continuous functional ¥ on Cy(R),
~ T
E[¢(Znx())] = EW(Z()]] as T = 00 and — = — 0.

n2/3
In particular, for the AME2,
- o D B B T
TY2(@r — 6*) = T7PA ~ N(0,3(0)T2(0)) as T — oo and —75 0

Proof : Using the weak convergence of the AMR random field 7 n,(uw) (Lemmas 3.6-3.8),
the theorem follows easily by applying Theorem 5.3.1 in Kutoyants (1984).

5. APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATION FOR MISSPECIFIED DIFFUSION
MODELS

If the parametric model contains the true one, then the maximum likelihood estimator
is efficient. But the maximum likelihood estimator is sensitive to a contamination of data
and a misspecification of the true model. In this section, we study how the difference
between the true model and the parametric model affects the asymptotic behavior of the
approximate maximum likelihood estimators McKeague (1984) and asymptotic proper-
ties of the maximum likelihood estimator in a misspecified diffusion model. As a special
case of our M-estimators, we obtain two approximate maximum likelihood estimators,

when a = p and b = p?.

6. COMPARISON OF THE AMES FOR THE ORNSTEIN-UHLENBECK PROCESS

In this section, we compare the rates of convergence to normality of the Ito6 AME
and the Stratonovich AME in the Ornstein—Uhlenbeck model, when the model may not
be correctly specified. Bishwal and Bose (2001) showed that, for the correctly specified
Ornstein—Uhlenbeck model, Stratonovich approximate maximum likelihood estimators
have faster rate of convergence than the It6 approximate maximum likelihood estimator.

Suppose the true model is the ergodic and stationary

1
dXt = —§Xtdt+ th,X() = f, g ~ ]\7(07 ].)
which is used to estimate the unknown parameter 8 < 0 in the observer’s parametric
model
dX; = —0(X: — 1)dt + dWy, Xo = &,
where 6 > 0.
The quasi-true parameter is

0 — arginf/]R[H(x -1)— %x]zl/(dx) _
ZZL:I (X1 — 1)(Xp, — X,
S (Ko — 1)°A,,
0, 7 = _12?:1(()(@,—1 — 1)+ (X — D)) (X, — Xy ) — S0 At
| 2 Doy (X1 — 1)%At;
1 X2 -T-2
2 Yoy (Xt — 1)°At;

3
4’
1)

gn,T = - )
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Following Bishwal and Bose (2001), it can be shown that émT has a faster Berry—
Esseen bound than the 8, 7.

7. RATES OF CONVERGENCE OF APPROXIMATE INTEGRALS

In this section, we show the mean square rate of convergence of the approximations of
stochastic integrals. We establish the L? rates of convergence of the It6 approximant and
the Fisk—Stratonovich approximant to the corresponding integrals, when the integrator
is the standard Wiener process.

Throughout the section, we assume that C'is a generic constant. We use the following
notations:

fz~ 8xaft = 3tafxa:: dxzvftt = %7ftm: 8t89c

We assume the following conditions:

(B1) f(-,-) satisfies the Lipschitz and growth conditions:

|f(t,$) - f(tay)| < K|{E - y|a and |f(t,£[,’)| < K(]- + |£L'|) for all t € [OvT]

for some constant K > 0,

(B2) f.(:,-) satisfies the Lipschitz and growth conditions:

Fo(t2) = Folt, )] < Kz — y| and | fo(t,2)] < Ky (1 + Jo]) for all ¢ € [0,7]

for some constant K7 > 0,

(B3) f(-,) is a real-valued function satisfying

T
Eg- {/ fQ(t,Xt)dt} <oo forallT >0,
0

(B4); f(-,-) is j times continuously differentiable in = for j =1,2,...,6 and
sup E|fo(t, X4)® < oo, sup B foe(t, X¢)|® < o0,
0<

(B5)% f(-7 1) is k times contlnuously differentiable in ¢ for k =1,2,...,6 and
sup E|f:(t, Xp)|® < o0, sup E|ftt(t X,)® < o0,
0<

(B6) sup E|fi(t, Xt)|8 < 0.

0<t<T
Theorem 7.1 Under assumptions (B1) - (B3), (B4);, (B5) and (B6) we have

(a) E Zf i X YWy, = Wi, _)) / f(t, X,)dw,
Under assumptlons( 1) - (B3), (B4)s, (B5) and (B6), we have

(b) E zn: f( i— I;Xt 12) + (tzaXt )(th _ Wtiil) B ﬁTf(tht)th

i=1

<c_

)
)-
<ck

Proof. Note that the It6 integral is a forward martingale. On the other hand, the FS
integral is the arithmetic average of a forward martingale and a backward martingale.
Let m, be the partition as defined in the previous section. Define F' and F as

T

and

n
f(t'*l Xti— )+ f(t th)
— Z o 12 Y Wy, — Wi ,). (7.2)
Let 7/, be a partition, finer than 7, obtained by choosing the mid-point #;_; from each
of the intervals t;_1 < t;-1 < t;, i =1,2,...,n. Let 0 =¢t[ <t} < ... <th, =T be
the points of a subdivision of the refined partition =],. Define the approximating sum
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F,, as before. First, we will obtain bounds on E|F,, — Fr |* in order to get bounds on
E|F,, — F|%.

Let 0 < t§ <t < t5 < T be three equally spaced points on [0,7], and let us denote
Xt: by Xi and Wtj by Wi,i = O7 1, 2. Define

7 = f(tgvXQ) + f(tgvXO) (WQ _ WO)

2
_Vif(tg,xz) _; F8X0) 4 gy 4 £ XD) —QF It X0) gy WO)}
= (T (705 50) — 057, X0) + (25 (765, Xo) — £, X))
(7.3)
Let
t t3
L= [ f(t,X)dt, I ::/ F(t, X))t (7.4)
ty t

Clearly, by the Taylor expansion,

f(tgaXQ)_f(ty{axl) 1

= (X2 — X0)fa(t], X1) + (85 — 1) fe(t], X1) + 5 (X2 — X1)* fau(m1, 1)
2
1
5tz - 11)? fu (1, 01) + (85 — 11)(X2 — X1) fra (T2, 1)
1

= (Wo—Wi+DL)f(t], X1) + (&5 —17) fe(8], X1) + §(X2 — X1)? faa(T1,11)

P8~ 1) Fulmion) + (8~ 1)(Xa — X0) fualmaon),
(7.5)
where | X7 — | < | X2 — Xq|,|t5 — 71| < |t5 — 7], and
f(t5, Xo) — f(t, X1)
= (Xo—X1)fe(t], X1) + (5 — 1) fe(t1, X1) + %(Xo — X1)? faa (72, 12)
1

+§(t6 — )2 (2, v2) + (85 — t1)(Xo — X1) fra (T2, v2)

= (W2~ Wo b B, X0) + (85— E)ult5, X0) + 5 (X0 — X1)? o (ra, 2)

1
+5 (0 — t1)% fur (2, v2) + (15 — 11)(Xo — X1) fra (T2, 12),
(7.6)
where |X1 — V2| < |X0 — X1|, |f,y{ — T2| < |t8 — ti‘l
Relations (7.3) to (7.6) show that

Wi — W, Wy — W,
z = (57 nx + () - maesx)

2
Wi — W, Wi — W,
(M=o (x, - X2 (r) + <1—0) (5 — )2 Fuu (i, 1)
=5 (Xo — Xq)(t5 — 1) fra(T1, 1) — 5
2
Wy — W4

4 4
Wy — W Wy — W,
—— ) (#) L fa(t], X1)
Wy - W, Wy — W,
+ (= ) (6 — A X0 + (T) (Xo = X1)* faa(r2, 02)
5 G (t5 — 1) fre (72, v2)

+ (M) (Xo — X) (85 — t5) fea (T2, v2)
M1 +M27

(7.7)
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where 2
My = (W, — W) I;f 1, X1) + (t2 )ft( X1)+ wﬂvz@—l;yl)
+@fﬁ(n,X1) + §(X2 = X1)(t5 — tT)ftm(Tlvljl)} ;
(7.8)
_ 2
My = (WQ—Wl){_%fz(ﬁle) Mft(tlaXl) wfzz(TQ;VQ)
* k)2
+7(t0 4t1) fee(m2, X2) + %(XO - X1)(ty — tT)ft:c(T%VQ)} .
(7.9)

Clearly, E(Z?%) < 2[E(M%)+ E(M3)]. Notice that M, corresponding to different
subintervals of [0, T]-generated by 7, form a martingale difference sequence, and M;
corresponding to different subintervals of [0, T'| generated by 7, form a reverse martingale
difference sequence.
Observe that
E| M,
1)

- E(Wg—Wl)QE{ Izlf(tl,Xl)—i—(tS;

2
* _ 4x)\2 2
R ) L0 X005 )t )

* _ g%)\2
i3 - i) { B3 22607 + B b, 30

B { ST (fra (2, 02))? | + Y B(fun(72,02))?
(85— B B{(Xo — X0)fualra, 1))

4 1/2 * k)2
i - { ZSl B )+ B b xp

120 . s
+ {WE(fmz(TQ,VQ))2} + (ﬁ)lé—l)E(ftt(TQ,l/Q))z
1/2
1
+1(t3 —t1)2E(Xo — X1)*E( fra(72,10))*

C (t — 1)) [{B(R)* 12 + {B(X1 - Xo)}/?]

(X1 — Xp)?

ft(tT5X1)+ 4

fra(re,va)

IN

IN

IA

(7.10)

by (B4)2
By Theorem 4 of Gikhman and Skorohod (1972, p. 48), there exists C' > 0 such that
E(X, — Xo)® < C(E(X;P)+ 1)t —t5)P,p>1 (7.11)

E(I}) = (/ f(t, Xy) dt)

K*'FE / (1+|Xt|)dt> (7.12)

At — t5)" sup E(1+|X:)")

0<t<T
Oty —ty)*.

and, by (B4)a2,

IN A

IA

Relations (7.10) - (7.12) prove that
B(M3) < C(t; — t7)(t] — 1) (7.13)
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for some constant C' > 0 independent of 3, ¢ and t3. Let us now estimate E(M?). Note
that
E(M?)
. L

* _ 3 _ 2
= B|(" _WO){—fx(tT7X1)+Mft(th1)+M

4 f:c;c(Tlayl)

2

e _4x)\2 ?
B+ 06— X0 - )]

4 2
I ts—t} Xy — X)?
E (W _WO)4E{§fx(ty1‘7X1)+Mft(ﬁaxl)_'_%

2
1/2

IN

f;c;c(Tla Vl)

* _ 4%)2 !
+%ftt(7—laX1) + %(XQ - Xl)(t; - ti)ftr(Tl’ Vl)} ‘|

(by the Cauchy-Schwarz inequality)
E(IQfx( Tv‘(l)‘l (tg_tik)‘l
tr—t3)? E
C(ty —to) { 16 + 16 (

E((X2 — X1) fea(m, 1))t | (85 —17)®
* 256 * 22561 E(

+1i6(t§ — ) B((X2 — X1) fra(m1,11))*

(by C, - inequality and the fact that E(W; — Wy)* = 3(t5 — t5)? )
E(Lf(t, X)) (t5 —tH)* .
C(f{ _tS)Q{ ( 2f ( 1 1)) + ( 2 1) E(ft(tlaxl))4

IN

folty, X1))*

ftt(TlaXl))4

1/2

IN

16 16
+E((X2_X1)fxx(71;V1))4 + (tS _tT)SE(
256 256

(1 — 1) E((Xs — X0) fra(ri, 1))

16

C(f{ _ tS)Q {{E(I2)8E(fw]-(6tT7X1))8}l/2 + (t; I;T)Al E(
{E(X2 — X1))BE(fou(m1,01))2}/2 (5 —t7)8 s

+ 556 + 2256 E(fi(m1,X1))

1 1/2
%ﬁyﬂﬂﬂMrXﬁMM@MWWﬂ

ftt(Tth))4
1/2

IN

fe(ty, X1))*

16
(by the Cauchy—Schwarz inequality)
(7.14)
Note that there exists a constant C' > 0 such that
E(Xo— X1)® <C(t; —t1)* (7.15)
by Theorem 4 of Gikhman and Skorohod (1972, p. 48).
Furthermore, by (A5)
t3
/ £t X0)dt
Y

E(L)? E

*
1

8 t 8
<CFE / (1+|Xt|)dt] by (A1)
t

t 2 t 4
< CE {/ (1+|Xt|)dt} <CE (tg—t;){/ (1+|Xt|)2dtH
ty i
t 4
SC@4WEV<HWﬁﬂ
t
£
< C(ts =) | E(Q+ X[t

= Oty —t)8 (Ey (AB)2). (7.16)
16
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Relations (7.14) - (7.16) prove that
E(M7) < C(t] — t5)(t5 — 17)? (3.17)
for some constant C' > 0 independent of ¢, t7 and t5. Inequalities (7.13) and (7.17) prove
that there exists a constant C' > 0 independent of ¢§,¢], and ¢5 such that
E(M?) <C(ty — )3, i=1,2. (7.18)
Using the property that M corresponding to different subintervals form a martingale
difference sequence, and M; form a reverse martingale difference sequence, it follows that
T3
E|Fy, — 7T$L|2 < Cﬁ (7.19)
for some constant C' > 0.

Let {W»SIQ), q > 0} be the sequence of partitions such that 7r,(f+1) is a refinement of ﬂﬁf)
by choosing the mid-points of the subintervals generated by W,(li). Note that W,(lo) = T
and 77%1) = m/,. The analysis given above proves that

3
BIFy, (6) = Fro (g + D < C5r, (7.20)

where Fy (q) is the approximant corresponding to 79 and F#Z) = F, . Therefore,

q 2
E|Fy, — Fr (g+ 1> = E {Z[FM (k) — Fy (k + 1)]}

k=0

< {Z (E|Fx, (k) — Fr, (k + 1>|2)5}
k=0
q CTB 1/2 ? T3

< {Z (W) } =0
k=0

for all ¢ > 0. Let ¢ — oco. Since the integral F exists, Fy (¢ + 1) converges in Lo to F'
as ¢ — 0o. Note that {m,(¢+ 1),q > 0} is a sequence of partitions such that the mesh

of the partition tends to zero as ¢ — oo for any fixed n. Therefore,
3

T
E|F,, — F|? <C— < Ch?, (7.21)
n
where

T
FZ hm Fﬂ-n :% f(t,Xt)th
0

n— oo

To prove (a), let 7, be the partition as defined previously, and let I, and I be defined
by

n T
ITrn = Z f(ti—la Xti—l)(Wti - Wti—l)’ I:= / f(t7Xt)th'
=1 0

By arguments used to establish (3.2) and by noting that {I,_ ,n > 1} is a martingale,
it can be easily shown that (in this case, we need the conditions of existence and finite
moments for the first derivative of f only)
T2
E|I,, —I?<C—. (7.22)
n

This completes the proof of the theorem. 0

Remarks
(1) The partial differential equation defined in (A8) is an elliptic type equation. If the
model is correctly specified, condition (A8) can be eliminated for approximate maximum
likelihood estimators since, in this case, p/(6, ) = 0. Moreover, the approximate maxi-
mum likelihood estimators (AMLEs) are consistent with asymptotic variance I'"1(6*).
(2) The problem of obtaining the rates of convergence (both large deviations and
Berry—Esseen type bounds) of the AMEs now remains open. Note that if the model
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contains the true model, then, in the linear case, it is known that AME2 has a faster
rate of convergence than AMLE] (see Bishwal and Bose (2001)). We conjecture that, in
the general case, AME2 would have a faster rate of convergence than the AMEL.

(3) It remains open to obtain the asymptotic normality of AMEs under the SIED

condition.
(4) Generalization of the results of this paper to multiparameter case is worth inves-
tigating.
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