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ON ASYMPTOTIC BEHAVIOR OF CROSS-CORRELOGRAM
ESTIMATORS OF RESPONSE FUNCTIONS IN LINEAR VOLTERRA

SYSTEMS

The problem of estimation of an unknown response function of a linear system with
inner noises is considered. We suppose that the response function of the system
belongs to L2(R). Integral-type sample input-output cross-correlograms are taken
as estimators of the response function. The inputs are supposed to be zero-mean
stationary Gaussian processes close, in some sense, to a white noise. Both the as-
ymptotic normality of finite-dimensional distributions of the centered estimators and
their asymptotic normality in the space of continuous functions are studied.

1. Introduction

In this paper, we consider a time-invariant casual continuous linear Volterra system
with inner noises and a response function H(τ), τ ∈ R. It means that the real-valued
function H satisfies the condition H(τ) = 0, τ < 0, and the response of the system to
an input process X(t), t ∈ R, has the form

(1) U(t) =
∫ ∞

0

H(τ)X(t− τ) dτ + Z(t),

where the process Z(t), t ∈ R, describes inner noises of the system.
One of the problems arising in the theory of such systems is to estimate or identify the

function H by observations of responses of the system to certain input signals. While
solving this problem, different statistical approaches along with various deterministic
methods are used. These statistical approaches are based on a perturbation of the system
by stationary stochastic processes and the further analysis of some characteristics of
both input and output processes [2, 4, 5, 14]. The output process of the stable system
(H ∈ L1(R)) has a spectral density, and a method of periodograms may be used for
the estimation [1, 3]. For an unstable system, it is reasonable to use other methods, in
particular, a method of correlograms. This method is based on constructing a sample
cross-correlogram between the input stochastic process similar to the white noise and
the response of the system ([6], [10]). Such an approach is not applicable in practice
because the simulation of the white noise is impossible. In fact, we always deal with
a sequence of stationary Gaussian processes that disturb the system and depend on
a certain parameter Δ ∈ (0,∞) and such that their spectral densities converge to a
constant as Δ→∞. Sample correlograms between input and output processes are taken
as estimators for H ([9], [11]-[13]).

Here, we use the method of correlograms for the estimation of the response function
H ∈ L2(R). Such an assumption makes it possible to consider unstable systems with
resonant singularities. This paper continues the research of ([7], [9]) and focuses on
the asymptotic normality of integral-type cross-correlogram estimators in the space of
continuous functions.
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2. Preliminaries

Assume that (XΔ(t), t ∈ R), Δ > 0, is a family of measurable real-valued stationary
zero-mean Gaussian processes that disturb the system (1). Let (fΔ(λ), λ ∈ R), Δ > 0,
be a family of spectral densities of the processes XΔ. We suppose that these functions
are nonnegative, continuous, and satisfy the conditions
(2a) fΔ(λ) = fΔ(−λ), λ ∈ R;

(2b) sup
Δ>0
‖fΔ‖∞ <∞;

(2c) fΔ ∈ L1(R);

(2d) ∃c ∈ (0,∞) ∀a ∈ (0,∞) : lim
Δ→∞

sup
−a≤λ≤a

∣∣∣fΔ(λ) − c

2π

∣∣∣ = 0;

(2e) KXΔ ∈ L1(R),

where KXΔ(t) =
∞∫

−∞
eiλtfΔ(t) dt, t ∈ R, is the correlation function of XΔ.

These conditions are satisfied, for example, by the function

fΔ(λ) =
c

2π
exp

(
−λ

2

Δ

)
, λ ∈ R.

By (1), the reaction of the system on an input signal XΔ is represented by

(3) UΔ(t) =
∫ ∞

0

H(τ)XΔ(t− τ) dτ + Z(t), t ∈ R.

We assume that the inner noise (Z(t), t ∈ R) is a separable real-valued stationary zero-
mean Gaussian process which is orthogonal to XΔ; that is, EXΔ(s)Z(t) = 0, s, t ∈ R.
Let (g(λ), λ ∈ R) be the spectral density of the process Z. It is a nonnegative measurable
function which satisfies the conditions
(4a) g(λ) = g(−λ);

(4b) g ∈ L1(R).
The so-called cross-correlogram (or sample cross-correlation function)

(5) ĤT,Δ(τ) =
1
cT

∫ T

0

UΔ(t+ τ)XΔ(t) dt, τ ≥ 0,

will be used as an estimate for H. Here, c is the constant from (2d), and T is the length
of the averaging interval. The integrals in (3) and (5) are interpreted as mean square
Riemann integrals.

Denote, by

H∗(λ) =

∞∫
−∞

eiλtH(t) dt, λ ∈ R,

the Fourier–Plancherel transform of H ∈ L2(R) (see [17]).
Along with the process (ĤT,Δ(τ), τ ≥ 0), we consider the process

(6) AT,Δ(τ) =
√
T [ĤT,Δ(τ)−EĤT,Δ(τ)], τ ≥ 0,

where EĤT,Δ(τ) = 1
c

∫ T
0
KXΔ(τ − s)H(s) ds.

In the statement below, we obtain a form of the correlation function of (AT,Δ(τ), τ ≥
0).

Lemma 2.1. Assume that H ∈ L2(R) and g ∈ L1(R). Then the equality

(7) EAT,Δ(τ1)AT,Δ(τ2) =
2π
c2

∞∫
−∞

∞∫
−∞

[
ei(τ1−τ2)λ2

(
|H∗(λ2)|2fΔ(λ2) + g(λ2)

)
+
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+ei(τ1λ1+τ2λ2)H∗(λ1)H∗(λ2)fΔ(λ2)
]
ΦT (λ2 − λ1)fΔ(λ1) dλ1dλ2

holds for all τ1, τ2 ≥ 0. Here, ΦT is the Fejer kernel; that is,

ΦT (λ) =
1

2πT

(
sin(Tλ/2)

λ/2

)2

, λ ∈ R.

Proof. The proof of Lemma 2.1 is standard (see [12]). �

3. Asymptotic behavior of the correlation function of AT,Δ

In this section, we consider the asymptotic behavior of the correlation function of
AT,Δ as T and Δ tend to infinity. In what follows, we write (T,Δ)→∞ if both T →∞
and Δ→∞.

For all τ1, τ2 ≥ 0, set
(8) C∞(τ1, τ2) =

=
1
2π

∞∫
−∞

[
ei(τ1−τ2)λ

(
|H∗(λ)|2 +

2π
c
g(λ)

)
+ ei(τ1+τ2)λ(H∗(λ))2

]
dλ.

Note that the function C∞ is well-defined and continuous, since H ∈ L2(R) and g ∈
L1(R).

Theorem 3.1. Assume that H ∈ L2(R) and g ∈ L1(R). Then the equality
lim

(T,Δ)→∞
EAT,Δ(τ1)AT,Δ(τ2) = C∞(τ1, τ2)

holds for all τ1, τ2 ≥ 0.

Corollary 3.1. Assume that H ∈ L2(R) and g ∈ L1(R). Then the equality

lim
(T,Δ)→∞

TE|ĤT,Δ(τ) −EĤT,Δ(τ)|2 =
1
c
‖g‖1 + ‖H‖22 +

2τ∫
0

H(t)H(2τ − t) dt

holds for all τ ≥ 0.

Remark 3.1. Theorem 3.1 weakens conditions of Lemma 4 in [9].

Proof. To prove Theorem 3.1, we use some general results stated in [11, 12] and break
up the proof into three steps.

At Step 1, we prove the equality

(9) lim
(T,Δ)→∞

Ĉ
(1)
T,Δ(τ1, τ2) = C(1)

∞ (τ1, τ2),

where

Ĉ
(1)
T,Δ(τ1, τ2) =

2π
c2

∞∫
−∞

∞∫
−∞

ei(τ1−τ2)λ2 |H∗(λ2)|2fΔ(λ1)fΔ(λ2)ΦT (λ2 − λ1) dλ1dλ2

and

C(1)
∞ (τ1, τ2) =

1
2π

∫ ∞

−∞
ei(τ1−τ2)λ|H∗(λ)|2 dλ, τ1, τ2 ≥ 0.

At Step 2, we prove the equality

(10) lim
(T,Δ)→∞

Ĉ
(2)
T,Δ(τ1, τ2) = C(2)

∞ (τ1, τ2),

where

Ĉ
(2)
T,Δ(τ1, τ2) =

2π
c2

∫ ∞

−∞

∫ ∞

−∞
ei(τ1λ1+τ2λ2)H∗(λ1)H∗(λ2)fΔ(λ1)fΔ(λ2)ΦT (λ2−λ1) dλ1dλ2
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and

C(2)
∞ (τ1, τ2) =

1
2π

∫ ∞

−∞
ei(τ1+τ2)λ(H∗(λ))2 dλ, τ1, τ2 ≥ 0.

At Step 3, we prove the equality

(11) lim
(T,Δ)→∞

Ĉ
(3)
T,Δ(τ1, τ2) = C(3)

∞ (τ1, τ2),

where

Ĉ
(3)
T,Δ(τ1, τ2) =

2π
c2

∞∫
−∞

∞∫
−∞

ei(τ1−τ2)λ2fΔ(λ1)g(λ2)ΦT (λ2 − λ1) dλ1dλ2

and

C(3)
∞ (τ1, τ2) =

1
c

∫ ∞

−∞
ei(τ1−τ2)λg(λ) dλ, τ1, τ2 ≥ 0.

Step 1. Observe that, for all τ1, τ2 ≥ 0, T > 0, Δ > 0 and each b > 0, the equality

C(1)
∞ (τ1, τ2)− Ĉ(1)

T,Δ(τ1, τ2) =
1
2π

[d1(b) + d2(b, T,Δ) + d3(b, T,Δ)]

holds, where

d1(b) =

∞∫
−∞

ei(τ1−τ2)λ|H∗(λ)|2[1− I[−b/2,b/2](λ)] dλ,

d2(b, T,Δ) =

∞∫
−∞

∞∫
−∞

ei(τ1−τ2)λ2 |H∗(λ2)|2I[−b/2,b/2](λ2)
[
1−

−
(

2π
c

)2

fΔ(λ1)fΔ(λ2)
]
ΦT (λ2 − λ1) dλ1dλ2,

d3(b, T,Δ) =
(

2π
c

)2
∞∫

−∞

∞∫
−∞

ei(τ1−τ2)λ2 |H∗(λ2)|2[I[−b/2,b/2](λ2)−

−1]fΔ(λ1)fΔ(λ2)ΦT (λ2 − λ1) dλ1dλ2

and I[−b/2,b/2] denotes the indicator of [−b/2, b/2].

By the inequality |d1(b)| ≤
∫

|λ|>b/2
|H∗(λ)|2 dλ, one has

(12) d1(b)→ 0 as b→∞,
since |H∗|2 ∈ L1(R).

Since ‖ΦT ‖1 = 1, the following inequality holds for any b > 0, T > 0 and Δ > 0:
|d2(b, T,Δ)| ≤ B1(T,Δ) +B2(T,Δ).

Here,

B1(T,Δ) =
∣∣∣ ∫ ∫

Db

ei(τ1−τ2)λ2 |H∗(λ2)|2I[−b/2,b/2](λ2)
[
1−

−
(

2π
c

)2

fΔ(λ1)fΔ(λ2)
]
ΦT (λ2 − λ1) dλ1dλ2

∣∣∣,
B2(T,Δ) =

∣∣∣ ∫ ∫
R2\Db

ei(τ1−τ2)λ2 |H∗(λ2)|2I[−b/2,b/2](λ2)
[
1−

−
(

2π
c

)2

fΔ(λ1)fΔ(λ2)
]
ΦT (λ2 − λ1) dλ1dλ2

∣∣∣
and Db = [−b, b]× [−b, b].
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Since

B1(T,Δ) ≤ sup
(λ1,λ2)∈Db

∣∣∣∣∣1−
(

2π
c

)2

fΔ(λ1)fΔ(λ2)

∣∣∣∣∣ ‖H∗‖22

and

(13) sup
(λ1,λ2)∈Db

∣∣∣∣∣1−
(

2π
c

)2

fΔ(λ1)fΔ(λ2)

∣∣∣∣∣ ≤
≤
[
1 +

2π
c

sup
Δ>0
|fΔ‖∞

]
sup

−b≤λ≤b

∣∣∣∣1− 2π
c
fΔ(λ)

∣∣∣∣ ,
one has, by (2d), that B1(T,Δ)→ 0 as (T,Δ)→∞.

For fixed b > 0, put Π(b/2) = {(λ1, λ2) ∈ R2 : |λ2 − λ1| ≤ b/2}. Since

B2(T,Δ) ≤
∫ ∫

R2\Π(b/2)

|H∗(λ2)|2I[−b/2,b/2](λ2)
∣∣∣1−

−
(

2π
c

)2

fΔ(λ1)fΔ(λ2)
∣∣∣ΦT (λ2 − λ1) dλ1dλ2 ≤

≤
[
1 +

(
2π
c

sup
Δ>0
|fΔ‖∞

)2
]
‖H∗‖22

∫
|λ|>b/2

ΦT (λ) dλ,

and, for any b > 0,

lim
T→∞

∫
|λ|>b/2

ΦT (λ) dλ = 0,

we have B2(T,Δ)→ 0 as (T,Δ)→∞. Hence,
(14) lim

(T,Δ)→∞
d2(T,Δ) = 0

since |d2| ≤ B1(T,Δ) +B2(T,Δ).
For any b > 0, T > 0, and Δ > 0, one can obtain that

d3(b, T,Δ) ≤
(

2π
c

sup
Δ>0
|fΔ‖∞

)2 ∫
|λ|>b/2

|H∗(λ)|2 dλ.

Since the inequality above is uniform in T > 0, Δ > 0, and |H∗|2 ∈ L1(R), we have
(15) sup

T,Δ>0
|d3(b, T,Δ)| → 0 as b→∞.

By formulas (12), (14), and (15),

lim sup
(T,Δ)→∞

|C(1)
∞ (τ1, τ2)− Ĉ(1)

T,Δ(τ1, τ2)| ≤

≤ 1
2π

[
lim sup
b→∞

|d1(b)|+ lim sup
b→∞

(
lim sup

(T,Δ)→∞
|d2(b, T,Δ)|

)
+

+ lim sup
b→∞

(
lim sup

(T,Δ)→∞
|d3(b, T,Δ)|

) ]
= 0.

Thus, formula (9) holds.

Step 2. Consider the space C0(R) of all complex-valued continuous functions with
compact support defined on R. This means that if h ∈ C0(R), then h is continuous on
R, and there exists a positive number a0(h) such that h(λ) = 0 for |λ| > a0(h). Note
that any h ∈ C0(R) is a uniformly continuous function.

In the integral representation of the correlation function of AT,Δ (see (7)), the func-
tions

(
H∗(λ)eiτkλ, λ ∈ R

)
∈ L2(R), k = 1, 2, appear. Since C0(R) is dense in L2(R),
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for any ε > 0 and all λ ∈ R, we can choose functions hεk ∈ C0(R), k = 1, 2, such that
‖H∗(λ)eiτkλ − hεk(λ)‖2 < ε.

For all τ1, τ2 ≥ 0, T > 0, Δ > 0 and any ε > 0, the equality

C(2)
∞ (τ1, τ2)− C(2)

T,Δ(τ1, τ2) =
1
2π

[d1(ε) + d2(ε, T,Δ) + d3(ε, T,Δ)]

holds, where

d1(ε) =

∞∫
−∞

[ei(τ1+τ2)λ(H∗(λ))2 − hε1(λ)hε2(λ)] dλ,

d2(ε, T,Δ) =

=

∞∫
−∞

hε1(λ)hε2(λ) dλ−
∞∫

−∞

∞∫
−∞

hε1(λ1)hε2(λ2)

[(
2π
c

)2

fΔ(λ1)fΔ(λ2)

]
ΦT (λ2−λ1) dλ1dλ2,

d3(ε, T,Δ) =

=

∞∫
−∞

∞∫
−∞

[hε1(λ1)hε2(λ2)− ei(τ1λ1+τ2λ2)H∗(λ1)H∗(λ2)]×

×
[(

2π
c

)2

fΔ(λ1)fΔ(λ2)

]
ΦT (λ2 − λ1) dλ1dλ2.

The Cauchy–Schwarz inequality implies that |d1(ε)| < ε [ 2‖H∗‖2 + ε ], hence
(16) d1(ε)→ 0 as ε→∞.

By the Young inequality for convolution [16] applied to d3, we have

d3(ε, T,Δ) ≤
(

2π
c

)2

‖fΔ‖2∞ ε [ 2‖H∗‖2 + ε ] .

Since, for any ε > 0, the inequality above is uniform in T > 0, Δ > 0, one has
(17) sup

T,Δ>0
|d3(ε, T,Δ)| → 0 as ε→∞.

Now, we consider the value of d2 and note that, for any ε > 0, T > 0, and Δ > 0, the
inequality

|d2(ε, T,Δ)| ≤ E1(ε, T ) + E2(ε, T,Δ)

holds, where

E1(ε, T ) =

∣∣∣∣∣∣
∞∫

−∞
hε1(λ)hε2(λ) dλ −

∞∫
−∞

∞∫
−∞

hε1(λ1)hε2(λ2)ΦT (λ2 − λ1) dλ1dλ2

∣∣∣∣∣∣
and

E2(ε, T,Δ) =

∣∣∣∣∣∣
∞∫

−∞

∞∫
−∞

hε1(λ1)hε2(λ2)

[
1−

(
2π
c

)2

fΔ(λ1)fΔ(λ2)

]
ΦT (λ2 − λ1) dλ1dλ2

∣∣∣∣∣∣ .
For fixed ε > 0, define the set Π(ε) = {(λ1, λ2) ∈ R2 : |λ2 − λ1| ≤ ε}. From the

inequality

E1(ε, T ) ≤
∫ ∫

Π(ε)

|hε1(λ1)||hε2(λ1)− hε2(λ2)|ΦT (λ2 − λ1) dλ1dλ2+

+
∫ ∫

R2\Π(ε)

|hε1(λ1)||hε2(λ1)− hε2(λ2)|ΦT (λ2 − λ1) dλ1dλ2 ≤
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≤ ‖hε1‖1

⎡⎢⎣ max
(λ1,λ1)∈Π(ε)

|hε2(λ1)− hε2(λ2)|+ 2‖hε2‖∞
∫

|λ|>ε

ΦT (λ) dλ

⎤⎥⎦ ,
it follows that

lim sup
(T,Δ)→∞

E1(ε, T ) = lim sup
ε→∞

(
lim sup

(T,Δ)→∞
E1(ε, T )

)
= 0,

since hε2 is uniformly continuous, and, for any ε > 0, lim
T→∞

∫
|λ|>ε

ΦT (λ) dλ = 0holds.

Put b = max{a0(hε1), a0(hε2)}. Since {hε1, hε2} ⊂ C0(R) and ‖ΦT‖1 = 1, the following
inequality holds for all ε > 0, T > 0, and Δ > 0 :

E2(ε, T,Δ) ≤
∫ ∫
Db

|hε1(λ1)||hε2(λ2)|
∣∣∣∣∣1−

(
2π
c

)2

fΔ(λ1)fΔ(λ2)

∣∣∣∣∣ΦT (λ2 − λ1) dλ1dλ2+

+
∫ ∫

R2\Π(b/2)

|hε1(λ1)||hε2(λ2)|
∣∣∣∣∣1−

(
2π
c

)2

fΔ(λ1)fΔ(λ2)

∣∣∣∣∣ΦT (λ2 − λ1) dλ1dλ2 ≤

≤ sup
(λ1,λ2)∈Db

∣∣∣∣∣1−
(

2π
c

)2

fΔ(λ1)fΔ(λ2)

∣∣∣∣∣ ‖hε1‖2|‖hε2‖2+
+

[
1 +

(
2π
c

sup
Δ>0
‖fΔ‖∞

)2
]
‖hε2‖∞‖hε1‖1

∫
|λ|>b/2

ΦT (λ) dλ.

By (13), the equality
lim sup

(T,Δ)→∞
E2(ε, T,Δ) = 0

holds for any ε > 0, since, for any b > 0,

lim
T→∞

∫
|λ|>b/2

ΦT (λ) dλ = 0.

Thus, the inequality |d2| ≤ E1(ε, T ) + E2(ε, T,Δ) yields
(18) lim sup

(T,Δ)→∞
d2(ε, T,Δ) = 0.

By formulas (16)-(18), we have, for τ1, τ2 ≥ 0,

lim sup
(T,Δ)→∞

|C(2)
∞ (τ1, τ2)− Ĉ(2)

T,Δ(τ1, τ2)| ≤

≤ 1
2π

[
lim sup
ε→0

|d1(ε)|+ lim sup
ε→0

(
lim sup

(T,Δ)→∞
|d2(ε, T,Δ)|

)
+

+ lim sup
ε→0

(
lim sup

(T,Δ)→∞
|d3(ε, T,Δ)|

) ]
= 0.

Thus, the formula (10) holds true.

Step 3. Observe that, for all τ1, τ2 ≥ 0, T > 0, and Δ > 0, the equality

C(3)
∞ (τ1, τ2)− Ĉ(3)

T,Δ(τ1, τ2) =

=
2π
c

∞∫
−∞

∞∫
−∞

ei(τ1−τ2)λ2

[ c
2π
− fΔ(λ1)

]
g(λ2)ΦT (λ2 − λ1) dλ1dλ2

holds, since ΦT is an even function, and ‖ΦT ‖1 = 1.
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For any b > 0, we define the set P (b, b) = {(λ1, λ2) ∈ R2 : |λ2 − λ1| ≤ b}. Since

J1(b, T,Δ) =

∣∣∣∣∣∣∣
∫ ∫
P (b,b)

ei(τ1−τ2)λ2

[ c
2π
− fΔ(λ1)

]
g(λ2)ΦT (λ2 − λ1) dλ1dλ2

∣∣∣∣∣∣∣ ≤
≤ sup

−b≤λ≤b

∣∣∣ c
2π
− fΔ(λ)

∣∣∣ ‖g‖1,
we have, by (2d) and (4b):
(19) lim sup

(T,Δ)→∞
J1(b, T,Δ) = 0.

For all τ1, τ2 ≥ 0, T > 0, Δ > 0, and given b > 0, consider the relation

J2(b, T,Δ) =

∣∣∣∣∣∣∣
∫ ∫

R2\P (b,b)

ei(τ1−τ2)λ2

[ c
2π
− fΔ(λ1)

]
g(λ2)ΦT (λ2 − λ1) dλ1dλ2

∣∣∣∣∣∣∣ ≤
≤
[
c

2π
+ sup

Δ>0
‖fΔ‖∞

]
‖g‖1

∫
|λ|>b

ΦT (λ) dλ.

Since, for any b > 0,

lim
T→∞

∫
|λ|>b

ΦT (λ) dλ = 0,

the inequality above yields, by (2b) and (4b),

(20) lim sup
(T,Δ)→∞

J2(b, T,Δ) = lim sup
b→∞

(
lim sup

(T,Δ)→∞
J2(b, T,Δ)

)
= 0.

From formulas (19) and (20), one can obtain for all τ1, τ2 ≥ 0 that

lim sup
(T,Δ)→∞

|C(3)
∞ (τ1, τ2)− Ĉ(3)

T,Δ(τ1, τ2)| ≤

≤ 2π
c2

[
lim sup
b→∞

(
lim sup

(T,Δ)→∞
J1(b, T,Δ)

)
+ lim sup

b→∞

(
lim sup

(T,Δ)→∞
J1(b, T,Δ)

)]
= 0.

Thus, formula (11) holds true.
Summarizing, we have, for all τ1, τ2 ≥ 0:

lim
(T,Δ)→∞

ĈT,Δ(τ1, τ2) =
3∑
j=1

lim
(T,Δ)→∞

Ĉ
(j)
T,Δ(τ1, τ2) =

3∑
j=1

C(j)
∞ (τ1, τ2) = C∞(τ1, τ2).

Theorem 3.1 is proved. �

4. Asymptotic normality of finite-dimensional distributions of AT,Δ

Theorem 3.1 demonstrates that the function C∞ defined in (8) is positive semidefinite
on [0,∞)×[0,∞). So, there exists a zero-mean real-valued Gaussian process (A(τ), τ ≥ 0)
with a correlation function C∞; that is,

EA(τ1)A(τ2) = C∞(τ1, τ2).
Without loss of generality, we assume that the process A is defined on the same proba-
bility space as the processes AT,Δ.

Theorem 4.1. Assume that H ∈ L2(R) and g ∈ L1(R). Then the equality

(21) lim
(T,Δ)→∞

E

⎡⎣ m∏
j=1

AT,Δ(τj)

⎤⎦ = E

⎡⎣ m∏
j=1

A(τj)

⎤⎦
holds for any m ∈ N and any τ1, ..., τm ≥ 0.
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In particular, all finite-dimensional distributions of the process (AT,Δ(τ), τ ≥ 0) con-
verge weakly to the corresponding finite-dimensional distributions of the Gaussian process
(A(τ), τ ≥ 0).

Remark 4.1. Theorem 4.1 refines results of [9] (see Theorems 1 and 2).

Proof. To prove Theorem 4.1, we apply the Brillinger’s method of cumulants [5] rein-
forced by the results concerning the integrals involving the cyclic products of kernels
[13].

Let m ∈ {1, 2}. The statement of Theorem 4.1 is true, since the processes AT,Δ and
A are centered, and the conditions of Theorem 3.1 are satisfied.

Let m ∈ N \ {1, 2}; τj ≥ 0, j = 1, ...,m, and let
cumAT,Δ(τ1, ..., τm) = cum(AT,Δ(τ1), ..., AT,Δ(τm))

be a joint simple cumulant of the family of random variables AT,Δ(τ1), ..., AT,Δ(τm).
Since the moments of a random vector are uniquely determined by its cumulants [5], and
because the Gaussian distribution is uniquely determined by its mean and correlation
matrix, we need to show that
(22) lim

(T,Δ)→∞
cumAT,Δ(τ1, ..., τm) = 0.

General properties of cumulants and definitions of the process AT,Δ and the estimator
ĤT,Δ (see (6) and (5), respectively) imply that
(23) cumAT,Δ(τ1, ..., τm) =

=
(

1
c2T

)m
2

T∫
0

...

T∫
0

cum(UΔ(tj + τj)XΔ(tj), j = 1, ...,m) dt1...dtm.

Let us apply Theorem 2.3.2 in [5] to the integrand in (23). Because XΔ and UΔ are
zero-mean jointly Gaussian processes, we obtain

(24) cum(UΔ(tj + τj)XΔ(tj), j = 1, ...,m) =
∑ m∏

p=1

cum(D(2)
p ),

where the summation is extended over all unordered indecomposable partitions of the
table

Dm×2 =

⎡⎢⎢⎢⎣
UΔ(t1 + τ1) XΔ(t1)
UΔ(t2 + τ2) XΔ(t2)

...
...

UΔ(tm + τm) XΔ(tm)

⎤⎥⎥⎥⎦
into the pairs {D(2)

1 , ..., D
(2)
m }.

Since the order of elements in the partition {D(2)
1 , ..., D

(2)
m } is of no importance, we

can always assume that this partition satisfies the following conditions (see [13]): (1)
D

(2)
p
⋂
D

(2)
q = ∅ for p 
= q; (2) Dm×2 = D

(2)
1

⋃
...
⋃
D

(2)
m ; (3) ifm ≥ 3, then, for any p, the

set D(2)
p does not coincide with any of the rows r1, ...,rm of the table Dm×2; if, moreover,

1 ≤ ν < m, then the union of any set of elements in the partition {D(2)
1 , ..., D

(2)
m } should

not coincide with the union of any ν rows of the table Dm×2; (4) for any p = 1, ...,m−1,
there exists exactly one row r̃p of the table Dm×2 such that r̃p ⊂ D(2)

p
⋃
D

(2)
p+1; (5) r1 ⊂

D
(2)
1

⋃
D

(2)
m . This means that the elements of the unordered indecomposable partition

{D(2)
1 , ..., D

(2)
m } hook each other sequentially and exhaust all the table Dm×2, and D

(2)
m

hooks back to D(2)
1 .

In what follows, for a given D
(2)
p , we write D

(2)
p = D

(2)

j,�j , where j and j̃ are row

numbers of those two rows of Dm×2, whose elements form the set D(2)
p . Thus, any
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unordered indecomposable partition {D(2)
1 , ..., D

(2)
m } can be written as

−→
D (2) = {D(2)

j1,j2
, D

(2)
j2, j3

, ..., D
(2)
jm−1, jm

, D
(2)
jm, jm+1

},
where (j1, ..., jm) is such that j1 = 1, (j2, j3, ..., jm) is a perturbation of {2, 3, ...,m},
and jm+1 = j1 = 1.

The further analysis of the structure of
−→
D (2) shows that we can distinguish three

groups of its elements. The first group is formed by unordered sets having the form
D

(2)

j,�j = {XΔ(tj), XΔ(t�j)}, j 
= j̃. The second group contains unordered sets which can

be represented as follows: D(2)

j,�j = {UΔ(tj + τj), UΔ(t�j + τ�j)}, j 
= j̃. Finally, the third

group is formed by unordered sets of the form D
(2)

j,�j = {UΔ(tj + τj), XΔ(t�j)}, j 
= j̃.

Denote these three groups by G1(
−→
D (2)), G2(

−→
D (2)), , and G3(

−→
D (2)), respectively, and let

mν(
−→
D (2)) be the cardinality of Gν(

−→
D (2)), ν = 1, 2, 3. It is clear that, for any

−→
D (2),

(25) m1(
−→
D (2)) = m2(

−→
D (2));

3∑
ν=1

mν(
−→
D (2)) = m.

Further, if D(2)

j,�j ∈ G1(
−→
D (2)), then

cum(D(2)

j,�j ) = EXΔ(tj)XΔ(t�j) = KXΔ(tj − t�j) =

∞∫
−∞

ei(tj−t�j)λjfΔ(λj) dλj ;

if D(2)

j,�j ∈ G2(
−→
D (2)), then

cum(D(2)

j,�j ) = EUΔ(tj + τj)UΔ(t�j + τ�j) =

=

∞∫
−∞

ei(tj−t�j)λj · ei(τj−τ�j)λj
(
|H∗(λj)|2fΔ(λj) + g(λj)

)
dλj ;

if D(2)

j,�j ∈ G3(
−→
D (2)), then

cum(D(2)

j,�j ) = EUΔ(tj + τj)XΔ(t�j) =

∞∫
−∞

ei(tj−t�j)λj · eiτjλjH∗(λj)fΔ(λj) dλj .

These formulas imply that

(26)
m∏
p=1

cum(D(2)
p ) =

=
∫
...

∫
Rm

[
m∏
k=1

ei(tjk
−tjk+1)λjk

]
ϕ0(
−→
λ ,−→τ ,−→D (2))

(
m∏
k=1

ϕjk (λjk+1 ,Δ,
−→
D (2))

)
dλj1 ...dλjm .

Here,
−→
λ = (λ1, ..., λm); −→τ = (τ1, ..., τm); (j1, ..., jm) is such that j1 = 1, (j2, ..., jm) is

a permutation of {2, ...,m}, and jm+1 = j1 = 1. For every partition
−→
D (2), the function

ϕ0(·,
−→
D (2)) is a product of some of the functions ei(τjk

−τjk+1)λjk , eiτjk
λjk and the indicator

functions IR(λjk ). Therefore,

(27) sup
−→
D(2)

sup
−→
λ ,−→τ
|ϕ0(
−→
λ ,−→τ ,−→D (2))| = 1;

the function ϕjk(·,Δ,−→D (2)) is one of the following functions: fΔ, |H∗|fΔ + gΔ, or H∗fΔ.
Note that, for any Δ > 0 and a partition

−→
D (2), the set of functions F (Δ,

−→
D (2)) =

{ϕ1(·,Δ,
−→
D (2)), ..., ϕm(·,Δ,−→D (2))} is divided into three classes

M∞(
−→
D (2)) = {ϕ ∈ F (

−→
D (2)) : ϕ = fΔ},
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M1(
−→
D (2)) = {ϕ ∈ F (

−→
D (2)) : ϕ = |H∗|fΔ + g},

M2(
−→
D (2)) = {ϕ ∈ F (

−→
D (2)) : ϕ = |H∗|fΔ},

which satisfy the relations (see (25))

(28) card[M1(
−→
D (2))] = card[M∞(

−→
D (2))],

card[M1(
−→
D (2))] + card[M2(

−→
D (2))] + card[M∞(

−→
D (2))] = m.

Conditions H ∈ L2(R), (2b), and (4b) imply that

(29) M∞(
−→
D (2)) ⊂ L∞(R), M1(

−→
D (2)) ⊂ L1(R), M2(

−→
D (2)) ⊂ L2(R).

Moreover, these embeddings are uniform in the parameter Δ > 0.
By some algebra, from (23), (24), and (26), we obtain

(30) cumAT,Δ(τ1, ..., τm) =

=
(

2π
c2

)m
2 ∑

−→
D(2)

∫
...

∫
Rm

[
m∏
k=1

Φ̂(T )(λk+1 − λk)
]
ϕ0(
−→
λ ,−→τ ,−→D (2))×

×
(

m∏
k=1

ϕk(λk,Δ,
−→
D (2))

)
dλ1...dλm,

where λm+1 = λ1, and Φ̂(T )(λ) =
(

1
2πT

) 1
2 eiT λ−1

iλ , λ ∈ R.
Formula (30) shows that cumAT,Δ(τ1, ..., τm) can be represented as a finite sum of

integrals involving the cyclic products of kernels (see definitions in [8] or [13]). All
kernels are equal to Φ̂(T ). They depend on the parameter T > 0 and are independent of
the parameter Δ > 0.

By virtue of (27), for any m ∈ N \ {1, 2} and any numbers τj ≥ 0, j = 1, ...,m, from
(30), we obtain the bound
(31) |cumAT,Δ(τ1, ..., τm)| ≤

≤
(

2π
c2

)m
2 ∑

−→
D(2)

∫
...

∫
Rm

∣∣∣∣∣
m∏
k=1

Φ̂(T )(λk+1 − λk)
∣∣∣∣∣ sup
Δ>0

∣∣∣∣∣
m∏
k=1

ϕk(λk,Δ,
−→
D (2))

∣∣∣∣∣ dλ1...dλm,

where λm+1 = λ1.
Fix
−→
D (2). Define

I(T )(
−→
D (2)) =

=
∫
...

∫
Rm

m∏
k=1

∣∣∣Φ̂(T )(λk+1 − λk)
∣∣∣ m∏
k=1

∣∣∣ϕk(λk,Δ,−→D (2))
∣∣∣ dλ1...dλm, λm+1 = λ1.

The next step of the proof is based on the following analog of the Young inequality for
the integrals involving the cyclic products of kernels (see, Theorem 5.2 [13]):

I(T )(
−→
D (2)) ≤

m∏
k=1

⎡⎣∥∥∥Φ̂(T )
∥∥∥nk

pk

∏
ϕj∈Mqk

‖ϕj‖qk

⎤⎦ .
Here, n ∈ N \ {1, 2}; for all n, the set of functions M = {ϕ1, ..., ϕn} becomes the
union of some disjoint sets Mq1 , ...,Mqm , where Mqk

= {ϕ ∈ M : ϕ ∈ Lqk
(R)}, nk =

card(Mqk
), k = 1, ...,m, and n1 ≥ 2; 1 ≤ q1 ≤ q2 ≤ ... ≤ qm ≤ ∞, and q1 ≤ 2.

We suppose also that Φ̂(T ) ∈
m⋂
k=1

Lpk
(R), where p1, ..., pm are the conjugate numbers of

q1, ..., qm, respectively.
To show the convergence of I(T )(

−→
D (2)) to zero, we use a special case of the above-stated

inequality, namely Theorem 5.3, Part B [13]. Since m ∈ N \ {1, 2} and



ON ASYMPTOTIC BEHAVIOR OF CROSS-CORRELOGRAM ESTIMATORS 95

(i) for any p ∈ (1,∞], all of kernels Φ̂(T ) satisfy the majorant condition

‖Φ̂(T )‖p ≤ T
1
2− 1

pC(p),

where C(p) = 1√
2π

∥∥∥ sin(λ/2)
λ/2

∥∥∥
p

is a positive constant independent of T > 0;

(ii) conditions (28)-(29) hold true,
we have
(32) I(T )(

−→
D (2))→ 0 as T →∞.

Moreover, lim
T→∞

[
sup
Δ>0

I(T )(
−→
D (2))

]
= 0. Because the sum in (31) contains a finite number

of terms which satisfy (32) uniformly in the parameter Δ > 0, then (22) holds true.
Thus, Theorem 4.1 is proved. �

5. Asymptotic normality of AT,Δ in the space of continuous functions

In addition to Theorem 4.1, it is natural to study the asymptotic normality of our
centered estimator (see (6)) in the space of continuous functions. Assume that AT,Δ,
T > 0, Δ > 0, and A are separable processes. We use the notation C[0, a], a > 0, for the
space of real-valued continuous functions defined on [0, a] endowed with uniform norm.

In what follows, we write AT,Δ
C[0,a]
=⇒ A to denote the weak convergence of the process

AT,Δ to the process A in the space C[0, a] as (T,Δ)→∞.
Now we recall some tools related to Gaussian stochastic processes (see, for example,

[10]). Let S be a parameter set. A function ρ(t, s), t, s ∈ S, is called pseudometric on S,
if it satisfies all axioms of a metric, with the exception for that the set {(t, s) ∈ S × S :
ρ(t, s) = 0} may be wider than the diagonal {(t, s) ∈ S × S : t = s}. We write Nρ(S, ε)
for the minimal number of closed ρ-balls of radius ε > 0, whose centers lie in S and which
cover S. If there is no finite covering of S, then Nρ(S, ε) = ∞. Further, let, as usual,
Hρ(S, ε) = logNρ(S, ε) be a metric entropy of the set S with respect to ρ. For any β > 0,
the inequality

∫
0+

Hβρ (S, ε) dε <∞ is always interpreted in the sense that, for some (and,

hence, for all) u > 0, we have
u∫
0

Hβρ (S, ε) dε <∞.

Consider the function

σ(τ) =

⎡⎣ ∞∫
−∞

sin2 τλ

2
(|H∗(λ)|2 + g(λ)) dλ

⎤⎦
1
2

, τ ≥ 0.

Since H ∈ L2(R) and g ∈ L1(R), this function is well-defined and generates the following
two pseudometrics: σ(τ1, τ2) = σ(|τ1 − τ2|) and

√
σ(τ1, τ2) =

√
σ(τ1, τ2), τ1, τ2 ≥ 0.

Note that if H∗(λ) 
= 0 and g(λ) 
= 0 simultaneously on the set of positive Lebesgue
measure, then σ and

√
σ are metrics. For all ε > 0, put Hσ(ε) = Hσ([0, 1], ε), H√

σ(ε) =
H√

σ([0, 1], ε). Since the pseudometrics σ and
√
σ depend on |τ1 − τ2| only, one has∫

0+

Hβσ(ε) dε <∞⇐⇒
∫

0+

Hβσ([0, a], ε) dε <∞;∫
0+

H√
σ(ε) dε <∞⇐⇒

∫
0+

H√
σ([0, a], ε) dε <∞,

for any a > 0 and β > 0.
In the theorem below, we state the sufficient conditions for the continuity almost

surely of the processes AT,Δ and A and for the weak convergence of AT,Δ to A in C[0, a]
as (T,Δ)→∞.
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Theorem 5.1. Assume that H ∈ L2(R), g ∈ L1(R), and

(33)
∫

0+

H√
σ(ε) dε <∞.

Then, for any a > 0, the following statements hold true:
I) A ∈ C[0, a] almost surely;
II) AT,Δ ∈ C[0, a] almost surely;

III) AT,Δ
C[0,a]
=⇒ A as (T,Δ)→∞.

In particular, for all x > 0 and a > 0,

lim
(T,Δ)→∞

P

{
sup
τ∈[0,a]

|AT,Δ(τ)| > x

}
= P

{
sup
τ∈[0,a]

∣∣A(τ)
∣∣ > x

}
Remark 5.1. Statement I) of Theorem 5.1 holds true under a weaker condition than (33),
namely

(34)
∫

0+

H
1
2
σ (ε) dε <∞.

Note that (34) always holds if there exists β > 0 such that (see [15])
∞∫
0

(
|H∗(λ)|2 + g(λ)

)
log1+β(1 + λ) dλ <∞.

Remark 5.2. Condition (33) holds if there exists β > 0 such that (see [13])
∞∫
0

(
|H∗(λ)|2 + g(λ)

)
log4+β(1 + λ) dλ <∞.

To prove Theorem 5.1, we need some auxiliary statements. First of all, consider the
following relation between pseudometrics σ and

√
σ. Since, for all τ1, τ2 ≥ 0,

(35) σ(τ1, τ2) ≤
[

max
τ1,τ2≤0

σ(τ1, τ2)
] 1

2 √
σ(τ1, τ2) ≤

[
‖H∗‖22 + ‖g‖1

] 1
4
√
σ(τ1, τ2),

condition (33) yields
∫
0+

Hσ(ε) dε <∞, which implies (34).
For all T > 0, Δ > 0, we introduce a family of pseudometrics

ρ(T,Δ)(τ1, τ2) =
(
E|AT,Δ(τ2)−AT,Δ(τ2)|2

) 1
2 , τ1, τ2 ≥ 0.

Lemma 5.1. Assume that H ∈ L2(R) and g ∈ L1(R). Then the inequality
(36) ρ(T,Δ)(τ1, τ2) ≤

≤ 2
√

2πM
c

(
Q
(
‖H∗‖22 + ‖g‖1

) 1
2 +M‖H∗‖2

) 1
2 √

σ(τ1, τ2), τ1, τ2 ≥ 0,

holds for all T > 0, Δ > 0. Here, c is the constant from (2d), M = sup
Δ>0
‖fΔ‖∞, and

Q = max{M, 1}. Moreover, the pseudometric ρ(T,Δ) is continuous with respect to the
pseudometic σ.

Proof. From (7), applying the Cauchy–Schwarz inequality, the Young inequality for con-
volution [16], and the fact that ‖ΦT ‖1 = 1, we obtain

ρ2
(T,Δ)(τ1, τ2) = E|AT,Δ(τ2)−AT,Δ(τ2)|2 ≤

≤ 8π
c2
MQ

∞∫
−∞

∞∫
−∞

∣∣∣∣sin (τ2 − τ1)λ2

2

∣∣∣∣ (|H∗(λ2)|2 + g(λ2)
)
ΦT (λ1 − λ2) dλ1dλ2+

+
8π
c2
M2

∞∫
−∞

∞∫
−∞

∣∣∣∣sin (τ2 − τ1)λ2

2

∣∣∣∣ |H∗(λ1)||H∗(λ2)|ΦT (λ1 − λ2) dλ1dλ2 ≤
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≤ 8π
c2
MQ

(
‖H∗‖22 + ‖g‖1

) 1
2

⎡⎣ ∞∫
−∞

∣∣∣∣sin (τ2 − τ1)λ
2

∣∣∣∣2 (|H∗(λ)|2 + g(λ)
)
dλ

⎤⎦
1
2

+

+
8π
c2
M2

∞∫
−∞

∣∣∣∣sin (τ2 − τ1)λ2

2

∣∣∣∣ |H∗(λ2)| |H∗ ∗ΦT | (λ2) dλ2.

Since g is a nonnegative function defined on R, we have

ρ2
(T,Δ)(τ1, τ2) ≤

8π
c2
MQ

(
‖H∗‖22 + ‖g‖1

) 1
2

⎡⎣ ∞∫
−∞

sin2 (τ2 − τ1)λ
2

(
|H∗(λ)|2 + g(λ)

)
dλ

⎤⎦
1
2

+

+
8π
c2
M2‖H∗ ∗ ΦT ‖2

⎡⎣ ∞∫
−∞

∣∣∣∣sin (τ2 − τ1)λ
2

∣∣∣∣2 |H∗(λ)|2 dλ

⎤⎦
1
2

≤

≤ 8π
c2
M
(
Q
(
‖H∗‖22 + ‖g‖1

) 1
2 +M‖H∗‖2

)
σ(τ1, τ2).

The latter implies (36). Note that this inequality is uniform in T > 0, Δ > 0. �

Proof of Theorem 5.1. By the Dudley’s theorem on the continuity of Gaussian processes
[15], statement I) of Theorem 5.1 holds if, for any a > 0,

(37)
∫

0+

H
1
2
dA

([0, a], ε) dε <∞,

where dA(τ1, τ2) =
(
E|A(τ2)−A(τ1)|2

) 1
2 .

In calculations below, we use the notation B = max{1, π
c }. Applying the Cauchy–

Schwarz inequality to (8), we obtain, for all τ1, τ2 ≥ 0, that

d2
A(τ1, τ2) ≤

4B
π

∞∫
−∞

∣∣∣∣sin (τ2 − τ1)λ
2

∣∣∣∣ (|H∗(λ)|2 + g(λ)
)
dλ ≤

≤ 4B
π

(
‖H∗‖22 + ‖g‖1

) 1
2 σ(τ1, τ2).

Formula (37) holds true if
∫
0+

H
1
2
σ (ε) dε <∞. The last condition follows from (33). Thus,

we proved statement I); that is, the process A is continuous on [0, a] almost surely.
Since the process AT,Δ is quadratically Gaussian, we have, by Theorem 6.2.2 [10] for

any T > 0, Δ > 0 :

(38) sup
T,Δ>0

sup
τ1,τ2≥0

E exp

{
|AT,Δ(τ2)−AT,Δ(τ1)|√

8 ρ(T,Δ)(τ1, τ2)

}
<∞.

From the Lebesgue dominated convergence, it follows that the pseudometric
√
σ is con-

tinuous with respect to the metric d(τ1, τ2) = |τ1− τ2|. By Lemma 5.1, the pseudometric
(39) ρ∞(τ1, τ2) = sup

T,Δ>0
ρ(T,Δ)(τ1, τ2), τ1, τ2 ∈ [0, a],

is continuous with respect to the metric d.
By inequality (36), the condition (33) implies that, for any a > 0,

(40) lim
u↓0

sup
T,Δ>0

∫ u

0

H
1
2
ρ(T,Δ)([0, a], ε) dε = 0.
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Relations (38)-(40) satisfy all the conditions of Lemma 4.2.1 [10]. Thus, statement II)
of Theorem 5.1 holds true. Moreover, for any ε > 0 and any a > 0,

(41) lim
h↓0

sup
T,Δ>0

P

⎧⎨⎩ sup
τ1,τ2∈[0,a]
|τ1−τ2|<h

|AT,Δ(τ1)−AT,Δ(τ2)| > ε

⎫⎬⎭ = 0.

Theorem 4.1 together with (41) satisfy all the conditions of the Prokhorov theorem
on the weak convergence of stochastic processes in the space C[0, a] (see [10]). Thus,
statement III) of Theorem 5.1 holds true. �
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