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MYROSLAV DROZDENKO

WEAK CONVERGENCE OF FIRST-RARE-EVENT TIMES FOR
SEMI-MARKOV PROCESSES II

Necessary and sufficient conditions for the weak convergence of flows of rare events
controlled by semi-Markov processes with a finite set of states in schemes of series
are given. Applications of the obtained results to geometric sums, risk processes, and
queueing systems are presented.

1. Introduction

Limit theorems for random functionals of similar first-rare-event times and flows of
rare events known under such names as first hitting times, first passage times, first
record times, etc., were studied by many authors. A survey of the literature related to
the subject can be found in Drozdenko (2007, 2009), Silvestrov (2004), and papers by
Silvestrov and Drozdenko (2005, 2006a, 2006b).

In addition to surveys of the literature presented in the mentioned papers, we would
like to emphasize that the conditions of convergence of normalized first-rare-event times
defined on a regenerative process to an exponentially distributed random variable were
first obtained in the paper by Solov’yev (1971); however, the model considered by
Solov’yev is slightly different from our settings. In particular, we define our first-rare-
event time on a semi-Markov process. This means that we consider a multistage process
with different distributions of staying in the taken positions for an embedded ergodic
Markov chain, whereas Solov’yev defined his first-rare-event time as a sum of random
number of i.i.d. random variables. There are other differences, for example, he normal-
ized his first-rare-event by its own expectation, whereas we use more general normaliza-
tion functions; there are also the differences in the definition of vanishing probabilities
of stopping during one transition; it deserves to mention that we propose conditions of
convergence to a much larger limit class which contains exponential distribution as an
element.

First-rare-event times defined on a semi-Markov process become to be identical to
geometric random sums in the case of a degenerated embedded Markov chain, i.e. in the
case where the phase space of the Markov chain consists of only one element. Due to
this fact, the very first paper directly relevant to our results was, probably, the paper by
Rényi (1956) who first formulated the conditions of weak convergence of distributions of
normalized geometric sums to the exponential law.

The main features for the most previous results are that they give sufficient conditions
of convergence for first-rare-event times and flows of rare events. As a rule, those condi-
tions involve assumptions, which imply the convergence of distributions for sums of i.i.d.
random variables distributed as sojourn times for the semi-Markov process (for every
state) to some infinitely divisible laws plus some ergodicity condition for the embedded
Markov chain plus the condition of vanishing of probabilities of occurring a rare event
during one transition step for the semi-Markov process.
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Our results are related to the model of semi-Markov processes with a finite set of
states. In papers by Silvestrov and Drozdenko (2005, 2006a, 2006b), the necessary and
sufficient conditions of first-rare-event times and flows of rare events for semi-Markov
processes were obtained for the non-triangular-array case of stable type asymptotics for
sojourn times distributions. In the present paper, we generalize results of those papers
to a general triangular array model.

Instead of using the traditional approach based on conditions for “individual” distri-
butions of sojourn times, we use more general and weaker conditions imposed on the
distributions of sojourn times averaged by the stationary distribution of the limit em-
bedded Markov chain. Moreover, we show that these conditions are not only sufficient,
but also necessary for the weak convergence for first-rare-event times and flows of rare
events, and describe the class of all possible limit laws non-concentrated at zero. The
results presented in the paper give some kind of a “final solution” for the limit theo-
rems for first-rare-event times for a semi-Markov process with a finite set of states in the
triangular array mode.

The previously published part I, Drozdenko (2007), was organized in the following
way. In Section 2, we formulated and proved our main Theorem 1, which describes the
class of all possible limit distributions for first-rare-event times for semi-Markov processes
and gave the necessary and sufficient conditions of weak convergence for distributions
from this class. Several lemmas describing asymptotic solidarity cyclic properties for
sum-processes defined on Markov chains were used in the proof of Theorem 1. These
lemmas and their proofs were collected in Section 3.

The present paper, part II, is organized in the following way. To make this part self-
readable, Section 2 gives a brief survey of the main results given in Part I. In Section 3,
we give the necessary and sufficient conditions of weak convergence of counting processes
generated by the flows of rare events. In Section 4, we give a comparative analysis of
our results and the previously known results, by emphasizing the averaging principles.
In Section 5, we give the necessary and sufficient conditions of weak convergence of
geometric random sums and apply our results to the asymptotic analysis of non-ruin
probabilities in the classical risk model. In Section 6, we give applications of Theorem 1
to the M/G type queueing system with quick service and give the necessary and sufficient
conditions of weak convergence of failure times to the exponential law.

2. Survey of main results of Part I

To make the present paper self-readable, we give a short survey of the results given
in Part I.

Let
(
η
(ε)
n , κ

(ε)
n , ζ

(ε)
n

)
, n = 0, 1, · · · be, for every ε > 0, a Markov renewal process,

i.e. a homogeneous Markov chain with the phase space Z = X × [0,+∞) × Y (here
X = {1, 2, · · · ,m}, and let Y be some measurable space with the σ–algebra of measurable
sets BY ) and transition probabilities,

(1)

P
{
η
(ε)
n+1 = j, κ

(ε)
n+1 ≤ t, ζ

(ε)
n+1 ∈ A

/
η(ε)
n = i, κ

(ε)
n = s, ζ(ε)

n = y
}

= P
{
η
(ε)
n+1 = j, κ

(ε)
n+1 ≤ t, ζ

(ε)
n+1 ∈ A

/
η(ε)
n = i

}
= Q

(ε)
ij (t, A), i, j ∈ X, s, t ≥ 0, y ∈ Y, A ∈ BY .

The characterization property, which specifies Markov renewal processes in the class
of general multivariate Markov chains

(
η
(ε)
n , κ

(ε)
n , ζ

(ε)
n

)
, is, as was shown in (1), that

the transition probabilities do depend only on the current position of the first component
η
(ε)
n .
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As is known, the first component η(ε)
n of a Markov renewal process is also a homo-

geneous Markov chain with the phase space X and the transition probabilities p(ε)
ij =

Q
(ε)
ij (+∞, Y ), i, j ∈ X .

Moreover, the first two components of the Markov renewal process (namely η(ε)
n and

κ
(ε)
n ) can be associated with a semi-Markov process η(ε)(t), t ≥ 0 defined as

η(ε)(t) = η(ε)
n for τ (ε)

n ≤ t < τ
(ε)
n+1, n = 0, 1, · · · ,

where τ (ε)
0 = 0 and τ (ε)

n = κ
(ε)
1 + . . .+ κ

(ε)
n , n ≥ 1.

The random variables κ
(ε)
n represent inter–jump times for the process η(ε)(t). As far

as the random variables ζ(ε)
n are concerned, they are the so-called “flag variables” and

are used to record “rare” events.
Let Dε, ε > 0 be a family of measurable subsets of Y which are “small” in some sense.

Then the events
{
ζ
(ε)
n ∈ Dε

}
can be considered as “rare”.

Let us introduce the random variables

νε = min
(
n ≥ 1 : ζ(ε)

n ∈ Dε

)
and

ξε =
νε∑
n=1

κ
(ε)
n .

The random variable νε counts the number of transitions of an embedded Markov
chain η

(ε)
n up to the first appearance of the “rare” event, while the random variable ξε

can be interpreted as the first-rare-event time for the semi-Markov process η(ε)(t).
Let us consider the distribution function of first-rare-event times ξε, under a fixed

initial state of the embedded Markov chain η(ε)
n ,

F
(ε)
i (u) = Pi{ξε ≤ u}, u ≥ 0.

Here and henceforth, Pi and Ei denote, respectively, the conditional probability and
the expectation calculated under the condition η(ε)

0 = i.
We give the necessary and sufficient conditions for the weak convergence of distribution

functions F (ε)
i (uuε), where uε > 0, uε → ∞ as ε → 0 is a non-random normalizing

function, and describe a class of possible limit distributions.
The problem is solved under four general model assumptions.
The first assumption A guarantees that the last summand in the random sum ξε is

negligible under any normalization uε, i.e. κ
(ε)
νε

/
uε

P→ 0 as ε→ 0:

A: lim
t→∞ lim

ε→0
Pi
{

κ
(ε)
1 > t

/
ζ
(ε)
1 ∈ Dε

}
= 0, i ∈ X .

Let us introduce the probabilities of occurrence of a rare event during one transition
step of the semi-Markov process η(ε)(t),

piε = Pi
{
ζ
(ε)
1 ∈ Dε

}
, i ∈ X.

The second assumption B imposed on probabilities piε specifies the interpretation of
the event

{
ζ
(ε)
n ∈ Dε

}
as “rare” and guarantees the possibility for such an event to occur:

B: 0 < max1≤i≤m piε → 0 as ε→ 0.
The third assumption C is a condition of convergence of the transition matrix of an

embedded perturbed Markov chain η
(ε)
n to the transition matrix of an embedded limit

Markov chain η(0)
n :

C: p(ε)
ij → p

(0)
ij as ε→ 0, for i, j ∈ X .
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The fourth assumption D is the standard ergodicity condition for a limit embedded
Markov chain η(0)

n :

D: Markov chain η
(0)
n with the matrix of transition probabilities

∥∥∥p(0)
ij

∥∥∥ is ergodic

with the stationary distribution π(0)
i , i ∈ X .

Let us define a probability which is a result of the averaging of probabilities of oc-
currence of a rare event in one transition step by the stationary distribution of a limit
embedded Markov chain η(0)

n ,

pε =
m∑
i=1

π
(0)
i piε.

Let us also introduce the distribution functions of sojourn times κ
(ε)
1 for the semi-

Markov processes η(ε)(t),

G
(ε)
i (t) = Pi

{
κ

(ε)
1 ≤ t

}
, for i ∈ X,

and the distribution function which is a result of the averaging of distribution functions
of sojourn times by the stationary distribution of a limit embedded Markov chain η(0)

n ,

G(ε)(t) =
m∑
i=1

π
(0)
i G

(ε)
i (t).

Now we are in position to formulate the necessary and sufficient conditions for the weak
convergence of distribution functions of first-rare-event times ξε. Mentioned conditions
have the following form:

E: p−1
ε

(
1−G(ε)(uuε)

)
→ h(u) as ε→ 0 for all u > 0, which are points of continuity

of the limit function h(u).
F: p−1

ε

∫ uuε

0
sG(ε)(ds)→ f(u) as ε→ 0 for some u > 0 which is a point of continuity

of h(u).
The limits here satisfy a number of conditions:

(a1) h(u) is a non-negative, non-increasing, and right-continuous function for u > 0
and h(∞) = 0;

(a2) a measure H(A) on the σ-algebra H+, i.e. the Borel σ-algebra of subsets of
(0,∞), defined by the relation H((u1, u2]) = h(u1) − h(u2), 0 < u1 ≤ u2 < ∞,
satisfies the condition

∫∞
0

s
1+sH(ds) <∞;

(a3) under condition E, condition F can only hold simultaneously for all continuity
points of h(u), and f(u1) = f(u2) −

∫ u2

u1
sH(ds) for any such points 0 < u1 <

u2 <∞;
(a4) f(u) is a non-negative function.
We use symbol =⇒ to denote the weak convergence of random variables (pointwise

convergence of corresponding distribution functions for all points of continuity of the
limit distribution function).

Conditions E and F are the necessary and sufficient conditions for the following rela-
tion of weak convergence to hold:

(2) ϑ(ε)(t) =
[tp−1

ε ]∑
k=1

ϑ
(ε)
k

uε
, t ≥ 0, =⇒ ϑ(t), t ≥ 0, as ε→ 0,

where ϑ(ε)
k are i.i.d. random variables with the joint distribution G(ε)(t); ϑ(t), t ≥ 0 is a

Lévy process with cumulant a(s), i.e. Ee−sϑ(t) = e−a(s)t which has the form

a(s) = as−
∫ ∞

0

(e−sx − 1)H(dx).



WEAK CONVERGENCE OF FIRST-RARE-EVENT TIMES II 103

Here, the constant

a = f(u)−
∫ u

0

sH(ds)

does not depend on the choice of a point u in condition F.
The main result obtained in Part I is the following theorem.

Theorem 2.1. Let conditions A, B, C, and D hold. Then:
(i): the class of all possible, non-concentrated at zero, limit distribution functions

(in the sense of weak convergence) for distribution functions of first-rare-event
times F (ε)

i (uuε) coincides with the class of distribution functions F (u) with the
Laplace transform φ(s) = 1

1+a(s) .
(ii): conditions E and F are the necessary and sufficient for the following relation of

weak convergence to hold (for some or every i ∈ X, respectively, in the statements
of necessity and sufficiency):

(3) F
(ε)
i (uuε) =⇒ F (u) as ε→ 0,

where F (u) is a distribution function with the Laplace transform 1
1+a(s) .

3. Flows of rare events

In this section, we study the conditions of convergence for flows of rare events within
the model considered above.

Let us define recurrently the random variables

νε(k) = min
(
n ≥ νε(k − 1) : ζ(ε)

n ∈ Dε

)
, k = 1, 2, · · · ,

where νε(0) = 0. The random variable νε(k) counts the number of transitions of an
embedded Markov chain η(ε)

n up to the k-th appearance of the “rare” event
{
ζ
(ε)
n ∈ Dε

}
.

Obviously,

νε(1) = νε = min
{
n : ζ(ε)

n ∈ Dε

}
.

Let us also define the inter-rare-event times,

κε(k) =
νε(k)∑

n=νε(k−1)+1

κ
(ε)
n , k = 1, 2, · · · .

Let us also introduce the random variables showing positions of the embedded Markov
chain η(ε)

n at moments νε(k),

ηε(k) = η
(ε)
νε(k), k = 0, 1, · · · .

Obviously, (ηε(k), κε(k)), k = 0, 1, · · · (here κε(0) = 0) is a Markov renewal process,
i.e. a homogeneous Markov chain with the phase space X × [0,∞) and the transition
probabilities

P {ηε(k + 1) = j, κε(k + 1) ≤ t / ηε(k) = i, κε(k) = s}
= P{ηε(k + 1) = j, κε(k + 1) ≤ t / ηε(k) = i}

= Pi
{
η(ε)
νε

= j, ξε ≤ t
}
, i, j ∈ X, s, t ≥ 0.

Let us now define the random variables

ξε(k) =
νε(k)∑
n=1

κ
(ε)
n =

k∑
n=1

κε(n), k = 0, 1, · · · .
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The random variable ξε(k) can be interpreted as the time of the k-th appearance of a
rare-event for the semi-Markov process η(ε)(t). Obviously, ξε(0) = 0 and

ξε(1) = ξε =
νε∑
n=1

κ
(ε)
n .

We now define a counting stochastic process that describes the flow of rare events,

Nε(t) = max(k ≥ 0 : ξε(k) ≤ tuε), t ≥ 0.

Note that the time scale for this counting process is stretched with the use of the scale
parameter uε according to the asymptotic results given in Theorem 2.1.

Let us also define the corresponding limit counting process. Let κ(k), k = 1, 2, · · · be
a sequence of positive i.i.d. random variables with distribution F (u) (limit distribution
from Theorem 2.1), and

ξ(k) =
k∑

n=1

κ(n), k = 0, 1, · · · .

We denote, by V , the set of all discontinuity points of the distribution F (u); by Vr,
the set of discontinuity points of F ∗r(u), and V∞ :=

⋃∞
r=1 Vr. Note that V∞ is an at

most countable set; thus, T := V∞ is the interval [0,∞) except for an at most countable
set of points.

Let us also define the standard renewal counting process with i.i.d. inter-renewal times
κ(k), k = 1, 2, · · · ,

N(t) = max (k ≥ 0 : ξ(k) ≤ t) , t ≥ 0.

Theorem 3.1. Let conditions A, B, C, and D hold. Then:

(i): the class of all possible non-zero limit counting processes (in the sense of weak
convergence of finite-dimensional distributions) for counting processes Nε(t), t ∈
T coincides with the class of standard renewal counting processes N(t), t ∈ T
with the distribution function of inter-renewal times F (u).

(ii): conditions E and F are necessary and sufficient for such a convergence in the
case where the corresponding limit counting process has the distribution function
of inter-renewal times F (u).

Proof. Obviously,

F
(ε)
i (u) = Pi{ξε ≤ u} =

∑
j∈X

Q
(ε)
ij (t), u ≥ 0.

Using the Markov property of the Markov renewal process (ηε(k), κε(k)), we get the
following formula for joint distributions of properly normalized inter-renewal times for
the counting process Nε(t),

(4)

Pi{κε(k)/ uε ≤ tk, k = 1, · · · , n}

=
∑
j∈X

Pi{κε(k)/uε ≤ tk, k = 1, · · · , n− 1, ηε(n− 1) = j} × F (ε)
j (tnuε),

for i ∈ X, t1, · · · , tn ∈ T, n = 1, 2, · · · .

According to Theorem 2.1, under A, B, C, and D conditions, E and F imply that
(a) F (ε)

j (tuε)→ F (t) as ε→ 0, for t ∈ T , j ∈ X .
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Using (a) and relation (4) we get that, under A, B, C, and D conditions, E and F
imply that, for every i ∈ X , n = 1, 2, · · · , t1, · · · , tn ∈ T ,

(5)

Pi{κε(k)/uε ≤ tk, k = 1, · · · , n}

→
n∏
k=1

F (tk) as ε→ 0.

Relation (5) means that the inter-renewal times κε(k)/uε, k = 1, 2, · · · are asymptot-
ically independent. Note that the multivariate distribution function on the right-hand
side of (5) is continuous. Due to this fact, relation (5) implies in an obvious way that,
for every i ∈ X , and for a collection of nonnegative real numbers t1, · · · , tn ∈ T , and
nonnegative integers r1, · · · , rn, n = 1, 2, · · · ,

Pi{Nε(tk) ≥ rk, k = 1, · · · , n}
= Pi{ξε(rk)/uε ≤ tk, k = 1, · · · , n}
→ Pi{ξ(rk) ≤ tk, k = 1, · · · , n}

= Pi{N(tk) ≥ rk, k = 1, · · · , n} as ε→ 0.

The statement of necessity is trivial and follows from the formula Pi{Nε(t) ≥ 1} =
Pi{ξε/uε ≤ t}, t ≥ 0. The proof is complete. �

It is interesting that, under A, B, C, and D conditions, E and F are not suffi-
cient for the weak convergence of transition probabilities of the Markov renewal process
(ηε(k),κε(k)) that forms a counting process Nε(t).

This follows from the following lemma which describes the asymptotic behavior of the
so-called absorption probabilities,

Q
(ε)
ij (∞) = Pi

{
η(ε)
νε

= j
}
, i, j ∈ X.

Let us denote
piε(r) = Pi

{
ζ
(ε)
1 ∈ Dε, η

(ε)
1 = r

}
, i, r ∈ X,

and

pε(r) =
m∑
i=1

π
(0)
i piε(r), j ∈ X.

By definition,

(6) pε =
∑
i∈X

π
(0)
i Pi

{
ζ
(ε)
1 ∈ Dε

}
=
∑
r∈X

pε(r).

Lemma 3.1. Let conditions B, C, and D hold. Then, for every i ∈ X,

(7) Q
(ε)
ir (∞)− pε(r)

pε
→ 0 as ε→ 0, r ∈ X.

Proof. Let us define the probability that the first-rare-event will occur when the state
of the embedded Markov chain will be r and before the first hitting of the embedded
Markov chain of the state i, under condition that the initial state of this Markov chain
is η(ε)

0 = j,

qjiε(r) = Pj
{
νε ≤ τ (ε)

i , η(ε)
νε

= r
}
, i, j, r ∈ X.

Taking into account that the Markov renewal process
(
η
(ε)
n , κ

(ε)
n , ζ

(ε)
n

)
regenerates

at moments of return to every state i and that νε is a Markov moment of this process,
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we can get the following cyclic representation for absorption probabilities Q(ε)
ir (∞),

(8)

Q
(ε)
ir (∞) =

∞∑
n=0

Pi
{
τ

(ε)
i (n) < νε ≤ τ (ε)

i (n+ 1), η(ε)
νε

= j
}

=
∞∑
n=0

(1− qiε)nqiiε(r) =
qiiε(r)
qiε

, i, r ∈ X.

The probabilities qjiε(r), j ∈ X satisfy, for every i, r ∈ X , the following system of
linear equations similar to system (34) in Part I:⎧⎨⎩ qjiε(r) = pjε(r) +

∑
k 
=i

p
(ε)
jk qkiε(r)

j ∈ X

This system has the matrix of coefficients iP(ε) (defined in the proof of Lemma 1,
Part I) as the system of linear equations (34, Part I) and differs from this system only
by the free terms. Thus, by repeating the reasoning given in the proof of Lemma 1, Part
I, we can get the following formula similar to formula (42, Part I):

qiiε(r) =
m∑
k=1

Eiδikε pkε(r).

We recall that it was shown in the proof of Lemma 1, Part I, that (b) Eiδikε → π
(0)
k /π

(0)
i

as ε→ 0, for i, k ∈ X . Using (b), relation (c) π(0)
i qiε/pε → 1 given in Lemma 1, Part I,

and inequality (d) pε(r) ≤ pε following from formula (6), we get, for every i, r ∈ X ,

(9)

∣∣∣qiiε(r) − pε(r)/ π
(0)
i

∣∣∣
qiε

≤
m∑
k=1

∣∣∣∣∣Eiδikε − π
(0)
k

π
(0)
i

∣∣∣∣∣ · π
(0)
i pkε(r)∑m
j=1 π

(0)
j pjε

· pε

π
(0)
i qiε

≤
m∑
k=1

∣∣∣∣∣Eiδikε − π
(0)
k

π
(0)
i

∣∣∣∣∣ · π(0)
i

π
(0)
k

· pε

π
(0)
i qiε

→ 0 as ε→ 0.

Using (c) and (d) once more, we get

(10)

∣∣∣∣∣ pε(r)π
(0)
i qiε

− pε(r)
pε

∣∣∣∣∣ ≤ pε(r)
pε
·

∣∣∣∣qiε − pε

π
(0)
i

∣∣∣∣
π

(0)
i qiε

≤

∣∣∣∣qiε − pε

π
(0)
i

∣∣∣∣
pε

· pε

π
(0)
i qiε

→ 0 as ε→ 0.

Formula (8) together with relations (9) and (10) imply relation (7). �

Let us introduce the balancing condition

L: pε(j)
pε
→ Qj as ε→ 0, j ∈ X .

The constants Qj automatically satisfy the conditions (e1) Qj ≥ 0, j ∈ X , and (e2)∑
j∈X Qj = 1.
Lemma 3.1 implies the following statement.
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Lemma 3.2. Let conditions B, C, and D hold. Then, condition L is necessary and
sufficient for the following relation to hold (for some or every i ∈ X, respectively, in the
statements of necessity and sufficiency):

(11) Q
(ε)
ir (∞)→ Qr as ε→ 0, r ∈ X.

The following theorem shows that the first-rare-event times ξε and the random func-
tional η(ε)

νε are asymptotically independent and completes the description of the asymp-
totic behavior of the transition probabilities Q(ε)

ij (t) for the Markov renewal process
(ηε(k), κε(k)).

Theorem 3.2. Let conditions A, B, C, and D hold. Then, conditions E, F, and L are
necessary and sufficient for the asymptotic relations (3) given in Theorem 2.1 and (11)
given in Lemma 3.2 to hold. In this case, for every u ∈ [0,∞], i, r ∈ X,

(12) Q
(ε)
ir (uuε)→ F (u)Qr as ε→ 0.

Proof. The first statement of the theorem follows from Theorem 2.1 and Lemma 3.2. Let
us prove that conditions E, F, and L imply the asymptotic relation (12).

Let us introduce, for i, r ∈ X , the Laplace transforms

Φirε(s) = Ei exp{−sξε}χ
(
η(ε)
νε

= r
)
, s ≥ 0,

and

ψ̃irε(s) = Ei
{

exp
{
−sβ̃iε

}
χ
(
η(ε)
νε

= r
)/

νε ≤ τ (ε)
i

}
, s ≥ 0.

Analogously to formula (6, Part I) the following representation can be written down
for the Laplace transforms Φirε(s):

(13)

Φirε(s) =
∞∑
n=0

(1− qiε)nqiεψiε(s)nψ̃irε(s)

=
qiεψ̃irε(s)

1− (1 − qiε)ψiε(s)

=
1

1 + (1 − qiε) (1−ψiε(s))
qiε

· ψ̃irε(s), s ≥ 0.

Let us now show that, under conditions A, B, and C, for every s ≥ 0 and i, r ∈ X ,

(14) ψ̃irε(s/uε)− qiiε(r)/qiε → 0 as ε→ 0.

Indeed, using Lemma 4, Part I, we get, for any δ > 0,

(15)

qiiε(r)
qiε

− ψ̃irε(
s

uε
)

= Ei

{
(1− exp{−s β̃iε

uε
})χ(η(ε)

νε
= r)

/
νε ≤ τ (ε)

i

}

≤
(
1− esδ

)
+ Pi

{
β̃iε
uε
≥ δ

/
νε ≤ τ (ε)

i

}
→

(
1− esδ

)
as ε→ 0.

Relation (15) yields, due to the arbitrary choice of δ > 0, relation (14).
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Using formula (13) and relations (46, Part I) given in Lemma 2, Part I, and (14),
Theorem 2.1 and Lemma 3.1, we get, for every s ≥ 0 and i, r ∈ X ,

(16)

lim
ε→0

Φirε(s/uε) = lim
ε→0

1

1 + (1− qiε) (1−ψiε(s))
qiε

· ψ̃irε(s/uε)

= lim
ε→0

Φiε(s/uε) ·Q(ε)
ir (∞)

=
1

1 + a(s)
·Qr.

Relation (16) is equivalent to relation (12). �

4. Analysis of conditions

The non-triangular-array model of Markov renewal process

(17)
(
η(ε)
n , κ

(ε)
n , ζ(ε)

n

)
= (ηn, κn, ζn) , n = 0, 1, 2, · · · ,

which does not depend on the perturbation parameter, was considered in papers by
Silvestrov and Drozdenko (2005, 2006a, 2006b).

As was shown, conditions E and F are equivalent in this case to the following condi-
tions:

Kγ : 1−G(t) ∼ t−γL(t)
Γ(1−γ) as t→∞,

where 0 < γ ≤ 1, and L(·) is a slowly varying function;
Ha,γ:

L(uε)
pεu

γ
ε
→ as ε→ 0, where a = constant > 0,

and the limit cumulant a(s) should be of the form a(s) = asγ . Here,

G(t) =
m∑
i=1

π
(0)
i Gi(t), Gi(t) = P{κi|η0 = i}, pε =

m∑
i=1

π
(0)
i piε.

The previous results related to the stable type asymptotics of first-rare-event times
known in the literature (see, for example, Silvestrov (1974)), were the sufficient (but not
necessary) conditions similar to Kγ and Ha,γ but involving “individual” distributions of
sojourn times and absorption probabilities. Those conditions have the form

B′′: piε ∼ cib(ε) + oi(b(ε)) as ε→ 0, i = 1,m,
where: (b1) 0 < b(ε)→ 0 as ε→ 0; (b2) ci ≥ 0, i = 1,m;

(b3)
∑m

i=1 ci > 0; (b4) oi(b(ε))/b(ε)→ 0 as ε→ 0, i = 1,m,

and

K′′
γ : 1−Gi(t) ∼ git

−γ �L(t)
Γ(1−γ) as t→∞, i = 1,m, 0 < γ ≤ 1,

where: (k1) gi ≥ 0, i = 1,m; (k2)
∑m

i=1 gi > 0;
(k3) L̃(·) is a slowly varying function.

H′′
a,γ:

�L(uε)
b(ε)uγ

ε
→ ã as ε→ 0, where ã is a positive constant.

Our conditions based on the behavior of averaged probabilities pε and on the behavior
of averaged distribution functionsG(t) are weaker and thus improve the previously known
results.

We recall that condition B describing the limit behavior of the probability of appear-
ance of a rare event for the non-perturbed Markov renewal process (17) studied in papers
by Silvestrov and Drozdenko (2005, 2006a, 2006b) is identical to condition B studied in
the present paper, i.e.,

B: 0 < max1≤i≤m piε → 0 as ε→ 0,
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this was the case where the renewal process itself was unperturbed, but the probability
of dropping into a stopping domain Dε was changed.

In the rest of the section, we give the proofs for the following implications: B′′ implies
B; K′′

γ implies Kγ ; K′′
γ together with H′′

a,γ imply Ha,γ . We also give examples which
show that the inverse implications do not always hold.

Let us show that condition B′′ implies condition B. Indeed,

max
1≤i≤m

piε ≤ b(ε) max
1≤i≤m

ci + max
1≤i≤m

oi(b(ε)) → 0 as ε→ 0,

and, moreover, for all ε small enough,

max
1≤i≤m

piε ≥ b(ε) max
1≤i≤m

ci − max
1≤i≤m

oi(b(ε)) > 0.

Hence, the implication holds.
Condition K′′

γ implies condition Kγ . Indeed,

1−G(t) =
m∑
i=1

π
(0)
i [1−Gi(t)] ∼

m∑
i=1

π
(0)
i

git
−γL̃(t)

Γ(1− γ)
=

t−γL(t)
Γ(1− γ)

as t→ +∞,

where

L(t) := L̃(t)
m∑
i=1

π
(0)
i gi.

Let us finally show that, under conditions A, B, C, and D, conditions B′′ and H′′
a,γ

imply condition Ha,γ . Indeed,

(18)
piε
pε

=
cib(ε) + oi(b(ε))∑m

i=1 π
(ε)
i [cib(ε) + oi(b(ε))]

→ ci∑m
i=1 ciπ

(0)
i

as ε→ 0.

Condition B′′ and relation (18) imply that

pε ∼ b(ε)
m∑
i=1

ciπ
(0)
i + o(b(ε)) as ε→ 0.

It follows from conditions B′′ and H′′
a,γ that

L(uε)
pεu

γ
ε
∼

∑m
i=1 giπ

(0)
i L̃(uε)

b(ε)
∑m

i=1 ciπ
(0)
i uγε

→ ã
∑m

i=1 giπ
(0)
i∑m

i=1 ciπ
(0)
i

as ε→ 0.

Thus, conditions B′′ and H′′
a,γ imply condition Ha,γ with

a :=
ã
∑m

i=1 giπ
(0)
i∑m

i=1 ciπ
(0)
i

.

We will now consider several examples which show that inverse implications do not
always hold. We start from the example, in which condition B holds, but condition B′′

does not.

Example 4.1. Let us consider the case where m = 2 and

p1ε = b(ε) [c1 + c sin(1/ε)] ,

p2ε = b(ε) [c2 − c sin(1/ε)] ,
where the parameters are chosen so that

c1 > c > 0; c2 > c > 0; and 0 < b(ε)→ 0 as ε→ 0,

and the stationary distribution of the embedded Markov chain is

π
(0)
1 = π

(0)
2 =

1
2
.



110 MYROSLAV DROZDENKO

Then
piε
b(ε)

= ci + (−1)i+1c sin(1/ε) � constant as ε→ 0, i = 1, 2,

which means that condition B′′ is not satisfied, but

0 < pε = π
(0)
1 pε1 + π

(0)
2 pε2 = b(ε)(a1π

(0)
1 + a2π

(0)
2 )→ 0 as ε→ 0,

and, thus, condition B holds.

The next example shows the case where condition Kγ holds, but condition K′′
γ does

not.

Example 4.2. Let us consider the survival functions Ri(t), i = 1, 3, such that

1−Ri(t) = min {ci/tγ , 1} , t > 0, γ > 0, i = 1, 3,

where

c2 :=
c1 + c3

2
and c3 > c1 > 0.

To build the example, we take m = 2 and assume that the stationary probabilities of the
embedded Markov chain

π
(0)
1 = π

(0)
2 = 1/2.

We construct the distribution functions G1(t) and G2(t) with the following tail behavior:

1−G1(t) =

⎧⎨⎩
min {c2/tγ , 1} for t ≤ t0
y2k for t2k < t ≤ t2k+1, k = 0, 1, 2, · · · ,
(c1 + c3)/tγ − y2k+1 for t2k+1 < t ≤ t2k+2, k = 0, 1, 2, · · · ,

and

1−G2(t) =

⎧⎨⎩
min {c2/tγ , 1} for t ≤ t0
(c1 + c3)/tγ − y2k for t2k < t ≤ t2k+1, k = 0, 1, 2, · · · ,
y2k+1 for t2k+1 < t ≤ t2k+2, k = 0, 1, 2, · · · ,

where the constants yk and tk are defined recursively as

t0 = c
1/γ
3 ; y0 = c2/t

γ
0 ;

t2k+1 = (c3/y2k)1/γ , y2k+1 = c1/t
γ
2k+1, k = 0, 1, 2, · · · ;

t2k+2 = (c2/y2k+1)1/γ , y2k+2 = y2k+1, k = 0, 1, 2, · · · .
Then

1−G(t) =
1
2

[(1−G1(t)) + (1−G2(t))]

= R2(t) = c2t
−γ for t ≥ t0,

and, thus, condition Kγ holds.
Note that the function G1(t) is constructed so that it coincides with the function R2(t)

at the points t2k, k = 0, 1, 2, · · · , and coincides with the function R3(t) at the points
t2k+1, k = 0, 1, 2, · · · . In a similar way, the function G2(t) coincides with the function
R2(t) at the points t2k, k = 0, 1, 2, · · · , and coincides with the function R1(t) at the
points t2k+1, k = 0, 1, 2, · · · . Due to this,

(19)
1−Gi(t2k)

t−γ2k

= c2, i = 1, 2, k = 0, 1, 2, · · · ,

and

(20)
1−Gi(t2k+1)

t−γ2k+1

= c−2i+5, i = 1, 2, k = 0, 1, 2, · · · .
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We are going to show that the functions G1(t) and G2(t) do not satisfy conditions
K′′
γ . Namely, we are going to show that, for any slowly varying function L̃(·),

1−Gi(t)
t−γL̃(t)

� 1 as t→∞, i ∈ 1, 2.

Indeed, it follows from (19) and (20) that

1−Gi(t2k)
t−γ2k L̃(t2k)

/
1−Gi(t2k+1)

t−γ2k+1L̃(t2k+1)
→ c2 · c2

c3 · c−2i+5

= 1 as k →∞, i ∈ 1, 2,

since

t2k+1

t2k
=

(c3/y2k)1/γ

t2(k−1)+2
=

(c3/y2(k−1)+2)1/γ

(c2/y2(k−1)+1)1/γ
= (c3/c2)1/γ for k ≥ 1

and
L̃(t2k+1)

L̃(t2k)
=

L̃((c3/c2)1/γt2k)

L̃(t2k)
→ 1 as k →∞.

Since the required slowly varying function L̃(·), does not exist, condition K′′
γ does not

hold.

5. Geometric sums and asymptotics for non-ruin probabilities

In this section, we apply our results to the so-called geometric random sums. This
is a reduction of our model to the case where the embedded Markov chain η

(ε)
n has a

degenerate set of states, namely X = {1}.
In this case, the first-rare-event time ξε =

∑νε

n=1 κ
(ε)
n is a geometric sum.

Indeed,
(

κ
(ε)
n , ζ

(ε)
n

)
, n = 1, 2, · · · is a sequence of i.i.d. random vectors. Therefore,

the random variable νε = min
(
n ≥ 1 : ζ(ε)

n ∈ Dε

)
has a geometric distribution with

success probability pε = P
{
ζ
(ε)
n ∈ Dε

}
.

However, the geometric random index νε and the random summands κ
(ε)
n , n = 1, 2, · · ·

are, in this case, dependent random variables. They depend via the indicators of rare
events χnε = χ

(
ζ
(ε)
n ∈ Dε

)
, n = 1, 2, · · · . More precisely,

(
κ

(ε)
n , χnε

)
, n = 1, 2, · · · is a

sequence of i.i.d. random vectors.
Conditions A and B take, in this case, the following form:

A′: lim
t→∞ lim

ε→0
P
{

κ
(ε)
1 > t

/
ζ
(ε)
1 ∈ Dε

}
= 0;

and

B′: 0 < pε = P
{
ζ
(ε)
1 ∈ Dε

}
→ 0 as ε→ 0.

Conditions C and D hold automatically.
Conditions E and F remain and should be imposed on the distribution function

G(ε)(t) = P
{

κ
(ε)
1 ≤ t

}
(no averaging is involved).

A standard geometric sum is a particular case of the model described above, which
corresponds to the case where two sequences of random variables κ

(ε)
n , n = 1, 2, · · · and

ζ
(ε)
n , n = 1, 2, · · · are independent. In this case, the random index νε and the summands

κ
(ε)
n , n = 1, 2, · · · are also independent.
In this case, condition A′ has the following form:

A′′: lim
t→∞ lim

ε→0
[1−G(ε)(t)] = 0.
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Note that a standard geometric sum with any distribution of summandsG(ε)(t) and the
geometric random index pε ∈ (0, 1] can be modeled in the way described above. Indeed, it
is enough to consider the geometric sum ξε =

∑νε

n=1 κ
(ε)
n defined above, where (a1) κ

(ε)
n ,

n = 1, 2, · · · is a sequence of i.i.d. random variables with the joint distribution function
G(ε)(t); (a2) νε = max

(
n ≥ 1 : ζ(ε)

n ∈ Dε

)
, where ζ(ε)

n , n = 1, 2, · · · is a sequence of i.i.d.
random variables uniformly distributed on the interval [0, 1] and domains Dε = [0, pε);
(a3) two sequences of random variables κ

(ε)
n , n = 1, 2, · · · and ζ

(ε)
n , n = 1, 2, · · · are

independent.
Theorem 2.1 reduces in this case to the result equivalent to those obtained by Kruglov

and Korolev (1990).
Let us illustrate applications of Theorem 2.1 by giving the necessary and sufficient

conditions for the weak convergence of non-ruin distribution functions. Let us consider
a process used in the classical risk theory to model the activity of an insurance company,

Xε(t) = cεt−
Nλε (t)∑
n=1

Z(ε)
n , t ≥ 0.

Here, a positive constant cε (depending on the parameter ε > 0) is the gross premium
rate; Nλε(t), t ≥ 0 is a Poisson process with parameter λε counting the number of
claims on the time-interval [0, t]; and Z

(ε)
n , n = 1, 2, · · · is a sequence of nonnegative

i.i.d. random variables which are independent of the process Nλε(t), t ≥ 0. The random
variable Z(ε)

k is the amount of the kth claim.
In this model, an important object for studies is the non-ruin probabilities on the

infinite time interval for a company with an initial capital u ≥ 0,

Fε(u) = P

{
u+ inf

t≥0
Xε(t) ≥ 0

}
, u ≥ 0.

Let H(ε)(x) = P
{
Z

(ε)
1 ≤ x

}
be the claim distribution function. We assume the stan-

dard condition:
M: με =

∫∞
0 sH(ε)(ds) <∞.

The crucial role here is played by the so-called safety loading coefficient αε = λεμε/cε.
If αε ≥ 1 then Fε(u) = 0, u ≥ 0. The only non-trivial case is given by αε < 1. We
assume the following condition:

N: 0 < αε < 1 for ε > 0; and αε → 1 as ε→ 0.
According to the Pollaczek–Khinchine formula (see, for example, Asmussen (2000)),

the non-ruin distribution function Fε(u) coincides with the distribution function of a
geometric random sum which is slightly different from the standard geometric sums
considered above, namely,

Fε(u) = P

{
ξ′ε =

νε−1∑
n=1

κ
(ε)
n ≤ u

}
, u ≥ 0,

where (a) κ
(ε)
n , n = 1, 2, · · · is a sequence of non-negative i.i.d. random variables with the

distribution function G(ε)(u) = 1
με

∫ u
0

(
1−H(ε)(s)

)
ds, for u ≥ 0, (the so-called steady

claim distribution); (b) νε = minn≥1 {n : χnε = 1}; (c) χnε, n = 1, 2, · · · is a sequence
of i.i.d. random variables taking values 1 and 0 with probabilities pε = 1−αε and 1−pε;
(d) random sequences κ

(ε)
n , n = 1, 2, · · · , and χnε, n = 1, 2, · · · , are independent.

In this case, condition A takes the form
A′′′: lim

u→∞ lim
ε→0

1
με

∫∞
u

[1−H(ε)(s)]ds = 0.
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Theorem 2.1, with specification to the geometric sums described above, can be applied
to the geometric random sums ξ′ε.

Conditions C and D can be omitted. Condition B is equivalent to condition N.
Conditions E and F take, in this case, the form

E′:
� +∞

uuε
[1−H(ε)(s)]ds

με(1−αε) → h(u) as ε→ 0,
for all positive points of continuity of the limit function h(u).

F′:

uuε�
0
s(1−H(ε)(s))ds

με(1−αε) → f(u) as ε→ 0,
for some positive point of continuity of h(u).

Limit functions h(u) and f(u) satisfy conditions (a1)-(a4):

(a1) h(u) is a non-negative, non-increasing, and right-continuous function of u > 0,
such that h(∞) = 0;

(a2) The measure H(A) on the σ-algebraH+, the Borel σ-algebra of subsets of (0,∞),
defined by the relation H((u1, u2]) = h(u1)− h(u2), 0 < u1 ≤ u2 <∞;

(a3) Under E′
γ , condition F′

aγ can only hold simultaneously for all continuity points
of h(u) and f(u1) = f(u2)−

∫ u2

u1
sH(ds) for any points 0 < u1 < u2 <∞;

(a4) f(u) is a non-negative function.

Conditions E′ and F′ are the necessary and sufficient conditions for the weak conver-
gence,

ϑ(ε)(t) =
[tp−1

ε ]∑
k=1

ϑ
(ε)
k

uε
, t ≥ 0 =⇒ ϑ(t), t ≥ 0 as ε→ 0,

where ϑ(ε)
k are i.i.d. random variables with the joint distribution G(ε)(t); ϑ(t), t ≥ 0 is a

Lévy process with cumulant a(s), i.e. Ee−sϑ(t) = e−a(s)t, which has the form

a(s) = as−
∫ ∞

0

(e−sx − 1)H(dx),

where the constant

a = f(u)−
∫ u

0

sH(ds)

does not depend on the choice of a point u in condition F′.
Let us summarize the discussion above in the form of the following theorem which gives

the necessary and sufficient conditions for the approximation of non-ruin probabilities.

Theorem 5.1. Let conditions M, N and A′′′ hold. Then the class of all possible, non-
concentrated at zero, limit distribution functions F (u) (in the sense of weak convergence),
such that the non-ruin distribution functions Fε(uuε) =⇒ F (u) as ε→ 0, coincides with
the class of distributions F (u) with Laplace transforms 1

1+a(s) . Conditions E′ and F′ are
necessary and sufficient for the weak convergence Fε(uuε) =⇒ F (u) as ε→ 0.

6. Application to queueing systems

Let us consider a controlled M/G queueing system with m different types of customers
in the input flow. When a customer of type i is coming to the system, its service time has
distribution H(ε)

i (·), and the interarrival time (difference in arrival times for the next and
the current customers) is exponentially distributed with parameter λiε. The appearance
of the customer of a certain type is modeled by the ergodic Markov chain η(ε)

n , with the
phase space X = {1, 2, · · · ,m}, and the transition probabilities

∥∥∥p(ε)
ij

∥∥∥, i, j ∈ X . Thus,
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the input flow of customers in the system is modeled by the semi-Markov process with
transition probabilities

Q
(ε)
ij (t) = p

(ε)
ij

(
1− e−λiεt

)
, t ≥ 0, i, j ∈ X.

The failure in the system occurs if the next customer arrives before the service for the
previous customer is finished. It is the so-called system with no buffer.

Let κ′
nε and κ′′

nε be random variables representing, respectively, the interarrival time
and the service time for the n-th customer. Our service system can be described by a
Markov renewal process (η(ε)

n , κ
′
nε, κ

′′
nε), with the phase space {1, 2, . . . ,m} × [0,∞)×

[0,∞) and the transition probabilities

P
{
η
(ε)
n+1 = j, κ

′
n+1ε ≤ u, κ

′′
n+1ε ≤ v

/
η(ε)
n = i, κ

′
nε = k, κ

′′
nε = l

}
= P

{
η
(ε)
n+1 = j, κ

′
n+1ε ≤ u, κ

′′
n+1ε ≤ v

/
η(ε)
n = i

}
= p

(ε)
ij

(
1− e−λiεu

)
H

(ε)
i (v).

We consider the model with quick service and impose the following “quick-service”
condition:

O: (o1) min
i∈X

H
(ε)
i (0) < 1 for ε > 0;

(o2) lim
ε→0

[
1−H(ε)

i (t)
]

= 0, i ∈ X, t > 0.

The second condition P is a condition of convergence of the transition matrix of the
embedded perturbed Markov chain η

(ε)
n to the transition matrix of the embedded limit

Markov chain η(0)
n :

P: p(ε)
ij → p

(0)
ij as ε→ 0, i, j ∈ X .

The third condition Q is a standard ergodicity condition for the embedded limit
Markov chain η(0)

n :

Q: Markov chain η
(0)
n with the matrix of transition probabilities ‖p(0)

ij ‖ is ergodic

with the stationary distribution π(0)
i , i ∈ X .

Condition R is a regularity condition for the intensities of interarrival times:
R: 0 < lim

ε→0
λiε ≤ lim

ε→0
λiε <∞, i ∈ X .

The total service time, starting from the moment when the first customer comes to
the system, can be defined as

ξε =
νε∑
k=1

κ
′
kε,

where the random variable

νε = min {n : κ
′
nε < κ

′′
nε}

represents the number of service cycles before the failure in the system occurs.
The probability that a customer of type i will not have enough time to finish his/her

service is

(21) piε =
∫ ∞

0

[
1−H(ε)

i (s)
]
λiεe

−λiεsds, i ∈ X,

and we define the corresponding averaged probability in our usual way as

pε =
m∑
i=1

π
(0)
i piε.
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Since the interarrival distributions are exponential, the corresponding averaged interar-
rival distribution function will have the form

(22) G(ε)(t) = 1−
m∑
i=1

π
(0)
i e−λiεt, t > 0.

The following condition is necessary and sufficient for the weak convergence of the
distribution functions of normalized first-rare-event times pεξε to the exponential distri-
bution:

S: λε =
m∑
i=1

π
(0)
i

1
λiε
→ a as ε→ 0, where a > 0.

Theorem 6.1. Let conditions O, P, Q, and R hold. Then condition S is necessary
and sufficient for the convergence relation pεξε =⇒ ξ as ε → 0 to hold, where ξ has the
exponential distribution with parameter a.

Proof. To reduce the model to our general settings, we introduce the Markov renewal
process

(
η
(ε)
n , κ

(ε)
n , ζ

(ε)
n

)
, n = 0, 1, · · · , with the phase space X× [0,+∞)×{0, 1}, where

⎧⎪⎨⎪⎩
η
(ε)
n := η

(ε)
n

κ
(ε)
n := κ′

nε

ζ
(ε)
n := χ (κ′

nε < κ′′
nε) .

In this case, the stopping domain is Dε = {1}, and the transition probabilities for the
process have the form

P

{
η
(ε)
n+1 = j, κ

(ε)
n+1 ≤ u, ζ

(ε)
n+1 =

1± 1
2

/
η(ε)
n = i, κ

(ε)
n = s, ζ(ε)

n = y

}
= P

{
η
(ε)
n+1 = j, κ

(ε)
n+1 ≤ u, ζ

(ε)
n+1 =

1± 1
2

/
η(ε)
n = i

}

=

⎧⎪⎨⎪⎩
p
(ε)
ij

∫ u
0

[
1−H(ε)

i (s)
]
λiεe

−λiεsds, for ζ(ε)
n+1 = 1;

p
(ε)
ij

∫ u
0
H

(ε)
i (s)λiεe−λiεsds, for ζ(ε)

n+1 = 0,

where i, j ∈ X , and s, t ≥ 0.
The number of served customers including the customer, whose service was started

but not completed, can be redefined as

νε = min
{
n : ζ(ε)

n = 1
}
,

and the total service time of the system, starting from the moment of arrival of the first
customer, can be redefined as

ξε =
νε∑
k=1

κ
(ε)
k .

To prove the current theorem, we are going to show that the statement of the theorem
follows from Theorem 2.1. Let us check that condition A holds. Indeed, we have, for
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every i ∈ X ,

(23)

Pi
{

κ
(ε)
1 > t

/
ζ
(ε)
1 ∈ Dε

}
= Pi {κ

′
1ε > t / κ

′
1ε < κ

′′
1ε}

=
Pi {t < κ′

1ε < κ′′
1ε}

Pi {κ′
1ε < κ′′

1ε}
=

∫ +∞
t

[1 −H(ε)
i (s)]λiεe−λiεsds∫ +∞

0 [1 −H(ε)
i (s)]λiεe−λiεsds

=
1

� t
0 [1−H(ε)

i (s)]λiεe−λiεsds� +∞
t

[1−H(ε)
i (s)]λiεe−λiεsds

+ 1
≤ 1

[1−H(ε)
i (t)]

� t
0 λiεe−λiεsds

[1−H(ε)
i (t)]

�+∞
t

λiεe−λiεsds
+ 1

=

∫ +∞
t

λiεe
−λiεsds∫ +∞

0 λiεe−λiεsds
=

∫ +∞

t

λiεe
−λiεsds = e−λiεt,

and, using condition R,

(24) lim
t→∞ lim

ε→0
e−λiεt = lim

t→∞ e− limε→0 λiεt = 0.

Relations (23) and (24) imply that condition A of Theorem 2.1 holds.
Let us check condition B of Theorem 2.1. It follows from condition o1 that there

exists j ∈ X such that H(ε)
j (0) < 1 for ε > 0, thus

max
i∈X

piε = max
i∈X

∞∫
0

[
1−H(ε)

j (s)
]
λjεe

−λjεsds

≥ max
i∈X

[
1−H(ε)

i (0)
]
λjε > 0.

Moreover, due to conditions R and o2, for every i ∈ X and every δ > 0,

(25) lim
ε→0

∫ δ

0

[1−H(ε)
i (s)]λiεe−λiεsds ≤ lim

ε→0
λiεδ → 0 as δ → 0.

Due to the same conditions, for every i ∈ X and every δ > 0,

(26)

lim
ε→0

∫ +∞

δ

[1−H(ε)
i (s)]λiεe−λiεsds

≤ lim
ε→0

[1−H(ε)
i (δ)]

∫ +∞

δ

λiεe
−λiεsds

≤ lim
ε→0

[1−H(ε)
i (δ)] = 0.

Taking relations (21), (25), and (26) into account, we get

piε → 0 as ε→ 0, i ∈ X.
This means that condition B holds.

Conditions P and Q are identical to conditions C and D.
Due to relation (2), we have to search for the necessary and sufficient conditions of

convergence

(27) ϑ(ε)(t) = pε

[tp−1
ε ]∑

k=1

ϑ
(ε)
k , t ≥ 0, =⇒ ϑ(t), t ≥ 0, as ε→ 0,

where ϑ(ε)
k are i.i.d. random variables with the joint distribution

G(ε)(t) = 1−
m∑
i=1

π
(0)
i e−λiεt,

and ϑ(t), t ≥ 0 is some Lévy process.
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We are going to prove that, under condition R, the only possible variant of the limit
process is ϑ(t) = at, t ≥ 0, and that condition S is the necessary and sufficient condition
for weak convergence in (27) to such a process.

Using the Chebyshev inequality, condition R, relation pε → 0 as ε → 0, and formula
(22), we have, for every t ≥ 0 and δ > 0,

(28)

P{|pε
[tp−1

ε ]∑
k=1

ϑ
(ε)
k − pε[tp−1

ε ]Eϑ(ε)
1 | > δ} ≤ δ−2p2

ε[tp
−1
ε ]Varϑ

(ε)
1 ,

≤ δ−2p2
ε[tp

−1
ε ]

m∑
i=1

π
(0)
i

λ2
iε

→ 0 as ε→ 0.

It is easy to see that

(29) |pε[tp−1
ε ]Eϑ(ε)

1 − at| → 0 as ε→ 0,

if and only if there exists a constant a > 0 such that Eϑ(ε)
1 → a as ε→ 0.

It follows from (28) and (29) that relation (27) can hold if and only if there exist a
constant a > 0 such that

lim
ε→0

Eϑ
(ε)
1 = a.

In this case, the limit process ϑ(t) = at, t ≥ 0. But

Eϑ
(ε)
1 =

m∑
i=1

π
(0)
i

1
λiε

.

Thus, condition S is, indeed, the necessary and sufficient condition for relation (27)
to hold, and the limit process ϑ(t) should be of the form ϑ(t) = at, t ≥ 0. �

Note that conditions of Theorem 6.1 do not require the convergence of the coefficients
λiε as ε→ 0, i ∈ X .

Example 6.1. Let us consider the case where m = 2 and

λiε =
1

a(ε)[ci + (−1)i+1c sin(1/ε)]
, i ∈ X.

The parameters are chosen so that

ci > c > 0, i ∈ X,
and

0 < a(ε)→ 2a
c1 + c2

as ε→ 0, where 0 < a <∞.

In this case, for all i ∈ X ,

0 < lim
ε→0

λiε =
c1 + c2

2a[ci + c]
<

c1 + c2
2a[ci − c]

= lim
ε→0

λiε <∞.

Thus, condition R holds, but limε→0 λiε 
= limε→0 λiε.
If the stationary distribution of the embedded Markov chain is

π
(0)
1 = π

(0)
2 =

1
2
,

then

Eϑ
(ε)
1 =

2∑
i=1

a(ε)[ci + c(−1)i+1 sin(1/ε)]
2

= a(ε)
c1 + c2

2
→ a as ε→ 0.

and condition S also holds.
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5. A. Rényi, A characterization of Poisson process, Magyar Tud. Akad. Mat. Kutato Int. Kozl. 1

(1956), 519–527.
6. D. Silvestrov, Limit Theorems for Composite Random Functions, Vysshaya Shkola and Izd.

Kiev. Univer., Kiev, 1974.
7. D. Silvestrov, Limit Theorems for Randomly Stopped Stochastic Processes, Springer, London,

2004.
8. D. Silvestrov and M. Drozdenko, Necessary and sufficient conditions for weak convergence of

the first-rare-event times for semi-Markov processes, Dopov. Nats. Akad. Nauk Ukr. (2005),
no. 11, 25–28.

9. D. Silvestrov and M. Drozdenko, Necessary and sufficient conditions for weak convergence of
first-rare-event times for semi-Markov processes, I, Theory Stoch. Process. 12 (28) (2006),
no. 3–4, 151–186.

10. D. Silvestrov and M. Drozdenko, Necessary and sufficient conditions for weak convergence of
first-rare-event times for semi-Markov processes, II, Theory Stoch. Process. 12 (28) (2006),
no. 3–4, 187–202.

11. A. Solov’yev, Asymptotic behavior of the time of first occurrence of a rare event in a regener-
ating process, Engrg. Cybernetics 9 (1971), no. 6, 1038–1048 (1972); translated from Izv. Akad.
Nauk SSSR. Tekhn. Kibernet. (1971), no. 6, 79–89 (in Russian).

Division of Mathematics and Applied Mathematics, Mälardalen University, Box 883,
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