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O. IZYUMTSEVA

ANOTHER VIEW ON THE LOCAL TIME OF SELF-INTERSECTIONS
FOR A FUNCTION OF THE WIENER PROCESS

The article is devoted to the local time of self-intersections for the process F (w),
where F : �2 → �

2 is smooth function, and w is the standard planar Brownian
motion. We present the local time of self-intersections for the process F (w) in terms
of a manifold.

Introduction

Let us consider the local time of self-intersections for a random process {ξ(t), t ∈ [0, 1]}
formally defined as

(1) T ξ0 =
∫ 1

0

∫ s2

0

δ0(ξ(s2)− ξ(s1))ds1ds2,

where δ0 is the delta-function concentrated at 0. Expression (1) can be understood as a
limit in square mean of the random variables

(2) T ξε =
∫ 1

0

∫ s2

0

fε(ξ(s2)− ξ(s1))ds1ds2,

where fε(x) =
1

2πε
e
−
‖x‖2
2ε , x ∈ R2.

It is known [1-3] that, for a planar Wiener process w, as well as for a planar diffusion
process Y described by the stochastic differential equation{

dY (s) = a(Y (s))ds +B(Y (s))dw(s),
Y (0) = y0

with Lipschitz coefficients a and B, such a limit does not exist. That is why, instead of
(2), one can consider

T̃ ξε = T ξε − ET ξε .
It was proved in [1] that, for the planar Wiener process, a limit in square mean of T̃ ξε
exists. It is known [2, 3] that

(3) ETwε ∼
1
2π

ln
1
ε
, ε→ 0+,

(4) ET Yε ∼
1
2π

ln
1
ε
E

∫ 1

0

1
| detB(Y (s))|ds, ε→ 0 + .

Using (3) and (4), the hypothesis can be put forward that the constant of renormalization
for the process F (w) is equivalent to

1
2π

ln
1
ε
E

∫ 1

0

1
| detF ′(w(s))|ds, ε→ 0 + .
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In this paper, we prove that the local time of self-intersections for the process F (w) does
not exist. We also define the local time of self-intersections in terms of a manifold and
prove the existence of the limiting expectation on a rectangle.

1. Behavior of the limiting expectation

Let w be a Wiener process in R2, and let C2(R2,R2) be the space of twice continuously
differentiable functions from R2. Here, we investigate a random process F (w), where

1) F ∈ C2(R2,R2),
2) there exists C1, C2 > 0 : C1 ≤ | detF ′| ≤ C2.
Consider

TF (w)
ε =

∫ 1

0

∫ s2

0

fε(F (w(s2))− F (w(s1)))ds1ds2.

The following theorem holds.

Theorem 1.1. ETF (w)
ε → +∞, ε→ 0 + .

Proof. Since F ∈ C2(R2,R2), there exists L > 0 for any R > 0 such that, for ‖u1‖ ∨
‖u2‖ ≤ R,
(5) ‖F (u1)− F (u2)‖ ≤ L‖u1 − u2‖.
Inequality (5) yields

ETF (w)
ε ≥

∫ 1

0

∫ s2

0

∫
R2×2

1
2πε

e−
L2‖x2−x1‖2

2ε 1I{‖x1‖∨‖x2‖≤R}·

· 1
2πs1

e−
‖x1‖2

2s1
1

2π(s2 − s1)
e
−‖x2−x1‖2

2(s2−s1) dx1dx2ds1ds2.

Applying Fatou’s lemma, we have

lim
ε→0+

ETF (w)
ε ≥ 1

L2

∫ 1

0

∫ s2

0

∫
{x1:‖x1‖≤R}

1
2π(s2 − s1)

1
2πs1

e−
‖x1‖2

2s1 dx1ds1ds2.

Hence,

lim
ε→0+

ETF (w)
ε ≥ 1

L2

∫ 1

0

∫ s2

0

1
2π(s2 − s1)

(
1− e−R2

2
)
ds1ds2 = +∞.

The theorem is proved. �

2. Local time of self-intersections in terms of a manifold

Theorem 1.1 implies that the random variable {TF (w)
ε }ε>0 does not converge in square

mean. One can check that, for a planar Wiener process, there exists

L2 − lim
ε→0+

∫ 1

t

∫ t

0

fε(w(s2)− w(s1))ds1ds2,

where the limit is the local time of self-intersections for the planar Wiener process on
the rectangle [0, t] × [t, 1], t ∈ (0, 1). This is a motivation to consider the local time of
self-intersections for the process F (w) on this rectangle. We introduce a new definition
for the local time of self-intersections for the process F (w) in terms of a manifold and
prove the existence of the limiting expectation on the same rectangle for it. There is some
connection between the ”new” and ”old” definitions of the local time of self-intersections
for the process F (w) which will be explained further. Let us define the local time of
self-intersections for the process F (w) in terms of a manifold. For M = {(u, v) : F (u) =
F (v)}, where σ is the surface measure on M, we write

(6)
∫ 1

t

∫ t

0

∫
M

δ0(w(s1)− u)δ0(w(s2)− v)σ(du, dv)ds1ds2
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instead of ∫ 1

t

∫ t

0

δ0(F (w(s2))− F (w(s1)))ds1ds2.

Let us define expression (6) in a more precise way. Consider G : R4 → R2 such that

G(u, v) = F (v)− F (u).

By definition of M, for any (u0, v0) ∈M, we have
1) G(u0, v0) = 0,
2) G ∈ C1(R2,R2),
3) detG′

v(u0, v0) 
= 0.
Then, by the implicit function theorem, there exist an open ball B(u0, r) ⊂ R

2 and a
unique function h ∈ C1(B(u0, r),R2) such that

1) h(u0) = v0,
2) ∀u ∈ B(u0, r) : G(u, h(u)) = 0,
3) ∀u ∈ B(u0, r) :

h′(u) = (G′
v(u, h(u)))−1 ·G′

u(u, h(u)) =

= (F ′
v(h(u)))−1 · F ′

u(h(u))
and, consequently, ∫

M ′
ϕ(u, v)σ(du, dv) =

=
∫
B(u0,r)

ϕ(u, h(u))ρ(u, h(u))du,

where M ′ := ((u, v) : u ∈ B(u0, r), v = h(u)), ϕ is an arbitrary continuous finite function
on R4 with bounded support, and ρ is calculated in usual way [4]. It follows from [4] that
ρ > 0. We note that the closed manifold M can be covered with a countable number of
balls which satisfy conditions 1)-3) of the implicit function theorem. Consequently, the
integral over the manifold M can be defined as follows:

(7)
∫
M

ϕ(u, v)σ(du, dv) =
∫

R2

∑
v:F (v)=F (u)

ϕ(u, v)ρ(u, v)du.

For s1 ∈ [0, t], s2 ∈ [t, 1], t ∈ (0; 1) u, v ∈ M, we denote the expression Efε(w(s1) −
u)fε(w(s2)− v) by gε(s1, s2, u, v). One can check that

gε(s1, s2, u, v) =
1

(2π)2
1

(s1 + ε)(s2 + ε)− s21
·

· exp{− (s2 − s1)‖u‖2 + s1‖v − u‖2 + ε(‖u‖2 + ‖v‖2)
2((s1 + ε)(s2 + ε)− s21)

}.

It is obvious that

lim
ε→0+

gε(s1, s2, u, v) =
1

2πs1
e
−‖u‖2

2s1
1

2π(s2 − s1)
e
− ‖v−u‖2

2(s2−s1) .

According to (7), it is natural to suppose that the limit of∫ 1

t

∫ t

0

∫
M

gε(s1, s2, u, v)σ(du, dv)ds1ds2

is equal to∫ 1

t

∫ t

0

∫
R2

1
2πs1

e−
‖u‖2

2s1

∑
v:F (v)=F (u)

1
2π(s2 − s1)

e
− ‖v−u‖2

2(s2−s1) ρ(u, v)duds1ds2

as ε→ 0 + .
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On the other hand, using a change of variables, one can check that, for a nonnegative
function f : R2 → R2, the following equality holds:∫

R2
f(F (x), x)dx =

∫
R2

∑
x:F (x)=y

f(y, x) · 1
| detF ′(x)|dy.

This yields

Efε(F (w(s2))− F (w(s1))) =
∫

R2×2
fε(x2 − x1)·

·
∑

y1,y2:F (y1)=x1,F (y2)=x2

1
2πs1

e−
‖y1‖2

2s1
1

2π(s2 − s1)
e
− ‖y2−y1‖2

2(s2−s1) ·

· 1
| detF ′(y1)|

· 1
| detF ′(y2)|

dx1dx2.

We denote

q(x1, x2) :=
∑

y1,y2:F (y1)=x1,F (y2)=x2

1
2πs1

e−
‖y1‖2

2s1
1

2π(s2 − s1)
e
− ‖y2−y1‖2

2(s2−s1) ·

· 1
| detF ′(y1)|

· 1
| detF ′(y2)|

.

In the case where q ∈ Cb(R2×2),∫
R2×2

fε(x2 − x1)q(x1, x2)dx −→

−→
∫

R2
q(x1, x1)dx1

as ε→ 0+, where∫
R2
q(x, x)dx =

∫
R2

1
2πs1

e−
‖y1‖2

2s1

∑
y2:F (y2)=F (y1)

1
2π(s2 − s1)

e
−‖y2−y1‖2

2(s2−s1) ·

· 1
| detF ′(y2)|

dy1.

Hence, we can expect that

lim
ε→0+

E

∫ 1

t

∫ t

0

∫
M

fε(w(s1)− u)fε(w(s2)− v)
1

ρ(u, v)
·

· 1
| detF ′(v)|σ(du, dv)ds1ds2 =

= lim
ε→0+

E

∫ 1

t

∫ t

0

fε(F (w(s2)) − F (w(s1)))ds1ds2.

In what follows, we use the following expression for an approximation of the local time
of self-intersections for the process F (w) :

Tε =
∫ 1

t

∫ t

0

∫
M

fε(w(s1)− u)fε(w(s2)− v)γ(u, v)σ(du, dv)ds1ds2.

Here,

γ(u, v) =
1

ρ(u, v)
· 1
| detF ′(v)| .

Theorem 2.1. Suppose that, for a random variable η with density p(x) = c
1+‖x‖4 , the

random variable F (η) has a bounded density on R2. Then there exists a finite limit of
ETε as ε→ 0+.
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Proof. We note that gε(s1, s2, u, v) can be rewritten as

gε(s1, s2, u, v) =
1

(2π)2
1

s1 + ε
· 1

s2 + ε− s21
s1+ε

·

· exp{− ‖u‖2
2(s1 + ε)

} · exp{−
‖v − s1

s1+εu‖2

2((s2 + ε)− s21
s1+ε)

}.

For α > 0, we put

ψ(α, u, y) :=
∑

v:F (v)=y

e−α‖v−u‖
2 1
| detF ′(v)| .

Following the definition of the integral over a manifold and changing the variable u =
z
√
s1 + ε, we get ∫

M

gε(s1, s2, u, v)γ(u, v)σ(du, dv) =

=
∫

R2

1

(2π)2
· 1

s2 + ε− s21
s1+ε

· e−
‖z‖2

2 ·

·ψ(
1

2(s2 + ε− s21
s1+ε)

, z
s1√
s1 + ε

, F (z
√
s1 + ε))dz.

To prove the theorem, we use the dominated convergence theorem. To apply it, let us
check that

1) for α0 > 0 :
lim

(α,y,u)→(α0,u0,y0)
ψ(α, u, y) = ψ(α0, u0, y0).

2) there exists c(s1, s2, z) such that:

∀ε > 0 : | 1

s2 + ε− s21
s1+ε

ψ(
1

2(s2 + ε− s21
s1+ε)

, z
s1√
s1 + ε

, F (z
√
s1 + ε))| ≤

≤ c(s1, s2, z)
and ∫ 1

t

∫ t

0

∫
R2
c(s1, s2, z)dzds1ds2 <∞.

Let us check the first condition of the dominated convergence theorem . We denote

Kr(u0) = {v : r − 1 ≤ ‖u0 − v‖ ≤ r},

ψr0(α, u, y) :=
r0∑
r=1

∑
v:F (v)=y,v∈Kr(u0)

e−α‖v−u‖
2 1
| detF ′(v)| ,

and

br0(α, u, y) :=
∞∑

r=r0+1

∑
v:F (v)=y,v∈Kr(u0)

e−α‖v−u‖
2 1
| detF ′(v)| .

Then, using a new notation, ψ(α, u, y) can be rewritten as follows:

ψ(α, u, y) = ψr0(α, u, y) + br0(α, u, y).

By the inverse function theorem [4], one can check that there exist some neighborhood
of y0 and the family of continuous functions {a1(y), · · · , an(y)} which are the complete
system of solutions of the equation F (v) = y for y in this neighborhood of y0, and
v ∈ ∪r0r=1Kr(u0).
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This gives us a possibility to write that, in some neighborhood of (α0, u0, y0),

ψr0(α, u, y) =
n∑
i=1

e−α‖ai(y)−u‖2 1
| detF ′(ai(y))|

.(8)

It follows from (8) that ψr0(α, u, y) is a continuous function in some neighborhood of
(α0, u0, y0). Let us estimate br0(α, u, y). We denote

Nr(u0, y) = #{v : v ∈ Kr(u0), F (v) = y}.
One can see that, for ‖u− u0‖ < r0,

br0(α, u, y) ≤ c1
∞∑

r=r0+1

Nr(u0, y)e−α(r−1−‖u−u0‖)2 ,

where c1 is some positive constant. Let us check that the inequality

Nr(u0, y) ≤ c2(1 + (‖u0‖+ r)4)(9)

holds with some positive constant c6. Put q(x) = m◦F−1

dx (x), where

m(dx) =
c3

1 + ‖x‖4 dx, c3 > 0,

m ◦ F−1(A) = m{x ∈ R
2 : F (x) ∈ A}

for some A ⊂ R2. Then, for some positive constants c4 and c5, we have

c4 ≥ q(x) =
∑

y:F (y)=x

c3
1 + ‖y‖4

1
| detF ′(y)| ≥

≥ c5
∑

y∈Kr(u0),F (y)=x

1
1 + ‖y‖4 ≥

≥ Nr(u0, x)
1

1 + (r + ‖u0‖)4
,

since for y ∈ Kr(u0)

‖y‖4 ≤ (‖y − u0‖+ ‖u0‖)4 ≤ (r + ‖u0‖)4.
Therefore, estimate (9) is true. It follows from (9) that, for ‖u− u0‖ < r0,

br0(α, u, y) ≤ c1c2
∞∑
r=r0

(1 + (‖u0‖+ r))4)e−α(r−1−‖u−u0‖)2 .(10)

Estimate (10) implies that there exists the neighborhood V of (α0, u0, y0) such that

sup
V
br0(α, u, y)→ 0, r0 →∞.(11)

Continuity of ψr0(α, u, y) and (11) imply that, for α0 > 0,

lim
(α,y,u)→(α0,u0,y0)

ψ(α, u, y) = ψ(α0, u0, y0).(12)

It follows from (12) that

1

s2 + ε− s21
s1+ε

∑
v:F (v)=F (z

√
s1+ε)

exp{−
‖v − s1√

s1+ε
z‖2

2((s2 + ε)− s21
s1+ε)

} −→

−→ 1
s2 − s1

∑
v:F (v)=F (z

√
s1)

e
− ‖v−√

s1z‖2

2(s2−s1) , ε→ 0 + .

(13)
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To check the second condition of the dominated convergence theorem, we note that, for
ε < 1, the following estimate holds:

| 1

s2 + ε− s21
s1+ε

exp{−
‖v − s1√

s1+ε
z‖2

2((s2 + ε)− s21
s1+ε)

}|

≤ 1
(s2 − s1)

exp{
−‖v − s1√

s1+ε
z‖2

4
},

since
1

s2 + ε− s21
s1+ε

∈ (
1
2
,

1
s2 − s1

).

This estimate implies that
1

s2 + ε− s21
s1+ε

· ψ(
1

2(s2 + ε− s21
s1+ε)

, z
s1√
s1 + ε

, F (z
√
s1 + ε)) ≤

≤ 1
s2 − s1

· ψ(
1
4
, z

s1√
s1 + ε

, F (z
√
s1 + ε)).

To end the proof of the theorem, we note in view of (9) that, for κ ∈ [0, 1], the following
inequality holds:

|ψ(
1
4
, κz, y)| ≤ c6

∞∑
r=1

(1 + (κ‖z‖+ r)4)e−
(r−1)2

4 ≤ c7(1 + ‖z‖4).

Since ∫ 1

t

∫ t

0

∫
R2
e−

‖z‖2

2
1

s2 − s1
(1 + ‖z‖4)dzds1ds2 <∞,

we have the statement of the theorem. The theorem is proved. �
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