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O. IZYUMTSEVA

ANOTHER VIEW ON THE LOCAL TIME OF SELF-INTERSECTIONS
FOR A FUNCTION OF THE WIENER PROCESS

The article is devoted to the local time of self-intersections for the process F(w),
where F' : R? — R? is smooth function, and w is the standard planar Brownian
motion. We present the local time of self-intersections for the process F(w) in terms
of a manifold.

INTRODUCTION

Let us consider the local time of self-intersections for a random process {{(t), ¢ € [0,1]}
formally defined as

1 S2
(1) TS = / / Bo(E(s2) — E(s1))ds1dso,

where Jg is the delta-function concentrated at 0. Expression (1) can be understood as a
limit in square mean of the random variables

(2) Tt :/0 /:2 fe(&(s2) — &(s1))ds1dsa,

il
where f.(z) = 7ot 2 |, zeR%

It is known [1-3] that, for a planar Wiener process w, as well as for a planar diffusion
process Y described by the stochastic differential equation

dY (s) = a(Y(s))ds + B(Y (s))dw(s),
Y(0) = o

with Lipschitz coefficients ¢ and B, such a limit does not exist. That is why, instead of
(2), one can consider

TS =TS — ETE.
It was proved in [1] that, for the planar Wiener process, a limit in square mean of fg
exists. It is known [2, 3] that

1.1
(3) ETEU)N%IHE, €—>0+,
(4) ETY ilnlE‘/léds e—0+
S 2r e Jy |det B(Y(s))| '

Using (3) and (4), the hypothesis can be put forward that the constant of renormalization
for the process F(w) is equivalent to
1 1
~In=

L 1
2T eE/O m
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ds, e - 0+.
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In this paper, we prove that the local time of self-intersections for the process F(w) does
not exist. We also define the local time of self-intersections in terms of a manifold and
prove the existence of the limiting expectation on a rectangle.

1. BEHAVIOR OF THE LIMITING EXPECTATION

Let w be a Wiener process in R?, and let C?(R?, R?) be the space of twice continuously
differentiable functions from R2. Here, we investigate a random process F(w), where

1) F € C*(R?%,R?),

2) there exists C1,Cy > 0: C1 < |det F'| < Cs.

Consider L s
= [ Pt = Flutsi)dsidse

The following theorem holds.

Theorem 1.1. ETF(w)

Proof. Since F € C%(R?,R?), there exists L > 0 for any R > 0 such that, for |ju| Vv
[[us|| < R,
() [1F(u1) = F(ug)|| < Lllux — ual|.

Inequality (5) yields

F(w _ L%z -1
ET, / / /Rm et Lmlvileal<ry

I=10? _leg==1)?
e Zs1 76 2(s2=51) dx1daodsidss.
271'51 27‘(’(52 — 51)

Applying Fatou’s lemma, we have

1 L=l
lim ETF > —/ / / 7 dridsidss.
e—0+ {z1:||z1||<R} 27‘(’(52 — 81) 27‘(’51

Hence,

— 400, e = 0+.

1 ! 1 R?
lim ETF®) > —/ / (1 — e F)dsydsy = oo
=0+ L2 )y Jo 2m(sa— 51)< ) 1402

The theorem is proved. |

2. LOCAL TIME OF SELF-INTERSECTIONS IN TERMS OF A MANIFOLD

Theorem 1.1 implies that the random variable {TEF (w)}5>0 does not converge in square
mean. One can check that, for a planar Wiener process, there exists

v g [ [ fetwisn) - wloudsadss,

e—0+ t

where the limit is the local time of self-intersections for the planar Wiener process on
the rectangle [0,¢] x [¢,1], ¢ € (0,1). This is a motivation to consider the local time of
self-intersections for the process F'(w) on this rectangle. We introduce a new definition
for the local time of self-intersections for the process F'(w) in terms of a manifold and
prove the existence of the limiting expectation on the same rectangle for it. There is some
connection between the "new” and ”old” definitions of the local time of self-intersections
for the process F'(w) which will be explained further. Let us define the local time of
self-intersections for the process F(w) in terms of a manifold. For M = {(u,v) : F(u) =
F(v)}, where o is the surface measure on M, we write

(6) /t1 /Ot /M So(w(sy) — u)do(w(se) — v)o(du, dv)ds,dsy



ANOTHER VIEW ON THE LOCAL TIME ... 121

/ / bol(F — P(w(s1)))dsidss.

Let us define expression (6) in a more precise way. Consider G : R* — R? such that
G(u,v) = F(v) — F(u).

By definition of M, for any (ug,vo) € M, we have

1) G(ug,v9) =0,

2) G € CY(R? R?),

3) det G’ (ug, vo) # 0.

Then, by the implicit function theorem, there exist an open ball B(ug,r) C R? and a
unique function h € C*(B(ug,r), R?) such that

].) h(uo) = o,

2) Yu € B(ug,r) : G(u, h(u)) =0,

3) Yu € B(ug,r) :

instead of

W (u) = (G, (u, ()™ - G, (u, h(u)) =
= (Fy(h(u)) ™" - F(h(u))

and, consequently,

/ / o(u,v)o(du,dv) =
— [ ()l hw)du,
B(uo,r)

where M’ := ((u,v) : u € B(ug,r),v = h(u)), ¢ is an arbitrary continuous finite function
on R* with bounded support, and p is calculated in usual way [4]. It follows from [4] that
p > 0. We note that the closed manifold M can be covered with a countable number of
balls which satisfy conditions 1)-3) of the implicit function theorem. Consequently, the
integral over the manifold M can be defined as follows:

(7 | ewvotdud) = [ S swolpuo)du
M R? . F(v)=F(u)
For s; € [0,t],s2 € [t,1], t € (0;1) u,v € M, we denote the expression E fe(w(s1) —
w) fe(w(s2) — v) by ge(s1, 82, u,v). One can check that
1 1
(2m)2 (51 +¢€)(s2+¢) — 82
(s2 = s)llull® + s1flv — ul® + e(flull® + [[v]*)
2((s1 +e)(s2+¢) — s7)

96(31; 52, U, U) =

}.

-exp{—

It is obvious that

1 _lw? 1 _ do—ul?
hm ge(s1, 82, u,v) = ———e T1 —————¢ 202701,
e 27, 2m(s9 — s1)

According to (7), it is natural to suppose that the limit of

1 gt
/ / / 96(81;327u,v)0(du,dv)d81d82
t Jo Jm
is equal to

[ [ [ me® ¥ e s
e T e 262=s0 p(u,v)dudsds
¢ Jo Jr2 2ms1 2m(s2 — 51) P e

v:F(v)=F(u)

ase —0+.
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On the other hand, using a change of variables, one can check that, for a nonnegative
function f : R? — R2, the following equality holds:

1
- f(F(x), x)dz = /11%2 Z fly, ) - mdy-
z:F(x)=y
This yields

Efe(F(w(52)) - F(w(sl))) = fe(za — 3?1)'
R2x2
1 lwl? 1 _llya—w112
Z 5 e 21 72 ( )e 2(s2—s1) .
y1,ya P (y1) =1, Fya)=s "} T8z — 51
1 1
. . dx1dzs.
[det F'(yn)] Tdet F(ga)] "
We denote
1 ~lwal? 1 llye-v11?
q(x1,x2) 1= Z e pr ¢ el

27s1 2m(s9 — S1
y1,y2:F(y1)=21,F (y2)=z2 ( )

1 1
[ det F'(y1)| [ det F'(ys)|
In the case where g € Cj,(R?**?),

/ fe(xe — x1)q(21, 22)dx —
]R2><2

e / q(xl, :cl)dxl
R2

as ¢ — 0+, where

1 lwal? 1 _llya—v1 112
q(z,x)dx = e %1 E — ¢ 202-s1) .
R2 R2 271'81 27‘(’(52 — 81)

y2:F (y2)=F(y1)
1
| det F'(y2)]

dyl.
Hence, we can expect that

1

o(du, dv)dsidss =

T det F'(v)]
1 t
:EEI&E/t /O F(F(w(sa)) — F(w(s1)))dsrdss.

In what follows, we use the following expression for an approximation of the local time
of self-intersections for the process F'(w) :

1 gt
T. = /t /0 /M fe(w(s1) — u) fo(w(s2) — v)y(u, v)o(du, dv)dsidss.

Here,
1 1

p(u,v) [ det F'(v)]

’7(”7 U) -

Theorem 2.1. Suppose that, for a random variable n with density p(z) = W, the
random variable F(n) has a bounded density on R2. Then there exists a finite limit of

ET, ase — 0+.
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Proof. We note that g(s1, $2,u,v) can be rewritten as
1 1 1

2 ’ 2
s1+¢ _ 5
(2m) s2 46— s

96(81782auvv) =

[ul v — ;2 ull®
ECECH A
1 2((s2+¢) — S1+E)

For a > 0, we put

o —aflo—u)?___1
w(aau7y) L Z (& |det F/(’U)| .

v:F(v)=y

Following the definition of the integral over a manifold and changing the variable u =

z4/81 + €, we get
/ 9:(81, 2, u,v)y(u, v)o(du, dv) =
M

1 1 _ =2
= 2 . 52 - e 2 .
R2 (27‘(’) So + € — Sli‘f

1 S1
P )2 ,F(2v/s1+¢€))dz.
2(sg + € — Sie) Vs1+e
To prove the theorem, we use the dominated convergence theorem. To apply it, let us
check that

1) for ag > 0:

(o, u,y) = (ao, uo, Yo)-

1m
(o, y,u)— (@0,u0,Y0)

2) there exists ¢(s1, s2, z) such that:

1 1 S1
Ve >0:]| —U( % JF(zy/s14+¢))| <
Sg+e— Sfjrs 2(sg +¢e— —Sfjre) Vs1te

< ¢(s1,52,2)

1 et
/ / / c(s1, 82, 2)dzds1dss < 0.
t Jo Jr2

Let us check the first condition of the dominated convergence theorem . We denote

Kr(ug) ={v:r—1<ug—v|| <r},

and

@ 2 1
— E E —aflo—ull
wro(a7u)y) T € |det F/(’U)|’

r=1v:F(v)=y,ve€K,(up)

and
(o) ) 1
by (a, u,y) = Z Z e—alv—u? _ 1
r=ro+1 v:F(v)=y,ve K, (uo) |det F’(’U)|

Then, using a new notation, ¥ (a,u,y) can be rewritten as follows:

1/1(047 u, y) = 1Z)ro (aa u, y) + bTo (aa u, y)

By the inverse function theorem [4], one can check that there exist some neighborhood
of yo and the family of continuous functions {ai(y), - - ,a,(y)} which are the complete
system of solutions of the equation F(v) = y for y in this neighborhood of yg, and
Ve U:O=1KT(’U,Q).
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This gives us a possibility to write that, in some neighborhood of (ag, g, %o),

—allai(y)—ul®_____+
) prole ) = Ze O T

It follows from (8) that ¥y, (o, u, y) is a continuous function in some neighborhood of
(a0, u0,y0). Let us estimate by, (v, u, y). We denote

Nr(“an) = #{U ‘v e ,CT(UO)aF(U) = y}

One can see that, for ||u — ug|| < ro,

[e )

bro(csu,y) i Y Np(ug,y)e 1 lumuwl?,
r=ro+1

where ¢; is some positive constant. Let us check that the inequality

(9) Ny (uo,y) < e2(1 + (|luol + 1))
holds with some positive constant cg. Put q(x) = mOdI;_l (x), where
m(dz) = ————dz, c3 > 0,

|| 1
mOF_l(A) =m{r € R*: F(z) € A}

for some A C R2. Then, for some positive constants c4 and c5, we have

C3 1
> = =
c4 > q(x) Z 1+ ||y||* | det F'(y)| —
y:F(y)==

1
> >
2e D IR

YR, (vo), F(y)=2
1

> N, _
= T(U:O7x)1 + (T+ ||’LL0||)4,

since for y € K, (up)
Iy < (ly — uoll + [luol)* < ( + [luol)*.

Therefore, estimate (9) is true. It follows from (9) that, for ||u — ugl| < 7o,

(10) bro (0 u,y) < crca Y (14 ([lugl| + r))*)e (=1 lumuol)®,

T=To

Estimate (10) implies that there exists the neighborhood V' of (ag, ug, yo) such that

(11) SUP br (@, 1, y) = 0,70 — 00.

Continuity of ¢, (o, u,y) and (11) imply that, for ap > 0,
(12) lim w(a)u7y) = w(a()au();yo)-

(o, y,u)— (@0,u0,Y0)

It follows from (12) that

1 [[v— m z||?
e M
(13) 2+ € = 5% vF()=F(vETe) 2A(s2+€) - 552)
1 vl
_ Z e 262=s1) g —0+.

s2— 951 v:F(v)=F(z+/s1)
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To check the second condition of the dominated convergence theorem, we note that, for
€ < 1, the following estimate holds:

1 v — —/SSITZHQ
| ———expf{- 1}
So +¢e— S1i6 2((82 =+ E) — S1i€)
1 —llv— \/SS%?ZHQ
ex ,
S p{ 4 }
since
1 1 1
— = € (57 S0 — 517"
So + € — ﬁ—i-e S2 — 51
This estimate implies that
1 1 S1
“1( > % F(zvs1+¢)) <
2 gz ? )
sote— oz 2Aspte— i) VSITE
1 1 S1
< (=, z——, F €)).
<o e Ve Flevsite)

To end the proof of the theorem, we note in view of (9) that, for x € [0, 1], the following
inequality holds:

oo

1 _(=1?
(3 Rz 9)l < e DA+l + e T < er(L+z]Y).
r=1
Since
Lot =121
/ / / e 2 (14 ||2]|*)dzds1dss < oo,
t Jo JR2 S2 — 81
we have the statement of the theorem. The theorem is proved. O
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