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BOHDAN ILKOPYTKO AND MYKOLA I.LPORTENKO

THE PROBLEM OF PASTING TOGETHER TWO DIFFUSION
PROCESSES AND CLASSICAL POTENTIALS

The paper is a survey of some analytical methods for constructing a diffusion process
in RY that is a result of pasting together two diffusion processes. It is an exposition
in written of a lecture that the authors delivered at one of the plenary sessions of
the Conference “Stochastic analysis and random dynamics” which held in Lviv, June
14-20, 2009.

INTRODUCTION

Consider a stochastic differential equation in R? of the form
dz(t) = a(t, z(t))dt + b(t, z(t))* 2dw(t), (1)
where (a(t,z))i>0 and (b(t,r));>0 are given functions with their values in R? and
z€R? z€R?
L+ (R%), respectively, and (w(t))i>o is a standard Wiener process in R%. By £ (R%), we
denote the set of all symmetric positive definite linear operators in R?, and b(t,x)l/ 2
stands for a square root of b(¢, x).
This equation is usually treated as a one being intended for describing a dynamical
system of the form
dz(t) = a(t, z(t))dt (2)
in the situation where some random influences on it are to be taken into account.
An alternative point of view on Eq. (1) consists in considering it as a result of
perturbing a system of the form

dxo(t) = b(t, mo(t)) "/ *dw(t) (3)
by a vector field (a(t,z)):>0 . It turns out that, in the case of the function (b(¢,))>0
z€R? z€RY
being good enough, one can perturb Eq. (3) by such a vector field (a(t,z)):>0 which
zeR?

does not generate any dynamical system of the type (2). In such a situation, the former
treatment of Eq. (1) becomes, of course, meaningless, and another interpretation for it
is to be given.

We discuss below some analytical methods for constructing solutions to Eq. (1) in
cases where a given vector field (a(x)),cra is determined by a generalized function. In
Section 1, such a construction is based on the well-known formulae of perturbation. In
Sections 2-3, the problem of pasting together two diffusion processes is formulated, and

some ways of solving it are discussed. Finally, some examples are considered in Section
3.

1. DIFFUSION IN A MEDIUM WITH MEMBRANES

Let a given £1(R%)-valued function (b(z)),crs be bounded and Hélder continuous,
and let the inequality (b(z)6,0) > co|0|> with some positive constant ¢y be held for all
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6 € R and x € R? Then, as is known, there exists the fundamental solution to the

equation
ou 1
i §tr(b(x)u;'x), t>0,z R (4)
Denote it by go(t,z,y), t > 0,2 € R? and y € R If (x0(t))s>0 is the solution to the
equation
dzo(t) = (o (1)) *duw(t), (5)

then, for any bounded continuous function (p(z)),cre, the function

ulta) = Exploo(®) = [ etttz )y, > 0.0 € R,

satisfies Eq. (4) and the initial condition
u(0+,z) = p(z), z € RY (6)
Suppose now that S is a closed surface separating R? into two open parts: the interior
D; and the exterior D,. Assume that the surface S belongs to the class H'** and,
moreover, that each point of S has the property of both inner and outer sphericity. Let
v(x) for z € S denote the unit outer normal vector to S at . The vector N(z) = b(z)v(z)
for x € S is called conormal. A continuous function (¢(z)),ecs with its values in the
interval [—1, 1] is assumed to be given. Denote, by (ds(z)),cra, the generalized function
on R?, whose action on a test function consists in integrating the latter one over the
surface S.
We now show how to construct a solution to the following stochastic differential equa-
tion (see [1], [2]):
da(t) = q(a(t))ds (x(8)) N (@(t))dt + b(a(t))/>dw(t). (7)
Our construction is based on the well-known formulae of perturbation.

PERTURBATION FORMULAE
Let (x(t))¢>0 be a Markov process in R? satisfying the stochastic differential equation
da(t) = a(t, z(t))dt + b(t, z(t))"/ 2 dw(t)

with the given functions (b(t,z));>0 and (a(t,x));>0 as above, and let g denote its transition proba-
zeR? zeR?
bility density with respect to the Lebesgue measure in R%. Suppose that a vector field (a(t, x))¢>0 be
meRd
now given. In order to construct the transition probability density g for the Markov process (Z(t));>0,

being the solution to the equation
di(t) = [a(t, E(8)) + a(t, T(1))]dt + b(t, F(x))"/ 2 dw(®),

one should consider the following pair of equations:

t
Fs 2,t,y) = gls 2,1, ) + / dr / o(s, 2,7, 2) (@ (7, 2 t,y), A(r, 2))dz,
s Rd

t
(s 2, t,y) = g(s, 21, y) + / dr / (5,27, 2) (L (7, 2, t, ), E(7, 2)) .
s Rd

It is necessary to notice that, by substituting a function of the type @(z) = q(x)ds(z)N(z), z € R? into
these equations, one should define the action of the function dg on a function having a jump on S. It is
natural to put

2
where the integral is a surface integral over S.

(6s,0) = /S lp(a+) + p(a—)|dos,

Returning to Eq. (7), we define, for £ = 0,1,2,..., the functions @y on the set
(0,+00) x § x S putting Qo(t,z,y) = (N(2), Vugo(t, z,1)) and, for k > 1,

Qk(taxay):/o dT/SQkfl(Tvxvz)QO(t_Tvzvy)Q(z)sz:
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:/ dT/QO(T,x,z)Qk,l(t—T,z,y)q(z)daz.
0 s

By some estimates that are standard in the theory of single-layer potentials, one can
prove that the series

00
ZQk(tvxvy)a t> O,IE € S,y€ Sv
k=0

is uniformly (locally in ¢) convergent. Denote its sum by R(t¢,x,y) and define a function
g of the arguments (¢, z,y) € (0,+00) x R? x R% by each of the relations

g(t,x,y) = go(t,z,y) / dT/ go(T, 2, 2) —7,2,y)q(z)do, (8)
ot = ol + [ ar [ Wﬂx,z)%éf’”qwd% )

where the functions V and V are given by

V(t,z,y) = %J / dT/ R(r,x z)%{;w (z)do,

for t > 0,2 € S, and y € R? and

t
V(t,2,9) = golt, 7, ) + / dr / go(r 2, 2)R(t — 7, 2, y)q(2)do
0 S

for t > 0,7 € R% and y € S (one can verify that the right-hand sides of (8) and (9)
coincide).

The function ¢ turns out to be the transition probability density of a continuous strong
Markov process (z(t))i>0 in RY, for which a W-functional (1;);>0 given by

N = /(55 ))dr, t >0,

is well defined. It can be now verified that the process

£(t) — 2(0) / 4(&(r)N((r))dis, t >0,

is a continuous square integrable martingale, whose square characteristic is given by

/b ))dr, t > 0.

In other words, the process (x(t)):>0 is a solution to Eq. (7).

We have thus seen that although there is no dynamical system generated by the vector
field (q(z)0s(x)N(x)),cra, however, this field can serve as a drift for some diffusion
process.

The process constructed can be interpreted as a one that describes the movement of
a diffusing particle in the medium containing a membrane located on S. The membrane
does not affect the particle, while it is wandering in D, U D;,. Whenever it is hitting
the surface S, it receives a pulse in the conormal direction. To be perceptible, this pulse
must be of the “infinite intensity with the coefficient ¢(-)”. The extreme cases g(z) = +1
and ¢(z) = —1 mean that the points of S are reflecting into the directions N(z) and
—N(x), respectively. In the rest of cases, the membrane is penetrable for movements
into both directions. There is no membrane if ¢(x) = 0.

For any continuous bounded function (p(z)),ecre with real values, we put

u(t,z, @) = / 9(t,z,y)e(y)dy, t >0,z € R
Rd

It is not difficult to see that this function possesses the following properties:
ap) it is continuous in (¢,z) € (0, +o0o) x R
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bo) it satisfies the equation
ou 1
o 5“(5(37)“;{95)
in the domain t > 0,7 € R%\ S;
co) it satisfies the initial condition

u(0+,7,¢) = p(x), = € RY
dy) it satisfies the boundary condition

1+gq(z) Ou (t, x4, ¢) — %q(x) aﬁ?x)

2 ON(x)

(t,x—, ) =0

fort >0,z €S.
As a matter of fact, a solution to this conjugate problem was constructed above.

2. CASE OF DISCONTINUOUS COEFFICIENTS

Suppose that some elliptic differential operators £; and L. in the domains D; U .S and
D. U S, respectively, are given. Each of these operators is defined by a pair of functions:
its drift vector and its diffusion operator. Denote them by (a;(x),b;(x))zep,us and
(ae(x),be(x))zep.us, respectively. We suppose that each of these pairs can be extended
onto the whole space R? as bounded Holder continuous functions satisfying the uniform
ellipticity condition. Then the functions

~ Jai(z)ifr e Dy ) bi(z) ifx e Dy
alz) = {ae(x) if v € D, b) = {be(a:) ifx € D,

determine an elliptic operator in R%, whose coefficients have jumps (in general) at the
points of S, and we have two conormal directions: N;(xz) = b;(x)v(x) and Ne(z) =
be(x)v(x),x € S. Therefore, the problem ag)—dp) should be rewritten in this situation as
follows:
for a given continuous bounded function (¢(x)),erd, a function
(u(t, z,9))e>0
zeR?
is looking for such that
aj) it is continuous in (¢,z) € (0, +00) x R%;
by) it satisfies the equation
0 1
S = (ac(@) 1, (8 0)) + (b (@), (t,2)) = Lou(t, )
in the domain ¢t > 0,z € D, and the equation
0 1
8—1‘ = (ai(), uj (t,2)) + Str(bi(0)u, (. 2)) = Liu(t, @)
in the domain t > 0,z € Dy;
c1) it satisfies the initial condition
u(0+,2,9) = p(z), = € RY
d;) it satisfies the “boundary” condition
14+gq(x) Ou 1—gq(x) Ou
2ralw) ¢ TR T o) =0
2 N T T T )
at the points ¢ > 0 and = € S (as above, ¢ is a given continuous function on S with its
values in the interval [—1,1]).
It is natural to look for a solution to this problem in the form

t
u(t,z, ) :/dge(t,x,y)so(y)dy+/ dT/Sge(T,x,y)Ve(t—T,y7¢)d0y
R 0
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for t > 0 and z € D, and

t
U(t,.]%gﬁ) = /]Rd gt(t,x,y)go(y)dy—f—/ dT/Sgi(T7x7y)Vti(t_Tay7§0)day
0

for t > 0 and = € D;, where V. and V; are some unknown functions, and g. and g; are
the fundamental solutions for the operators L. and L;, respectively.

The condition d;) and the theorem on the jump of the conormal derivative of a single-
layer potential gives us the first integral equation for the functions V, and V;. One more
equation is a consequence of condition a1). But unlike the previous one, it is an equation
of a bad kind. Fortunately, this equation can be transformed by a special procedure into
an equivalent equation of a nice kind (see Section 3). Then this pair of equations can be
solved by the method of successive approximations. As a result, we obtain a diffusion
process in R¢ with its drift vector given by

oe(®) + oi(x) (1 + q())Ne(x) — (1 — g(x))Ni(z)
a(z) + 0s
2 (1+q(@))oe(x) + (1 — q(x))oi(x)
where o.(2)? = (Ne(z),v(z)) and o;(2)? = (N;(z),v(z)) for € S and its diffusion
operator given by the function (b(z)).ep,up, and by the expression
(1 + q(@))oe(x)be(x) + (1 — q(x))0i (2)bi(x)
(1+q(z))oe(z) + (1 — g(z))oi(x)

(z), = € RY,

ifxeS.

3. GENERAL PROBLEM

Problems ag)—dg) and a;)—d;) considered above can be generalized in the following
way.

As above, a pair of elliptic differential operators £; and L. are assumed to be given, as
well as a continuous function (¢(z))zes with its values in the interval [—1, 1]. In addition,
some continuous functions (r(z)).es and (k(z))zes with non-negative values should be
given, which will characterize the property of our membrane to be sticky and absorbing,
respectively. Moreover, an elliptic differential operator £y on the manifold .S should be
given that will operate the diffusion along the surface S.

Given the objects listed, the problem is to construct a real-valued function

(u(t,z,0))e>0 (for any given continuous bounded function (¢(x)),crae ) such that
zER?
a) it is continuous in (¢,z) € (0, +00) x R%;
b) it satisfies the equation

ou

E =£eu, t > 0,$E De7
and the equation

Ju

— =Lu, t >0,z € D;;

ot

¢) it satisfies the initial condition
u(0+,z,9) = (x), = € RY
d) it satisfies the conjugation condition

T(J?)%(t, €, QO) = 1+Tq(l‘) a]\?eu(/x) (f,, T+, (,0)—

fort>0and x € S.

Notice that condition d) is a slightly transformed version of the general Wentzel con-
dition [3] (as we restrict ourselves to considering the continuous processes only, we do not
write down the term in the Wentzel condition that corresponds to the possibilities for
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the process to jump into D, U D; from the membrane S). It turns out that a solution of
problem a)—d) can be constructed in a form similar to that of problem a;)-d;), where the
unknown functions V. and V; in the corresponding single-layer potentials are determined
from solving a certain system of the Volterra integral equations of the second kind (see
[4]-[7).

We give a short description of constructing such a solution of problem a)-d) under
the following additional assumptions:

1°) the functions (ae(x),be(2))zere and (a;(z),b;(x))zere are bounded and Holder
continuous with the exponent « € (0, 1);

2°) the matrices (be())yepe and (b;(z)),ere are symmetric and uniformly positive
definite;

3°) the surface S is a (d — 1)-dimensional hypersurface of the class H>+?;

4°) the functions (7(z))zes, (¢(2))zes, (k(z))zes and the coeflicients of the operator
Ly are bounded and Hélder continuous functions with the exponent «;

5°) the delaying coefficient (r(z))zecg satisfies the condition infzegr(z) > 0, and the
operator Ly is a uniformly elliptic operator in the tangent variables;

6°) the initial function (p()),cra is a one of the class H2+*(R%), and it satisfies the
corresponding consistency condition.

If conditions 1°)-6°) are fulfilled, then problem a)-d) has a unique classical solution
u(t,z) = u(t,z, ), t > 0,2 € RY the restrictions of which on the regions t > 0,z € D,
and t > 0,z € D, belong to the classes

H'™227([0,T] x D) and H'*t2:2t%([0,T] x D;),
respectively.

In order to prove this assertion, one should write down the solution desired as the sum
of two potentials: the Poisson potential

er(t,x,Qp) = /]Rd ge(taxay)w(y)dy

in the region ¢t > 0,z € D, or

uOi(t7x7<)0) = /]Rd gz(taxay)so(y)dy

in the region ¢t > 0,z € D; and the single-layer potential

t
ule(t7x7<p) = / dT/ ge(t_Taxay)‘/e(T7yasO)de
0 s
in the region ¢t > 0,z € D, or

t
Uli(taanO) :/ dT/gi(t—T,(E,y)V;‘(T,y,sﬁ)de
0 S

in the region ¢t > 0,x € D;, where V. and V; are unknown functions.
Suppose a priori that V., and V; are functions from the class
e
2}()1 ([0,T] x S).
In order to find them, we make use of conditions a) and d). Consider first condition d).
Setting r(z) = 1, we write down this condition in the form
d,) 'C,u(ta Z, 50) = %(ta Z, 50) - L:ou(t, Z, 50) + k(x)u(ta Zz, 50) = eo(t, Z, 50)
for t > 0,z € S, where
14 g(x) Ou(t, z+, 1 —q(x) Ou(t, z—,
Bo(t, 0, ) = q(z) Ou( ¢) 1—q(=x) Ou( ©)
2 8Ne($) 2 8N7,(.23)

The derivatives

du(t, z+, p) du(t,z—, p)
@ M ToNm)
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can be found out from the well-known theorem on the jump of the conormal derivative
of a single-layer potential. As a result, we get the following formula for the function 6g:
)= 1+ q(x) 8u06(t z,9)  1—q(x) duei(t, z, ¢)

2 ON.() 2 oNi(w)

1 + q age —T,T,Y )
D[ ar [ 2o r Sy s,
1—q(x dgi(t — T, , y) :
2 /0 dT/s oNi(w) T TE YV oy

_1+Tq(x)‘/e(taxa 50) - 1—7(](3?)‘/1.(757%@).

Condition d’) can be considered as an autonomous parabolic equation in the region
t > 0,z € S. Conditions 1°)-6°), the a priori assumptions on the functions V. and V;,
and the well-known properties of the potentials in the formula for 8y allow us to assert
that the coefficients of equation d’) belong to the class H*(S), and its right-hand side is
a function of the class H2-%([0,T],S). Then, as it follows from conditions 1°)-6°), there
exists a fundamental solution I'(t,z,y),t > 0,z € S,y € S, for the operator L' (see [5],
[6]). This allows us to conclude that the classical solution to equation d’) satisfying the
initial condition

Oo(t, =,

w0+, z,9) = p(z), T €S,
exists, and it is unique. In addition, v € H**%-2+2([0, T] x S) and its norm satisfies the
inequality
|‘uHH1+%'2+Q([O,T]XS) < COHSt(HWHI‘?{““(S) + |90|H%"’([O,T]XS)>'

Moreover, this solution can be written in the form

t
u(t,z,p) = / Lt z,y)e(y)doy —|—/ dT/ I(t—71,2,y)00(T,y, p)doy, t >0,z € 5.
s 0 s
We now have two different expressions for the function (u(t,x,®))i>0 : the previous
€S

x
one and that which can be obtained from the representations of u as a sum of the
potentials restricted to S. Taking into account condition a) and the formula for 6y, we
arrive at the following system of integral equations for the functions V. and V;:

/dT/gz —7,2,y)Vi(T,y, ¢)doy + /dT/ —1,2,y)Vi(T,y, )+

K (t—1,z,9)Ve(r,y,p)ldoy = fi(t,z,0), t >0,z € 5;

/dr/get—Txy (T, y, )doy, + /dT/ (t—T,2,y)Vi(T,y, 0)+

+K (t —7,2,9)Ve(,y, 0)ldoy, = fe(t,x,0), t >0,z €S,

where
Ki(t—rzy) = T(t-72,) =10 [ s [ re=san o) agz(;Ni(Z;’y)daz,
t J—
Ko (t—7,2,y) = F(t—T,x,y)l—’_Tq(y)—/T ds SI‘(t—s,x,z)l +2LJ(Z) age(;NeZ;)Z’y)daz,
fi(taxa@) = fo(t7x7<)0) - U’Oi(t x7<)0)
fe(t;x;@) = fo(t7x7<)0) - er t x7<)0

folt,z,p) = SF(t z,y)p(y)doy, + / dT/ (t—1,2,y)%
)

1+ q(y) Ouoe(T,y, ) 1 —q(y) Quoi(T,y,9)
[ 2 oN.(y) > oN.() ]d%
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The functions f. and f; belong to the class F'T2:27%([0,T] x S), and the kernels K;
0
and K. satisfy the inequalities

B _ 2
Kt — 7y, )] < Ot — 1)~ F" exp{ - u}

_ 2
Kt —7,2,9)| < Ct— 1) % exp{ _ Cu}

in any region of the form 0 <7 <t <T,x € S,y € S.

As seen, each equation of the system is a Volterra integral equation of the first kind.
In order to regularize them, we introduce integro-differential operators &; and &, for the
first and the second equation, respectively. They are analogous to those given in [8], [9]
for the solution of the first boundary-value problem. In particular, if § = R¢~!, then the
operator &, acts on a function (f(¢,2"))i>0 - according to the formula

' €eR4™

etrr =25 [w-mtar [ 0@ s}

where he(t,z’,y'),t > 0,2’ € R¥~1 ¢/ € R?! is the fundamental solution associated
with a uniformly parabolic operator that is the trace of the main part of the operator
2 — L. on the region Y = (0,00) x R~ in the global inner coordinates of this surface.
The operator &; is defined by analogy. In the case of a general manifold »_ = (0,00) x S,
one should make use of the atlas of a (d — 1)-dimensional manifold S generated by
a partition of unity. We would like to emphasize that the operators &, and &; are
constructed by a local procedure with the use of fundamental solutions corresponding to
the operators that are the traces of the main parts of the operators £, and £; on ) in
local inner coordinates.

After the operators & and &, have been applied to both sides of the corresponding
equations, the system is transformed into an equivalent one of Volterra integral equations
of the second kind. They can be written in the form

t
V;‘(t,il,',(p) +/ dT/[Rli(t - T,x,y)Vi(T,y,so) +R1€(t - Taxay)%(Tﬂva)]day =
0 S

= fli(taxa@)vt > O,IE € Sa

t
V;(t,x,(ﬁ) +/ dT/[RQi(t-T,(L‘,y)V;‘(T,y,QD) +R2€(t—T,x,y)‘/e(T,y,(p)]de =
0 S

= fae(t,z,0),t > 0,2 € S,
where
fl’i(tvxv 90) = (b’b(x)y(x)v I/(l'))l/2€i(t,$)fi,
fle(tvxv 90) = (be(x)l/(x), V(x))1/2€€(t7x)f6a
and the kernels Ry;, Rie, Ro;, Roe for 0 <7 <t <T,x € S, and y € S are estimated by

a function of the form
2
C’(?ﬁ—T)JHr12 - exp{ —CL id }

It is also proved that the functions &; f;, & fe and fi1;, fie are elements from the spaces

_Hz-a 4o

H o (0.7]% 5)

and H2%([0,T] x S), respectively.
0

We can now solve this new system of equations for the functions V; and V. by
the method of successive approximations and establish that they belong to the class
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H%([0,T] x S), and their norms satisfy the inequalities
0
”Vi”H%'“([O,T]xS) < C”SD”H%'Q(]Rd)v
0
HVS”H%'“([O,T]XS) < C”SD”H%'Q(HW)'
0

We have just constructed a solution to problem a)-d). As for other properties of the
solution declared above, they can be easily established by observing that the restrictions
of this solution onto each of the regions (¢t > 0,z € D;) and (¢t > 0,z € D.) can be
treated as a solution of the first boundary-value problem for the corresponding parabolic
equation.

If the initial function ¢ does not satisfy the consistency condition, then the solution
to problem a)-d) is a bounded continuous function in the region ¢t > 0,2 € R?, and its
restrictions onto the regions (t > 0,z € D;) and (¢ > 0,2 € D.) belong to the classes
CH2((0,00) x D;) and CH2((0,00) x D), respectively.

The integral representation of the solution to problem a)-d) given above is used then
for constructing the process desired. It turns out to be a diffusion process in the Kol-
mogorov’s sense: its local characteristics (drift vector and diffusion operator) exist in an
ordinary sense as ordinary (though discontinuous) functions (they are not generalized
functions).

Remark. Some probabilistic methods for constructing various classes of generalized dif-
fusion processes were proposed by L. Zaitseva (1999-2003), and the results were given in
her PhD thesis, Kyiv, 2004 (see [10]).

We conclude this section with the following aspects of the problem discussed above.

1) The absorbing coefficient can be taken into account by the arguments based on
the Feynman-Kac formula. For example, if (z(t));>0 is a continuous Markov process
constructed in Section 1, then, for any continuous bounded function (k(x))zes with
non-negative values, the function

¢
u(t, 2) = Evpla(t)) exp { -/ k(x(r))dnf} 1>0,2cRY,
0
satisfies conditions agp)—cg) and condition

1+q(x) Ou 1—gq(x) Ou

/ . _ —) — g
valid for t > 0 and x € S.

2) The property of the points of S to be sticky can be reached by a random change of
time in the process, for which r(x) = 0. For example, if (2(t))>0 is the process of Section
1 and a given function (r(x))zes with positive values is continuous and bounded, then
we put, for ¢ > 0,

¢ = inf{s s+/ ra()dn, > 1), 3(t) = 2(C)-
0
It can be proved that, for any continuous bounded function (¢(x)),era, the function
a(t,7) = Eap(@(1)), ¢ > 0,3 € RY,
satisfies conditions ag)—cg) and condition
ou 14+g¢(z) Ou 1—gq(z) ou
it = 1 t -\
at b) > an) )

valid for ¢ > 0 and =z € S.
It is interesting to notice that the process (Z(t)):>0 is a diffusion one in Kolmogorov’s

sense. This circumstance was observed by B. Kopytko and Zh. Tsapovska in 1998 (see
[4]). Moreover, the process (Z(t)):>0 turns out to have the following property:

dg) (=)
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the process

(5 -50) - [ 22Dtz

r(@(7)) >0

is a square integrable martingale, whose square characteristic is given by

b(@ (7)) Mga\5(Z(7))dT, t > 0.

In other words, the process (f( ))t>0 solves the martingale problem with the coefficients

a(x) = Tg; s(z)N(z) and bz ) = b(x)llga\s(z), € R%. This problem has, clearly, more
than one solution.

It is curious to notice that there is a very simple way to explain why, under the
random change of time described above, the diffusion process with the coefficients

(a(z) = q(z)ds(x)N(x), b(x))yere is transformed into the process with the coefficients

\

(@(x), b())yera- Namely, we have, for z € R,

o a@s@N@) L a@)N (@)
@ =T wes - S Tw
Ba) = — @) — Tlpa 5 (2)b(@).

1+ r(z)ds(x)
Of course, this arithmetic cannot serve as a rigorous proof of the result; a quite rigorous
one is given by O. Aryasova and M. Portenko in [2].

4. EXAMPLES

1.The process of the first example is a result of pasting together two diffusion process
on a real line R! (see [11]). Let the numbers by > 0,by > 0, and g € [—1, 1] be fixed.

We put
= (1= Vb + (1 +9)Vbs; ¢ = d7 (1= ¢)v/bi;
g2 =d (14 q)Vb2, ¢ =2(v/bi + Vb2)
Dy ={zeR' :2 <0}, Dy={zecR :2>0}.
For t > 0,2 € D, U{0}, and y € D;, where i = 1,2 and j = 1, 2, we define the function
g by setting

g(t,z,y) = (2mb;t) "1/ {GXP{ - 2it<% - x;cb_i)Q}Jr

2
+(QQ - ql)signyexp{ _ i( |y| + |$| ) }:|
TR
For y = 0, we set

g(t,z,0) \/_gtxO )+ V/bag(t,z,04)],t > 0,z € R

It is not a difficult exercise to verify that there exists a continuous Markov process
(z(t))i>0 in R such that its transition probability density is given by the function g.
Moreover, (z(t)):>0 is a (generalized) diffusion process with its drift coefficient (a(x)) cr:
given by

a(z) = G- 6(z), = € R!
and its diffusion coefficient (b( ))zerr given by

Zb 1Ip,(z) + Loy () (q1b1 + g2b2), z € RY,

where ¢ = ¢ qavb2 — 1 \/_1] and § is the non-symmetric (in general) Dirac function:

(0.9) = §[VB1p(0-) + VBp(0+)].
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A W-functional (n;)>0 of the process (z(t)):>0 can be defined for which

E —c/te {——xQ} dr , >0, z€ D;U{0},i=1,2.
@ X ,
" 0 P 2b,7 | /277’

The functional (7;)¢>0 is a non-symmetric (in general) local time of the process (x(t))i>0
at the point z = 0. It can be written in the form

N = /(5 ))ds,t > 0.

Then the process (z(t) — z(0) — gn)i>0 is a square integrable martingale with its char-

acteristic given by
/ b(x(r))dr, t > 0.

For a fixed number r > 0, we now put
G =inf{s:s+rns >t}, T(t) =x(), t > 0.
Then the process (Z(t)):>o is a continuous strong Markov process in R!, for which

B (@) = oOh(t.a) + | o)t a)d, > 0.2 € R

where
20 1 2] \? ,
h(t L 49, = € D, i=1,2,
(t,z) = \/ﬁ/ exp{ o 2t< +\/E) , x € D;U{0},4

H{(Tﬂ}ufﬁ}]

+4(1+ sin)/ooe 20 _1 0 |y| |x| 9
= S A

cdr eiety 0 P cr Vbj Vb Vor
fort>0,x6DiU{O},andy6D (i:12andjf12) For y = 0, we set

g(t,x,0) = 2 G(t, 2,0-)v/by + G(t, x,0+)y/ba.

Denote, by ﬁ, the transition probability for the process (Z(t)):>o-

Then a simple calculation shows that, for ¢ > 0, z € R', and any real-valued twice con-
tinuously differentiable function (¢(z)),cr: that is bounded together with its derivatives,
the relation

[ ewP..an) = o /hwmw-/wél 9(s, 2, y)dy

is true.

Of course, this relation can be extended to some class of unbounded functions. In
particular, one can easily conclude from this relation that the following equalities are
fulfilled:

(i) sup [(y — =) YAP(t, z, dy) = O(t2) as t | 0

TERIRL

(ii) ltll%l t=1 [ (y — 2)P(t, z,dy) = a(x) for all = € RY, where a(z) = %]I{O} (z),z € RY
R1

2
(iii) hrgt U [(y—a)2P(t,z,dy) = b(z) for all z € RY, where b(z) = 3. b;1lp, (), x € RL.
R! i=1

These equalities show that the transition probability P defines a Markov process that
is a diffusion one in Kolmogorov’s sense, and the coeflicients (a(x),g(x))xew do not
determine the process uniquely. The corresponding martingale problem also turns out
to be ill-posed.

2. Let (z(t))t>o0 be a skew Brownian motion in R! that is determined by a fixed
parameter ¢ € [—1,1]. This is a continuous Markov process in R!, whose transition
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probability density is given by
—_ )2 2
Gotorat) = (2(t = )2 exp { = Y= At gy { = 5E )
for 0 < s <t,x € R and y € R! (we believe that sign0 = 0).
Denote, by (1] )o<s<t, the symmetric local time for the process (x(t));>0 at the point
x = 0. As above, it can be written in the form

t
n; = / 0(z(r))dr, 0 <s <t

where (6(x))zeg: is an ordinary symmetric Dirac d-function.
Then the functional (w})o<s<: defined by the relation
wy = x(t) — x(s) — qny
is a square integrable martingale with its characteristic given by (¢ — s)i>s.
For any measurable locally bounded function (¢(t));>0 with real values, we put

t t
sit0) —ew{ [ emav: -5 [ weparho<s<

and denote, by G, the function of the arguments (s,z,t,y) for 0 < s < t,x € R!, and
y € R! defined by the relation

B0 alt) = [ Goloata)fu)dy

valid for all 0 < s < ¢, € R!, and a measurable bounded real-valued function (f(z))ep: -
Then the function G, has the representations

t
0g,(T, 2,1,
ch(saxat’y) :g¢(s,$,t,y)+Q/ VAP(57$7T) 94P( y)
s

ER dr,

z=0

t
G@(Saxatvy) :gtp(saxatvy) +(J/ g@(s,x,T,O)v@(T,t,y)dT,

where

as..t00) = 2= 5) 2 exp { = 5y - 0(0) + 9(5)2 ),

O(t) = fot @(7)dr, and the kernels V,, and V, are defined by the relations

t
Vo(s,x,t) = ge(s,z,t,0) —l—/ 9o(s,2,7,0)Ry (7, t)dT

and
7 ag (s,x,t,y) ! ag (Taxatvy)
Vo(s ty) = =2 +/ Ry(s,m)——Z——=| dr.
v Ox w0 Js 7 Ox 20
The kernel (R,(s,t))o<s<t in these formulae is given by the sum
(o)
R, (s,t) = Z(—q)”K&”)(s,t),
n=1
where

1 0 —2(s) expd (@(t) — ®(s))”
Ké)(s,t) = 7ﬁw(t—s)3 p{ o) }

and, for n > 2,

t t
(n) — ) (n—1) - (n—1) 1)
K@” (s,t) = /g K, (s, T)K@” (r,t)dr = /g K@” (S,T)Kgo (1, t)dr.
Another pair of representations for G, is given by the equalities

t
Gy(s,2,t,y) = Go(s, 2,1, y) +/ o(r)dr | Go(s,z,, z)w

d
R 0z =
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t
G@(S,x,t,y) = GO(S’x’t7y) +/ S0(’7—)d7—\/ GQP(S;xyTyz)W
s R1

3. Let (ro(t))t>0 be the radial part of a two-dimensional Wiener process. It is a
continuous Markov process in Ry = [0,400), whose transition probability density hq is

given by
2 2
T pe+r pr
= — _ I —_—
hO(t7p7T) texp{ 2 } O( I )

for t > 0,p € Ry,r € Ry, where Iy is the so-called modified Bessel function

Io(z) = f: (%)%/(n!)Q.

n=0
The process (ro(t))i>0 can be considered as a diffusion one with its drift coefficient
ao(r) = (2r)~! and its diffusion coefficient by (r) = 1.

Fix two parameters: R > 0 and ¢ € [—1,1]. A (generalized) diffusion process (r(t))¢>0
in Ry exists such that its drift (a(r))rer, is given by a(r) = ao(r) + ¢dr(r), and its
diffusion coefficient (b(r)),>o coincides with that of the process (ro(t)):>0. Denote, by
h, the transition probability density of the process (r(t))i>0. Then the following two
representations for the function A are valid:

t
h(t, por) = holt, p,7) + g / V(r,p)Q(t — 7, R,r)dr,
0

dz.

t
Bt pr) = ho(t pr) + g / ho(r, p. RV (t — ,r)dr,
0

where
Oho (tv Py T)
dp
for t > 0,p > 0, and r > 0, and the functions V' and V are the solutions to the renewal
equations (respectively)

V(t.p) = holt.p. R) + q / V(r, p)Hp(t — 7)dr

Qt, p,7) =

and
Vit,r) = Q(t, Ror) + q/t V(r,r)Hp(t — 7)dr
0

with the kernel (Hg(t)):>0 given by
2 2 2 2
Hp(t) = Q(t, R, R) = RT exp{ - RT} [Il (RT> - Io(]j ﬂ

(here, 1 () = Ij(z) = fo <§>2n+1/n!(n 1)),

n=

The values of the function (Hg(t)):>0 are negative, and

/HR Hdt =

One can easily write down the solutions to the equations for V' and V. Namely, if we
put Hg)(t) = Hg(t) and, for n > 2,

H (1) / HY D (r) Hg(t — 7)dr, t >0,

then the series

=Y ¢"Hy(t)
n=1
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is convergent locally uniformly in ¢t > 0. The functions V' and V can be now represented
as follows:

t
V(t, p) = ho(t, p, R) + / ho(r, p. R)GR(t — 7)dr,
0

Vitr) = Q(t R,7) +/0 Q(r, R, r)Gr(t — 7)dr.

Substituting these expressions into the formulae for the function h, we obtain some
explicit representations for it.
Notice that the process (ro(t))i>0 is the radial part of a two-dimensional Wiener

¢

process. Its circular part is given by <9<f 70 (s)zds>> , where (6(t)):>0 is a Brown-
0 >0

ian motion on a circle of unit radius that does not depend on the process (ro(t))¢>o-

¢
Therefore, (r(t), 0 ( Ik r(s)_2d5>> is a two-dimensional Wiener process with a mem-
0 >0

brane on the circle of radius R. This process was constructed in [12].
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