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VALERII V. BULDYGIN AND MARINA K. RUNOVSKA

ON THE CONVERGENCE OF SERIES OF AUTOREGRESSIVE

SEQUENCES

Necessary and sufficient conditions for the almost sure convergence of a series of
autoregressive sequences are studied. In particular, the convergence of a series of
zero-mean Gaussian Markov sequences are considered.

1. Introduction

Let (ξk) = (ξk, k ≥ 1) be an autoregressive sequence of random variables. Hereinafter,
this means that

(1) ξ0 = 0, ξk = αkξk−1 + βkθk, k ≥ 1,

where (αk) and (βk) are nonrandom real sequences such that α1 = 1, and (θk) is a
sequence of independent symmetric random variables such that P{θk = 0} < 1, k ≥ 1.
We recall that the random variable θ is called symmetric (symmetrically distributed) if θ
and (−θ) are identically distributed.

In particular, if (θk) is a standard Gaussian sequence, i.e., (θk) is a sequence of in-
dependent N(0,1) - distributed Gaussian random variables, then (ξk) is a zero-mean

Gaussian Markov sequence [4].
For a given (ξk), we now consider the random series

(2)

∞∑

k=1

ξk

and the sequence of its partial sums

(3) Sn =

n∑

k=1

ξk, n ≥ 1.

In this paper, the necessary and sufficient conditions for the convergence almost surely

(a.s.) of series (2) are studied.
In order to find the necessary conditions for the convergence a.s. of series (2), we

consider the sequence of its partial sums (3) as a series with independent symmetric
terms in the Banach space of convergent real sequences. Such an approach allows one to
use the theory of random series in Banach spaces of real sequences [1, 2]. In order to find
the sufficient conditions, we use the theory of infinite-summability matrices [1, 2, 3, 5].

As an application of the general results, we consider series (2) for zero-mean Gaussian
Markov sequences (ξk) in more details.
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2. Preliminaries

Let R∞ be the space of all real sequences, and let c be the space of all convergent
real sequences. The space c is a separable Banach space if it is endowed with the norm
‖x‖∞ = sup

k≥1
|xk|, x = (xk) ∈ c, [6].

The recurrence equation (1) implies that sequence (3) can be represented in the form

(4)




S1

S2

...
Sn

...




=




A(1, 1)
A(2, 1)

...
A(n, 1)

...




θ1 +




0
A(2, 2)

...
A(n, 2)

...




θ2 + ... +




0
...
0

A(n, n)
...




θn + . . . ,

where

(5) A(n, k) = βkA
′

(n, k), n, k ≥ 1;

A
′

(n, k) = 1 +

n−k∑

l=1

( k+l∏

j=k+1

αj

)
for 1 ≤ k ≤ n − 1; A

′

(n, k) = 0 for k > n;

A
′

(n, n) = 1 for n ≥ 1,

and

(6) Sn =

n∑

k=1

A(n, k)θk, n ≥ 1.

It is suitable to rewrite series (4) as

(7)
−→
S =

∞∑

k=1

θk
−→
A k,

where

−→
S =




S1

S2

...
Sn

...




,
−→
A k =




0
...
0

A(k, k)
A(k + 1, k)

...




, k ≥ 1.

It is worth noting that series (7) converges in the coordinate-wise sense. Thus, the
sequence of partial sums (Sn) is represented in the form of series (7) with independent
symmetric random terms in R∞. By Theorem 2.1.1 [1], the following result holds.

Lemma 2.1. The random series (2) converges a.s. if and only if
−→
A k ∈ c, k ≥ 1, and

the random series (7) converges a.s. in the norm of the space c.

3. Necessary conditions

For k ≥ 1, consider the nonrandom series

(8) A
′

(∞, k) = 1 +

∞∑

l=1

k+l∏

j=k+1

αj ,
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(9) A(∞, k) = βkA
′

(∞, k) = βk

(
1 +

∞∑

l=1

k+l∏

j=k+1

αj

)
,

and note that A(∞, k) = lim
n→∞

A(n, k), if lim
n→∞

A(n, k) exists, i.e., series (9) converges.

The next result follows from Lemma 2.1 and Theorem 2.8.1 [2].

Theorem 3.1. If the random series (2) converges a.s., then the nonrandom series (9)
converges for any k ≥ 1, and the random series

(10)

∞∑

k=1

A(∞, k)θk

converges a.s. Moreover, the equality

(11)

∞∑

k=1

ξk =

∞∑

k=1

A(∞, k)θk a.s.

holds true.

For standard Gaussian sequences (θk), the above result is specialized as follows.

Corollary 3.1. Suppose that (θk) is a standard Gaussian sequence, i.e., (ξk) is a zero-

mean Gaussian Markov sequence. If the random series (2) converges a.s., then the non-

random series (9) converges for any k ≥ 1,, and

(12)

∞∑

k=1

(A(∞, k))2 < ∞.

Moreover, equality (11) holds true.

Proof. Corollary 3.1 follows from Theorem 3.1, since the Gaussian random series (10)
converges a.s. if and only if condition (12) holds true. �

Introducing some more notations, we obtain the necessary conditions for the conver-
gence a.s. of the random series (2) for zero-mean Gaussian Markov sequences (ξk) in
“correlation” terms.

For a zero-mean Gaussian Markov sequence (ξk), we consider two sequences: the

sequence of variance, (σ2
k), and the sequence of correlation coefficients, (rk,k+1), where

σ2
k = Eξk

2, k ≥ 1, and rk,k+1 = (Eξkξk+1)/σkσk+1, if σkσk+1 > 0, and rk,k+1 = 0, if
σkσk+1 = 0, k ≥ 1.

It is well known [4] that

(13) Eξjξm = σjσm

m−1∏

i=j

ri,i+1

for any m ≥ 1 and 1 ≤ j < m.
For k ≥ 1, we consider the nonrandom series

C(k) = σk +

∞∑

l=k+1

σl

l−1∏

i=k

ri,i+1,

and set

(14) B(k) = (1 − r2
k−1,k)1/2C(k), k ≥ 1,
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where r0,1 = 0. Note that, by (13),

∞∑

l=k

Eξkξl = σkC(k), k ≥ 1.

Corollary 3.2. Suppose that (ξk) is a zero-mean Gaussian Markov sequence such that

σ2
k > 0, k ≥ 2. If the random series (2) converges a.s., then the nonrandom series (14)

converges for any k ≥ 1,, and

(15)

∞∑

k=1

(B(k))2 < ∞.

Moreover, if (ξk) is generated by the standard Gaussian sequence (θk) (recall (1)), then

the random series

(16)
∞∑

k=1

B(k)θk

converges a.s., and the equality

(17)

∞∑

k=1

ξk =

∞∑

k=1

B(k)θk a.s.

holds true.

Proof. Corollary 3.2 follows from Corollary 3.1 since

αk =
σk

σk−1
rk−1,k, k ≥ 2,

β2
1 = σ2

1 , β2
k = σ2

k(1 − r2
k−1,k), k ≥ 2,

and

A(∞, k) = B(k), k ≥ 1.

�

4. Sufficient conditions

This section deals with sufficient conditions the for convergence a.s. of series (2). The
method used in this section is based on the theory of infinite-summability matrices [1, 2,
3, 5].

Consider an infinite-summability real matrix Λ = (λn,k)∞n,k=1. This means that

lim
n→∞

λn,k = 1 for all k ≥ 1. Consider also a real series
∑∞

k=1 xk. To this series and

to the matrix Λ, we relate the sequence of series
∑∞

k=1 λn,kxk, n ≥ 1. Assume that all
these series converge. We denote their sums by Ξn, n ≥ 1. Then, if the sequence (Ξn)
converges, the series

∑∞

k=1 xk is called Λ-summable, and the limit lim
n→∞

Ξn is called the

Λ-sum of the series
∑∞

k=1 xk.
Let Λ be a summability matrix. If

V arn(Λ) = sup
n≥1

sup
m≥2

[( m−1∑

k=1

|λn,k − λn,k+1|
)

+ |λn,m|
]

< ∞,

then the matrix Λ is called the matrix of bounded variation.
In order to obtain sufficient conditions we use one result which asserts the equivalence

of the summation by matrices of bounded variation (see [2], Theorem 2.8.2, and [3]).
Theorem 2.8.2 [2] says that if the sequence (Xk) is a sequence of independent symmetric

random variables, and the series
∑∞

k=1 Xk is Λ′-summable a.s. by some matrix of bounded

variation Λ′, then it is Λ-summable a.s. by all the matrices of bounded variation, and all
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Λ-sums are equal a.s. to one another. In particular, this theorem says that if the series∑∞

k=1 Xk is convergent a.s., then it is Λ-summable a.s. by all the matrices of bounded

variation, and all Λ-sums are equal a.s. to
∑∞

k=1 Xk.

Theorem 4.1. Suppose that αk ≥ 0, k ≥ 2. If the nonrandom series (9) converges

for any k ≥ 1, and the random series (10) converges a.s., then the random series (2)
converges a.s., and equality (11) holds true.

Proof. Assume that the series
∑∞

k=1 A(∞, k)θk converges a.s. and remark that the se-
quences (βk) with βk �= 0, k ≥ 1, can be considered without loss of generality.

Consider the matrix Λ = (λn,k)∞n,k=1, where

(18) λn,k =

{
A(n,k)
A(∞,k) , 1 ≤ k ≤ n,

0, k > n.

Observe that all λn,k are well-defined, since the series A(∞, k) converges, and the
series A(∞, k) �= 0 for any k ≥ 1. Since limn→∞ A(n, k) = A(∞, k) for any k ≥ 1, we
have

lim
n→∞

λn,k = lim
n→∞

A(n, k)

A(∞, k)
= 1, k ≥ 1.

Hence, the matrix Λ is a summability matrix, and, for Xk = A(n, k)θk, k ≥ 1,
∞∑

k=1

λn,kXk =

n∑

k=1

A(n, k)

A(∞, k)
A(∞, k)θk =

n∑

k=1

A(n, k)θk, n ≥ 1.

Thus, by (6) and (2),

(19)

∞∑

k=1

λn,kXk =

n∑

k=1

ξk, n ≥ 1.

Since αk ≥ 0, k ≥ 2, λn,k ≥ 0 for any k, n ≥ 1, and, by (5) and (8),

λn,k − λn,k+1 =
A(n, k)

A(∞, k)
−

A(n, k + 1)

A(∞, k + 1)
=

A
′

(n, k)

A′(∞, k)
−

A
′

(n, k + 1)

A′(∞, k + 1)

=
1 + αk+1A

′

(n, k + 1)

1 + αk+1A
′(∞, k + 1)

−
A

′

(n, k + 1)

A′(∞, k + 1)
=

A
′

(∞, k + 1) − A
′

(n, k + 1)

(1 + αk+1A
′(∞, k + 1))A′(∞, k + 1)

=
(αk+2αk+3 . . . αn+1)A

′

(∞, n + 1)

(1 + αk+1A
′(∞, k + 1))A′(∞, k + 1)

≥ 0

for any 1 ≤ k ≤ n − 1.
Therefore,

V arn(Λ) = sup
n≥2

[( n−1∑

k=1

|λn,k − λn,k+1|
)

+ |λn,n|
]

=

= sup
n≥2

[( n−1∑

k=1

λn,k − λn,k+1

)
+ λn,n

]
= sup

n≥2
(λn,1) = sup

n≥2

A
′

(n, 1)

A′(∞, 1)
≤ 1.

Thus, the matrix Λ is a summability matrix of bounded variation.
Since the sequence (A(∞, k)θk) is a sequence of independent symmetric random vari-

ables, and the series
∑∞

k=1 A(∞, k)θk converges a.s., then, by Theorem 2.8.2 [2], this
sequence is Λ-summable a.s., and its Λ-sum are equal a.s. to

∑∞

k=1 A(∞, k)θk.
Therefore, by (19), the limit

lim
n→∞

∞∑

k=1

λn,kXk = lim
n→∞

n∑

k=1

ξk =

∞∑

k=1

ξk

exists a.s., and equality (11) holds. �
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Theorem 4.1 implies the following two corollaries for zero-mean Gaussian Markov
sequences.

Corollary 4.1. Suppose that αk ≥ 0, k ≥ 2, and (θk) is a standard Gaussian sequence,
i.e., (ξk) is a zero-mean Gaussian Markov sequence. If the nonrandom series (9) con-

verges for any k ≥ 1, and (12) holds, then the random series (2) converges a.s., and

equality (11) holds true.

Corollary 4.2. Suppose that (ξk) is a zero-mean Gaussian Markov sequence such that

σ2
k > 0, k ≥ 2, and rk−1,k ≥ 0, k ≥ 2. If the nonrandom series (14) converges for any

k ≥ 1, and (15) holds, then the random series (2) converges a.s. Moreover, if (ξk) is

generated by the standard Gaussian sequence (θk) (see (1)), then the random series (16)
converges a.s., and equality (17) holds true.

In the next theorem, we consider sequences (αk) with the elements of alternating signs.

Theorem 4.2. Assume that ε and M are two positive numbers such that

(20) 0 < ε ≤ |A(∞, k)| ≤ M < ∞

for any k ≥ 1. Assume also that

(21) H = sup
n≥1

n∑

k=1

n+1∏

j=k+2

|αj | < ∞.

If the nonrandom series (9) converges for any k ≥ 1, and the random series (10) converges

a.s., then the random series (2) converges a.s., and equality (11) holds true.

Proof. Consider the matrix Λ = (λn,k)∞n,k=1 which is defined at (18). By the proof of
Theorem 4.1 above, we have

λn,k − λn,k+1 =
(αk+2αk+3 . . . αn+1)A

′

(∞, n + 1)

A′(∞, k)A′ (∞, k + 1)

for any n ≥ 2 and 1 ≤ k ≤ n − 1. Hence, by (20) and (21),

V arn(Λ) = sup
n≥2

[( n−1∑

k=1

|λn,k − λn,k+1|
)

+ |λn,n|
]

= sup
n≥2

[( n−1∑

k=1

|αk+2αk+3 . . . αn+1||A
′

(∞, n + 1)|

|A′(∞, k)A′(∞, k + 1)|

)
+

1

|A′(∞, n)|

]
≤

MH

ε2
+

1

ε
< ∞.

Much of the following is repeated from the proof of Theorem 4.1. �

Example 4.1. Suppose that 0 < q < 1 and αk = (−1)kqk, k ≥ 2. Then, for the
sequence (αk), all conditions of Theorem 4.2 hold.

5. Series of autoregressive sequences with weighted coefficients

For the autoregressive sequences (ξk) (recall (1)) and a real sequence (ck) such that
ck �= 0, k ≥ 1, consider the random series

(22)

∞∑

k=1

ckξk.

Denote ζk = ckξk, k ≥ 1. It is clear that (ζk) is an autoregressive sequences, and

ζ0 = 0, ζk = α̃kζk−1 + β̃kθk, k ≥ 1,

where
α̃1 = 1, α̃k =

ck

ck−1
αk, k ≥ 2; β̃k = ckβk, k ≥ 1,
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and (θk) is a sequence of independent symmetric random variables (see (1)).
Put

Ãc(n, k) = βkA
′

c(n, k), n, k ≥ 1,

where

A
′

c(n, k) = ck +

n−k∑

l=1

(
ck+l

k+l∏

j=k+1

αj

)
for 1 ≤ k ≤ n − 1; A

′

c(n, k) = 0 for k > n;

A
′

c(n, n) = 1 for n ≥ 1,

and denote, for k ≥ 1,

(23) Ãc(∞, k) = lim
n→∞

Ãc(n, k) = βk

(
ck +

∞∑

l=1

(
ck+l

k+l∏

j=k+1

αj

))

if this limit exists.
The results of Section 4 and 5 yield the necessary and sufficient conditions for the

convergence a.s. of series (22).

Theorem 5.1. If the random series (22) converges a.s., then the nonrandom series (23)
converges for any k ≥ 1, and the random series

(24)
∞∑

k=1

Ãc(∞, k)θk

converges a.s. Moreover, the following equality

(25)

∞∑

k=1

ckξk =

∞∑

k=1

Ãc(∞, k)θk a.s.

holds true.

Theorem 5.2. Suppose that α̃k ≥ 0, k ≥ 2. If the nonrandom series (23) converges

for any k ≥ 1, and the random series (24) converges a.s., then the random series (22)
converges a.s., and equality (25) holds true.

For zero-mean Gaussian Markov sequences (ξk), the above results are specialized as
follows.

Corollary 5.1. Suppose that (θk) is a standard Gaussian sequence, i.e., (ξk) is a zero-

mean Gaussian Markov sequence. If the random series (22) converges a.s., then the

nonrandom series (23) converges for any k ≥ 1, and

(26)
∞∑

k=1

(Ãc(∞, k))2 < ∞.

Moreover, equality (25) holds true.

Corollary 5.2. Suppose that (θk) is a standard Gaussian sequence, i.e., (ξk) is a zero-

mean Gaussian Markov sequence. Suppose also that α̃k ≥ 0, k ≥ 2. If the nonrandom

series (23) converges for any k ≥ 1, and (26) holds, then the random series (22) converges

a.s., and equality (25) holds true.
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