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VALERII V. BULDYGIN AND MARINA K. RUNOVSKA

ON THE CONVERGENCE OF SERIES OF AUTOREGRESSIVE
SEQUENCES

Necessary and sufficient conditions for the almost sure convergence of a series of
autoregressive sequences are studied. In particular, the convergence of a series of
zero-mean Gaussian Markov sequences are considered.

1. INTRODUCTION

Let (&) = (&k, k > 1) be an autoregressive sequence of random variables. Hereinafter,
this means that

(1) &0 =0, & =oaplp—1+Bbr, k2>1,

where (o) and (0);) are nonrandom real sequences such that oy = 1, and () is a
sequence of independent symmetric random variables such that P{6, = 0} < 1, & > 1.
We recall that the random variable 6 is called symmetric (symmetrically distributed) if 6
and (—0) are identically distributed.

In particular, if (0x) is a standard Gaussian sequence, i.e., (0;) is a sequence of in-
dependent N(0,1) - distributed Gaussian random variables, then (&) is a zero-mean
Gaussian Markov sequence [4].

For a given ({), we now consider the random series

oo
(2) PR

k=1
and the sequence of its partial sums

(3) Sn= &, n>1
k=1

In this paper, the necessary and sufficient conditions for the convergence almost surely
(a.s.) of series (2) are studied.

In order to find the necessary conditions for the convergence a.s. of series (2), we
consider the sequence of its partial sums (3) as a series with independent symmetric
terms in the Banach space of convergent real sequences. Such an approach allows one to
use the theory of random series in Banach spaces of real sequences [1, 2]. In order to find
the sufficient conditions, we use the theory of infinite-summability matrices [1, 2, 3, 5].

As an application of the general results, we consider series (2) for zero-mean Gaussian
Markov sequences () in more details.
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2. PRELIMINARIES

Let R™ be the space of all real sequences, and let ¢ be the space of all convergent
real sequences. The space c¢ is a separable Banach space if it is endowed with the norm
[#lloc = sup|ay|, = (zx) € ¢, [6].

E>1

The recurrence equation (1) implies that sequence (3) can be represented in the form

St AL, 1) 0 0
So A(2,1) A(2,2) .
(4) : = : 0, + : Os + ... + 0 O + ...,
Sn A(n,1) A(n,2) A(n,n)
where
(5) Aln,k) = BrA (n, k), nk > 1
, n—k k+1 ,
Ank)=1+ (Haj) for 1<k<n-1; A(n,k)=0 for k>mn;
I=1 j=k+1
Al(n,n) =1 for n>1,
and
(6) Su =Y _ A(n, k)b, n>1.

=
Il

1

It is suitable to rewrite series (4) as

— i —
(7) S =3 0p Ay,
k=1
where

s, 0

So :
S = : Ay = 0 E>1
B T R O I

Ak +1,k)

It is worth noting that series (7) converges in the coordinate-wise sense. Thus, the
sequence of partial sums (S,,) is represented in the form of series (7) with independent
symmetric random terms in R*. By Theorem 2.1.1 [1], the following result holds.

Lemma 2.1. The random series (2) converges a.s. if and only if Z’k €c, k>1, and
the random series (7) converges a.s. in the norm of the space c.

3. NECESSARY CONDITIONS

For k£ > 1, consider the nonrandom series

oo k+l

(8) Ao k) =1+ T[] a

I=1 j=k+1
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%) k+1

9) Aloo,k) = Bed (o0, k) = (143 T as),

=1 j=k+1
and note that A(oco, k) = lim A(n, k), if lim A(n, k) exists, i.e., series (9) converges.
The next result follows from Lemma 2.1 and Theorem 2.8.1 [2].

Theorem 3.1. If the random series (2) converges a.s., then the nonrandom series (9)
converges for any k > 1, and the random series

(10) > Aloo, k)b
k=1
converges a.s. Moreover, the equality
(11) d &= A0,k as.
k=1 k=1
holds true.

For standard Gaussian sequences (6y), the above result is specialized as follows.

Corollary 3.1. Suppose that (0x) is a standard Gaussian sequence, i.e., (&) is a zero-
mean Gaussian Markov sequence. If the random series (2) converges a.s., then the non-
random series (9) converges for any k > 1,, and

o0

(12) > (A(o0, k))? < 0.

k=1

Moreover, equality (11) holds true.

Proof. Corollary 3.1 follows from Theorem 3.1, since the Gaussian random series (10)
converges a.s. if and only if condition (12) holds true. g

Introducing some more notations, we obtain the necessary conditions for the conver-
gence a.s. of the random series (2) for zero-mean Gaussian Markov sequences () in
“correlation” terms.

For a zero-mean Gaussian Markov sequence (&), we consider two sequences: the
sequence of variance, (o7), and the sequence of correlation coefficients, (ry 1), where
O']% = E§k27 k > 17 and Tkk+1 = (E§k£k+1)/0k0k+1, if OkOk+1 > 07 and Tkk+1 = 0, if
orop+1 =0, k> 1.

It is well known [4] that

m—1
(13) Efjfm = 0;0m H Tii4+1
i=j
foranym>1and 1 <j <m.
For k > 1, we consider the nonrandom series

oo -1
Ck) =01+ Z o1 H Tiitls

I=k+1 =k
and set

(14) B(k) = (1—r7_y,)'/?C(k), k>1,
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where 791 = 0. Note that, by (13),

Z E&pé = 0rC(k), k> 1.

=k

Corollary 3.2. Suppose that (&) is a zero-mean Gaussian Markov sequence such that
0% >0, k > 2. If the random series (2) converges a.s., then the nonrandom series (14)
converges for any k > 1,, and

(15) > (B(k))® < oo.

k=1
Moreover, if (&) is generated by the standard Gaussian sequence (6y) (recall (1)), then
the random series

(16) iB(k)Gk

k=1
converges a.s., and the equality

(17) Y & => Bk as.
k=1 k=1

holds true.
Proof. Corollary 3.2 follows from Corollary 3.1 since
ap = 2% Th—1k, k2>2,
Ok—1

ﬁ% = U%v ﬂl% = O-I%(l - Tz—l,k)a k Z 27
and
Aco,k) = B(k), k>1.

4. SUFFICIENT CONDITIONS

This section deals with sufficient conditions the for convergence a.s. of series (2). The
method used in this section is based on the theory of infinite-summability matrices [1, 2,
3, 5].

Consider an infinite-summability real matrix A = (A, k)fszl. This means that

lim A, = 1 for all £ > 1. Consider also a real series Zzozl . To this series and
n—oo

to the matrix A, we relate the sequence of series 21?;1 An,kZk,n > 1. Assume that all
these series converge. We denote their sums by Z,,n > 1. Then, if the sequence (E,,)
converges, the series Y~ | @ is called A-summable, and the limit lim =, is called the

n—oo
A-sum of the series >, | Tk.
Let A be a summability matrix. If

m—1
Varn(A) = sup sup [( Z [Ane — >\n,k+l|) + |)\n’m|} < 00,
n>1 m>2 =1

then the matrix A is called the matriz of bounded variation.

In order to obtain sufficient conditions we use one result which asserts the equivalence
of the summation by matrices of bounded variation (see [2], Theorem 2.8.2, and [3]).
Theorem 2.8.2 [2] says that if the sequence (Xy) is a sequence of independent symmetric
random variables, and the seriesy ;- | Xy is A'-summable a.s. by some matriz of bounded
variation A, then it is A-summable a.s. by all the matrices of bounded variation, and all
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A-sums are equal a.s. to one another. In particular, this theorem says that if the series
> ney Xk is convergent a.s., then it is A-summable a.s. by all the matrices of bounded
variation, and all A-sums are equal a.s. to Y oo Xp.

Theorem 4.1. Suppose that ap. > 0, k > 2. If the nonrandom series (9) converges
for any k > 1, and the random series (10) converges a.s., then the random series (2)
converges a.s., and equality (11) holds true.

Proof. Assume that the series > ;- | A(0co, k)0 converges a.s. and remark that the se-
quences (B) with By # 0, k > 1, can be considered without loss of generality.
Consider the matrix A = (A k)5 5=y, Where

A(n,k)
(18) )\n k= Aloo,k)? ! S g S "
' 0, k> n.

Observe that all A, ; are well-defined, since the series A(co, k) converges, and the
series A(oo, k) # 0 for any k > 1. Since lim,,_, A(n, k) = A(c0, k) for any k > 1, we
have Al })

n,
lim A= lim ——= =1, k>1
e "Mk T I Aoo, k)

Hence, the matrix A is a summability matrix, and, for X, = A(n, k)0, k > 1,
= 7 = > 1.
E Ak Xk 2 e k)A(OO’ k)6, E A(n,k)bk, n>1
Thus, by (6) and (2),

(19) > AkXe=> & n>L
=1 k=1

Since a, > 0, k > 2, A\, > 0 for any k,n > 1, and, by (5) and (8),

N, _ A(n,k) B Aln,k+1) A/(n’k) B A’(n,k+1)
n.k nk+1 = Aloo, k) A(co,k+1)  A'(co,k)  A'(oo,k+1)

CltapA k) Akt Ao k+1)— A (n,k+1)

T 1+ ap A (0o k+1)  A(co,k+1) - (14 agr14’ (00, k+1))A (00, k + 1)
_ (ak+2ak+3 .. an+1)A/(OO, n 4+ 1)
(14 ag414 (00, k+1))A (00, k + 1)
forany 1 <k <n-—1.
Therefore,

>0

Varn(A) = sup [( Z [Ank — An k+1|) + ‘)‘mnﬂ =

n>2

T Knil)\"’k B A"’kﬂ) + )\"’"} =sup (An,1) = sup A A1) <1.
k=1

n>2 n>2 n>2 A (OO I

Thus, the matrix A is a summability matrix of bounded variation.

Since the sequence (A(oo, k)8 ) is a sequence of independent symmetric random vari-
ables, and the series ), ; A(co, k)6 converges a.s., then, by Theorem 2.8.2 [2], this
sequence is A-summable a.s., and its A-sum are equal a.s. to Y pe; A(00, k)0k.

Therefore, by (19), the limit

Jim Y A kX = lim Y 6= &
k=1 k=1 k=1

exists a.s., and equality (11) holds. O
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Theorem 4.1 implies the following two corollaries for zero-mean Gaussian Markov
sequences.

Corollary 4.1. Suppose that oy, > 0, k > 2, and (0y) is a standard Gaussian sequence,
i.e., (&) is a zero-mean Gaussian Markov sequence. If the nonrandom series (9) con-
verges for any k > 1, and (12) holds, then the random series (2) converges a.s., and
equality (11) holds true.

Corollary 4.2. Suppose that (§) is a zero-mean Gaussian Markov sequence such that
02 >0,k > 2 and rg—1 > 0,k > 2. If the nonrandom series (14) converges for any
k > 1, and (15) holds, then the random series (2) converges a.s. Moreover, if (&) is
generated by the standard Gaussian sequence (0y) (see (1)), then the random series (16)
converges a.s., and equality (17) holds true.

In the next theorem, we consider sequences () with the elements of alternating signs.

Theorem 4.2. Assume that ¢ and M are two positive numbers such that
(20) 0<e<|A(0, k)| <M< o0

for any k > 1. Assume also that
n n+1

(21) H= :1;1;2 H la;| < oo.

2l k=1 j=k+42
If the nonrandom series (9) converges for any k > 1, and the random series (10) converges
a.s., then the random series (2) converges a.s., and equality (11) holds true.

Proof. Consider the matrix A = (An x)5°%—; which is defined at (18). By the proof of
Theorem 4.1 above, we have

(O[k+20¢k+3 . Cln_;,_l)A/ (OO, n—+ 1)
A’ (00, k)A" (00, k + 1)
for any n > 2 and 1 < k < n — 1. Hence, by (20) and (21),

>\n,k - )\n,k+1 =

Varn(A) = igg [(:E_:I [An ke — )xn,k+1|) + ‘>\n,’ﬂ|:|

n—1 ’
|a;€+2ak+3...an+1||A (OO,TL+1)|) 1 } MH
= su 7 ; + + - <o
o K; |47 (00, k) A (00, k + 1) [A(co,m)]l = 22 T ¢
Much of the following is repeated from the proof of Theorem 4.1. O

Example 4.1. Suppose that 0 < ¢ < 1 and ay = (—1)*¢*¥, &k > 2. Then, for the
sequence (ag), all conditions of Theorem 4.2 hold.

5. SERIES OF AUTOREGRESSIVE SEQUENCES WITH WEIGHTED COEFFICIENTS

For the autoregressive sequences (£x) (recall (1)) and a real sequence (ci) such that
cr #0, k> 1, consider the random series

oo
(22) S e
k=1
Denote (, = ¢k, k > 1. It is clear that ({j) is an autoregressive sequences, and

Co=0, Ck=kCh1+ bk, k>1,
where

~ Ck ~
ap =1, akzciak;kzz Br = cefr, k=>1,
-1
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and (0) is a sequence of independent symmetric random variables (see (1)).
Put

A(n,k) = BrAL(n, k), nk>1,

where
ket
(n, k)—ck—i-z (ck+l H a]) for 1<k<n-1; A.(nk)=0 for k>n;
Jj=k+1

A(nn)=1 for n>1,
and denote, for k > 1,

k+1

(23) Au(oo, k) = lim A.(n, k) = B (ck —l—Z (ckH H ozj))

n—oo
j=k+1

if this limit exists.
The results of Section 4 and 5 yield the necessary and sufficient conditions for the
convergence a.s. of series (22).

Theorem 5.1. If the random series (22) converges a.s., then the nonrandom series (23)
converges for any k > 1, and the random series

(24) i Ac(00, k)0
k=1

converges a.s. Moreover, the following equality

(25) chfk = Zﬁc(oo, k)0, a.s.
k=1 k=1

holds true.

Theorem 5.2. Suppose that i > 0, k > 2. If the nonrandom series (23) converges
for any k > 1, and the random series (24) converges a.s., then the random series (22)
converges a.s., and equality (25) holds true.

For zero-mean Gaussian Markov sequences (&), the above results are specialized as
follows.

Corollary 5.1. Suppose that (0k) is a standard Gaussian sequence, i.e., (&) is a zero-
mean Gaussian Markov sequence. If the random series (22) converges a.s., then the
nonrandom series (23) converges for any k > 1, and

(26) > (Ac(o0, k))?

k=1
Moreover, equality (25) holds true.

Corollary 5.2. Suppose that (0;) is a standard Gaussian sequence, i.e., (&) is a zero-
mean Gaussian Markov sequence. Suppose also that oy, > 0, k > 2. If the nonrandom
series (23) converges for any k > 1, and (26) holds, then the random series (22) converges
a.s., and equality (25) holds true.
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