
Theory of Stochastic Processes
Vol. 15 (31), no. 1, 2009, pp. 15–32

YURI N. KARTASHOV AND ALEXEY M. KULIK

WEAK CONVERGENCE OF ADDITIVE FUNCTIONALS OF A

SEQUENCE OF MARKOV CHAINS

We consider additive functionals φn, n ≥ 1 defined on a sequence of Markov chains
that weakly converges to a Markov process. We give sufficient condition for φn, n ≥

1 to converge in distribution, formulated in the terms of their characteristics (i.e.
expectations). This condition generalizes Dynkin’s theorem on convergence of W -
functionals of a time homogeneous Markov process.

1. Introduction

Consider a sequence of processes Xn = Xn(·), n ≥ 1 that converge weakly, in an appro-
priate sense, to a process X = X(·). Consider also a family φn = {φs,t

n (Xn), s ≤ t}, n ≥ 1
of a functionals of the processes Xn, n ≥ 1 and assume that the functionals are additive
with respect to time variables. The general question, discussed in the present paper, is
which information about the limit behavior of the distributions of functionals φn can be
obtained in a situation where the processes Xn, X possess certain Markov properties.
The starting point in our considerations is provided by the important particular case of
the problem outlined above, in which all the processes Xn coincide with X . The well-
known theorem by E.B. Dynkin ([1], Theorem 6.4) states that if X is a time homogeneous
Markov process and φn are W -functionals of X (see [1], Chapter 6), then their limit be-
havior is completely determined by the limit behavior of their characteristics (that is,
their expectations).

In the present paper, we consider the processes Xn that depend on n substantially.
The class of a sequences {Xn}, considered in the framework of our approach, contains
both sequences of Markov processes and sequences of Markov chains with appropriately
re-scaled time, weakly convergent to Markov process X . An important partial case is
provided by random broken lines corresponding to a random walk in Rd and weakly
convergent to a time homogenous stable process X (particularly, to a Brownian motion).

We introduce a specific structural assumption on the sequence {Xn} to provide Markov
approximation for the process X . We show that, under this assumption, a full analogue
of Dynkin’s theorem holds: if the characteristics of a functional φn converge uniformly
to the characteristic of a W -functional φ of the limit process X , then the distributions of
φn converge weakly to the distribution of φ. Our method of proof is based on estimates
for the L2-distance between additive functionals, similar to those given in Lemma 6.5 [1].
These estimates are combined with the coupling technique, i.e. with a preliminary con-
struction of processes Xn, X on one probability space in such a way that the functionals
φn, φ, associated initially to different processes, are interpreted as functionals of a two-
component process. The Markov property of the two-component process is essential for
the estimates analogous to those given in Lemma 6.5 [1]; the assumption on the Markov
approximation mentioned above is just the claim for such a property to hold true in an
appropriate form.
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The method introduced in the present paper allows one to reduce the problem of
studying the asymptotic behavior of the laws of additive functionals to an a priori simpler
problem of studying their means. It provides a good addition to the available methods
of investigation of the limit behavior of additive functionals both for the important
particular case of random walks (we do not give the detailed overview here, referring
the reader to monographs [3],[4],[5], papers [6],[7] and references therein) and for general
Markov chains. As for the latter, it is necessary to mention the method based on the
passing to the limit in the difference equations for characteristic functions of additive
functionals of Markov chains, which ascends to the works by I.I. Gikhman in the 1950s
([8],[9], see also [10] and the survey paper [11]).

The structure of the article is following. In Section 2, we introduce the notion of
Markov approximation and give examples that illustrate it. In Section 3, the main
theorem of the article is introduced and proved. In Section 4, two examples of application
of this theorem are given.

2. Markov approximation

We assume the processes Xn, X to be defined on R+ and to have a locally compact
metric phase space (X, ρ). We say that the process X possesses the Markov property at
the time moment s ∈ R+ w.r.t. a filtration {Gt, t ∈ R+}, if X is adapted to this filtration
and, for each k ∈ N, t1, . . . , tk > s, there exists a stochastic kernel {Pst1...tk

(x, A), x ∈
X, A ∈ B(Xk)} such that

(2.1) E[1IA((X(t1), . . . , X(tk)))|Gs] = Pst1...tk
(X(s), A) a.s., A ∈ B(Xk).

The measure Pst1...tk
(x, ·) has a natural interpretation as the finite-dimensional distribu-

tion of X at the points t1, . . . , tk, conditioned by {X(s) = x}; in what follows, we denote
Pst1...tk

(x, ·) = P ((X(t1), . . . , X(tk)) ∈ ·|X(s) = x).

Remark 1. In some cases, (2.1) can be written in a stronger functional form

(2.2) E[1IC(X |∞s )|Gs] = E[1IC(X |∞s )|X(s)], C ∈ C,

where X |∞s denotes the trajectory of the process X on the time interval [s, +∞), consid-
ered as an element of an appropriate functional space, and C is some σ-algebra of subsets
of this space. For instance, if the Kolmogorov’s sufficient condition for the existence of
a continuous modification holds true both for unconditional and conditional finite di-
mensional distributions of X , then (2.2) holds with X |∞s considered as an element of
C([s, +∞), X).

We introduce a notational convention. Let a process X possess the Markov property
w.r.t. its natural filtration at the point s = i

n , i ∈ Z+, and let ξ be a cylindrical
functional of X |∞s (i.e., a random variable being a function of the finite set of the values
of X at the time moments t1, . . . , tk > s). Then the expectation of ξ w.r.t. the family of
conditional finite-dimensional distributions {Pst1...tk

(x, ·), t1, . . . , tk > s, k ∈ N, x ∈ X} is
well defined. We denote this expectation by E[ξ|X(s) = x], s ∈ 1

nZ+, x ∈ X.
Further on, we assume that the process X possesses the Markov property w.r.t. its

canonic filtration at every point s ∈ R+, and, for n ∈ N, the process Xn possesses the
same property at every point of the type i

n , i ∈ Z+. The choice of the denominator here
is quite arbitrary; it is possible to put any expression N(n) → ∞, n → ∞ instead of n,
but we avoid to do this in order to shorten the notation.

The next definition is introduced in [12].

Definition 1. The sequence {Xn} provides the Markov approximation for the process
X , if, for arbitrary γ > 0, T < +∞, there exist K(γ, T ) ∈ N and a sequence of two-

component processes {Ŷn = (X̂n, X̂n)} defined on another probability space such that
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(i) X̂n
d
=Xn, X̂n d

= X ;

(ii) the processes Ŷn, X̂n, and X̂n possess the Markov property at the points iK(γ,T )
n ,

i ∈ N w.r.t. the filtration {F̂n
t = σ(Ŷn(s), s ≤ t)};

(iii) lim sup
n→+∞

P


 sup

i≤ T n
K(γ,T )

ρ
(
X̂n

(
iK(γ,T )

n

)
, X̂n

(
iK(γ,T )

n

))
> γ


 < γ.

The following examples illustrate Definition 1.

Example 1. Let {ξk} be a sequence of i.i.d. random vectors in Rd with E‖ξk‖2+δ
Rd < +∞

for some δ > 0. Assume {ξk} to have zero mean and identity covariance matrix. Let the
sequence of processes Xn (”random broken lines”) on R+ be defined by

(2.3) Xn(t) =
Sk−1√

n
+ (nt − k + 1)

[
Sk√
n
− Sk−1√

n

]
, t ∈

[
k − 1

n
,
k

n

)
, k ∈ N,

where Sn =
∑n

k=1 ξk. Then Xn converge by distribution in C(R+, Rd) to a Brownian

motion X in Rd.
It is shown in [12] that the sequence {Xn} provides the Markov approximation for

the process X (part I of Theorem 1 [12]). On the other hand, the following effect is
revealed in the same paper (part II of the same Theorem). By K(γ, T ), we denote the

minimal constant K(γ, T ) such that there exists a process Ŷn satisfying conditions (i)-
(iii) of Definition 1. Then, in all the cases except one trivial case ξk ∼ N (0, I), one has
K(γ, T ) → +∞ as γ → 0+ for every fixed T > 0. In other words, while the accuracy of
the approximation of a Brownian motion X by the random walk Xn becomes better (this
accuracy is described by the parameter γ), the Markov properties of the pair of processes
(X, Xn) necessarily become worse (these properties are characterized by K(γ, T )).

Example 2. Let {ξk} be i.i.d. random variables that belong to the normal domain of
attraction of an α-stable distribution L, α ∈ (0, 2). By definition, this means that

n− 1
α [Sn − an] ⇒ L, an =





0, α ∈ (0, 1)

nEξ1, α ∈ (1, 2)

n2E sin ξ1

n , α = 1

([13], Chapter XVII.5). Assume that an ≡ 0 and consider processes Xn of the type
(2.4)

Xn(t) = n− 1
α Sk−1 + (nt − k + 1)

[
n− 1

α Sk − n− 1
α Sk−1

]
, t ∈

[
k − 1

n
,
k

n

)
, k ∈ N

on R+. Then Xn weakly converge in D(R+) to the time homogeneous process with

independent increments X in R with X(1) − X(0)
d
=L (an α-stable process).

It is shown in [12] (Theorem 2) that the sequence {Xn} provides the Markov approxi-
mation for the process X . Furthermore, in this situation, on the contrary to the previous
example, K(γ, T ) = 1 for all γ, T . This means that, in this case, the Markov properties
do not become worse while the accuracy of approximation improves.

Remark 2. The last example shows that the property of {Xn} to possess the Markov
approximation for X does not imply, in general, the weak convergence of the processes
Xn to X in C = C(R+, X) even if Xn, n ≥ 1 have continuous trajectories.

We remark that the notion of Markov approximation is closely related to Skorokhod’s
method of embedding of a random walk into a Wiener process by means of the appropriate
sequence of stopping times ([14]), widely used in the literature. The basic idea is the same:
to construct two processes on the same probability space, with the pair keeping Markov or
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martingale properties. However, Skorokhod’s method, while being quite efficient for one-
dimensional random walks that approximate the Wiener process, is much less appropriate
in a multidimensional situation or for a stable domain of attraction. Examples 1 and 2
show that the claim for the Markov approximation to hold true is not restrictive, at least
for all basic classes of random walks with no regard to the dimension of the phase space
or to the type of the limit distribution.

Moreover, the following example shows that the property of the Markov approximation
is ”stable”, in a sense. Namely, this property is preserved under construction of a new
pair (Zn, Z) from the pair (Xn, X), that possesses this property, in some regular way
(e.g. as a solution of a family of stochastic equations).

Example 3. Consider Xn, X defined in Example 1. Let functions a : R
m → R

m, b :
Rm → Rm×d be Lipschitz. Define
(2.5)

Zn

(
k + 1

n

)
= Zn

(
k

n

)
+ a

(
Zn

(
k

n

))
1

n
+ b

(
Zn

(
k

n

))
∆Xn

(
k

n

)
, Zn(0) = z,

∆Xn( k
n ) ≡ [Xn(k+1

n ) − Xn( k
n )] =

ξk+1√
n

. Then ([15], [16]) Zn converge by distribution in

C(R+, Rm) to the process Z defined by SDE

(2.6) dZ(t) = a(Z(t))dt + b(Z(t))dX(t), Z(0) = z

(recall that X is a Brownian motion in Rd). It is natural to call the sequence {Zn} the
difference approximation for the diffusion process Z.

Let us show that the sequence {Zn} provides the Markov approximation for the process

Z. For arbitrary γ, T , we construct a pair (X̂n, X̂n) that corresponds to processes Xn, X

and satisfies conditions of Definition 1 (such a construction is possible, see Example 1
and reference therein).

We construct the processes Ẑn, Ẑn as the functionals of the processes X̂n, X̂n by
equalities (2.5),(2.6) with Xn replaced by X̂n and X replaced by X̂n (we remark that
(2.6) has unique strong solution, hence this procedure is correct). By construction,

the pair (Ẑn, Ẑn) satisfies condition (i) of Definition 1. It is easy to verify that the

Markov condition (ii) for the pair (X̂n, X̂n) holds in the functional form (2.2) with Ŷn|∞s
considered as an element of C([s, +∞), Rd×Rd) (see Remark 1). Hence, the pair (Ẑn, Ẑn)
also satisfies condition (ii) of Definition 1. We write

∆(γ) = lim sup
n→+∞

P



 sup
i≤ T n

K(γ,T )

ρ

(
Ẑn

(
iK(γ, T )

n

)
, Ẑn

(
iK(γ, T )

n

))
> γ





and show that

(2.7) ∆(γ) → 0+, γ → 0 + .

Note that (2.7) immediately implies the Markov approximation property: for arbitrary
δ > 0, we chose, using (2.7), γ = γ(δ) such that the inequalities γ < δ and ∆(γ) < δ

hold. Then the pair (Ẑn, Ẑn), constructed in the way described above, satisfy Definition
1 with the constant γ replaced by δ. Under this construction, the constant K(δ, T ) ≡
KZ(δ, T ) for the pair (Ẑn, Ẑn) can be expressed through the analogous constant for the

pair (X̂n, X̂n) by the relation KZ(δ, T ) = KX(γ(δ), T ).
Now assume that (2.7) does not hold. Then there exist constant c > 0 and sequences

γk → 0+, nk → +∞ such that
(2.8)

K(γk, T )

nk
→ 0, P


 sup

i≤ T nk
K(γk,T )

ρ

(
Ẑn

(
iK(γk, T )

nk

)
, Ẑn

(
iK(γk, T )

nk

))
> γk


 > c.
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Consider the sequence of four-component processes (X̂nk
, X̂nk , Ẑnk

, Ẑnk). Every compo-
nent of this sequence is weakly compact in C(R+, Rd) or C(R+, Rm); hence, the whole
sequence is weakly compact in C(R+, Rd ×Rd ×Rm ×Rm). Consider an arbitrary weak

limit point (X̂∗, X̂∗, Ẑ∗, Ẑ∗) of this sequence. From (2.8), we have

(2.9) P (Z∗ �= Z∗) > 0.

It follows from Theorem 2.2 [16] (see also Chapter 9.5 [15]) that the processes Z∗ and
Z∗ satisfy SDE (2.6) with X replaced by X∗ and X∗, respectively. However, SDE (2.6)
possesses the pathwise uniqueness property (see [17]), and the property (iii) of the pair

(Xnk
, X̂nk) implies that the processes X∗, X∗ coincide a.s. Therefore, the processes

Z∗, Z∗ also coincide a.s., which contradicts (2.9) and show that our assumption ∆(γ) �→
0+, γ → 0+ fails.

The examples given above show that the claim for the Markov approximation to hold
is not too restrictive and is provided in a typical situations. On the other hand, this
claim is strong enough to provide one the opportunity to obtain an analog of Dynkin’s
theorem; this will be shown in the next section.

3. The main theorem

We consider functionals of the type
(3.1)

φs,t
n (Xn)

def
=

∑

k:s≤k/n<t

Fn

(
Xn

(
k

n

)
, Xn

(
k + 1

n

)
, . . . , Xn

(
k + L − 1

n

))
, 0 ≤ s < t,

where the functions Fn(·) are nonnegative, and L is a fixed integer. Together with the
functionals φn that are ”stepwise” functions w.r.t. every time variable, we consider the
random broken lines related to these functions:

ψs,t
n = φ

j−1
n

, k−1
n

n − (ns − j + 1)φ
j−1

n
, j

n
n + (nt − k + 1)φ

k−1
n

, k
n

n ,

s ∈
[
j − 1

n
,
j

n

)
, t ∈

[
k − 1

n
,
k

n

)
.

We interpret the random broken lines ψn as a random elements in the space C(T, R+),

where T
def
= {(s, t)|0 ≤ s ≤ t}.

We recall (see [1], Chapter 6) that, for a time homogeneous Markov process X , a
functional φ(X) = {φs,t(X), 0 ≤ s ≤ t} is called a W -functional if it is additive, non-
negative, continuous, and almost homogeneous and satisfy the moment condition

sup
x∈X

Exφ0,t < +∞, t ∈ R
+.

Here and below, we use standard notation Ex for the expectation w.r.t. probability
measure Px from the definition of the Markov process (see [1], Chapter 3 §1). For a
W -functional φ = φ(X), its characteristic ft is defined by the relation

(3.2) ft(x) = Exφ0,t(X), t > 0, x ∈ X.

We define the characteristic fn of the functional φn analogously to (3.2):

(3.3) fs,t
n (x)

def
= E[φs,t

n (Xn)|Xn(s) = x], s =
i

n
, i ∈ Z+, t > s, x ∈ X.

We use here the notational convention introduced in the previous section: we recall
that the process Xn is supposed to possess the Markov property at points of the type
s = i

n , i ∈ Z+ and the functional φs,t
n is a cylindrical one. Therefore, (3.3) is formally

correct. In order to adjust notation, we write fs,t ≡ ft−s for the characteristic of a
W -functional φ.

The main result of the paper is given in the following theorem.
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Theorem 1. Let the sequence Xn provide the Markov approximation for the time ho-
mogeneous Markov process X. Consider a sequence {φn ≡ φn(Xn)} of functionals of the
type (3.1). Let the following conditions hold true:

(1) The functions Fn(·) are non-negative, bounded, and tend to zero uniformly:

δ(Fn)
def
= sup

x1,...,xL∈X

Fn(x1, . . . , xL) → 0, n → ∞.

(2) There exists a W -functional φ = φ(X) of the limiting Markov process X such
that, for every T ,

sup
s= i

n
,t∈(s,T )

∥∥fs,t
n (·) − fs,t(·)

∥∥ → 0, n → ∞,

where ‖g(·)‖ def
= sup

x∈X

|g(x)| and f is the characteristic of the functional φ.

(3) The characteristic f is uniformly continuous with respect to the variable x; i.e.,
for every T

sup
0≤s≤t<T

∣∣fs,t(x′) − fs,t(x′′)
∣∣ → 0, ρ(x′, x′′) → 0.

Then

ψn(Xn) ⇒ φ(X) ≡ {φs,t(X), (s, t) ∈ T}
in C(T, R+), where ψn(Xn), n ≥ 1 are the random broken lines corresponding to the
functionals φn(Xn), n ≥ 1.

Remark 3. Conditions 1 and 2 are analogous to those of Dynkin’s theorem: condition 2
is exactly the condition for the characteristics to converge, condition 1 controls the sizes
of the jumps of φn and corresponds to the condition of Dynkin’s theorem for φn to be
continuous w.r.t. time variables. Condition 3, though not very restrictive, is specific and
is caused by the necessity to consider functionals defined on different processes.

Remark 4. If Xn ⇒ X in C or in D (this condition is not provided by the conditions
of the theorem, see Remark 2), then (Xn, ψn(Xn)) ⇒ (X, φ(X)) in C × C(T, R+) or in
D × C(T, R+), respectively. One can easily see this from the proof.

Proof of the theorem. Let us show first that the finite-dimensional distributions of φn

converge to the corresponding distributions of φ. We fix constants γ, T and consider the

processes X̂n, X̂n satisfying conditions (i)-(iii) of Definition 1 with these constants. For

these processes, we consider the functionals φn(X̂n), φ(X̂n); obviously, their distributions
and characteristics coincide with those for φn(Xn), φ(X). In order to shorten the nota-

tion, we denote φn = φn(X̂n), φ = φ(X̂n), K = K(γ, T ),Ft = F̂n
t ≡ σ(X̂n(s), X̂n(s), s ≤

t).
Let us prove that, for an arbitrary t ∈

(
iK
n , T

]
,

(3.4) E
[
φ

Ki
n

,t|FKi
n

]
= f

Ki
n

,t

(
X̂n

(
Ki

n

))
, E

[
φ

Ki
n

,t
n |FKi

n

]
= f

Ki
n

,t
n

(
X̂n

(
Ki

n

))

almost surely.
Let s ∈ 1

nZ+, t1, . . . , tr > s be fixed, and let G : Xr �→ R be a bounded measurable
function. By Ms,t̄,n : X → R, we denote such a measurable function that

E[G(Xn(t1), . . . , Xn(tr))|σ(X(r), r ∈ [0, s])] = Ms,t̄,n(Xn(s))

a.s. This function exists due to the Markov property of Xn. Denote also, by M̂s,t̄,n :
X → R, such a measurable function that

E[G(X̂n(t1) . . . , X̂n(tr))|F̂n
s ] = M̂s,t̄,n(X̂n(s))
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a.s., this function exists due to condition (ii) of Definition 1. Denote, by νs,n, the distri-

bution of Xn(s). It is equal to the distribution of X̂n(s) by condition (i) of Definition 1.
The same condition implies that, for every bounded measurable function Q : X → R,∫

X

Ms,t̄,n(y)Q(y)νs,n(dy) = EMs,t̄,n(Xn(s))Q(Xn(s)) =

= EG(Xn(t1) . . . , Xn(tr))Q(Xn(s)) = EG(X̂n(t1) . . . , X̂n(tr))Q(X̂n(s)) =

= EM̂s,t̄,n(X̂n(s))Q(X̂n(s)) =

∫

X

M̂s,t̄,n(y)Q(y)νs,n(dy).

Since Q is arbitrary, we conclude that M̂s,t̄,n = Ms,t̄,n νs,n-a.s., and therefore

(3.5) E[G(Xn(t1) . . . , Xn(tr))|F̂n
s ] = Ms,t̄,n(X̂n(s)) a.s.

We apply (3.5) to every summand in formula (3.1) and get the second equality in (3.4).
The W -functional φ can be represented as the mean square limit

φs,t = lim
diam S→0

n−1∑

k=0

fsk,sk+1(X̂n(sk)),

where S
d
={s = s0 < s1 < · · · < sn = t}, diamS

d
= maxk=0,...,n−1(sk+1−sk) ([1], Theorem

6.3). The arguments analogous to those made above, being combined with an appropriate
limit procedure, yield the first equality in (3.4).

The main step in the proof of the theorem is given by the following lemma.

Lemma 1. For 0 ≤ s ≤ t ≤ T , the following estimate holds:

lim sup
n→∞

E
(
φs,t

n (X̂n) − φs,t(X̂)
)2

≤ 4
∥∥f0,T

∥∥G(f, γ, T ) + 4
√

2γ
∥∥f0,T

∥∥2
,

where G(f, γ, T ) = sup
0≤s≤t≤T,ρ(x′,x′′)<γ

|fs,t(x′) − fs,t(x′′)|.

Proof. For a notational convenience, we prove the statement of the lemma for s =
0, t = T only. For other values of s, t, the proof is exactly the same. Consider the
partition of the axis R+ by points of the type Ki

n , i ∈ N. Denote In = [nT
K ] + 1,

∆n
i = φ

(i−1)K
n

,( iK
n

)
�

T
n , ∆̃n

i = φ
(i−1)K

n
, iK

n

�
T , i = 1, . . . , In.

We have

(
φ0,T

n − φ0,T
)2

=

(
In∑

i=1

∆n
i − ∆̃n

i

)2

=

=

(
In∑

i=1

∆n
i

)2

+

(
In∑

i=1

∆̃n
i

)2

− 2

In∑

i=1

In∑

j=1

∆n
i ∆̃n

j = Σn
1 + 2Σn

2 ,

where

Σn
1

def
=

In∑

i=1

(∆n
i )2 +

In∑

i=1

(∆̃n
i )2 − 2

In∑

i=1

∆n
i ∆̃n

i ,

Σn
2

def
=




∑

1≤i<l≤In

∆n
i ∆n

l −
∑

1≤i<j≤In

∆n
i ∆̃n

j


 +




∑

1≤j<k≤In

∆̃n
j ∆̃n

k −
∑

1≤j<i≤In

∆n
i ∆̃n

j


 .

We estimate the expectations of Σn
1 , Σn

2 separately. Since the increments ∆n
i , ∆̃n

i are
non-negative, the first sum can be estimated by the sum of two first terms:

(3.6) Σn
1 ≤

In∑

i=1

(∆n
i )2 +

In∑

i=1

(∆̃n
i )2.
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The expectation of the first term in (3.6) can be estimated via the definition of φn:

E

In∑

i=1

(∆n
i )2 ≤ E

(
sup

i=1,In

∆i

) In∑

i=1

∆n
i ≤ Kδnf0,T

n

(
X̂n(0)

)
≤ Kδn

∥∥f0,T
n

∥∥ → 0, n → +∞,

where δn
def
= δ(Fn). Convergence of the expectation of the second term in (3.6) to zero is

provided by the arguments analogous to those used in Chapter 6 [1]: on the one hand,

by continuity of the functional φ,
∑In

i=1(∆̃
n
i )2 → 0 by probability; on the other hand,∑In

i=1(∆̃
n
i )2 is dominated by the variable (φ0,T )2; the expectation of this variable, by

Lemma 6.4 [1], does not exceed 2
∥∥f0,T

∥∥2
< ∞. Therefore, E

∑In

i=1(∆̃
n
i )2 → 0 due to

the Lebesgue theorem on dominated convergence. Hence, lim sup
n→∞

EΣn
1 ≤ 0.

The expectation of Σn
2 is equal to

EΣn
2 = E




∑

1≤i<l≤In

∆n
i ∆n

l −
∑

1≤i<j≤In

∆n
i ∆̃n

j


+ E




∑

1≤j<k≤In

∆̃n
j ∆̃n

k −
∑

1≤j<i≤In

∆n
i ∆̃n

j




(3.7) = E

In−1∑

i=1

∆n
i

[
φ

Ki
n

,T
n − φ

Ki
n

,T
]
− E

In−1∑

i=1

∆̃n
i

[
φ

Ki
n

,T
n − φ

Ki
n

,T
]
.

Let us estimate the second term in (3.7). The variable ∆̃n
i is measurable w.r.t. FKi

n
;

therefore, we can use (3.4) and get the estimate

−E

In−1∑

i=1

∆̃n
i

[
φ

Ki
n

,T
n − φ

Ki
n

,T
]

= −E

In−1∑

i=1

∆̃n
i E

[(
φ

Ki
n

,T
n − φ

Ki
n

,T
)
|FKi

n

]
=

= E

In−1∑

i=1

∆̃n
i

(
f

Ki
n

,T
n

(
X̂n

(
Ki

n

))
− f

Ki
n

,T

(
X̂n

(
Ki

n

)))
≤

≤ E

In−1∑

i=1

∆̃n
i

∣∣∣∣f
Ki
n

,T
n

(
X̂n

(
Ki

n

))
− f

Ki
n

,T

(
X̂n

(
Ki

n

))∣∣∣∣+

+E

In−1∑

i=1

∆̃n
i

∣∣∣∣f
Ki
n

,T

(
X̂n

(
Ki

n

))
− f

Ki
n

,T

(
X̂n

(
Ki

n

))∣∣∣∣ ≤

≤ ‖f0,T‖ sup
s= i

n
,t∈(s,T )

∥∥fs,t
n (·) − fs,t(·)

∥∥+

(3.8) +E

In−1∑

i=1

∆̃n
i

∣∣∣∣f
Ki
n

,T

(
X̂n

(
Ki

n

))
− f

Ki
n

,T

(
X̂n

(
Ki

n

))∣∣∣∣ .

In the last inequality, we have used that
∑In−1

i=1 ∆̃n
i ≤ φ0,T and Eφ0,T ≤ ‖f0,T‖. The

first term in (3.8) tends to zero. In order to estimate the second term, we denote

Ωγ,T =

{
sup

i≤T n
K

ρ

(
X̂n

(
iK

n

)
, X̂n

(
iK

n

))
> γ

}
;

we recall that P (Ωγ,T ) < γ due to claim (iii) of Definition 1. We have

E

In−1∑

i=1

∆̃n
i

∣∣∣∣f
Ki
n

,T

(
X̂n

(
Ki

n

))
− f

Ki
n

,T

(
X̂n

(
Ki

n

))∣∣∣∣ ≤ Eφ0,T G(f, γ, T )1IΩ\Ωγ,T
+

(3.9) +E

In−1∑

i=1

∆̃n
i

∣∣∣∣f
Ki
n

,T

(
X̂n

(
Ki

n

))
− f

Ki
n

,T

(
X̂n

(
Ki

n

))∣∣∣∣ 1IΩγ,T
.
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The first term in (3.9) can be estimated by ‖f0,T‖G(f, γ, T ). The second term is esti-
mated by the Cauchy inequality:

E

In−1∑

i=1

∆̃n
i

∣∣∣∣f
Ki
n

,T

(
X̂n

(
Ki

n

))
− f

Ki
n

,T

(
X̂n

(
Ki

n

))∣∣∣∣ 1IΩγ,T
≤

≤
∥∥f0,T

∥∥Eφ0,T 1IΩγ,T
≤

∥∥f0,T
∥∥ [

E(φ0,T )2
] 1

2 [P (Ωγ,T )]
1
2 ≤

∥∥f0,T
∥∥2 √

2γ.

Here, we have used Lemma 6.4 [1] in order to estimate E(φ0,T )2. Summing up the above
relations, we deduce

(3.10) lim sup
n→∞

{
−E

In−1∑

i=1

∆̃n
i

[
φ

Ki
n

,T
n − φ

Ki
n

,T
]}

≤
∥∥f0,T

∥∥G(f, γ, T ) +
∥∥f0,T

∥∥2 √
2γ.

Let us proceed with the estimation of the first term in (3.7). Here, it is impossible
to use (3.4) straightforwardly, since the variable ∆n

i is a functional of the values of the

process X̂n at the points Ki
n , Ki+1

n , . . . Ki+L
n ; that is, it is not measurable with respect to

FKi
n

. Without loss of generality, we can assume that K ≥ L (otherwise, one can make

the same procedure with the constant K replaced by K · L). Then the variable ∆n
i is

measurable with respect to FK(i+1)
n

. The functionals φn, φ are additive at points of the

type j
n , j ≥ 1. From (3.4) and condition 1 of the Theorem, we get the relation

E

In−1∑

i=1

∆n
i

[
φ

Ki
n

,T
n − φ

Ki
n

,T
]

= E

In−1∑

i=1

∆n
i

[
φ

Ki
n

, K(i+1)
n

n − φ
Ki
n

, K(i+1)
n

]
+

+E

In−1∑

i=1

∆n
i

[
f

K(i+1)
n

,T

(
X̂n

(
K(i + 1)

n

))
− f

K(i+1)
n

,T

(
X̂n

(
K(i + 1)

n

))]
≤

(3.11)
≤ Kδn

∣∣f0,T
n

∣∣

+ E

In−1∑

i=1

∆n
i

[
f

K(i+1)
n

,T

(
X̂n

(
K(i + 1)

n

))
− f

K(i+1)
n

,T

(
X̂n

(
K(i + 1)

n

))]
.

The first term in (3.11) tends to zero. The second term in (3.11) can be estimated in
the same way as the second term in (3.7) with one necessary change. We cannot apply
Lemma 6.4 [1] in order to estimate the second moment of φ0,T

n ; therefore, this estimate
must be obtained separately. This can be done in a following way:

E(φ0,T
n )2 = E

In∑

i=1

(∆n
i )2 + 2E

∑

1≤i<j≤In

∆n
i ∆n

j = E

In∑

i=1

(∆n
i )2 + 2E

∑

1≤i≤In

∆n
i φ

iK
n

,T
n =

= E

In∑

i=1

(∆n
i )2 + 2E

∑

1≤i≤In

∆n
i [φiK/n,(i+1)K/n

n + φ(i+1)K/n,T
n ] ≤

= E

In∑

i=1

(∆n
i )2 + 2KδnE

∑

1≤i≤In

∆n
i + 2E

∑

1≤i≤In

∆n
i

∥∥f0,T
n

∥∥ ≤

(3.12) ≤
{
(2K + 1)δn + 2‖f0,T

n ‖
}

Eφ0,T
n ≤ (2K + 1)δn

∥∥f0,T
n

∥∥ + 2
∥∥f0,T

n

∥∥2
,

all transitions here are analogous to those introduced above and thus are not discussed
in details. Repeating literally the estimates for the second term in (3.7), we obtain the
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estimate

(3.13) lim sup
n→∞

E

In−1∑

i=1

∆n
i

[
φ

Ki
n

,T
n − φ

Ki
n

,T
]
≤

∥∥f0,T
∥∥G(f, γ, T ) +

∥∥f0,T
∥∥2 √

2γ.

It follows from (3.10),(3.13) that lim sup
n→∞

[2Σn
2 ] ≤ 4

∥∥f0,T
∥∥G(f, γ, T ) + 4

√
2γ

∥∥f0,T
∥∥2

.

This, combined with the estimate lim sup
n→∞

[Σn
1 ] ≤ 0 proved before, provides the required

statement. The lemma is proved.
Now, we can complete the proof of the convergence of the finite-dimensional distri-

butions of φn to those of φ. In order to shorten notation, we consider one-dimensional
distributions only. In the general case, considerations are completely the same.

Take arbitrary s, t, s < t. In order to prove the weak convergence of φs,t
n (Xn) to

φs,t(X), it is sufficient to show that, for an arbitrary bounded Lipschitz function g,

(3.14) lim sup
n→∞

∣∣Eg(φs,t
n (Xn)) − Eg(φs,t(X))

∣∣ = 0.

Let g be fixed. Consider a pair of processes X̂n, X̂n, corresponding (in a sense of Defini-
tion 1) to T = t and a given positive γ. By construction,

φs,t
n (Xn)

d
= φs,t

n (X̂n), φs,t(X)
d
= φs,t(X̂n).

From Lemma 1, we get

lim sup
n→∞

∣∣Eg(φs,t
n (Xn)) − Eg(φs,t(X))

∣∣ ≤ lim sup
n→∞

E
∣∣∣g(φs,t

n (X̂n)) − φs,t(X̂n)
∣∣∣ ≤

≤ Lip(g) lim sup
n→∞

E
∣∣∣φs,t

n

(
X̂n

)
− φs,t

(
X̂n

)∣∣∣ ≤ 2Lip(g)
√
‖f0,t‖G(f, γ, t) +

√
2γ

∥∥f0,t
∥∥2

,

where Lip(g) denotes the Lipschitz constant for g. Condition 3 of the Theorem provides
that G(f, γ, t) → 0 as γ → 0+. Since γ > 0 is arbitrary, the above-given estimate yields
(3.14).

Since sups,t |ψs,t
n − φs,t

n | ≤ δn → 0, all finite-dimensional distributions of ψn converge
to the corresponding distributions of φ. Thus, the only thing left to show in the proof
of the Theorem is that the family of distributions of ψn is dense in C(T, R+). By the
construction of ψn,

ψs,t
n = ψ0,t

n − ψ0,s
n , 0 ≤ s ≤ t,

and thus it is enough to verify that the distributions of {ψ0,·
n } are tight in C(R+, R).

The value of the function ψ0,·
n at the point t differs from the value of this function at the

closest knot t∗ ∈ 1
nZ+ at most on δn, and ψn is monotone. Hence, in order to prove the

required statement, it is sufficient to show that, for an arbitrary sequence of partitions{
Sn = {sn

0 = 0 < sn
1 < · · · < sn

k < . . . } ⊂ 1
nZ+, n ∈ N

}
with σn ≡ maxk(sn

k − sn
k−1) →

0, n → +∞ and arbitrary T ∈ R+,

E
∑

k:sn
k
≤T

[
ψ

sn
k−1,sn

k
n

]2

→ 0, n → +∞.

We set γn,T = sup0<t−s<σn,t<T ‖fs,t
n ‖ and remark that γn,T → 0, n → +∞ due to the

continuity of the limit characteristic f and the uniform convergence fn ⇉ f . In the same
way as in (3.12), we obtain the estimate

(3.15) E
[
φ

sn
k−1,sn

k
n

]2

≤ {(2K + 1)δn + 2γn,T }Eφ
sn

k−1,sn
k

n .

Summing up the estimates (3.15) w.r.t. k, we get

E
∑

k:sn
k
≤T

[
ψ

sn
k−1,sn

k
n

]2

≤ {(2K + 1)δn + 2γn,T } ‖f0,T
n ‖ → 0, n → +∞
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(recall that φs,t
n = ψs,t

n when s, t ∈ 1
nZ+). The Theorem is proved.

4. Applications

4.1. Local time of a random walk. Consider a sequence {ξk} of i.i.d. random vari-
ables with the common law that belongs to the normal domain of attraction of an α-
stable law, α ∈ (1, 2]. We assume that Eξ1 = 0 and define the random broken lines Xn

by equality (2.4) (see Examples 1 and 2).
Consider, for a fixed z∗ ∈ R, functionals φn = φn(Xn) of the type (3.1) with L = 2,

Fn(x, y) =
1

n

1

|y − x|

[
1I(x−z∗)(y−z∗)<0 +

1

2
(1Ix �=z∗,y=z∗

+ 1Ix=z∗,y �=z∗
)

]
.

One can verify straightforwardly that, for every s < t, s, t ∈ { j
n , j ∈ Z+},

(4.1) φs,t
n (Xn) = lim

ε→0+

1

2ε

∫ t

s

1IXn(r)∈(z∗−ε,z∗+ε)\{z∗} dr

almost surely. Therefore, the functionals φn can be naturally interpreted as the censored
local times for the broken lines Xn at the point z∗. Here, the operation of censoring
consists in the removal of horizontal parts of the broken lines.

Theorem 1 yields the following statement.

Proposition 1. Let the distribution of the jump ξ1 of the random walk be concentrated
on Z and aperiodic. Then φs,t

n (Xn) converge by distribution to

φs,t(X) = P (ξ1 �= 0) · Ls,t(X, z∗),

where L(X, z∗) is the local time of the limit α-stable process X at the point z∗.

Proof. Condition on {Xn} to provide the Markov approximation for X holds true
(see Examples 1 and 2 and references there). By construction, if the increment of the
process Xn at a pair of neighboring knots s = i

n , t = i+1
n is non-zero, then the absolute

value of this increment is at least n− 1
α . Therefore, condition 1 of Theorem 1 holds with

δn = 2n
1
α
−1.

Let us show that the characteristics fn of the functionals φn converge uniformly to
the function

(4.2) fs,t(x) = P (ξ1 �= 0)

∫ t−s

0

pr(z∗ − x) dr,

where pr(·) is the density of the distribution X(r) under condition X(0) = 0. This will
provide condition 2 of Theorem 1, since the function

ft(x) =

∫ t

0

pr(z∗ − x) dr

is the characteristic of the local time L(X, z∗) of the α-stable process X ([10]).
In order to shorten notation, we take z∗ = 0. This obviously does not restrict gener-

ality. Denote P k
i = P (Sk = i), Pj = P 1

j = P (ξ1 = j), i, j ∈ Z. We have

fs,t
n (x) = n

1
α
−1

∑

k
n

<t−s



∑

j �=0

Pj

|j|




∑

i∈(xn
1
α −j,xn

1
α )

P k
i +

1

2
1I

xn
1
α ∈Z

(
P k

xn
1
α

+ P k

xn
1
α −j

)




 .

Here and below, the notation i ∈ (a, b) in the case a > b means that b < i < a.
Gnedenko’s local limit theorem for lattice random variables (see [18], Theorem 4.2.1)
states that

(4.3) εk
def
= sup

i∈Z

∣∣∣∣k
1
α P k

i − p1

(
i

k
1
α

)∣∣∣∣ → 0, k → +∞.
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Hence, for 0 ≤ s ≤ t ≤ T ,

fs,t
n (x) =

1

n

∑

k
n

<t−s



∑

j �=0

Pj

|j|

(
∑

i∈(xn
1
α −j,xn

1
α )

(n

k

) 1
α

p1

(
i

k
1
α

)
+

(4.4) +
n

1
α

2k
1
α

1I
xn

1
α ∈Z

{
p1

(
xn

1
α

k
1
α

)
+ p1

(
xn

1
α − j

k
1
α

)})]
+ ΞT

n (x),

where

(4.5) |ΞT
n (x)| ≤ 1

n

[nt]∑

k=1

(n

k

) 1
α

εk, x ∈ R.

The latter estimate and Toeplitz’s theorem provide that ΞT
n ⇉ 0, n → +∞.

The density p1 is uniformly continuous over R. Hence, using similar estimates, one
can show that, up to a summand that uniformly converges to zero, the value of fs,t(x)
equals

1

n

∑

k
n

<t−s



∑

j �=0

Pj

|j|




∑

i∈(xn
1
α −j,xn

1
α )

(n

k

) 1
α

p1

(
xn

1
α

k
1
α

)
+

(n

k

) 1
α

1I
xn

1
α ∈Z

p1

(
xn

1
α

k
1
α

)



 .

The interval (xn
1
α − j, xn

1
α ) contains |j| integer points if xn

1
α �∈ Z, and |j| − 1 integer

points otherwise. Therefore, up to a summand that uniformly converges to zero, the
value of fs,t(x) equals

1

n

∑

k
n

<t−s



∑

j �=0

Pj

|j| · |j| · p1

(
xn

1
α

k
1
α

)
 =

(4.6) =
P (ξ1 �= 0)

n

∑

k
n

<t−s

(n

k

) 1
α

p1

(
xn

1

k
1
α

)
=

P (ξ1 �= 0)

n

∑

k
n

<t−s

p k
n
(x).

Here, we have used that the process X is self-similar, that is, pr(x) = r−
1
α p1(r

− 1
α x), r >

0. The sum on the right-hand side of (4.6) is exactly the integral sum for the integral
on the right-hand side of (4.2), the functions {pr(·), r ≥ r0} are uniformly continuous

for arbitrary r0 > 0 and supx pr(x) ≤ Cr−
1
α . This immediately provides the required

uniform convergence of fn to f .
Condition 3 of Theorem 1 holds trivially due to the above-mentioned properties of the

densities pr(·), r ≥ 0.
We have verified all conditions of Theorem 1. From this theorem, we get the required

statement. The proposition is proved.
Condition α ∈ (1, 2] is essential in our estimation: if α ≤ 1, inequality (4.5) does not

imply ΞT
n ⇉ 0. This condition is precise and cannot be weakened: it is well known that

an α-stable process possesses the local time at the point 0 if, and only if, α > 1 ([10]).
The result similar to the one of Proposition 1 can be proved for essentially non-lattice

random walks, i.e. when there exists n0 such that Sn0 possesses a bounded distribution
density. The statement of Proposition 1 and its analog for essentially non-lattice random
walks are not essentially new. One can obtain them by applying first Theorem 1, Chapter
5.3 [3] and then either the technique exposed in §§III.2, III.3 [4] or the reasonings similar
to those used in the proof of Theorem 3 [10]. Our reason to expose this example here
is two-fold. On the one hand, we would like to emphasize the following interesting fact
which has not been mentioned in the references available to us. For a ”good” random
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walks (either lattice or essentially non-lattice), their local times at the point defined by
the natural relation (4.1) converge by distribution exactly to the local time of the limit
process at the same point, as soon as the broken lines corresponding to the random walk
do not contain horizontal segments. On the other hand, this example illustrates, in the
simplest situation, the way condition 2 of Theorem 1 can be provided via a local limit
theorem.

Local limit theorems appear to be a powerful tool that allows one to provide the
convergence of characteristics of additive functionals in various quite complicated cases.
This allows one to apply Theorem 1 for a wide variety of sequences {Xn}, including the
difference approximations for the multidimensional diffusion and random broken lines
convergent to an α-stable process with α ≤ 1. We do not give a detailed discussion of
these topics here, referring the reader to papers [19],[20] and Section 2.2 of paper [21].

4.2. Difference approximations for the local time of one-dimensional diffusion.

In this subsection, we demonstrate one more trick that, in some cases, allows one to prove
the convergence of characteristics of additive functionals of the type (3.1) under a mild
conditions on the sequence {Xn}. Let us begin our consideration from the case where
Xn, n ≥ 1 are the random broken lines generated by Bernoulli’s random walk, i.e. Xn

are defined by (2.3) with P (ξk = ±1) = 1
2 . It is well known (see [2]) that the functionals

(4.7) φs,t
n =

1√
n

∑

k∈[sn,tn)

1IXn( k
n

)=0

(the normalized numbers of visits of Xn to 0) converge weakly to the local time L
s,t
W of

the Wiener process at the point 0.
Functional (4.7) is closely related to the Doob decomposition for the sequence

∣∣∣∣Xn

(
k

n

)∣∣∣∣ , k = 0, 1, . . . .

Namely (e.g. [22], §IV.6), the latter sequence has representation in the form
∣∣∣∣Xn

(
k

n

)∣∣∣∣ = Mn
k + φ

0, k
n

n , k = 1, 2, . . . ,

where {Mn
k , k ≥ 1} is a martingale w.r.t. a filtration {Fk = σ(ξj , j ≤ k), k ≥ 1}. This,

together with the Donsker invariance principle, implies that the characteristics of the
functionals φn converge uniformly to the function

(4.8) fs,t(x) = E|W (t − s) + x| − |x|
(the proof is quite straightforward and omitted; a more general statement will be proved
in Proposition 2 below). But the Itô–Tanaka formula

|W (t) + x| = |x| +
∫ t

0

sign (W (r) + x) dW (r) + L
0,t
W+x

provides that function (4.8) is the characteristic for the local time LW , the latter being
considered as a W -functional of the Wiener process W . Therefore, condition 2 of Theo-
rem 1 holds true with φ = LW . All the other conditions of this theorem can be verified
(almost) trivially. Thus, Theorem 1 gives an alternative way to prove the (well-known)
fact that the normalized number of zeroes for Bernoulli’s random walk converges weakly
to the local time of the Wiener process.

In the previous consideration, it was crucial for Xn to be generated by a random walk
and for the step ξk of the random walk to have the Bernoulli distribution. However,
we will demonstrate below that the same, in essence, arguments allow one to prove the
weak convergence for certain ”canonic” additive functionals under very mild restrictions
on the processes {Xn}.
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Consider the sequence {Zn} of difference approximations of the one-dimensional dif-
fusion process Z (Example 3 with m = d = 1, equalities (2.5),(2.6)). Suppose that
|a(x)| ≤ R, R−1 ≤ b2(x) ≤ R, x ∈ R for some R > 1. Under this condition, the standard
estimates for the transition density pt(x, y) of the diffusion Z (e.g., [1], Appendix §6)
yield supx,y pt(x, y) ≤ CT√

t
, t ∈ (0, T ] for every T > 0, and pt(x, y) is uniformly continuous

on the set [t0,∞) × R × R for every t0 > 0. This implies that the function

f0,t(x) = b2(0)

∫ t

0

ps(x, 0) ds

is well defined, and

f0,t
ε (x)

def
=

1

2ε

∫ t

0

∫ ε

−ε

ps(x, y)b(y) dy ds → f0,t(x)

uniformly by x ∈ R, t ≤ T for every T . The function fε is the characteristic for the
W -functional

φs,t
ε =

∫ t

s

1I|Z(r)|<εb
2(Z(r)) dr.

Hence, Dynkin’s theorem (Theorem 6.4 [1]) implies that there exists a mean square limit

(4.9) φs,t = lim
ε→0+

1

2ε

∫ t

s

1I|Z(r)|<εb
2(Z(r)) dr, (s, t) ∈ T.

The functional φ is called the local time of the diffusion Z at the point 0.
We recall that there exists another standard way to define the local time LZ of Z,

based on the Itô–Tanaka formula

|Z(t)| − |Z(s)| =

∫ t

s

sign (Z(r)) dZ(r) + L
s,t
Z

(see [23], §IV.1). In the case under consideration, these two definitions are adjusted in

the sense that φs,t = L
s,t
Z .

Put

(4.10) φs,t
n (Zn) ≡

∑

k∈[sn,tn)

∣∣∣∣Zn

(
k

n

)∣∣∣∣ ·
[
21IZn( k−1

n )Zn( k
n)<0 + 1IZn( k−1

n )=0

]
,

and denote, by ψn, the random broken lines corresponding to φn.

Proposition 2. Suppose the functions a, b be globally Lipschitz and satisfy the condition

|a(x)| ≤ R, R−1 ≤ b2(x) ≤ R, x ∈ R

for some R > 1. Suppose also that the noise in the difference relation (2.5) that defines
Zn satisfies the moment condition

E|ξ1|3+δ < +∞
for some δ > 0.

Then the processes ψn converge by distribution in C(T, R) to the local time LZ of the
diffusion process Z at the point 0.

Remark 5. Functional (4.10) is a straightforward generalization of functional (4.7): if
Zn are the broken lines corresponding to Bernoulli’s random walk and Zn(0) ∈ 1√

n
Z,

then formula (4.10) defines exactly the same functional as (4.7).

Remark 6. Structure of functional (4.10) is quite simple and transparent: the term
1IZn( k

n
)=0 corresponds to the number of visits of Zn to zero at the points of the partition

1
nZ+, the term 1IZn( k−1

n
)Zn( k

n
)<0 corresponds to the number of sign changes for Zn at

the neighbouring points of this partition. Thus, functional (4.10) can be treated as a
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properly normalized mixture of the number of visits of Zn to zero and the number of
sign changes for Zn. It looks not very typical that the normalizing coefficients

∣∣Zn

(
k
n

)∣∣
are non-constant and depend process Zn. However, exactly the functional of the type
(4.10) appears to be ”canonic” and to converge to the local time of the limit process
Z without any specific assumptions on the approximating sequence {Zn}. For instance,
in the case a ≡ 0, b ≡ 1 (i.e., where Zn corresponds to a random walk), Proposition 2
does not require any structural conditions on the law of ξk. In particular, the local limit
theorem is not involved in any form.

Proof of Proposition 2. The functionals φn can fail to satisfy condition 1 of Theorem
1, since the random variables Zn

(
k
n

)
, in general, have no means to be bounded by a con-

stant. Therefore, we cannot apply Theorem 1 to the functionals {φn} straightforwardly.
We consider an auxiliary sequence of functionals

θs,t
n (Zn) ≡

∑

k∈[sn,tn)

∣∣∣∣Zn

(
k

n

)∣∣∣∣ ·
[
21IZn( k−1

n )Zn( k
n)<0 + 1IZn( k−1

n )=0

]
1I|Zn( k

n
)−Zn( k−1

n
)|≤nγ−

1
2

with a fixed γ ∈
(

1
2+δ , 1

2

)
. The increments of Zn have the form

Zn

(
k

n

)
− Zn

(
k − 1

n

)
= a

(
Zn

(
k − 1

n

))
1

n
+ b

(
Zn

(
k − 1

n

))
ξk√
n

,

and the functions a, b are bounded. Therefore, there exists a constant A > 0 such that,
for n large enough, the inequality∣∣∣∣Zn

(
k

n

)
− Zn

(
k − 1

n

)∣∣∣∣ > nγ− 1
2

yields the inequality |ξk| > Anγ . Then, keeping in mind that γ(3 + δ) > γ(2 + δ) > 1,
we get
(4.11)

P (∃ s ≤ t ≤ T : φs,t
n �= θs,t

n ) ≤ P




⋃

k≤Tn+1

{|ξk| > Anγ}



 ≤ (Tn+2)A−3−δn−γ(3+δ) → 0,

n → ∞. Therefore, the asymptotic behavior for the functionals φn as n → ∞ is the same
as that for the functionals θn.

If either Zn

(
k−1

n

)
= 0 or Zn

(
k−1

n

)
Zn

(
k
n

)
< 0, then

∣∣∣∣Zn

(
k

n

)∣∣∣∣ ≤
∣∣∣∣Zn

(
k

n

)
− Zn

(
k − 1

n

)∣∣∣∣ .

Therefore, the functionals θn satisfy condition 1 of Theorem 1 with δn = 2nγ− 1
2 . Let us

verify that these functionals satisfy also condition 2 of Theorem 1.
Denote the characteristic of φn by fn and the characteristic of θn by gn. One can see

that there exists a constant B > 0 such that∣∣∣∣Zn

(
k

n

)
− Zn

(
k − 1

n

)∣∣∣∣ · 1I|Zn( k
n

)−Zn( k−1
n

)|≤nγ−
1
2
≤ B|ξk|1I|ξk|>Anγ .

Then, analogously to (4.11) for s ≤ t ≤ T, x ∈ R, we have

|fs,t
n (x) − gs,t

n (x)| ≤ dn(T ) = 2B

nT+2∑

k=0

E|ξk|1I|ξk|>Anγ ≤

(4.12) ≤ 2BA−2−δ(nT + 2)n−γ(2+δ) → 0, n → ∞.

The following relation can be verified straightforwardly:

|y| − |x| = (y − x)sign x + |y|
[
21Ixy<0 + 1Ix=0

]
, x, y ∈ R
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(the function sign (·), by convention, takes zero value at the point 0). Therefore, for
s, t ∈ 1

nZ+,

|Zn(t)| − |Zn(s)| = φ0,t
n (Zn)+

(4.13) +

nt−1∑

k=ns

[
a

(
Zn

(
k

n

))
1

n
+ b

(
Zn

(
k

n

))
ξk+1√

n

]
sign

(
Zn

(
k

n

))
.

Since, for every k ≥ 1, the variable ξk+1 is centered and is with Zn

(
k
n

)
, formula (4.13)

yields the following representation for the characteristic of the functional φn:

fs,t
n (x) = E

[∣∣∣∣Zn

(
[nt]

t

)∣∣∣∣
∣∣∣Zn(s) = x

]
− |x|−

− 1

n
E




[nt]−1∑

k=ns

a

(
Zn

(
k

n

))
sign

(
Zn

(
k

n

)) ∣∣∣Zn(s) = x



 , s ∈ 1

n
Z+, t ≥ s.

We are going to prove that, for every T > 0,

(4.14) gs,t
n (x) → fs,t(x)

def
= Ex|Z(t)| − |x| − Ex

∫ t

s

a(Z(r))sign (Z(r)) dr

uniformly by x ∈ R, t ≤ T, s ∈ 1
nZ ∩ [0, t]. This will provide condition 2 for the sequence

{θn} since, by the Itô–Tanaka formula, the left-hand side of (4.14) is exactly the char-
acteristic of the local time φ = LZ . The functionals defined by (4.9),(4.10) are time
homogeneous, thus it is enough to prove the uniform convergence f0,t

n → f0,t, t ≤ T .
We remark that the distribution Px of Z conditioned by Z(0) = x can be interpreted

as the distribution of the solution to SDE (2.6) with the initial condition Z(0) = x. Sim-
ilarly, the conditional distribution P [·|Zn(0) = x] can be interpreted as the distribution
of the solution to the difference relation (2.5) with Zn(0) = x. Thus, in the sequel, we
write Z(x, ·), Zn(x, ·) for the corresponding solutions and write the usual expectation
instead of conditional ones.

By using a difference analogue of the Gronwall lemma, one can verify that

(4.15) E(Zn(x, t) − Zn(x, 0))2 ≤ Ct

for every n ∈ N, x ∈ R, t ≤ T with some constant C. We do not give a detailed exposition
here, since the estimates are quite standard (e.g., see the proof of Lemma 3.1 [20]).

Let xn → x ∈ R be an arbitrary sequence. It follows from (4.15) and the explicit
formula for Zn that

E(Zn(xn, t1) − Zn(xn, t2))
2E(Zn(xn, t3) − Zn(xn, t2))

2 ≤ C1(t3 − t1)
2,

0 ≤ t1 < t2 < t3 ≤ T , with some new constant C1. Thus, the sequence of distributions of
Zn(xn, ·) in D([0, T ]) is weakly compact ([24], Theorem 15.6). It follows from Proposition
5.1 [16] that every weak limit point of the sequence {Zn(xn, ·)} gives a weak solution to
SDE (2.6). Since a, b are Lipschitz, (2.6) possesses a unique weak solution (and even a
unique strong one). Hence, Zn(xn, ·) converge weakly to Z(x, ·) in D([0, T ]). Trajectories
of Z(x, ·) are continuous, and, therefore, the weak convergence of Zn(xn, ·) to Z(x, ·)
implies that, for every sequence {tn} ⊂ [0, T ], tn → t, the random variables Zn(xn, tn)
converge in distribution to the variable Z(x, t). This and (4.15) yield

E|Zn(xn, tn)| − |xn| → E|Z(x, t)| − |x|.
Now, let {rn} ⊂ [0, T ], rn → r be an arbitrary sequence. The diffusion process Z

possesses a transition probability density, and therefore P (Z(x, r) = 0) = 0. The function

â(z)
def
= a(z)sign (z) is continuous everywhere except one point z = 0. Hence, this
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function is continuous almost surely w.r.t. a distribution of Z(x, r). In addition, this
function is bounded. Hence Eâ(Zn(xn, rn)) → Eâ(Z(x, r)). Therefore,

lim
ε→0+

lim sup
n→+∞

sup
r,s∈[0,T ],|s−r|≤ε

|Eâ(Zn(xn, s)) − Eâ(Z(x, r))| = 0,

and thus

1

n
E

[nt]−1∑

k=0

â

(
Zn

(
xn,

k

n

))
− 1

n
E

[nt]−1∑

k=0

â

(
Z

(
x,

k

n

))
→ 0

uniformly by t ≤ T . Since â is bounded, the above-mentioned properties of the transition
probability density pt(x, y) yield

1

n
E

[nt]−1∑

k=0

â

(
Z

(
x,

k

n

))
=

1

n

[nt]−1∑

k=0

∫

R

p k
n
(x, y)â(y) dy →

→
∫ t

0

∫

R

pr(x, y)â(y) dy dr = E

∫ t

s

a(Z(x, r))sign (Z(x, r)) dr

uniformly by t ≤ T . Thus, for every sequence tn → t ∈ [0, T ] and every bounded sequence
{xn} ⊂ R,

f0,tn
n (xn) − f0,tn(xn) → 0.

This, together with (4.12), yields

(4.16) g0,tn
n (xn) − f0,tn(xn) → 0.

At last, consider a sequence xn → ∞. It follows from the definition of functional θ0,·
n

that the values of this functional do not exceed δn up to the first time moment when
the process Zn visits point 0. The estimates given above provide that the expectation
of the random variable θs,t

n is estimated by some constant C2 for 0 ≤ s ≤ t ≤ T . Thus,
by additivity of the functional gn and the Markov property of Xn, the value g0,t

n (xn) is
estimated by (C2 + δn)Pn,T (xn), where Pn,T (xn) denotes the probability for the process
Zn(xn, ·) to visit the level 0 before the time moment T. Straightforward considerations
using the Gronwall lemma provide that Pn,T (xn) → 0 and thus g0,T

n (xn) → 0. In the
same way, one can show that f0,T (xn) → 0 (also, one can deduce the latter relation from
the estimates on the transition probability density for Z). Thus, (4.16) holds for every
sequence {xn}, and therefore (4.14) holds true. This implies that condition 2 of Theorem
1 holds for the functionals {θn}.

The explicit formula for the characteristic f and the properties of the transition prob-
ability density for Z yield condition 3 of Theorem 1. We also know already that {Zn}
provides the Markov approximation for the diffusion process Z (Example 3). Thus, The-
orem 1 can be applied to the functionals {θn}. From this theorem and (4.11), we get the
required statement. The proposition is proved.
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