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ALEXANDER D. KOLESNIK

THE EXPLICIT PROBABILITY DISTRIBUTION OF A

SIX-DIMENSIONAL RANDOM FLIGHT

We consider the symmetric random motion with finite speed X(t) in the Euclidean
space �6 subject to the control of a homogeneous Poisson process. The explicit
probability distribution of X(t), t > 0, is obtained.

1. Introduction

The multidimensional diffusion with finite speed of propagation is generated by the
finite-velocity random motions of a particle that moves in the Euclidean space R

m, m ≥
2, and whose evolution is driven by some stochastic process. The most studied model is
performed by the symmetric random motion controlled by a homogeneous Poisson process
with the uniform choice of directions. Such a type of motion is referred to as the random
flight or, in a more general sense, random evolution. One of the most important features
of such a motion is that it generates an isotropic transport process in the Euclidean space
R

m (see, for instance, Tolubinsky (1969), Papanicolaou (1975), Pinsky (1976)).
Random flights in the Euclidean spaces of different dimensions have thoroughly been

examined in a series of works. In the study of such processes, the most desirable goal
is undoubtedly their explicit distributions in the cases (very few, indeed) where such
distributions can be obtained. The explicit form of the distribution of a two-dimensional
symmetric random motion with finite speed was derived (by different methods) by Stadje
(1987), Masoliver et al. (1993), Kolesnik and Orsingher (2005), and Kolesnik (2007).
The distribution of a random flight in R

3 was given by Tolubinsky (1969, Chapter 2, pp.
35-60) and by Stadje (1989) in rather complicated integral forms. Finally, the explicit
form of the distribution of a random flight in R

4 was obtained by Kolesnik (2006).
The random flights in spaces of arbitrary higher dimensions were examined by Kolesnik
(2008a); however, no new distributions were obtained in this work for higher dimensions
m ≥ 5.

Since the exact probability laws of random flights for lower dimensions were derived
by rather complicated and sometimes tricky methods, the possibility of obtaining the
explicit form of the distributions seemed very doubtful for higher dimensions m ≥ 5.

However, a general unified method of studying the random flights in spaces of arbi-
trary dimensions was suggested in Kolesnik (2008a) based on the analysis of the integral
transforms of their distributions. This method applied to the six-dimensional random
motion enables us, surprisingly, to obtain the explicit probability law of the process, and
this result is the core of the present paper. Although this method works for any dimen-
sion, the derivation of the explicit probability law in the space of such high dimension
m = 6 looks like a ”lucky accident” which, apparently, cannot be extended to higher
dimensions.
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The distribution derived has a considerably more complicated form in comparison
with those obtained for the dimensions m = 2 and m = 4. It is presented as a series of
the finite sums of Gauss hypergeometric functions which seemingly cannot be reduced to
a more elegant formula. Nevertheless, this formula is of a great interest because it gives
the explicit form of the distribution, and, on the other hand, it is a new step toward the
most desirable goal, namely, constructing the general theory of distributions for random
flights in the Euclidean spaces R

m of arbitrary dimension m ≥ 2.
The main result of this paper was announced (without proof) in Kolesnik (2008b).

2. Description of motion and the distribution structure

We consider the stochastic motion performed by a particle starting its motion from
the origin 0 = (0, 0, 0, 0, 0, 0) of the six-dimensional Euclidean space R

6 at the time
t = 0. The particle is endowed with constant finite speed c (note that c is treated as the
constant norm of the velocity). The initial direction is a six-dimensional random vector
with uniform distribution (Lebesgue probability measure) on the unit sphere

S1 =

{

x = (x1, x2, x3, x4, x5, x6) ∈ R
6 : ‖x‖2 =

6
∑

i=1

x2
i = 1

}

.

The particle changes direction at random instants which form a homogeneous Poisson
process with rate λ > 0. At these moments, it instantaneously takes on a new direction
with uniform distribution on S1, independently of its previous motion.

Let X(t) = (X1(t), X2(t), X3(t), X4(t), X5(t), X6(t)) be the position of the particle at
an arbitrary time t > 0. Consider the conditional distributions

Pr{X(t) ∈ dx | N(t) = n} = Pr

{

6
⋂

i=1

(Xi(t) ∈ dxi) | N(t) = n

}

, n ≥ 1, (1)

where N(t) is the number of Poisson events that have occurred in the interval (0, t),
and dx is the infinitesimal element in the space R

6 with the Lebesgue measure µ(dx) =
dx1dx2dx3dx4dx5dx6.

At any time t > 0, the particle is located with probability 1 in the six-dimensional
ball of radius ct

Bct =

{

x = (x1, x2, x3, x4, x5, x6) ∈ R
6 : ‖x‖2 =

6
∑

i=1

x2
i ≤ c2t2

}

.

The distribution Pr {X(t) ∈ dx} , x ∈ Bct, t ≥ 0, consists of two components. The
singular component corresponds to the case where no Poisson event occurs in the interval
(0, t) and is concentrated on the sphere

Sct = ∂Bct =

{

x = (x1, x2, x3, x4, x5, x6) ∈ R6 : ‖x‖2 =

6
∑

i=1

x2
i = c2t2

}

.

In this case, the particle is located on the sphere Sct, and the probability of this event is

Pr{X(t) ∈ Sct} = e−λt.

If one or more than one Poisson events occur, the particle is located strictly inside the
ball Bct, and the probability of this event is

Pr{X(t) ∈ int Bct} = 1 − e−λt. (2)
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The part of the distribution Pr {X(t) ∈ dx} corresponding to this case is concentrated
in the interior

int Bct =

{

x = (x1, x2, x3, x4, x5, x6) ∈ R
6 : ‖x‖2 =

6
∑

i=1

x2
i < c2t2

}

,

and forms its absolutely continuous component. Therefore, there exists the density
p(x, t) = p(x1, x2, x3, x4, x5, x6; t), x ∈ int Bct, t > 0, of the absolutely continuous
component of the distribution function Pr{X(t) ∈ dx}.

The derivation of the explicit form of the density p(x, t), t > 0, is the main goal of
our paper.

3. The density of the process

According to the total probability formula, we can represent the density p(x, t) in the
form of the uniformly converging series

p(x, t) = e−λt

∞
∑

n=1

(λt)n

n!
pn(x, t), (3)

where pn(x, t), n ≥ 1, are the conditional densities of the conditional distributions (1).
Our principal result represents the explicit form of the density p(x, t).

Theorem. For any t > 0, the density p(x, t) has the form

p(x, t) =
16λte−λt

π3(ct)6

(

1 −
5

6

‖x‖2

c2t2

)

+
e−λt

2π3(ct)6

∞
∑

n=2

(λt)n(n + 1)!

n+1
∑

k=0

(k + 1)(k + 2)(n + 2k + 1)

3k(n − k + 1)!(n + k − 2)!

× F

(

−(n + k − 2), k + 3; 3;
‖x‖2

c2t2

)

,

(4)

where ‖x‖2 =
6
∑

i=1

x2
i < c2t2, the function

F (ξ, η; ζ; z) = 2F1(ξ, η; ζ; z) =
∞
∑

k=0

(ξ)k(η)k

(ζ)k

zk

k!
(5)

is the Gauss hypergeometric function and

(a)k = a(a + 1) . . . (a + k − 1) =
Γ(a + k)

Γ(a)

is the Pochgammer symbol.

Proof. In view of formula (3), we should concentrate our efforts on finding the explicit
forms of the conditional densities pn(x, t), n ≥ 1. According to Kolesnik (2008a, formula
(2.5)), the characteristic function (Fourier transform) of the uniform distribution on the
surface of the sphere Sct has the form

ϕ(t) = 8
J2(ct‖α‖)

(ct‖α‖)2
, (6)

where α = (α1, α2, α3, α4, α5, α6) ∈ R
6 is the 6-dimensional real vector of inversion

parameters, ‖α‖ =
√

α2
1 + α2

2 + α2
3 + α2

4 + α2
5 + α2

6, and J2(z) is the Bessel function of
order 2 with real argument.
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In view of Kolesnik (2008a, formula (2.6)), the conditional characteristic functions
Hn(t) of the conditional densities pn(x, t), n ≥ 1, are given by

Hn(t) =
n!

tn
In(t), n ≥ 1, (7)

where

In(t) =

∫ t

0

dτ1

∫ t

τ1

dτ2 . . .

∫ t

τn−1

dτn







n+1
∏

j=1

ϕ(τj − τj−1)







.

Note that if n = 0 (this correspond to the case where no Poisson events occur in the time
interval (0, t)), formula for the characteristic function H0(t) has the form:

H0(t) = I0(t) = ϕ(t) = 8
J2(ct‖α‖)

(ct‖α‖)2
, (8)

According to Kolesnik (2008a, formula (2.13)), the Laplace transform L of the function
In(t) has the form

L[In(t)](s) = (L[ϕ(t)](s))
n+1

, n ≥ 1, Re s > 0, (9)

where the function ϕ(t) is given by (6).
In view of Bateman and Erdelyi (1954, table 4.14, formula 6), the Laplace transform

of function (6) is

L[ϕ(t)](s) =
8

(c‖α‖)2
L

[

J2(ct‖α‖)

t2

]

(s)

=
8

(c‖α‖)2
c‖α‖

4





c‖α‖

s +
√

s2 + (c‖α‖)2
+

1

3

(

c‖α‖

s +
√

s2 + (c‖α‖)2

)3




= 2

[

(

s +
√

s2 + (c‖α‖)2
)

−1

+
(c‖α‖)2

3

(

s +
√

s2 + (c‖α‖)2
)

−3
]

.

By substituting this relation into (9) and applying the Newton binomial theorem, we
obtain

L[In(t)](s) = 2n+1

[

(

s +
√

s2 + (c‖α‖)2
)

−1

+
(c‖α‖)2

3

(

s +
√

s2 + (c‖α‖)2
)

−3
]n+1

= 2n+1
n+1
∑

k=0

Ck
n+1

(c‖α‖)2k

3k

(

s +
√

s2 + (c‖α‖)2
)

−(n+2k+1)

.

The inverse Laplace transformation of this expression yields

In(t) = 2n+1
n+1
∑

k=0

Ck
n+1

(c‖α‖)2k

3k
L−1

[

(

s +
√

s2 + (c‖α‖)2
)

−(n+2k+1)
]

(t)

(see Bateman and Erdelyi (1954, table 5.3, formula 43))

= 2n+1
n+1
∑

k=0

Ck
n+1

(c‖α‖)2k

3k

n + 2k + 1

t
(c‖α‖)−(n+2k+1) Jn+2k+1(ct‖α‖)

=
2n+1

(c‖α‖)n+1 t

n+1
∑

k=0

Ck
n+1

n + 2k + 1

3k
Jn+2k+1(ct‖α‖).

Then, according to (7), the conditional characteristic functions have the form

Hn(t) =
2n+1 n!

(ct‖α‖)n+1

n+1
∑

k=0

Ck
n+1

n + 2k + 1

3k
Jn+2k+1(ct‖α‖), n ≥ 1. (10)
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This is also valid for n = 0. Really, formula (10) transforms in this case into

H0(t) =
2

ct‖α‖
[J1(ct‖α‖) + J3(ct‖α‖)] =

2

ct‖α‖

4

ct‖α‖
J2(ct‖α‖) = 8

J2(ct‖α‖)

(ct‖α‖)2
,

and this relation coincides with (8). Note that here we have used the well-known recurrent
relation for the Bessel functions (see, for instance, Gradshtein and Ryzhik (1980, Formula
8.471(1))):

Jν−1(z) + Jν+1(z) =
2ν

z
Jν(z). (11)

To obtain the conditional densities pn(x, t), n ≥ 1, we should evaluate the inverse
Fourier transform F−1

α
of the characteristic functions (10) with respect to α, that is,

pn(x, t) = F−1
α

[Hn(t)]

=
2n+1 n!

(ct)n+1

n+1
∑

k=0

Ck
n+1

n + 2k + 1

3k
F−1

α

[

Jn+2k+1(ct‖α‖)

(‖α‖)n+1

]

, n ≥ 1.
(12)

For the particular case n = 1, we do not need to invert (12) because the conditional
density p1(x, t) can be easily obtained by applying formula (7) of Kolesnik (2008c). Then,
according to this formula, we immediately get

p1(x, t) =
16

π3 (ct)6
F

(

5

2
,−1; 3;

‖x‖2

c2t2

)

=
16

π3 (ct)6

(

1 −
5

6

‖x‖2

c2t2

)

, ‖x‖ < ct.

(13)

Let now n ≥ 2. Then, by applying the Hankel inversion formula (see Vladimirov (1981,
Sect. 23, formula (43))) and using Gradshtein and Ryzhik (1980, Formula 6.574(1)), we
can compute the inverse Fourier transforms in formula (12):

F−1
α

[

Jn+2k+1(ct‖α‖)

(‖α‖)n+1

]

= (2π)−3‖x‖−2

∫

∞

0

r3 J2(‖x‖r)
Jn+2k+1(ctr)

rn+1
dr

=
1

(2π)3‖x‖2

∫

∞

0

r−(n−2) J2(‖x‖r) Jn+2k+1(ctr) dr

=
1

(2π)3‖x‖2

‖x‖2 Γ(k + 3)

2n−2 (ct)−n+5 Γ(n + k − 1) Γ(3)
F

(

k + 3,−(n + k − 2); 3;
‖x‖2

c2t2

)

=
(k + 2)!

π3 2n+2 (ct)−n+5 (n + k − 2)!
F

(

−(n + k − 2), k + 3; 3;
‖x‖2

c2t2

)

, ‖x‖ < ct.

Substituting this expression into (12), we obtain the conditional densities for arbitrary
n ≥ 2:
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pn(x, t) =
2n+1 n!

(ct)n+1

n+1
∑

k=0

Ck
n+1

n + 2k + 1

3k

×
(k + 2)!

π3 2n+2 (ct)−n+5 (n + k − 2)!
F

(

−(n + k − 2), k + 3; 3;
‖x‖2

c2t2

)

=
n!

2π3 (ct)6

n+1
∑

k=0

(n + 1)!

k! (n − k + 1)!

(n + 2k + 1) (k + 2)!

3k (n + k − 2)!

× F

(

−(n + k − 2), k + 3; 3;
‖x‖2

c2t2

)

=
n! (n + 1)!

2π3 (ct)6

n+1
∑

k=0

(k + 1)(k + 2)(n + 2k + 1)

3k (n − k + 1)! (n + k − 2)!

× F

(

−(n + k − 2), k + 3; 3;
‖x‖2

c2t2

)

,

(14)

‖x‖ < ct, n ≥ 2.

Substituting now the explicit forms of the conditional densities pn(x, t), n ≥ 1, given by
(13) and (14) into formula (3), we finally obtain (4).

The theorem is thus completely proved.

Remark 1. Formula (14) shows that the conditional densities pn(x, t) for n ≥ 2 have
very complicated forms in spaces of higher dimensions, and this contrasts with the two-
and four-dimensional cases where such conditional densities have very simple forms for
any n ≥ 1 (see, for comparison, Kolesnik and Orsingher (2005, formula (11)) for the
dimension m = 2, and Kolesnik (2006, formula (6)) for the dimension m = 4). For
instance, in our six-dimensional case, the conditional density p2(x, t) corresponding to
two changes of directions has the form:

p2(x, t) =
4

π3 (ct)6

(

53

3
−

130

3

‖x‖2

(ct)2
+ 35

‖x‖4

(ct)4
−

28

3

‖x‖6

(ct)6

)

. (15)

This can be obtained from formula (14) for n = 2 after long computations. Clearly, the
expressions for n ≥ 3 are more complicated than (15).

Remark 2. Since the first coefficient of the hypergeometric function in formula
(14) is negative for any n and k, the conditional densities pn(x, t) are, in fact, some
polynomials of finite orders of the variable ‖x‖2/(ct)2. This is also clearly seen from
formula (15). Therefore, the transition density p(x, t) given by (4) represents a functional
series composed of some polynomials. Such a structure of the density is the specific
feature of random flights in spaces of even dimensions.
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