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W. I. SKRYPNIK

ON THE EVOLUTION OF GIBBS STATES OF THE LATTICE
GRADIENT STOCHASTIC DYNAMICS OF INTERACTING
OSCILLATORS

Grand canonical correlation functions of stochastic(Brownian) lattice linear oscilla-
tors interacting via a pair short-range potential are found in the thermodynamic
limits at low activities and on a finite time interval. It is proved that their sequence
is a weak solution of the BBGKY-type gradient diffision hierarchy. The initial corre-
lation functions are Gibbsian, which corresponds to many-body positive finite-range
and short-range non-positive pair interaction potentials. The utilized technique is
based on an application of the Feynman—Kac formula for solutions of the Smolu-
chowski equation and a representation of the time-dependent correlation functions in
terms of correlation functions of a Gibbs lattice oscillator path system with many-
body interaction potentials.

1. INTRODUCTION AND MAIN RESULT

The lattice gradient stochastic oscillator dynamics with pair interaction is described
by the infinite-component evolution equation

4z (t) = _auo(qas) - Z @cug,y(%,%) + 6_%1&35(15)’ HAES Zda

yF#x
where ¢, € R, u) ,(¢x,qy) is the pair interaction potentials, u® is an external potential,
wy(t) are independent processes of white noise, 9, = %, the summation is performed

over Z4\x = x¢. We assume that u°(q) is an even bounded from below polynomial of
the 2n-th degree and the potential ug,y is polynomial and short-range. The existence of
solutions for the lattice stochastic system for the simplest pair interaction was established
in [9],[5], and their special properties were described in [3], [4], [2], [1].

Physical states of the stochastic dynamics are described by probability measures on
the infinite Cartesian product RY,Y = Z< or, equivalently, by correlation functions of the
canonical or grand canonical ensemble. The associated gradient diffusion BBGKY-type
hierarchy for the correlation functions is given by

0 _
SePlaxit) = D 0x {87 Ouplaxit) + plax: )0:U°(ax)+
zeX

(1.1) =3 [ )@t olaxons ).

yeXe
where
Ullgx) =D u(@)+ D udy(geray),
reX zF#yeX

X¢=7ZNX,|X| < oo, the integration is performed over RVl |V] is the number of sites
in Y, and ( is the inverse temperature. It is derived from the finite-volume gradient
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diffusion hierarchy, coinciding with (1.1), in which the summation in the integral term
is performed over A\X instead of X¢, in the thermodynamic limit A — Z?. Formal
arguments show that this finite-volume hierarchy is satisfied by the finite-volume grand
canonical correlation functions

pMax;t) =Ex xa(X) Y Z‘XIHYl/PO(QXuY;t)dQY,
YCA\X

Ea= ), Z‘Y‘/po(qwt)dqy,

YCA

(1.2)

where xa is the characteristic function of a hypercube A, z is the activity, and the
distribution (integrable, positive) function p°(gx;t) satisfies the Smoluchowski equation
which coincides with (1.1), in which the integral term is omitted. The stationary solution
of the Smoluchowski equation coincides with exp{—pU%(qx)}. A rigorous derivation of
the finite-volume diffusion hierarchy demands p°(gx;t) to be sufficiently smooth and
have a sufficient decrease at infinity in the oscillator variables. We establish that the
sequence p® of the correlation functions is a weak solution of the lattice finite-volume
diffusion hierarchy.

We say that that the sequence p of the correlation functions is a weak solution of
the lattice diffusion hierarchy (1.1) if, for a twice differentiable function f(gx) which is
bounded together with its derivatives, the following equality is true:

G [ Haxtaxitdne =3 [{otaxi0ls 82 ax) - (0U°) (x2S ax))-

zeX

(1.2) —(@£)(ax) > /(81Ug,y)(qxvQy)p(QXUy3t)de}dQX-

yeXe

In this paper, we will find the grand canonical correlation functions in the thermodynamic
limit for the initial Gibbsian correlation functions generated by many-body potentials and
prove that their sequence is a weak solution of the gradient diffusion hierarchy on a finite
time interval and at a small enough activity. The initial functions, p°, are given by

—1770
Pgx) = e PO @@ Ty (gx) = Y wl@) + D>, wv(ay),
z€X [Y|>2,YCX

where the summation in Y is performed over subsets of X, u; is a bounded from below

even polynomial of the 2n,-th degree, the potentials u1,y are polynomial for all Y, finite-

range, and positive for |Y| > 2, such that |u1.y (qv )| < J3 > (qf,lm +1), [Oyury (gy)] <

yey
Jy 3 (lgylP'17t 4 1), where ljy| = 2(n — 1) if [Y] > 2 and ljy| = 21 < 2ny if [Y] =2
yey
(this implies u1,y (gy) = 0 for [Y| > 2ny — 1), ||J}]1 = max Y J{ < oo, where the
T zeYy
summation in Y is performed over subsets of Z? containing .
We will require also that ug’y(qw, qy) = Jgfyuo(qx, qy), J2 =J°

s
VIO =) V2 < oo,
xr
where the summation is performed over Z% and

lo

w(q.q) =Y > endd*+d"¢"),  2<2n-1),

s=11+k=2s
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where QS? B = ¢721 are real numbers. Our main result is formulated as the following
theorem.

Theorem 1.1. There exists a weak solution p(qx;t) of the diffusion hierarchy (1.1)
which is the thermodynamic limit of p™(qx;t) and given as an expansion in powers of z
convergent in a disc |z| < g7 such that

(1.3) p(ax;t8) — p™(ax; tB)] < ex(N exp{—B > _ u(g.)}g~ I, X € AN,

rzeX

(14)  plax;tB) < Neexp{—B Y u(gz)}g™™, a(q) = %UO(Q) —yg* " 7,
reX

where €x(A\), g«, g, Nx, ¥ are positive locally bounded functions of (t,3) on RT x RT\0,
independent of X, qx, growing at infinity in t, v is a positive constant, g. > g, A(N) is
the set of lattice sites located in A, whose distance from the boundary of A is greater than
A, and €.(N\) is a continuous function tending to zero at infinity in .

We prove this theorem by reducing the problem of the thermodynamic limit for
p*(qx;t) to the problem of the thermodynamic limit for the complex Gibbsian path
correlation functions p®(wx) depending on the Wiener paths wx = (w,,w,x € X)

(15)  Mew) =Fha) 3 I [expl- Uy FPldoy),
YCA\X

where P(dwy) = [[ P(dwy), P(dw) = e #"W)dqP,(dw)Py(dw*) = P'(dw)Py(dw*), the
yey

integration is performed over RV x ley‘, Qo is the probability space of Wiener paths,

P,(dw) is the Wiener measure concentrated on paths starting from ¢, the complex U,

u depend on the Wiener paths on the interval [0,t], the grand partition function Zp

coincides with the numerator for X = () and

(1.6) Uwx)= Y  uy(wy),

[Y[>2,YyCX

where uj (wy) = Reuy(wy) = u1y(wy(t)), tyy)(wy) = Imuy(wy) = 0 for [Y] >
2. The correlation functions p™(gx;t3) are expressed in terms of the complex path
correlation functions as follows:

=B 2 u(wa)
an  PMaxits) = [ e S Rk Py o)

where the integration is performed over QS‘X|7 P, (dwx) = [l P,,(dws). It is worth to
zeX

add also that the real-valued part U' of U depends only on wy, and the imaginary part
U of U is generated by the pair potential u,(,,,). The presence of 3 on the left-hand side
of (1.7) makes the expressions of the path potentials u,uy more simple. Note that the
introduction of the measure dgP,(dw) is simplified by the fact that the Wiener measure
is translation invariant: [ Py(dw)f(w) = [ Py(dw)f(w + q).

The fact that the many-body potentials ui- are finite-range and positive enables us
to solve the symmetrized (with respect to the superstability condition) KS (Kirkwood—
Salzburg) resolvent-type equation which is satisfied by the sequence of the path correla-
tion functions p*(wx) in the thermodynamic limit p(wy). We solve the symmetrized KS
equation with the help of the resolvent expansion of the symmetrized KS operator show-
ing that it is bounded in the Banach space E¢ 5 (E¢ = E¢ o) of sequences of measurable
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functions with the norm

I1Flle,r = m)?xf_‘xlesssupexp{* > flws)HFx (wx)l-
wx zeX

The choice of f will depend exclusively on the pair potentials u%y, U1;z,y and guarantees

that No = [ e/(“)P(dw) < co. As aresult, the thermodynamic limit p(gx;t) of p*(gx;t)
will be expressed in terms of p(wx) by

(18) plax: 1) = / plexe) Po(dw') Py (dwxc).

The analog of Theorem 1.1 for the canonical correlation functions of the oscillator sto-
chastic lattice dynamics with Gibbsian initial correlation functions, generated by a pair
potential, was formulated in [13], where a polynomial expansion was utilized. The poly-
nomial expansion was proven to converge in the thermodynamic limit for the Gibbsian
canonical correlation functions with a pair potential at high-temperatures in [7]. The
idea to express correlation functions of the stochastic dynamics in terms of correlation
functions of a Gibbs path system with a ternary interaction potential was applied for
particle systems in [14]. The similar idea was utilized in [15], where the author showed
that the lattice stochastic oscillator dynamics admits a long-range order for an initial
canonical Gibbs state.

Our paper is organized as follows: in Section 2, we derive (1.7); in Section 3, we write
down the finite-volume, infinite-volume, and symmetrized KS equations for the complex
path correlation functions and derive also the recursion relation for the KS kernels; in
Section 4, we find the norm of the KS and symmetrized KS operators; and in Section 5 by
Theorem 5.1, we establish the existence of solutions of the infinite-volume symmetrized
KS equation, i.e. we find the thermodynamic limit of the path correlation functions and
prove Theorem 1.1 by using (1.8).

2. HEAT EQUATION AND FEYNMAN-KAC FORMULA

A derivation of (1.7) is fulfilled in three steps. The first step is the transformation of
the Smoluchowski equation into the heat equation. In the second one, we solve the latter
with the help of the Feynman-Kac (FK) formula. Indeed, after the substitution

(2.1) Pgx;t) = e 2V @y (gx 1),

the following heat equation for v is obtained:

(2:2) D baxit) = 5713 @2blax: 1) — Un(ax blax:),

ot =

1 B
Ua(gx) = 5 > [-03U%ax) + 5(3xU°(qx))2]-
zeX
We solve the L2-Cauchy problem for the heat equation with the help of the well-known
[12] FK formula

-3 f Uz (wx (7))dr

(2.3) Wlaxi ) = [ Puldux)e Golw (),

where 10y € L?(RIX) is the initial data. The derivation of the FK formula is based on the
application of the Trotter product formula [12, T.X.51]. A proof of the Trotter product
formula demands the Hamiltonian to be essentially self-adjoint on the intersection of the
domains of the Laplacian and its unbounded perturbation U,. This is guaranteed by
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example X.9.3 from [12] for a bounded from below polynomial Us (by adding a finite
positive constant, this polynomial can be transformed into a positive one).

The solution p°(gx;t) of the Cauchy problem for the oscillator Smoluchowski equation
with the initial data p®(gx) = e #@ U (@x)+U1(ax)) ig obtained from (2.1) and (2.3)
putting o (gx) = e #Y19x) in it. That is,

(24) P (ax; Bt) = /qu (duwx )e= 70w,

where
U(’UJX)_Q 1UO((]X)+U1 wX /U2 wX(T wX(O):(ZX'

The following representation for the second term in the expression for Us holds:

(2.5) D (0:U%ax)* = Y (0uu(an)* + Y, (4ryay) + Uslax)-
reX zeX rAyeX

Here,

(@ @y) = T yu2(ge,qy),  Uslax) =D (Y 0wul (42, 9))7,

z€X y#z,yeX

u2(qe» Qy) = (awuo(%m Qy))awuo(%v) + (6yuO(Qma Qy))ayuo(Qy))~
The similar representation for the first term in the expression for Us looks as
(2.6) D 0U%ax) = Y % (@) + Y ul) (g ay),
zeX zeX z#yeX

where

u®

1
Ly(%vqy) [ 3 zy(qm’q’lj)_‘_ayul y(%v%)] [82 O(Qvay)“’a U (qmv%)]

2 oy
On the third step of the derivation of (1.7), we construct the imaginary part U, of U
from U, by utilizing the formula

exp{~ / Py} = [ exp(i / F(r)dw ()} Po(dw™),

where the right-hand side contains the stochastic integral [8] determined as the integral
of f with the generalized Gaussian process of white noise. This stochastic integral is
determined as a strong limit of the sequence of Riemannian sums of cylinder functions
in the space of quadratically integrable functions. As a result,

exp{- [Uh(uwx(r)ir) =

NIQ

/ S 0l (w (), wy (7)) duw (1)} Po(duw ).
z€X ) wFYeEX

or

/ exp{—i

(2.7) exp{~ / Up(w ())dr} = / exp{—iBU.(wx)} Py (dury ).

0
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where
U*(WX) = Z u*(m,y)(wmawy)» Uy (x, y)(Wxawy) 2 yu (W&any)a
zF#yeX
and
1 * *
(2.8) Ui (Way Wy) = §(f*(wszy|wm) + f*(wvawmy))v

t

o) = [ dus(m)00wa (), wy (7).
0

Our stochastic integrals depend on the Wiener paths without stars, and the sequence of
the Riemannian sums depends also on them. Hence, the limiting function of the sums
will be measurable in all the Wiener paths since the Wiener measure is concentrated on
continuous paths, and the strong limit of a convergent sequence in a space of quadrat-
ically integrable functions contains a subsequence converging almost everywhere to a
measurable function. Let

Ul(wx) =U(wx) —

%IQ

zeX

/U ))dT — Z u(wy),
where u(wy) = $u°(qs) + w1 (ws (1)) + uz(wy),

B

wali) = [atwa(dr,  ie) = —30%0a) + 200

From (2.4-8), it follows that the functions w, U, uy appeared in (1.6-7) are given by the
last two equalities and

(2.9) U(wX) =U! (wx) + iU*(wx), uY(wY) = u%/(wy) + iu*(y)(wy),
where
1
Ualc,y(wwiy) = 5“2,11(‘100» Qy) + Uty (Wa (1), wy (1)) + U2y (Wa, wy),

and
t

u2;ﬂc,y(w$7wy) = /ﬂz,y(wx(7)7wy(7))d77

0
- @) B,
Uz,y(‘]za‘]y) _§um7y(QI7Qy) + uz y(Q17Qy)
The expression for the pair potential u%(q, ¢') allows one to derive the bounds
1 1
(210)  [9°u%(g, )] < 5lvos(a) +v0,6(@)], 100U’ (a,¢)] < S [v0.2(9) + vo2(d)],

where vo5(q) = as(¢*°* 4+ 1), s=0,1,2, v0,0 = vo. We assume that 2.J; , = J; , =

JL, ., that is,

(2.11) lu10,4/(2,¢)] < Trylor(@) +ui(@)l,  vile) =g + 1.

Since u°(q) is a bounded from below polynomial of the 2n-th degree, we have |9u®(q)|
adlq>*=1, 10%u°(q)] < a9(|g|>™~V) + 1), and relation (2.10) yields

IN

|U2(Qz7Qy)| < [|8xuo(qw)| + |8y“0(q1;)|][|azuo(qu Qy)‘ + \%uo(qy,qw)l} <
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< a1a9 (g "7 4 gy ) (107" + gy [P0 +2) <
< a1a9[(|ga] + gy )Y 4+ 2(Jgu | + lgy)*" 1] <
< ala'(1)22(lo+n)(|Qx|2(n+l0_1) =+ |Qy‘2(n+l0_1) +2)

Here, we used the inequalities (a+b)" > a"+b", (a+b)" < 2"(a"+b"),a" < a™+1,a,b >
0,n < m. This leads to

_ Jo N 3
[t (00r 9y)| < =55 [0(a0) +5(ay)),  O(a) =
(211/) _ (6a1a(1)22(lo+n*1) + a2)(q2(n+lgfl) + 1)

The last inequality and (2.11) result in the following inequality which will be used in the
next section for symmetrizing the KS equation:

(2.12) [ty (W, wy)] < ‘]””2*1’ [0} (wz) + v* (wy)]-

Here,
vl (w) =27 o (g) + vi(w(t) +vz(w),  Jp =max(J, Jy), va(w) = /ﬂ(w(T))dr

3. KS EQUATION

A derivation of the KS equation for p®(wx) is based on the application of the equality

(3.1) Flwx)=Y_ > ()" F(wg)
SCX S'CS
which follows from the simple equality
s - 1 l n!
n=|X[, Y (-n)¥I=>"(-1)'c, =0, C}= TeE
Sex 1=0
Indeed, let us consider the coefficient before F'(wx\,) on the right-hand side of the
previous equality for arbitrary x. It corresponds either to the case S = X or S = X\z
and S’ = X\x. The signs before F' are different for these options, and this coefficient is
equal to zero. Further, one has to take S = X, 5 = X\z1,5 = X\x2,5 = X\z1 U 22,
S" = X\z1 Uy and check that the coefficient before F(wx\z,ugz,), i-€. the last equality
for n = 2, is equal to zero. In the same fashion, one has to calculate the coefficients
before F(wx\z,Uws,...uz, ), corresponding to the choice S = X\z1 Uzs... Ux,, and check
that it coincides with the above sum with the binomial coefficients .
Let x € X and X NY = (. Then
(31/) efﬂU(wX,wY) _ efﬁVV(wI\u)x\m,wy)efﬁU(ouX\z,W)/)7

where
W(wszlwy) = U(wg,wy) — U(wy), zNY =0
From (3.1 — 1), it follows that

(3.2) emIWlesloxowr) = 3 " K (wplwx g ws),
SCY

where

(33) K(wz|wX\m7wY) = Z (_1)|Y\S‘6_BW(UJ:¢|UJX\7;70JS)_

sCYy
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Then, substituting (3.1’), (3.2-3) into the expression for finite-volume grand canonical
correlation functions, one obtains

pMwx) = Ey xa(X) Z IYUXI Z /P (dwy ) K (welwx\ 25 ws)e —BU(wxuy\a)

YCA\X SCYy
=z Z /P (dwz) (wm\wX\L,wZ)_A xa(X UZ)
ZCA\X
% Z z‘YUXUZ‘_l/P(dwy)e_ﬁU(wzux\‘”’wY)-
Y CA\(ZUX)

The equality
pA(WX\x) _ ExlXA(X\-T) Z Z‘YUXl_l/P(dwy)e_ﬂU(uX\m7wY)-
Y C(A\X)Uz
leads to

Exle(X U Z) Z Z|YUXUZ|—1 /P(dwy)e_ﬁU(WZuX\z-,WY) —
Y CA\(ZUX)

= A @) (0 @xveuz) / P(dwy )" (wx07))-

It is clear that the terms with x € Y in the sum, representing the first summand in the
round brackets, are cancelled by the second term in the brackets. This completes the
derivation of the KS equation, if one takes also into account that p(wp) = 1. It is given
forz € X,|X|>1by

(3.3

Prax) =2 3 [ Klealoxion) xaz) - [ Plda)s w@xoz)| Pldvz)
ZCA\X
and, for X =z, by
prwn) = 2@~ [ PP+ S [ Kool wn)-

|Z|>1,ZCA\x

- / Pldws) ™ (@z00) | P(dw7)}.

Here, one has to take the following equality into account:

Extxalz) Y 2t / P(dwy)e V) =y (2)(1 — / P(dw;)p (ws))-

YCA\z
It is equivalent to
Sy "xa(z Z ‘Y‘/ (dwy)e™ BU(wy) — /P (dwy ) p™ (we).
zeY CA

Let a(wx) = d)x,1- Let, also, the KS operator K be given for A = 74 by the right-hand
side in (3.3'), if | X| > 1, and by the right-hand side of the next equality without unity, if
X = z. As a result, the finite-volume and infinite-volume KS equations in the abstract
look like

(3.4) oA = zKapa + zxaq, p=zKp+ za,

where Kx = xaKxa, xa is the operator of multiplication by the characteristic function
of A: (xaF)x(wx) =xa(X)Fx(wx).
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In order to treat the case of non-positive potentials, one has to symmetrize the KS
equations with the help of the superstability condition ( see [10]) which follows from
(2.12),

Soouly(wawy) > =T vlws), X2

r#yeX reX
where J = ||J||;. This means that there is a non-trivial set on which the following
inequality holds:
(3.4") S gy (wewy) = —Jot (wa).
yeX,y#z
Let x.(wx) be its characteristic (indication) function. Then
(3.5) Dowx) =1 xiwx) = (Y x(wx)  Xalwx).
zeX yeX
The symmetrized KS operator K is given, for | X| > 2, by

(RF)wx) = 3 xiwx) 3 / K (el 3101 92) [ F(wx\a02)

zeX ZCXe
— / P(dwm)F(wXUZ)]P(de).
The symmetrized finite-volume and infinite-volume KS equations are given, respectively,
by
pa = zKapa + 2Xa0, Kz = xaKxa,
and
(3.6) p=z2Kp+ zo.

Proposition 3.1. Let all the potentials be finite-range except the pair one and have the
range R. Then the following equality holds for X NY =0, z € X:

(3.7) K(wzlwx\z;wy) = Z K (welwx\z; ws )X B, (7)(S")G (Walwy\s/) X Be () (Y\S').
5'CY
Here, B,(R) is a hyperball with radius R centered at x, BS(R) = Z4\ B, (R),
Gluslws) = 3 (—1)IS\lemWalerlos) — T (&Pt @) 1),
S'CS yeS

and Wa(wzlws) = Y Ug y(we,wy).
yeS’

Proof. The many-body potentials have finite range R, that is, for an arbitrary z €
X,|X| > 2, the equality ux(wx) = Oholds, |x — 2’| > R,2’ € X\z, and |z — 2/| is the
Fuclidean distance between two lattice sites. This means that
(3.8) W(wz|x\a»ws) = W(wz|wx\arws\s,) + We(wz|ws, ), y & By(R) =y € Sa.
Here, one has to take the following equality into account:

Wa(wzlws) = Wa(wzlgs,) + Wa(wz|ws\s,)-
Let us substitute the equality
1= H (XBe(r)(Y) + XB.(R)(Y)) = Z XB.(r) (8" )XBe () (Y\S')
yey S'CY
into the expression for the KS kernel and apply (3.8). This results in
Z (—1)Slem AW (welwxiaws) Z XB.(r) (S )XBe(r)(Y\S') =

SCy s'CYy
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= Z Z(—1)'Y\S'e_ﬁw(w‘"'“JX\”’“’S)XBI(R)(S’)XB_;(R)(Y\S'):

S'CY SCY

:Z Z Z(_l)(lYl—lsll—\Szl)x

S'CY 8,CY\S" S1C8'

><e*ﬂ[W(“““X\m“’Sl)+W2(z|‘”32)]XBI(R) (S))xBe(my(Y\S) =

— Z XB.(R) S)XBc(R) (Y\S) Z (\S\ 1811) g =BW (walwx\aswsq) 5
S'CY S1C8
> Z (,1)(Y—\S’I—Isz\)e—ﬂwz(wz\wsz)_
S2CY\S/
This proves the proposition.

4. NORM OF THE KS OPERATOR

For the norm of the symmetrized KS operator, we have

I1Klle.s < (67" + No)ess sup e /(<)
X,wx

(4.1) S f(wy)

X Z Z VI (wx /|K We|wx\z, wy )|eveY P(dwy).

zeX YCX©
From the positivity of the many-body potentials and (2.12), one derives
K (@plwxiaiwy)| < ) en#Mlerloniows)
s5Cy
— e BW2(welwx\a) Z e AWz (walws) <
sCYy

_ Jz—2z z
< e Walaloxia) I ) § 2 B E T

sCY
= e BWalualoxa) 570 @) T (1 4 e+ ().
z€Y
That is, the last inequality and (3.4') lead to

(4.2) X (wx) | K (wa|wx\zswy )| < e 2L Jut (wa) H (1 +e3Jezv (wz)) *(wx).
z€Y

It follows from the recursion relation (3.7), the definition of KS kernels, and the last
inequality that
X;(WX)|K(QQU|WX\MWY)| <
36 5

eI 3T (14 €272 @)y (1) (9)Glwalwys )X (wx) =

SCY zeS
_ﬁ w v (w *
= e @) [T[G(welwy) + Xp, (0 (W) (1 + 37 )] (wx)
yeY
and then
(4.3)
38 Jo (w, B Jut(wy)]*
Xx(wX)|K(wz|wX\z’wY)| <ez Jvi(ws) H[G(wx|wy) + 2XBI(R)(y)e2J ( J)]Xz(wx)'

yey
The last inequality yields

> flwy)
> Y o) [ 1Ko ) <

reEXYCXe
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ﬁ 7’0 Wy
<Y Xi(wx)e = 7D T + €Ky + 2x8, () (W) N1)] =

reX y#x
(4.4) = mgxe%jvl(ww) H [1 + f(Kac,y + 2XBm(R) (y)Nl)]v
y#z
where
Kyy= / e~ Ptz (Warwy) _ l\ef(“’y)P(dwyL
Ny = [[ef+570"||;. Here, we used (3.5). Let us estimate K, . From

e Buav(@awy) _ 1| < e Buey@rwn) 1| 4 [emiBunean @) _ ) <

1
< e P @een) — 1| 4 28uy (g ) (Was wy),
it follows that
1
(4.5) |€fﬂum,y(ww,w) —1 < ﬂnui’y(wz,wy)|eﬁ|u1,y(wx,w)\ + 2\u*(x,y)(wx,wy)l]-

From the Schwartz inequality and (2.12), one deduces
/|u*(x,y)(wz,wy)lef(”’“’)P(dwy) < Jo_yvewa)N2,  NF=|le* |,

where v2(w) = [ |us(w,w’)|*P(dw’)(see the Remark at the end of the present paper).
From (2.12), it follows also that

/ [l (@ wy ) (@re)led @) P(dw,) < 271,y (Nyv! (wg) + Na)es To-vv' (o),

where N3 = ||vlef+57%"||;. Two last inequalities show that

(4.6) Koy < B2 oy (N1ot (wy) + N3) + J2_ U*(wm)N2]62J’” vv' (ws),
Two last inequalities imply that the expression under the sign of the product in (4.4) is

less than the exponent of

€123, N1+ 5 ey (N1 -+ 100" (00) + Ng) 4 ENay [0 BT (2] (46)

Here, we applied the formulas 1 + a + be® < e®tP*¢ q. b,c > 0, be < be®, where a, bc
correspond to the first and second terms under the square bracket on the right-hand side
of (4.6). As a result, we have

(4.7)

Hffl\g,fS(5_1+No)6591688sgpexp{*f() (€g2+ 5 Jﬂ Yws) + VBIIV IO lva(ws)},

where
@8) g1 =2ABo(R)Ny + SUTINs + VBNVl g2 = SNy + 1)
To make the KS norm finite, we have to choose
3 -
F@) = BA+5 D fo(w)tr/Bua (@), fo(w) = (27 vo(g)) 0 o™ (w(t) +0, 7 (w),
where

-1 -1 2(n—1
Y& >0, 1<1+C0§n , 1<1+G< ! , 1<1+§27M
l lo+n—1

0 1
For 7, > ||V J9||1, the estimation of the norm of the KS equation is reduced to the
estimation of esssup exp{—[fo(w) + £gav! (wy)}, since v* < fy + 3. Since
w

)Y

7’Ul+<+a’u _ a
maxe exp{C(y—— .
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we obtain
(4.9) 1K ]le,r < (€71 + No)etn T (0375,

where

2 __1
506 =3 9%G,6), 6 = c(ﬁf?g)%
=0

Lemma 4.1. Let A C A C A", and let § be the distance of A to the boundary of A'.
Then

[Ixa K (xar — xa)lle.s < Cs(8),
where the positive Cs(§) tends to zero if § tends to infinity.

Proof We have to bound the right-hand side of the inequality

XA K O = xalle.s < (€7 4 No)maxsup Y i (wx)[ D €7 a0 (xar (V)
“X rex Yexe

—flwa) > flwy)
(4.10) —xa(Y))e @ | K (we|wx\ g, wy)|eve” P(dwy)].
In the derivation of this inequality, we employed the equalities

XA(X)(xar (X UY) = xa (X UY)) = xa(X)(xar (V) = xar(Y))]

XA (X) (xar (X\2) UY) = xar (X\2) UY)) = xa(X) (xar (V) = xar (V).
For Y = (), the right-hand sides are equal to zero. The first and the second equalities

correspond to the first and the second terms on the right-hand side of the KS equation
for p*. From the formulas

0 < xar(Y) = xar(Y) <) (1= xar (),

YyeY

(4.11) S U=—xa@)FY)= > (1-xa(2) >, F(zuY’)

YCXeyeY zEX¢C Y'CXe\z

(here, X\z = (X U 2)), (4.3) and (4.4), where the summation in Y is performed over
(X U 2)° one sees that the expression in the square brackets on the right-hand side of
(4.10) is less than

max xa(x) Y (1 — xar(2))e /T eaegr T 1+ €Kz,

z YFT,z

where K | = K, + 2xp,(r)(y)N1. Then this expression is less than [due to (4.6)]
max {xa () > (1= xar(2)

X [g{Jzz(vl(wm)Nl + N3) + Jo_ vi(wy) N}
x e~ 3owa) 2 VBIVIlwn@e) L oN x g ) (2)
X eg‘h—zvl(Wz)_f(“’z)‘i‘gf()(‘*’z)"‘%j”l(Wz)+2_1\/ﬁ||\/ﬁ||1v*(“)z)

< [ a+¢x;,).

Y#T,z
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The first term in the braces is less than J,_.gs (we put ¢; = m;a%( ae’“l), where
az

2

o= G5+ N 36D T en s 20005 N

In addition, we have [due to (4.6 — 6')]
I3 vl *
ezlev @) TT (14€K; ) < exp{égav’ (we) + VBV IO 1va(ws) + €1},

YF#T,2
xa(x) Z(l —xar(2))Jo—z < Z J: = [lIxBg6)l-
z |z]>6
From (4.10) and two last inequalities, one deduces the needed equality with
(4.12) Cs(6) = c(@)(67" + NoJe P9,y > 2||VI0 |,
where
c(8) = gsllIxBs @)l + 2N1l|XBo(rR) X Bz (8)|]1-

The value of ¢(d) tends to zero, when ¢ tends to infinity, since ||.J||1 < co. The lemma is

proven.
The optimal choice of ¢ is

(4.13) E=97", g=g+[B T A=x"(B-1) +x" (8- Dlg,

where (_ = min¢; and x* is the characteristic function of R™ and x(0) = 1. These
conditions, the expression for gg, and (4.9) lead to the most simple bound

(4.14) 1K ]lg-1.5 < (g+ No)et*378 = g,.

The dependence of g and the norms Ny on t, 8 will be only rarely indicated.

5. PROOF OF THEOREM 1.1

To prove that the symmetrized KS operator is bounded, we have to show that the
norms N; are finite. This will de done with the help of the following lemma.

Lemma 5.1. For arbitrary positive o, 71, the following inequality holds:

t
* " _ o '7_21 fwz(znfl)(‘r)d‘r 2[0 —1
/ &) Py(dw') < w(yory T 20)[VIp e b= ey

Here,
t

Ip = /P/(dw) exp{’yl/wQ(Q"_l)(T)dT},
0
and k(a, zp) does not depend on w and is an entire function of a, zo.

Proof. From the Schwartz and Holder inequalities, it follows that [v. is determined
below in(4.8)]

[orirtan <1 [ v Po(au))t

< (\/%)mfl[/ w2 (W, ) Po(dw®) P(dw))]2,  w = (w,w").
Here we took the equality P(dw) = Py(dw*)P’(dw) and the probability character of Py:

/ Pldw) = / P'(dw) = =
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into account. The last inequality yields

51 Yovx (w) * —1 (\/2—070)7” 2m / * ni

(5.1) [e Py(dw*) <1+ (Vzo) ™' Y S (@, @) Po(dw®) Pdw)] .
m>1 ’

In view of the relation

uy™ (w,w') < 22MfI (W' wlw™) + f27 (w, w'fw")],

/(/ F(r)dw (7)) Po(awr) = 220 / 2y,

where either f(7) = Oul(w(7),w’ (1)) or f(1) = du’(w'(7),w(r)) (the Wiener integral
of an odd power of the stochastic integral is zero), one derives

62 [uew)nen) ) < 2 B0 + ),

where
t

folw,w') = [ @u(w(r), (7)) 2dr.
0
It follows from (2.19), (5.2), and the inequalities

fgn(w7w/) S ,Ulm(w) _"_ v/’ln(w/)’
t t
v (w) = ay / w(r)|#o~tdr < agt' / w@ =D (7)dr]"
0 0

that (the last inequality is derived from the Holder inequality)
(5.3)

[ firtw.w)Paw)

t t
, , ~ fw/2(2n71)(7_)d7_ ~ fw2(2n71)(7_)d7_
S (n/mefl)mn (Qvl—laltlfn )m[/ Pl(dwl)e ! 0 +e 10 .

Here, one has to consider that

maxae * < mMe ™.
a>0

Relations (5.1) and (5.3) lead to the inequality announced in the lemma with

wa,20) = 14 2(y/3) " 3 BT GO,y

m>1

The series on the right-hand side converges since lp < n,n’ < 1 and (Hn ) <1, Here,

we took the inequality e="'m™ < m! < m™ into account. The Lemma i 15 proven.
Consider the norms N,. Let

u®(q) = nq”
j=1
We now put

52
"= Yo =VBre v =2V
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[such a choice is motivated by (4.12)] in Lemma 5.1. Using the inequality |¢|* < €|q|' —ce,
where k < [, € is arbitrary small, and ¢ > 0, we find
UO(q) > 2_177nq2n _ ,'70’ (8U0(q))2 > 2—1n72Lq2(2n—1) _ 77/7
*u(q)] <27 ug® ) 0",

where n°,7/,7" > 0. As a result (u; is a bounded from below polynomial), we have
t
1
w(w) > u(w) —y 87" /w2(2”_1)(7)d7 > Znnqzn —ct,
0

where ¢ is a linear positive polynomial in 3 and ¢ (we omit the dependence of ¢t on
t, 0 in our notations). Then

20 < Ip < e’GchIo, Iy = /eigniq%dq.
Let us put

ot , ,
ra(t,8) = (7% V/Io + Dr(18[VIO 18~ Fn ¢ I,
Then Lemma 5.1 yields

(54) No < Ni < Ns < ku(t, 5) / dqPy(dw)e™ "), N2 < k. (t, ) / dqPy(dw)e= ),

where
flw) = putw) — (57 + o) - 2 [ w2 Dinyar - 60+ 5D fo(w)
0

Here, we used the inequality vl < e”l, considering N3. The polynomials in ¢, w(¢) in the
expression for the function f(w)—u(w) have degrees less than those of the corresponding
polynomials in the expression for u(w). This fact yields the inequality

_ ﬁ B

Fw) = Zng™ = ¢,
where ¢ is a positive quadratic polynomial in 3 and a linear one in ¢. Then relation (5.4)
and this inequality show that the integral in (5.4) is less than Ipe® and that

(5.5) No < N1 < N3 < ky(t, 8)I0e, Nz < r(t, B)Ioe".
The last inequality and Lemma 4.1 prove the following theorem.

Theorem 5.1. Let v, = 2||VJO||1. Then the norm ||K||c.; of the symmetrized KS
operator is finite in E¢ ¢, and the series

(5.6) ot = Z TR, p= Z 2K

n>0 n>0

determine the unique solutions of the finite-volume and infinite-volume symmetrized KS
equations in B¢, respectively, if |z| - ||K|le,y < 1. Moreover, there exists a positive
continuous function €(\, &) decreasing to zero at infinity in \ such that

where A(X) is the set of lattice sites located in A, whose distance from the boundary of A
is greater than .
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The proof of inequality (5.7) is given with the help of the Lemma 4.1 and standard
arguments [see formulas (2.39), (2.45), and (2.48) in [11], from which we derive the

formula
zla(€))H? z

where a(€) coincides with the right-hand side of the inequality for the norm of the
symmetrized KS operator and [ is a positive integer. A general formula looks like

e s(8)
zla
) = 2ejg (AT EOAS )
1—|z[a(§) (1 —]zla(s))
To derive it from the previous formula, one has to use the inequalities
A> VALV = A, XA < XA(A_)> g[\m*Jr1 < gﬁ, g<1,

where [a]_ is the integer part of a positive number a. Note that the multiplier |z on
the right-hand side of the last formula coincides with ||za|e, f.

Proof of Theorem 1.1. We determine p(gx;¢3) by (1.8), in which the sequence of
{p(wx), X C Z%} satisfy the symmetrized KS equation. Then Theorem 5.1 and relations
(4.13-14) establish that its series in powers of z converges in a disc |z| < g, in the complex
plane. Theorem 5.1 and relations (4.13-14) result also in

lp(ax; 1)l Sg"x'/exp{ B (u(ws) = f(wa))}Po(dw) Py (dwx)llpllg-1,5

zeX

Using Lemma 5.1 with v, = ""ﬂ Y0 = 2v/ 8|V JO|1, we establish that
(5.8)

p(ax;tB) < exp{-8) (27 u’(q.) — (1 + %j)(flvo(qx))”g") —In T (gz)}lpllg—

reX
where
I@)= [ #7p du)
and
t
o) = u(w) - Fuo(a) — (14 FT)HE w(B) + o ) - Fot w2
0

Taking the conditions on (; into account, one sees that I_(q) is finite since f_(w) > —c_,

where c_ is a linear positive polynomial in 3 and ¢, and I_(g) < e®°~. Here, one has

1+¢2

to apply the Holder inequality to the term with v, and use the above inequality

lg|* <elq|' — ¢, k < 1. Moreover, we have the inequality
(2 o)) % < 20D 41
Then (1.4) follows from (5.8) if one puts
No=leld—lelg) Y, A=eo+ (D), A=)
Let X € A(M\). Then (1.3) is a result of (1.7-8), Theorem 5.1, the inequality
|p(ax;tB) — p™(ax;tB)| <

< [ exp(=8 S ulwa)}pwx) - M wx) Pu(duso) Pay (du) <

zeX

<O / exp{=8 3 (ulwe) — £(wa)} Poldu) Py (dux),

reX
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the bound for I_(q), and the equality €.(\) = €(\, g7 1).
We now prove (1.2"). At first, we present a formal derivation of the finite-volume
diffusion hierarchy

A . _ —1 A . A . 0
prid (QX7t)—§(8m{ﬁ Oop™(gx:t) + p™ (ax;5 )0, U (gx )+

(5.9) + 30 [0l g (axovitidar )

yeA\X

We take into account that the grand partition function does not depend on time due
to the gradient character of the Smoluchowski equation. Let us differentiate the first
equality in (1.2) under the sign of the integral and take the Smoluchowski equation for
0°(gx;t). This results in

(5.9) P axst) =

Aat?

= Yy X / S 0,{8719,0 (axuyst) + P (axuys 1), U (axoy ) Yay-
YCA\X yEXUY

The terms corresponding to y € Y are equal to zero, and this equality gives rise to

Maxit) =Y {08700 (ax:t) + p™ (g5 £)0:U (gx)]+

rzeX

+ ) ‘X'”Y'/Z [0l ) (2 4y) D" (ax0vs )40 (ax 0y )03l ) (4s ay)]day }-
YCA\X yey

Here, we used the equality
U (gxuy) = 0:U°(qx) + 0:(U°(axuy) — U°(ax) — U%qy)) =
= aacUO(QX) + Z axug,y(Q$7 Qy)

yey
and its derivative in 0,. Let us utilized the equality

Yo FWiy =Y > F(Yuyy).

YCA\X y€Y YyEA\X YCA\(XUy)

As a result, the last term in the equality for the time derivative of p* is equal to

> [/(%ug,y)(qx,qy)dqy > Z‘Y'“X'“y‘/8zp°(q><uyuy;f)dqy+

yeEA\X Y CA\(yUX)
/ (020 gy, S AV / Plaxoron day] =
YCA\(yuX)

= > [/(f%ug,y)(qmqy)ampA(qXUy;t)dqy+/(3§ 0 )(@y: 3y)p" (axuy; t)dgy] =

yeAX

> 0, /(azug,y)(qm,qy)pA(QXUy;t)dqy~

yeEAX
This proves (5.9). We can apply all these arguments in a rigorous fashion to prove that
the sequence of the finite-volume correlation functions is a weak solution of the diffusion
hierarchy. We do it with the help of the following lemma which will be proved in the
appendix.
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Lemma 5.2. Let i, be given by (2.3) with the Gibbsian initial state

Wolax) = e P,
Then 1 is a twice differentiable function in ¢,z € X and |05¢:] < Cs,5 =0,1,2, where
Cs are positive constants.

Let us take a function f from L?(RIXI). Then

/ Flax)p™(ax;t)dax

is represented as a finite sum in Y of the integrals

/f{z(qY)wt(qya t)dgy,

where fi, € L*(RIY1), since e=Al0(ax) ¢ [P(RIXI) p > 1. Since the time derivative is a
strong L2-derivative, we obtain

%/f(qx)p"(qx;t)dqx
s

></ > 3y{5713yﬂo(QXuY;t) + p%(gxuy; 1), U (gxuy ) Yday -
yeXUY

We can use the previous arguments rigorously applying Lemma 2.1 and the facts that
p(gx;t) tends to zero exponentially fast in oscillator variables and all the potentials
are polynomials. So one can put the terms in (5.9’) with y € Y equal to zero, split the
integral in dgxyz into the multiple integral (due to the Fubini theorem), and change the
order of differentiation in ¢, and integration in g,. All these arguments prove that e

a weak solution of the finite-volume lattice diffusion hierarchy, that is,

/ Flax)o™(ax: dax = /{p ax DB (ax) — (0uT°)(ax)0a f(ax)]

rzeX

(5.10) ~@lax) X [(@,) (a0 axuyi e, Y.
yeA\X

Now we establish that every term of the last equality converges to the corresponding
term in (1.2") in the limit A — Z<¢. It is not difficult to see that the diagonal terms in
the first line of (5.10) converge to the corresponding terms in the first line of (1.2") due
o (1.3). Let X C By(r), and let the distance of By(r) from A° be equal to A, where
B, (r) is a hyperball with radius r centered at the lattice site x. In order to prove the
convergence of the last term on the right-hand side of (5.10), we estimate the following
integrals for X € By(r) using the decomposition X¢ = (A\X) U A%

> /5 Mlax)dgx /(3 g o) (@ 4y) (plaxuyst) — p™(axuyi t)day,

yeEMX

S [@en o [(0: )(arsay)olaxon: e,

yEA©
The sum of these integrals equals the difference of the non-diagonal last terms in (1.2")
and (5.10). The last integral is less than [due to (1.4)]

L -8 > ulqe)
X Z /| (0xf)(ax |dqx/\8 uIy (qu,qy)|e  =€Xvv dg, <

yeAe
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where

-8 3 u(gz) _
Cx(f)=2""ay Iwnea)}((/e oeX |(8$f)(qx)|dqx/e_ﬁ“("")(|qw|2l°_1 +g*mt + 2)dg.

Here, we used (2.10) and put
N=N.@t87"0), §=9(t87"0).

The considered integral converges to zero with increase in A due to the inequality

JO < JO c = )\
g, P < vl = o)

Let us decompose the sum before the integral with the difference p — p? into the sets
Bo(r+ 2710\ X and A\Bo(r+271)\). These sums are bounded by two finite expressions
proportional to £(271\) = £, (27, t371, B) and (271 \), respectively, due to the last
bound and (1.3). The first sum is estimated as follows:

max > /If?xf(qx)ldQX/I&cug,y(qmqy)llp(GXUy;t)*pA(uny;t)ldqy <

XCBo(r
Bl )yeB[)(r+2*1)\)\X

- X u(qa)
z€XUy

dgqy, <

<g N Y [0 anlda [ 1l asa)le

< g eI O ()10

For the second sum, we have the bound

2N max ST [lonanldax [ 10080 llda, <
=T yeA\Bo(r+2-12)

< 2NG X710y (f) max oo T, <2Ng IOk (fleo27MN).
7€) LBy lrra-1a)

Here, we used the fact that p and p” satisfy the same bound given in (1.4). Hence, the
two considered integrals containing the difference p — p* converge to zero for increasing
A which takes integer values. The convergence of the right-hand side of (5.9) is uniform
on the time interval, for which |z| < g, where g, = g.(¢t871, 3), since § is uniformly
bounded from below, and N and (27 \) are uniformly bounded from above on this time
interval. The expression

/f(qx)pA(qx; t)dgx

converges to

/ Flax)plax; t)dax

also uniformly on this time interval. It is well known that the derivative of a limit of
a convergent sequence of functions on a bounded interval coincides with a limit of the
sequence of their derivatives if the sequence of their derivatives converges uniformly to
its limit. Hence, (1.2’) is true and the Theorem is proven.
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6. APPENDIX

Proof of Lemma 5.2. From the translation invariance of the Wiener measure, one
derives

Yi(gx) = /Po(dwx)‘I’t(wX +qx), Uy (wx + qx) = e AUslwxtax),

where wx + ¢x = (Wz + ¢z, ¢ € X) and

t
1
U3(’wx) U(wx) — —UO UJX /U2 dT-I—Ul(wx( ))
0
For U;, we have the superstability bound
Urlax) 2 Y ur (@) = —[X[ar,  ui (g0) = ua(ge) — 17412~ = 2174,
zeX

where @; > 0. Here, we used the inequality ¢ < ¢>™~1Y 4+ 1. From (2.5) and the
positivity of Uj and (2.11), one derives the superstability bound for Us,

Us(ax) = ) uy (a0) = —aal X, uy(q) = ilgs) = [17°1119(ga),

where %y is a non-negative constant. The superstability bounds for Us, U; yield the
bound

Yi(gx) < ePIXIuatu)

which follows from the superstability bound for Us. We have

zeX

Us(wx) 2 ) ug (we) > — (Ut + )| X|,  uy (ws) = /ui(wz(T))dT — uy (we (1))

Using (2.10), applying the inequalities

Us(qx) < 2137 (000 ) (gerqy) <2770 Y7 (J9)% (05,1 (g2) + 031 (ay)) <

rF#yeX c#yeX

< 23|02 D (@2 + 1),
zeX
and the similar bounds for the term with the segond derivatives in the expression for Us,
one sees that there exists the positive number J, such that

Uslax) < 32 (filg.)| + (g, 2071 + 1)),
reX
It is possible to derive an analog of the above inequality for 9,U%(gx) and the bound
0. Ua(gx)| < J5 > (Jau**" D71+ 1),
zeX
To prove the Lemma, one has to show that it is possible to differentiate twice the right-
hand side of (2.3) under the sign of the Wiener integral. Let
Ty f(wx) = f(wX\x: Wy + 7).

Then one has to show that, for an arbitrary sequence of positive numbers r,, such that
lim r, = 0, the following equality holds:

n—oo

/Po(dwx)a U (wx +qx) = hm / s (dwx )T, (TI rmPi(wx) — U(wx)) =
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(6.1) = az/pqx (dwx ) ¥, (wy).

It is clear that one has to rely on the Lebesgue dominated convergence theorem and
show that the function under the sign of the first integral is uniformly bounded by an
integrable function. The function under the sign of the second integral is less than

exp{—BUs(wx ) }ry | Tor, Us(wx ) — Us(wy )| TrrmUslwx)=Uslwx)l,

Here, we used the inequality |e® — 1| < |alel®!. Derivatives in ¢, of Us(wx + qx) are
calculated in an obvious way, since one deals with polynomials in Wiener paths. It follows
from the mean-value theorem, the above inequality for |0,Uz|, and similar inequalities
for the derivatives of Uy (the inequality for the partial derivatives of u1,y mentioned in
Introduction has to be applied) that there exists the positive number J3 such that

0 S 7‘; S Tn, r;1|Ta:,TnU3(wX) - US(wX)| = |awU3(wX\m»wm + 7‘;)‘ S
t
(6:2) < I S hoa (P a4 s (0™ 2]
z€X |

The last inequality, the previous one, and the superstability bound for Us establish that
the function under the sign of the second integral in (6.1) is bounded by an integrable
function independent of n, since the degree of the polynomial % is greater than

2(2n—-1) -1,
and the degree of the polynomial u; is greater than 2ny — 1. This proves (6.1). The
equality
0V (wx + gx) = —Bexp{—pUs(wx + qx)}0:Us(wx + ¢x)
and the superstability bound for Us prove that |0,¢:| < C;. To prove that ¢, admits

a bounded second derivative in ¢, one has to prove (6.1), where 0, V; is substituted
for ¥,. Using the formulas

ae® —d'e” =ale® —e” )+ e (a—a') = ea(l — e® ") + ¥ "%(a —d)],

jac® — a'e”’| < e*(|alla’ — alel " 4 el l|a — af?) < 2" N0 — a| (|| + |al)
for
a' = =BTy, Us(wx), a=—pUs(wx),
the superstability bound for Us, and (6.2), we verify without any difficulty that :(¢x)
is a twice differentiable function, and there exists a positive constant Cy such that

|024p¢| < Co.
Lemma is proven.

Remark. From (5.2-3) for m = 1 and the statement inverse to the Fubini theorem
6], it follows that the function |u.(w,w’)|? is integrable by the measure P(dw)P(dw'’).
From the Fubini theorem, it follows also that the function vZ(w) is integrable by P(dw).

*

We have utilized the statement inverse to the Fubini theorem in the proof of Lemma 5.1.
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