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W. I. SKRYPNIK

ON THE EVOLUTION OF GIBBS STATES OF THE LATTICE

GRADIENT STOCHASTIC DYNAMICS OF INTERACTING

OSCILLATORS

Grand canonical correlation functions of stochastic(Brownian) lattice linear oscilla-
tors interacting via a pair short-range potential are found in the thermodynamic
limits at low activities and on a finite time interval. It is proved that their sequence
is a weak solution of the BBGKY-type gradient diffision hierarchy. The initial corre-
lation functions are Gibbsian, which corresponds to many-body positive finite-range
and short-range non-positive pair interaction potentials. The utilized technique is
based on an application of the Feynman–Kac formula for solutions of the Smolu-
chowski equation and a representation of the time-dependent correlation functions in

terms of correlation functions of a Gibbs lattice oscillator path system with many-
body interaction potentials.

1. Introduction and main result

The lattice gradient stochastic oscillator dynamics with pair interaction is described
by the infinite-component evolution equation

q̇x(t) = −∂u0(qx) −
∑

y �=x

∂xu0
x,y(qx, qy) + β− 1

2 ẇx(t), x ∈ Z
d,

where qx ∈ R, u0
x,y(qx, qy) is the pair interaction potentials, u0 is an external potential,

ẇx(t) are independent processes of white noise, ∂x = ∂
∂qx

, the summation is performed

over Z
d\x = xc. We assume that u0(q) is an even bounded from below polynomial of

the 2n-th degree and the potential u0
x,y is polynomial and short-range. The existence of

solutions for the lattice stochastic system for the simplest pair interaction was established
in [9],[5], and their special properties were described in [3], [4], [2], [1].

Physical states of the stochastic dynamics are described by probability measures on
the infinite Cartesian product R

Y , Y = Z
d or, equivalently, by correlation functions of the

canonical or grand canonical ensemble. The associated gradient diffusion BBGKY-type
hierarchy for the correlation functions is given by

∂

∂t
ρ(qX ; t) =

∑

x∈X

∂x{β−1∂xρ(qX ; t) + ρ(qX ; t)∂xU0(qX)+

(1.1) +
∑

y∈Xc

∫

(∂xu0
x,y)(qx, qy)ρ(qX∪y; t)dqy},

where
U0(qX) =

∑

x∈X

u0(qx) +
∑

x �=y∈X

u0
x,y(qx, qy),

Xc = Z
d\X , |X | < ∞, the integration is performed over R

|Y |, |Y | is the number of sites
in Y , and β is the inverse temperature. It is derived from the finite-volume gradient
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diffusion hierarchy, coinciding with (1.1), in which the summation in the integral term
is performed over Λ\X instead of Xc, in the thermodynamic limit Λ → Z

d. Formal
arguments show that this finite-volume hierarchy is satisfied by the finite-volume grand
canonical correlation functions

(1.2)

ρΛ(qX ; t) = Ξ−1
Λ χΛ(X)

∑

Y ⊆Λ\X

z|X|+|Y |
∫

ρ0(qX∪Y ; t)dqY ,

ΞΛ =
∑

Y ⊆Λ

z|Y |
∫

ρ0(qY ; t)dqY ,

where χΛ is the characteristic function of a hypercube Λ, z is the activity, and the
distribution (integrable, positive) function ρ0(qX ; t) satisfies the Smoluchowski equation
which coincides with (1.1), in which the integral term is omitted. The stationary solution
of the Smoluchowski equation coincides with exp{−βU0(qX)}. A rigorous derivation of
the finite-volume diffusion hierarchy demands ρ0(qX ; t) to be sufficiently smooth and
have a sufficient decrease at infinity in the oscillator variables. We establish that the
sequence ρΛ of the correlation functions is a weak solution of the lattice finite-volume
diffusion hierarchy.

We say that that the sequence ρ of the correlation functions is a weak solution of
the lattice diffusion hierarchy (1.1) if, for a twice differentiable function f(qX) which is
bounded together with its derivatives, the following equality is true:

d

dt

∫

f(qX)ρ(qX ; t)dqX =
∑

x∈X

∫

{ρ(qX ; t)[β−1∂2
xf(qX) − (∂U0)(qX)∂xf(qX)]−

(1.2′) −(∂xf)(qX)
∑

y∈Xc

∫

(∂xu0
x,y)(qx, qy)ρ(qX∪y; t)dqy}dqX .

In this paper, we will find the grand canonical correlation functions in the thermodynamic
limit for the initial Gibbsian correlation functions generated by many-body potentials and
prove that their sequence is a weak solution of the gradient diffusion hierarchy on a finite
time interval and at a small enough activity. The initial functions, ρ0, are given by

ρ0(qX) = e−β(2−1U0(qX )+U1(qX )), U1(qX) =
∑

x∈X

u1(qx) +
∑

|Y |≥2,Y ⊆X

u1;Y (qY ),

where the summation in Y is performed over subsets of X , u1 is a bounded from below
even polynomial of the 2n1-th degree, the potentials u1;Y are polynomial for all Y , finite-

range, and positive for |Y | > 2, such that |u1;Y (qY )| ≤ J1
Y

∑

y∈Y

(q
2l|Y |
y +1), |∂yu1;Y (qY )| ≤

J1
Y

∑

y∈Y

(|qy|2l|Y |−1 + 1), where l|Y | = 2(n − 1) if |Y | > 2 and l|Y | = 2l1 < 2n1 if |Y | = 2

(this implies u1;Y (qY ) = 0 for |Y | > 2n1 − 1), ||J1||1 = max
x

∑

x∈Y

J1
Y < ∞, where the

summation in Y is performed over subsets of Z
d containing x.

We will require also that u0
x,y(qx, qy) = J0

x−yu0(qx, qy), J0
x = J0

−x,

||
√

J0||1 =
∑

x

√

J0
x < ∞,

where the summation is performed over Z
d and

u0(q, q′) =

l0
∑

s=1

∑

l+k=2s

φ0
l,k(qlq′k + q′lqk), 2l0 ≤ 2(n − 1),
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where φ0
l,k = φ0

k,l are real numbers. Our main result is formulated as the following
theorem.

Theorem 1.1. There exists a weak solution ρ(qX ; t) of the diffusion hierarchy (1.1)
which is the thermodynamic limit of ρΛ(qX ; t) and given as an expansion in powers of z

convergent in a disc |z| ≤ g−1
∗ such that

(1.3) |ρ(qX ; tβ) − ρΛ(qX ; tβ)| ≤ ǫ∗(λ) exp{−β
∑

x∈X

ū(qx)}g−|X|, X ∈ Λ(λ),

(1.4) ρ(qX ; tβ) ≤ N∗ exp{−β
∑

x∈X

ū(qx)}g−|X|, ū(q) =
1

2
u0(q) − γq2(n−1) − γ̄,

where ǫ∗(λ), g∗, g, N∗, γ̄ are positive locally bounded functions of (t, β) on R
+ × R+\0,

independent of X, qX, growing at infinity in t, γ is a positive constant, g∗ > g, Λ(λ) is
the set of lattice sites located in Λ, whose distance from the boundary of Λ is greater than
λ, and ǫ∗(λ) is a continuous function tending to zero at infinity in λ.

We prove this theorem by reducing the problem of the thermodynamic limit for
ρΛ(qX ; t) to the problem of the thermodynamic limit for the complex Gibbsian path
correlation functions ρΛ(ωX) depending on the Wiener paths ωX = (wx, w∗

x, x ∈ X)

(1.5) ρΛ(ωX) = Ξ−1
Λ χΛ(X)

∑

Y ⊆Λ\X

z|X|+|Y |
∫

exp{−βU(ωX∪Y )}P (dωY ),

where P (dωY ) =
∏

y∈Y

P (dωy), P (dω) = e−βu(w)dqPq(dw)P0(dw∗) = P ′(dw)P0(dw∗), the

integration is performed over R
|Y | × Ω

2|Y |
0 , Ω0 is the probability space of Wiener paths,

Pq(dw) is the Wiener measure concentrated on paths starting from q, the complex U ,
u depend on the Wiener paths on the interval [0,t], the grand partition function ΞΛ

coincides with the numerator for X = ∅ and

(1.6) U(ωX) =
∑

|Y |≥2,Y ⊆X

uY (ωY ),

where u1
Y (ωY ) = ReuY (ωY ) = u1,Y (wY (t)), u∗(Y )(ωY ) = ImuY (ωY ) = 0 for |Y | >

2. The correlation functions ρΛ(qX ; tβ) are expressed in terms of the complex path
correlation functions as follows:

(1.7) ρΛ(qX ; tβ) =

∫

ρΛ(ωX)e
−β
�

x∈X

u(wx)

P0(dw∗
X)PqX

(dwX),

where the integration is performed over Ω
2|X|
0 , PqX

(dwX) =
∏

x∈X

Pqx
(dwx). It is worth to

add also that the real-valued part U1 of U depends only on wX , and the imaginary part
U∗ of U is generated by the pair potential u∗(x,y). The presence of β on the left-hand side
of (1.7) makes the expressions of the path potentials u, uY more simple. Note that the
introduction of the measure dqPq(dw) is simplified by the fact that the Wiener measure
is translation invariant:

∫

Pq(dw)f(w) =
∫

P0(dw)f(w + q).
The fact that the many-body potentials u1

Y are finite-range and positive enables us
to solve the symmetrized (with respect to the superstability condition) KS (Kirkwood–
Salzburg) resolvent-type equation which is satisfied by the sequence of the path correla-
tion functions ρΛ(ωX) in the thermodynamic limit ρ(ωX). We solve the symmetrized KS
equation with the help of the resolvent expansion of the symmetrized KS operator show-
ing that it is bounded in the Banach space Eξ,f (Eξ = Eξ,0) of sequences of measurable
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functions with the norm

||F ||ξ,f = max
X

ξ−|X|ess sup
wX

exp{−
∑

x∈X

f(ωx)}|FX(ωX)|.

The choice of f will depend exclusively on the pair potentials u0
x,y, u1;x,y and guarantees

that N0 =
∫

ef(ω)P (dω) < ∞. As a result, the thermodynamic limit ρ(qX ; t) of ρΛ(qX ; t)
will be expressed in terms of ρ(ωX) by

(1.8) ρ(qX ; tβ) =

∫

ρ(ωX)P0(dw∗
X)PqX

(dwX).

The analog of Theorem 1.1 for the canonical correlation functions of the oscillator sto-
chastic lattice dynamics with Gibbsian initial correlation functions, generated by a pair
potential, was formulated in [13], where a polynomial expansion was utilized. The poly-
nomial expansion was proven to converge in the thermodynamic limit for the Gibbsian
canonical correlation functions with a pair potential at high-temperatures in [7]. The
idea to express correlation functions of the stochastic dynamics in terms of correlation
functions of a Gibbs path system with a ternary interaction potential was applied for
particle systems in [14]. The similar idea was utilized in [15], where the author showed
that the lattice stochastic oscillator dynamics admits a long-range order for an initial
canonical Gibbs state.

Our paper is organized as follows: in Section 2, we derive (1.7); in Section 3, we write
down the finite-volume, infinite-volume, and symmetrized KS equations for the complex
path correlation functions and derive also the recursion relation for the KS kernels; in
Section 4, we find the norm of the KS and symmetrized KS operators; and in Section 5 by
Theorem 5.1, we establish the existence of solutions of the infinite-volume symmetrized
KS equation, i.e. we find the thermodynamic limit of the path correlation functions and
prove Theorem 1.1 by using (1.8).

2. Heat equation and Feynman–Kac formula

A derivation of (1.7) is fulfilled in three steps. The first step is the transformation of
the Smoluchowski equation into the heat equation. In the second one, we solve the latter
with the help of the Feynman–Kac (FK) formula. Indeed, after the substitution

(2.1) ρ0(qX ; t) = e−
β
2 U0(qX )ψ(qX ; t),

the following heat equation for ψ is obtained:

(2.2)
∂

∂t
ψ(qX ; t) = β−1

∑

x∈X

∂2
xψ(qX ; t) − U2(qX)ψ(qX ; t),

U2(qX) =
1

2

∑

x∈X

[−∂2
xU0(qX) +

β

2
(∂xU0(qX))2].

We solve the L2-Cauchy problem for the heat equation with the help of the well-known
[12] FK formula

(2.3) ψ(qX ; βt) =

∫

PqX
(dwX)e

−β
t�

0

U2(wX (τ))dτ

ψ0(wX(t)),

where ψ0 ∈ L2(R|X|) is the initial data. The derivation of the FK formula is based on the
application of the Trotter product formula [12, T.X.51]. A proof of the Trotter product
formula demands the Hamiltonian to be essentially self-adjoint on the intersection of the
domains of the Laplacian and its unbounded perturbation U2. This is guaranteed by
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example X.9.3 from [12] for a bounded from below polynomial U2 (by adding a finite
positive constant, this polynomial can be transformed into a positive one).

The solution ρ0(qX ; t) of the Cauchy problem for the oscillator Smoluchowski equation

with the initial data ρ0(qX) = e−β(2−1U0(qX )+U1(qX )) is obtained from (2.1) and (2.3)
putting ψ0(qX) = e−βU1(qX ) in it. That is,

(2.4) ρ0(qX ; βt) =

∫

PqX
(dwX)e−βŨ(wX),

where

Ũ(wX) = 2−1U0(qX) + U1(ωX(t)) +

t
∫

0

U2(wX(τ))dτ, wX(0) = qX .

The following representation for the second term in the expression for U2 holds:

(2.5)
∑

x∈X

(∂xU0(qX))2 =
∑

x∈X

(∂xu0(qx))2 +
∑

x �=y∈X

u′
x,y(qx, qy) + U ′

2(qX).

Here,

u′
x,y(qx, qy) = J0

x−yu2(qx, qy), U ′
2(qX) =

∑

x∈X

(
∑

y �=x,y∈X

∂xu0
x,y(qx, qy))2,

u2(qx, qy) = (∂xu0(qx, qy))∂xu0(qx) + (∂yu0(qx, qy))∂yu0(qy)).

The similar representation for the first term in the expression for U2 looks as

(2.6)
∑

x∈X

∂2
xU0(qX) =

∑

x∈X

∂2u0(qx) +
∑

x �=y∈X

u(2)
x,y(qx, qy),

where

u(2)
x,y(qx, qy) =

1

2
[∂2

xu0
x,y(qx, qy) + ∂2

yu0
x,y(qx, qy)] =

1

2
J0

x−y[∂2
xu0(qx, qy) + ∂2

yu0(qx, qy)]

On the third step of the derivation of (1.7), we construct the imaginary part U∗ of U

from U ′
2, by utilizing the formula

exp{−
t

∫

0

f2(τ)dτ} =

∫

exp{−i

t
∫

0

f(τ)dw∗(τ)}P0(dw∗),

where the right-hand side contains the stochastic integral [8] determined as the integral
of f with the generalized Gaussian process of white noise. This stochastic integral is
determined as a strong limit of the sequence of Riemannian sums of cylinder functions
in the space of quadratically integrable functions. As a result,

exp{−β2

4

t
∫

0

U ′
2(wX(τ))dτ} =

=

∫

exp{−i
β

2

∑

x∈X

t
∫

0

∑

x �=y∈X

∂xu0
x,y(wx(τ), wy(τ))dw∗

x(τ)}P0(dw∗
X).

or

(2.7) exp{−β2

4

t
∫

0

U ′
2(wX(τ))dτ} =

∫

exp{−iβU∗(ωX)}P0(dw∗
X).
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where

U∗(ωX) =
∑

x �=y∈X

u∗(x,y)(ωx, ωy), u∗(x,y)(ωx, ωy) = J0
x−yu∗(ωx, ωy),

and

(2.8) u∗(ωx, ωy) =
1

2
(f∗(wx, wy |w∗

x) + f∗(wy , wx|w∗
y)),

f∗(wx, wy|w∗
x) =

t
∫

0

dw∗
x(τ)∂xu0(wx(τ), wy(τ)).

Our stochastic integrals depend on the Wiener paths without stars, and the sequence of
the Riemannian sums depends also on them. Hence, the limiting function of the sums
will be measurable in all the Wiener paths since the Wiener measure is concentrated on
continuous paths, and the strong limit of a convergent sequence in a space of quadrat-
ically integrable functions contains a subsequence converging almost everywhere to a
measurable function. Let

U1(wX) = Ũ(wX) − β

4

t
∫

0

U ′
2(wX(τ))dτ −

∑

x∈X

u(wx),

where u(ωx) = 1
2u0(qx) + u1(wx(t)) + u2(wx),

u2(wx) =

t
∫

0

ũ(wx(τ))dτ, ũ(qx) = −1

2
∂2u0(qx) +

β

4
(∂u0(qx))2.

From (2.4-8), it follows that the functions u, U, uY appeared in (1.6-7) are given by the
last two equalities and

(2.9) U(ωX) = U1(wX) + iU∗(ωX), uY (ωY ) = u1
Y (wY ) + iu∗(Y )(ωY ),

where

u1
x,y(wx, ωy) =

1

2
u0

x,y(qx, qy) + u1;x,y(wx(t), wy(t)) + u2;x,y(wx, wy),

and

u2;x,y(wx, wy) =

t
∫

0

ũx,y(wx(τ), wy(τ))dτ,

ũx,y(qx, qy) = −1

2
u(2)

x,y(qx, qy) +
β

4
u′

x,y(qx, qy).

The expression for the pair potential u0(q, q′) allows one to derive the bounds

(2.10) |∂su0(q, q′)| ≤ 1

2
[v0,s(q) + v0,s(q

′)], |∂′∂u0(q, q′)| ≤ 1

2
[v0,2(q) + v0,2(q

′)],

where v0,s(q) = as(q
2l0−s + 1), s = 0, 1, 2, v0,0 = v0. We assume that 2J1

x,y = J1
x−y =

J1
−x+y, that is,

(2.11) |u1;x,y(q, q
′)| ≤ 1

2
J1

x−y[v1(q) + v1(q
′)], v1(q) = q2l1 + 1.

Since u0(q) is a bounded from below polynomial of the 2n-th degree, we have |∂u0(q)| ≤
a0
1|q|2n−1, |∂2u0(q)| ≤ a0

2(|q|2(n−1) + 1), and relation (2.10) yields

|u2(qx, qy)| ≤ [|∂xu0(qx)| + |∂yu0(qy)|][|∂xu0(qx, qy)| + |∂yu0(qy , qx)|] ≤
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≤ a1a
0
1(|qx|2n−1 + |qy|2n−1)(|qx|2l0−1 + |qy|2l0−1 + 2) ≤

≤ a1a
0
1[(|qx| + |qy|)2(n+l0−1) + 2(|qx| + |qy|)2n−1] ≤

≤ a1a
0
12

2(l0+n)(|qx|2(n+l0−1) + |qy|2(n+l0−1) + 2).

Here, we used the inequalities (a+b)n ≥ an+bn, (a+b)n ≤ 2n(an+bn), an ≤ am+1, a, b ≥
0, n < m. This leads to

|ũx,y(qx, qy)| ≤ J0
x−y

2
[ṽ(qx) + ṽ(qy)], ṽ(q) =

(2.11′) = (βa1a
0
12

2(l0+n−1) + a2)(q
2(n+l0−1) + 1).

The last inequality and (2.11) result in the following inequality which will be used in the
next section for symmetrizing the KS equation:

(2.12) |u1
x,y(ωx, ωy)| ≤ Jx−y

2
[v1(wx) + v1(wy)].

Here,

v1(w) = 2−1v0(q) + v1(w(t)) + v2(w), Jx = max(J0
x , J1

x), v2(w) =

t
∫

0

ṽ(w(τ))dτ.

3. KS equation

A derivation of the KS equation for ρΛ(ωX) is based on the application of the equality

(3.1) F (ωX) =
∑

S⊆X

∑

S′⊆S

(−1)|S\S′|F (ωS′)

which follows from the simple equality

n = |X |,
∑

S∈X

(−1)|S| =

n
∑

l=0

(−1)lCl
n = 0, Cl

n =
n!

l!(n − l)!
.

Indeed, let us consider the coefficient before F (ωX\x) on the right-hand side of the
previous equality for arbitrary x. It corresponds either to the case S = X or S = X\x
and S′ = X\x. The signs before F are different for these options, and this coefficient is
equal to zero. Further, one has to take S = X, S = X\x1, S = X\x2, S = X\x1 ∪ x2,
S′ = X\x1 ∪ x2 and check that the coefficient before F (ωX\x1∪x2

), i.e. the last equality
for n = 2, is equal to zero. In the same fashion, one has to calculate the coefficients
before F (ωX\x1∪x2...∪xn

), corresponding to the choice S′ = X\x1 ∪ x2... ∪ xn, and check
that it coincides with the above sum with the binomial coefficients .

Let x ∈ X and X ∩ Y = ∅. Then

(3.1′) e−βU(ωX ,ωY ) = e−βW (ωx|ωX\x,ωY )e−βU(ωX\x,ωY ),

where
W (ωx|ωY ) = U(ωx, ωY ) − U(ωY ), x ∩ Y = ∅

From (3.1 − 1′), it follows that

(3.2) e−βW (ωx|ωX\x,ωY ) =
∑

S⊆Y

K(ωx|ωX\x; ωS),

where

(3.3) K(ωx|ωX\x; ωY ) =
∑

S⊆Y

(−1)|Y \S|e−βW (ωx|ωX\x,ωS).
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Then, substituting (3.1′), (3.2-3) into the expression for finite-volume grand canonical
correlation functions, one obtains

ρΛ(ωX) = Ξ−1
Λ χΛ(X)

∑

Y ⊆Λ\X

z|Y ∪X|
∑

S⊆Y

∫

P (dωY )K(ωx|ωX\x; ωS)e−βU(ωX∪Y \x)

= z
∑

Z⊆Λ\X

∫

P (dωZ)K(ωx|ωX\x; ωZ)Ξ−1
Λ χΛ(X ∪ Z)

×
∑

Y ⊆Λ\(Z∪X)

z|Y ∪X∪Z|−1

∫

P (dωY )e−βU(ωZ∪X\x,ωY ).

The equality

ρΛ(ωX\x) = Ξ−1
Λ χΛ(X\x)

∑

Y ⊆(Λ\X)∪x

z|Y ∪X|−1

∫

P (dωY )e−βU(ωX\x,ωY ).

leads to

Ξ−1
Λ χΛ(X ∪ Z)

∑

Y ⊆Λ\(Z∪X)

z|Y ∪X∪Z|−1

∫

P (dωY )e−βU(ωZ∪X\x,ωY ) =

= χΛ(x)(ρΛ(ωX\x∪Z) −
∫

P (dωx)ρΛ(ωX∪Z)).

It is clear that the terms with x ∈ Y in the sum, representing the first summand in the
round brackets, are cancelled by the second term in the brackets. This completes the
derivation of the KS equation, if one takes also into account that ρΛ(ω∅) = 1. It is given
for x ∈ X, |X | > 1 by
(3.3′)

ρΛ(ωX) = zχΛ(x)
∑

Z⊆Λ\X

∫

K(ωx|ωX\x; ωZ)[ρΛ(ωX\x∪Z) −
∫

P (dωx)ρΛ(ωX∪Z)]P (dωZ)

and, for X = x, by

ρΛ(ωx) = zχΛ(x){1 −
∫

ρΛ(ωx)P (dωx) +
∑

|Z|≥1,Z⊆Λ\x

∫

K(ωx|ωZ)[ρΛ(ωZ)−

−
∫

P (dωx)ρΛ(ωZ∪x)]P (dωZ)}.
Here, one has to take the following equality into account:

Ξ−1
Λ χΛ(x)

∑

Y ⊆Λ\x

z|Y ∪x|−1

∫

P (dωY )e−βU(ωY ) = χΛ(x)(1 −
∫

P (dωx)ρΛ(ωx)).

It is equivalent to

Ξ−1
Λ χΛ(x)

∑

x∈Y ⊆Λ

z|Y |
∫

P (dωY )e−βU(ωY ) =

∫

P (dωx)ρΛ(ωx).

Let α(ωX) = δ|X|,1. Let, also, the KS operator K be given for Λ = Z
d by the right-hand

side in (3.3′), if |X | > 1, and by the right-hand side of the next equality without unity, if
X = x. As a result, the finite-volume and infinite-volume KS equations in the abstract
look like

(3.4) ρΛ = zKΛρΛ + zχΛα, ρ = zKρ + zα,

where KΛ = χΛKχΛ, χΛ is the operator of multiplication by the characteristic function
of Λ: (χΛF )X(ωX) = χΛ(X)FX(ωX).
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In order to treat the case of non-positive potentials, one has to symmetrize the KS
equations with the help of the superstability condition ( see [10]) which follows from
(2.12),

∑

x �=y∈X

u1
x,y(ωx, ωy) ≥ −J̄

∑

x∈X

v1(ωx), |X | ≥ 2.

where J̄ = ||J ||1. This means that there is a non-trivial set on which the following
inequality holds:

(3.4′)
∑

y∈X,y �=x

u1
x,y(ωx, ωy) ≥ −J̄v1(ωx).

Let χx(ωX) be its characteristic (indication) function. Then

(3.5)
∑

x∈X

χ∗
x(ωX) = 1, χ∗

x(ωX) = (
∑

y∈X

χy(ωX))−1χx(ωX).

The symmetrized KS operator K̃ is given, for |X | ≥ 2, by

(K̃F )(ωX) =
∑

x∈X

χ∗
x(ωX)

∑

Z⊆Xc

∫

K(ωx|X\x; ωZ)[F (ωX\x∪Z)

−
∫

P (dωx)F (ωX∪Z)]P (dωZ).

The symmetrized finite-volume and infinite-volume KS equations are given, respectively,
by

ρΛ = zK̃ΛρΛ + zχΛα, K̃Λ = χΛK̃χΛ,

and

(3.6) ρ = zK̃ρ + zα.

Proposition 3.1. Let all the potentials be finite-range except the pair one and have the
range R. Then the following equality holds for X ∩ Y = ∅, x ∈ X:

(3.7) K(ωx|ωX\x; ωY ) =
∑

S′⊆Y

K(ωx|ωX\x; ωS′)χBx(R)(S
′)G(ωx|ωY \S′)χBc

x(R)(Y \S′).

Here, Bx(R) is a hyperball with radius R centered at x, Bc
x(R) = Z

d\Bx(R),

G(ωx|ωS) =
∑

S′⊆S

(−1)|S\S′|e−βW2(ωx|ωS′) =
∏

y∈S

(e−βu(x,y)(ωx,ωy) − 1),

and W2(ωx|ωS′) =
∑

y∈S′

ux,y(ωx, ωy).

Proof. The many-body potentials have finite range R, that is, for an arbitrary x ∈
X, |X | > 2, the equality uX(ωX) = 0holds, |x − x′| ≥ R, x′ ∈ X\x, and |x − x′| is the
Euclidean distance between two lattice sites. This means that

(3.8) W (ωx|X\x, ωS) = W (ωx|ωX\x, ωS\S2
) + W2(ωx|ωS2), y �∈ Bx(R) → y ∈ S2.

Here, one has to take the following equality into account:

W2(ωx|ωS) = W2(ωx|qS2) + W2(ωx|ωS\S2
).

Let us substitute the equality

1 =
∏

y∈Y

(χBc
x(R)(y) + χBx(R)(y)) =

∑

S′⊆Y

χBx(R)(S
′)χBc

x(R)(Y \S′)

into the expression for the KS kernel and apply (3.8). This results in
∑

S⊆Y

(−1)|Y \S|e−βW (ωx|ωX\x,ωS)
∑

S′⊆Y

χBx(R)(S
′)χBc

x(R)(Y \S′) =
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=
∑

S′⊆Y

∑

S⊆Y

(−1)|Y \S|e−βW (ωx|ωX\x,ωS)χBx(R)(S
′)χBc

x(R)(Y \S′) =

=
∑

S′⊆Y

∑

S2⊆Y \S′

∑

S1⊆S′

(−1)(|Y |−|S1|−|S2|)×

×e−β[W (ωx|ωX\x,ωS1)+W2(x|ωS2)]χBx(R)(S
′)χBc

x(R)(Y \S′) =

=
∑

S′⊆Y

χBx(R)(S
′)χBc

x(R)(Y \S′)
∑

S1⊆S′

(−1)(|S
′|−|S1|)e−βW (ωx|ωX\x,ωS1)×

×
∑

S2⊆Y \S′

(−1)(Y −|S′|−|S2|)e−βW2(ωx|ωS2).

This proves the proposition.

4. Norm of the KS operator

For the norm of the symmetrized KS operator, we have

(4.1)

||K̃||ξ,f ≤ (ξ−1 + N0)ess sup
X,ωX

e−f(ωx)

×
∑

x∈X

∑

Y ⊆Xc

ξ|Y |χ∗
x(ωX)

∫

|K(ωx|ωX\x, ωY )|e
�

y∈Y

f(ωy)

P (dωY ).

From the positivity of the many-body potentials and (2.12), one derives

|K(ωx|ωX\x; ωY )| ≤
∑

S⊆Y

e−βW2(ωx|ωX\x,ωS) =

= e−βW2(ωx|ωX\x)
∑

S⊆Y

e−βW2(ωx|ωS) ≤

≤ e−βW2(ωx|ωX\x)e
β
2 J̄v1(ωx)

∑

S⊆Y

e

β
2

�

z∈S

Jx−zv1(ωz)

=

= e−βW2(ωx|ωX\x)e
β
2 J̄v1(ωx)

∏

z∈Y

(1 + e
β
2 Jx−zv1(ωz)).

That is, the last inequality and (3.4′) lead to

(4.2) χ∗
x(ωX)|K(ωx|ωX\x; ωY )| ≤ e

3β
2 J̄v1(ωx)

∏

z∈Y

(1 + e
β
2 Jx−zv1(ωz))χ∗

x(ωX).

It follows from the recursion relation (3.7), the definition of KS kernels, and the last
inequality that

χ∗
x(ωX)|K(qx|ωX\x, ωY )| ≤

≤ e
3β
2 J̄v1(ωx)

∑

S⊆Y

∏

z∈S

(1 + e
β
2 Jx−zv1(ωz))χBx(R)(S)G(ωx|ωY \S′)χ∗

x(ωX) =

= e
3β
2 J̄v1(ωx)

∏

y∈Y

[G(ωx|ωy) + χBx(R)(y)(1 + e
β
2 Jx−yv1(ωy))]χ∗

x(ωX)

and then
(4.3)

χ∗
x(ωX)|K(ωx|ωX\x, ωY )| ≤ e

3β
2 J̄v1(ωx)

∏

y∈Y

[G(ωx|ωy) + 2χBx(R)(y)e
β
2 J̄v1(ωy)]χ∗

x(ωX).

The last inequality yields
∑

x∈X

∑

Y ⊆Xc

ξ|Y |χ∗
x(qX))

∫

|K(ωx|ωX\x, ωY )e

�

y∈Y

f(ωy)

|P (dωY ) ≤
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≤
∑

x∈X

χ∗
x(ωX)e

3β
2 J̄v1(ωx)

∏

y �=x

[1 + ξ(Kx,y + 2χBx(R)(y)N1)] =

(4.4) = max
x

e
3β
2 J̄v1(ωx)

∏

y �=x

[1 + ξ(Kx,y + 2χBx(R)(y)N1)],

where

Kx,y =

∫

|e−βux,y(ωx,ωy) − 1|ef(ωy)P (dωy),

N1 = ||ef+β
2 J̄v1 ||1. Here, we used (3.5). Let us estimate Kx,y. From

|e−βux,y(ωx,ωy) − 1| ≤ |e−βu1
x,y(ωx,ωy) − 1| + |e−iβu∗(x,y)(ω,ω′) − 1| ≤

≤ |e−βu1
x,y(ωx,ωy) − 1| + 2β|u∗(x,y)(ωx, ωy)|,

it follows that

(4.5) |e−βux,y(ωx,ωy) − 1| ≤ β[|u1
x,y(ωx, ωy)|eβ|u1

x,y(ωx,ωy)| + 2|u∗(x,y)(ωx, ωy)|].
From the Schwartz inequality and (2.12), one deduces

∫

|u∗(x,y)(ωx, ωy)|ef(ωy)P (dωy) ≤ J0
x−yv∗(ωx)N2, N2

2 = ||e2f ||1,

where v2
∗(ω) =

∫

|u∗(ω, ω′)|2P (dω′)(see the Remark at the end of the present paper).
From (2.12), it follows also that

∫

|u1
x,y(ωx, ωy)eβ|u1

x,y(ωx,ωy)|ef(ωy)|P (dωy) ≤ 2−1Jx−y(N1v
1(wx) + N3)e

β
2 Jx−yv1(ωx),

where N3 = ||v1ef+ β
2 J̄v1 ||1. Two last inequalities show that

(4.6) Kx,y ≤ β[2−1Jx−y(N1v
1(wx) + N3) + J0

x−yv∗(ωx)N2]e
β
2 Jx−yv1(ωx).

Two last inequalities imply that the expression under the sign of the product in (4.4) is
less than the exponent of

ξ[2χBx(R)(y)N1 +
β

2
Jx−y((N1 +1)v1(ωx)+N3)+ ξN2

√

βJ0
x−y +

√

βJ0
x−yv∗(ωx)]. (4.6′)

Here, we applied the formulas 1 + a + bec ≤ ea+b+c, a, b, c ≥ 0, bc ≤ bec, where a, bc

correspond to the first and second terms under the square bracket on the right-hand side
of (4.6). As a result, we have
(4.7)

||K̃||ξ,f ≤ (ξ−1 + N0)e
ξg1ess sup

ω
exp{−f(ω) + (ξg2 +

3

2
J̄β)v1(ωx) +

√

β||
√

J0||1v∗(ωx)},

where

(4.8) g1 = 2|B0(R)|N1 +
β

2
||J ||1N3 +

√

βN2||
√

J0||1, g2 =
β

2
||J ||1(N1 + 1).

To make the KS norm finite, we have to choose

f(ω) = β(1+
3

2
J̄)f0(w)+γ∗

√

βv∗(ω), f0(w) = (2−1v0(q))
1+ζ0+v

1+ζ1

1 (w(t))+v
1+ζ2

2 (w),

where

γ∗ > 0, 1 < 1 + ζ0 ≤ n − 1

l0
, 1 < 1 + ζ1 ≤ n1 − 1

l1
, 1 < 1 + ζ2 ≤ 2(n − 1)

l0 + n − 1
.

For γ∗ ≥ ||
√

J0||1, the estimation of the norm of the KS equation is reduced to the
estimation of ess sup

ω
exp{−βf0(ω) + ξg2v

1(ωx)}, since v1 ≤ f0 + 3. Since

max
v≥0

e−v1+ζ+av = exp{ζ(
a

1 + ζ
)

1+ζ
ζ },
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we obtain

(4.9) ||K̃||ξ,f ≤ (ξ−1 + N0)e
ξg1+g0(ξ)+ 9

2 J̄β ,

where

g0(ξ) =

2
∑

l=0

g0(ζl, ξ), g0(ζ, ξ) = ζ(
β− 1

ζ+1 g2ξ

1 + ζ
)

1+ζ
ζ .

Lemma 4.1. Let Λ ⊆ Λ′ ⊆ Λ′′, and let δ be the distance of Λ to the boundary of Λ′.
Then

||χΛK̃(χΛ′′ − χΛ′)||ξ,f ≤ Cδ(ξ),

where the positive Cδ(ξ) tends to zero if δ tends to infinity.

Proof We have to bound the right-hand side of the inequality

||χΛK̃(χΛ′′ − χΛ′)||ξ,f ≤ (ξ−1 + N0)max
X

sup
ωX

∑

x∈X

χ∗
x(ωX)[

∑

Y ∈Xc

ξ|Y |χΛ(X)(χΛ′′ (Y )−

(4.10) −χΛ′(Y ))e−f(ωx)

∫

|K(ωx|ωX\x, ωY )|e
�

y∈Y

f(ωy)

P (dωY )].

In the derivation of this inequality, we employed the equalities

χΛ(X)(χΛ′′ (X ∪ Y ) − χΛ′(X ∪ Y )) = χΛ(X)(χΛ′′ (Y ) − χΛ′(Y ))],

χΛ(X)(χΛ′′ ((X\x) ∪ Y ) − χΛ′((X\x) ∪ Y )) = χΛ(X)(χΛ′′ (Y ) − χΛ′(Y )).

For Y = ∅, the right-hand sides are equal to zero. The first and the second equalities
correspond to the first and the second terms on the right-hand side of the KS equation
for ρΛ. From the formulas

0 ≤ χΛ′′ (Y ) − χΛ′(Y ) ≤
∑

y∈Y

(1 − χΛ′(y)),

(4.11)
∑

Y ⊆Xc

∑

y∈Y

(1 − χΛ′(y))F (Y ) =
∑

z∈Xc

(1 − χΛ′(z))
∑

Y ′⊆Xc\z

F (z ∪ Y ′)

(here, Xc\z = (X ∪ z)c), (4.3) and (4.4), where the summation in Y is performed over
(X ∪ z)c, one sees that the expression in the square brackets on the right-hand side of
(4.10) is less than

max
x

χΛ(x)
∑

z

(1 − χΛ′(z))e−f(ωx)+ 3β
2 J̄v1(ωx)ξK∗

x,z

∏

y �=x,z

(1 + ξK∗
x,y),

where K∗
x,y = Kx,y + 2χBx(R)(y)N1. Then this expression is less than [due to (4.6)]

max
x

ξχΛ(x)
∑

z

(1 − χΛ′(z))

×
[

β

2
{Jx−z(v

1(ωx)N1 + N3) + J0
x−zv∗(ωx)N2}

× e−
β
2 f0(ωx)−2−1√β||

√
J0||1v∗(ωx) + 2N1χBx(R)(z)

]

× e
β
2 Jx−zv1(ωx)−f(ωx)+ β

2 f0(ωx)+ 3β
2 J̄v1(ωx)+2−1√β||

√
J0||1v∗(ωx)

×
∏

y �=x,z

(1 + ξK∗
x,y).
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The first term in the braces is less than Jx−zg3 (we put cl = max
a≥0

ae−al

), where

g3 =
β

2
[N3 + N1

2
∑

l=0

(β−12)
1

1+ζl c1+ζl
+ 2(γ∗

√

β)−1N2].

In addition, we have [due to (4.6 − 6′)]

e
β
2 Jx−zv1(qx)

∏

y �=x,z

(1 + ξK∗
x,y) ≤ exp{ξg2v

1(ωx) +
√

β||
√

J0||1v∗(ωx) + ξg1},

χΛ(x)
∑

z

(1 − χΛ′(z))Jx−z ≤
∑

|z|≥δ

Jz = ||JχBc
0(δ)||1.

From (4.10) and two last inequalities, one deduces the needed equality with

(4.12) Cδ(ξ) = c(δ)ξ(ξ−1 + N0)e
g0(2ξ), γ∗ ≥ 2||

√
J0||1,

where
c(δ) = g3||JχBc

0(δ)||1 + 2N1||χB0(R)χBc
0(δ)||1.

The value of c(δ) tends to zero, when δ tends to infinity, since ||J ||1 < ∞. The lemma is
proven.

The optimal choice of ξ is

(4.13) ξ = g−1, g = g1 + [β
− 1

ζ−+1 (1 − χ+(β − 1)) + χ+(β − 1)]g2,

where ζ− = min ζl and χ+ is the characteristic function of R
+ and χ+(0) = 1. These

conditions, the expression for g0, and (4.9) lead to the most simple bound

(4.14) ||K̃||g−1,f ≤ (g + N0)e
4+ 9

2 J̄β = g∗.

The dependence of g and the norms Ns on t, β will be only rarely indicated.

5. Proof of Theorem 1.1

To prove that the symmetrized KS operator is bounded, we have to show that the
norms Ns are finite. This will de done with the help of the following lemma.

Lemma 5.1. For arbitrary positive γ0, γ1, the following inequality holds:

∫

eγ0v∗(w,w∗)P0(dw∗) ≤ κ(γ0γ
−1
1 t1−n′

, z0)[
√

IP + e

γ1
2

t�

0

w2(2n−1)(τ)dτ

], n′ =
2l0 − 1

2(2n − 1)
.

Here,

IP =

∫

P ′(dw) exp{γ1

t
∫

0

w2(2n−1)(τ)dτ},

and κ(a, z0) does not depend on w and is an entire function of a, z0.

Proof. From the Schwartz and Hölder inequalities, it follows that [v∗ is determined
below in(4.8)]

∫

vm
∗ (ω)P0(dw∗) ≤ [

∫

v2m
∗ (ω)P0(dw∗)]

1
2

≤ (
√

z0)
m−1[

∫

u2m
∗ (ω, ω′)P0(dw∗)P (dω′)]

1
2 , ω = (w, w∗).

Here we took the equality P (dω) = P0(dw∗)P ′(dw) and the probability character of P0:
∫

P (dω) =

∫

P ′(dw) = z0
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into account. The last inequality yields

(5.1)

∫

eγ0v∗(ω)P0(dw∗) ≤ 1 + (
√

z0)
−1

∑

m≥1

(
√

z0γ0)
m

m!
[

∫

u2m
∗ (ω, ω′)P0(dw∗)P (dω′)]

1
2 .

In view of the relation

u2m
∗ (ω, ω′) ≤ 22m[f2m

∗ (w′, w|w′∗) + f2m
∗ (w, w′|w∗)],

∫

(

t
∫

0

f(τ)dw∗(τ))2mP0(dw∗) =
(2m)!

m!
[

t
∫

0

f2(τ)dτ ]m,

where either f(τ) = ∂u0(w(τ), w′(τ)) or f(τ) = ∂′u0(w′(τ), w(τ)) (the Wiener integral
of an odd power of the stochastic integral is zero), one derives

(5.2)

∫

u2m
∗ (ω, ω′)P0(dw∗)P0(dw′∗) ≤ 22m (2m)!

m!
[fm

0 (w, w′) + fm
0 (w′, w)],

where

f0(w, w′) =

t
∫

0

(∂u0(w(τ), w′(τ)))2dτ.

It follows from (2.19), (5.2), and the inequalities

fm
0 (w, w′) ≤ v′m(w) + v′m(w′),

v′(w) = a1

t
∫

0

|w(τ)|2l0−1dτ ≤ a1t
1−n′

[

t
∫

0

w2(2n−1)(τ)dτ ]n
′

that (the last inequality is derived from the Hölder inequality)
(5.3)

∫

fm
0 (w, w′)P ′(dw′)

≤ (n′me−1)mn′

(2γ−1
1 a1t

1−n′

)m[

∫

P ′(dw′)e
γ1

t�

0

w′2(2n−1)(τ)dτ

+ e
γ1

t�

0

w2(2n−1)(τ)dτ

].

Here, one has to consider that

max
a≥0

ame−a ≤ mme−m.

Relations (5.1) and (5.3) lead to the inequality announced in the lemma with

κ(a, z0) = 1 + 2(
√

z0)
−1

∑

m≥1

(2
√

az0a1)
m

m!
(
(2m)!

m!
(n′me−1)mn′

)
1
2 .

The series on the right-hand side converges since l0 < n, n′ < 1 and (1+n′)
2 < 1 . Here,

we took the inequality e−mmm ≤ m! ≤ mm into account. The Lemma is proven.
Consider the norms Ns. Let

u0(q) =

n
∑

j=1

ηjq
2j .

We now put

γ1 =
β2

9
η2

n, γ0 =
√

βγ∗, γ∗ = 2||
√

J0||1
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[such a choice is motivated by (4.12)] in Lemma 5.1. Using the inequality |q|k ≤ ε|q|l−cε,
where k < l, ε is arbitrary small, and cε ≥ 0, we find

u0(q) ≥ 2−1ηnq2n − η0, (∂u0(q))2 ≥ 2−1η2
nq2(2n−1) − η′,

|∂2u0(q)| ≤ 2−1ηnq2(n−1) + η′′,

where η0, η′, η′′ ≥ 0. As a result (u1 is a bounded from below polynomial), we have

u(w) ≥ u(w) − γ1β
−1

t
∫

0

w2(2n−1)(τ)dτ ≥ 1

4
ηnq2n − c+,

where c+ is a linear positive polynomial in β and t (we omit the dependence of c+ on
t, β in our notations). Then

z0 ≤ IP ≤ eβc+

I0, I0 =

∫

e−
β
8 η2

nq2n

dq.

Let us put

κ∗(t, β) = (e
βc+

2

√

I0 + 1)κ(18||
√

J0||1β− 3
2 η−1

n t1−n′

, eβc+

I0).

Then Lemma 5.1 yields

(5.4) N0 ≤ N1 ≤ N3 ≤ κ∗(t, β)

∫

dqPq(dw)e−f̄(w), N2
2 ≤ κ∗(t, β)

∫

dqPq(dw)e−f̄(w),

where

f̄(w) = βu(w) − (
β

2
J̄ + 1)v1(w) − γ1

2

t
∫

0

w2(2n−1)(τ)dτ − β(1 +
3

2
J̄)f0(w).

Here, we used the inequality v1 ≤ ev1

, considering N3. The polynomials in q, w(t) in the
expression for the function f̄(w)−u(w) have degrees less than those of the corresponding
polynomials in the expression for u(w). This fact yields the inequality

f̄(w) ≥ β

8
ηnq2n − c̄,

where c̄ is a positive quadratic polynomial in β and a linear one in t. Then relation (5.4)
and this inequality show that the integral in (5.4) is less than I0e

c̄ and that

(5.5) N0 ≤ N1 ≤ N3 ≤ κ∗(t, β)I0e
c̄, N2

2 ≤ κ∗(t, β)I0e
c̄.

The last inequality and Lemma 4.1 prove the following theorem.

Theorem 5.1. Let γ∗ = 2||
√

J0||1. Then the norm ||K̃||ξ,f of the symmetrized KS
operator is finite in Eξ,f , and the series

(5.6) ρΛ =
∑

n≥0

zn+1K̃n
Λα, ρ =

∑

n≥0

zn+1K̃nα

determine the unique solutions of the finite-volume and infinite-volume symmetrized KS
equations in Ef,ξ, respectively, if |z| · ||K̃||ξ,f < 1. Moreover, there exists a positive
continuous function ǫ(λ, ξ) decreasing to zero at infinity in λ such that

(5.7) ||χΛ(λ)(ρ − ρΛ)||f,ξ ≤ ǫ(λ, ξ),

where Λ(λ) is the set of lattice sites located in Λ, whose distance from the boundary of Λ
is greater than λ.
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The proof of inequality (5.7) is given with the help of the Lemma 4.1 and standard
arguments [see formulas (2.39), (2.45), and (2.48) in [11], from which we derive the
formula

ǫ(lδ, ξ) = 2|z|ξ( (|z|a(ξ))l+1

1 − |z|a(ξ)
+

|z|Cδ(ξ)

(1 − |z|a(ξ))2
), |z|a(ξ) < 1,

where a(ξ) coincides with the right-hand side of the inequality for the norm of the
symmetrized KS operator and l is a positive integer. A general formula looks like

ǫ(λ, ξ) = 2|z|ξ( (|z|a(ξ))
√

λ

1 − |z|a(ξ)
+

|z|C√
λ
(ξ)

(1 − |z|a(ξ))2
).

To derive it from the previous formula, one has to use the inequalities

λ ≥ [
√

λ]−
√

λ = λ−, χΛ(λ) ≤ χΛ(λ−), g[
√

λ]−+1 ≤ g
√

λ, g ≤ 1,

where [a]− is the integer part of a positive number a. Note that the multiplier |z|ξ on
the right-hand side of the last formula coincides with ||zα||ξ,f .

Proof of Theorem 1.1. We determine ρ(qX ; tβ) by (1.8), in which the sequence of
{ρ(ωX), X ⊂ Z

d} satisfy the symmetrized KS equation. Then Theorem 5.1 and relations
(4.13-14) establish that its series in powers of z converges in a disc |z| < g∗ in the complex
plane. Theorem 5.1 and relations (4.13-14) result also in

|ρ(qX ; tβ)| ≤ g−|X|
∫

exp{−β
∑

x∈X

(u(wx) − f(ωx))}P0(dw∗
X)PqX

(dwX)||ρ||g−1,f .

Using Lemma 5.1 with γ1 =
η2

nβ2

9 , γ0 = 2
√

β||
√

J0||1, we establish that
(5.8)

|ρ(qX ; tβ)| ≤ exp{−β
∑

x∈X

(2−1u0(qx) − (1 +
3

2
J̄)(2−1v0(qx))1+ζ0 ) − ln I−(qx)}||ρ||g−1,f ,

where

I−(q) =

∫

e−βf−(w)Pq(dw)

and

f−(w) = u(w) − 1

2
u0(q) − (1 +

3

2
J̄)(v1+ζ1

1 (w(t)) + v
1+ζ2

2 (w)) − γ1

2
β−1

t
∫

0

w2(2n−1)(τ)dτ.

Taking the conditions on ζl into account, one sees that I−(q) is finite since f−(w) ≥ −c−,
where c− is a linear positive polynomial in β and t, and I−(q) ≤ eβc− . Here, one has

to apply the Hölder inequality to the term with v
1+ζ2

2 and use the above inequality
|q|k ≤ ε|q|l − cε, k < l. Moreover, we have the inequality

(2−1v0(q))
1+ζ0 ≤ q2(n−1) + 1.

Then (1.4) follows from (5.8) if one puts

N∗ = |z|(1 − |z|g∗)−1g, γ̄ = c− + (1 +
3

2
J̄), γ =

3

2
J̄ .

Let X ∈ Λ(λ). Then (1.3) is a result of (1.7-8), Theorem 5.1, the inequality

|ρ(qX ; tβ) − ρΛ(qX ; tβ)| ≤

≤
∫

exp{−β
∑

x∈X

u(ωx)}|ρ(ωX) − ρΛ(ωX)|P0(dw∗
X)PqX

(dwX ) ≤

≤ ǫ(λ, ξ)

∫

exp{−β
∑

x∈X

(u(ωx) − f(ωx))}P0(dw∗
X)PqX

(dwX),
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the bound for I−(q), and the equality ǫ∗(λ) = ǫ(λ, g−1).
We now prove (1.2′). At first, we present a formal derivation of the finite-volume

diffusion hierarchy

∂

∂t
ρΛ(qX ; t) =

∑

x∈X

∂x{β−1∂xρΛ(qX ; t) + ρΛ(qX ; t)∂xU0(qX)+

(5.9) +
∑

y∈Λ\X

∫

(∂xu0
x,y)(qx, qy)ρΛ(qX∪Y ; t)dqY }.

We take into account that the grand partition function does not depend on time due
to the gradient character of the Smoluchowski equation. Let us differentiate the first
equality in (1.2) under the sign of the integral and take the Smoluchowski equation for
ρ0(qX ; t). This results in

(5.9′) ΞΛ
∂

∂t
ρΛ(qX ; t) =

=
∑

Y ⊆Λ\X

z|X|+|Y |
∫

∑

y∈X∪Y

∂y{β−1∂yρ0(qX∪Y ; t) + ρ0(qX∪Y ; t)∂yU0(qX∪Y )}dqY .

The terms corresponding to y ∈ Y are equal to zero, and this equality gives rise to

∂

∂t
ρΛ(qX ; t) =

∑

x∈X

{∂x[β−1∂xρΛ(qX ; t) + ρΛ(qX ; t)∂xU0(qX)]+

+
∑

Y ⊆Λ\X

z|X|+|Y |
∫

∑

y∈Y

[(∂xu0
x,y)(qx, qy)∂xρ0(qX∪Y ; t)+ρ0(qX∪Y ; t)(∂2

xu0
x,y)(qx, qy)]dqY }.

Here, we used the equality

∂xU0(qX∪Y ) = ∂xU0(qX) + ∂x(U0(qX∪Y ) − U0(qX) − U0(qY )) =

= ∂xU0(qX) +
∑

y∈Y

∂xu0
x,y(qx, qy)

and its derivative in ∂x. Let us utilized the equality
∑

Y ⊆Λ\X

∑

y∈Y

F (Y ; y) =
∑

y∈Λ\X

∑

Y ⊆Λ\(X∪y)

F (Y ∪ y; y).

As a result, the last term in the equality for the time derivative of ρΛ is equal to
∑

y∈Λ\X

[

∫

(∂xu0
x,y)(qx, qy)dqy

∑

Y ⊆Λ\(y∪X)

z|Y |+|X|+|y|
∫

∂xρ0(qX∪Y ∪y; t)dqY +

+

∫

(∂2
xu0

x,y)(qx, qy))dqy

∑

Y ⊆Λ\(y∪X)

z|Y |+|X|+|y|
∫

ρ0(qX∪Y ∪y; t)dqy ] =

=
∑

y∈Λ\X

[

∫

(∂xu0
x,y)(qx, qy)∂xρΛ(qX∪y; t)dqy +

∫

(∂2
xu0

x,y)(qy , qy)ρΛ(qX∪y; t)dqy ] =

=
∑

y∈Λ\X

∂x

∫

(∂xu0
x,y)(qx, qy)ρΛ(qX∪y; t)dqy .

This proves (5.9). We can apply all these arguments in a rigorous fashion to prove that
the sequence of the finite-volume correlation functions is a weak solution of the diffusion
hierarchy. We do it with the help of the following lemma which will be proved in the
appendix.
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Lemma 5.2. Let ψt be given by (2.3) with the Gibbsian initial state

ψ0(qX) = e−βU1(qX ).

Then ψt is a twice differentiable function in qx, x ∈ X and |∂s
xψt| ≤ Cs, s = 0, 1, 2, where

Cs are positive constants.

Let us take a function f from L2(R|X|). Then
∫

f(qX)ρΛ(qX ; t)dqX

is represented as a finite sum in Y of the integrals
∫

f ′
Y (qY )ψt(qY ; t)dqY ,

where f ′
Y ∈ L2(R|Y |), since e−βU0(qX ) ∈ Lp(R|X|), p ≥ 1. Since the time derivative is a

strong L2-derivative, we obtain

d

dt

∫

f(qX)ρΛ(qX ; t)dqX

=

∫

f(qX)dqX

∑

Y ⊆Λ\X

z|X|+|Y |

×
∫

∑

y∈X∪Y

∂y{β−1∂yρ0(qX∪Y ; t) + ρ0(qX∪Y ; t)∂yU0(qX∪Y )}dqY .

We can use the previous arguments rigorously applying Lemma 2.1 and the facts that
ρ0(qX ; t) tends to zero exponentially fast in oscillator variables and all the potentials
are polynomials. So one can put the terms in (5.9′) with y ∈ Y equal to zero, split the
integral in dqX∪Z into the multiple integral (due to the Fubini theorem), and change the
order of differentiation in qx and integration in qy. All these arguments prove that ρΛ is
a weak solution of the finite-volume lattice diffusion hierarchy, that is,

d

dt

∫

f(qX)ρΛ(qX ; t)dqX =
∑

x∈X

∫

{ρΛ(qX ; t)[β−1∂2
xf(qX) − (∂xU0)(qX)∂xf(qX)]−

(5.10) −(∂xf)(qX)
∑

y∈Λ\X

∫

(∂xu0
x,y)(qx, qy)ρΛ(qX∪y; t)dqy}dqX .

Now we establish that every term of the last equality converges to the corresponding
term in (1.2′) in the limit Λ → Z

d. It is not difficult to see that the diagonal terms in
the first line of (5.10) converge to the corresponding terms in the first line of (1.2′) due
to (1.3). Let X ⊆ B0(r), and let the distance of B0(r) from Λc be equal to λ, where
Bx(r) is a hyperball with radius r centered at the lattice site x. In order to prove the
convergence of the last term on the right-hand side of (5.10), we estimate the following
integrals for X ∈ B0(r) using the decomposition Xc = (Λ\X) ∪ Λc:

∑

y∈Λ\X

∫

(∂xf)(qX)dqX

∫

(∂xu0
x,y)(qx, qy)(ρ(qX∪y; t) − ρΛ(qX∪y; t))dqy ,

∑

y∈Λc

∫

(∂xf)(qX)dqX

∫

(∂xu0
x,y)(qx, qy)ρ(qX∪y; t)dqy .

The sum of these integrals equals the difference of the non-diagonal last terms in (1.2′)
and (5.10). The last integral is less than [due to (1.4)]

Ñ g̃−|X|−1
∑

y∈Λc

∫

|(∂xf)(qX)|dqX

∫

|∂xu0
x,y(qx, qy)|e

−β
�

x∈X∪y

ū(qx)

dqy ≤
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≤ Ñ g̃−|X|−1CX(f) max
x∈B0(r)

∑

y∈Λc

J0
x−y,

where

CX(f) = 2−1a1 max
x∈X

∫

e
−β
�

x∈X

ū(qx)

|(∂xf)(qX)|dqX

∫

e−βū(q)(|qx|2l0−1 + |q|2l0−1 + 2)dq.

Here, we used (2.10) and put

Ñ = N∗(tβ
−1, β), g̃ = g(tβ−1, β).

The considered integral converges to zero with increase in λ due to the inequality

max
x⊆B0(r)

∑

y∈Λc

J0
x−y ≤ ||J0χBc

0(λ)||1 = ǫ0(λ).

Let us decompose the sum before the integral with the difference ρ− ρΛ into the sets
B0(r+2−1λ)\X and Λ\B0(r+2−1λ). These sums are bounded by two finite expressions
proportional to ε̃(2−1λ) = ε∗(2−1λ, tβ−1, β) and ε0(2

−1λ), respectively, due to the last
bound and (1.3). The first sum is estimated as follows:

max
X⊆B0(r)

∑

y∈B0(r+2−1λ)\X

∫

|∂xf(qX)|dqX

∫

|∂xu0
x,y(qx, qy)||ρ(qX∪y; t)− ρΛ(qX∪y; t)|dqy ≤

≤ g̃−|X|−1ε̃(2−1λ)
∑

y

∫

|(∂xf)(qX)|dqX

∫

|∂xu0
x,y(qx, qy)|e

− �

x∈X∪y

ū(qx)

dqy ≤

≤ g̃−|X|−1ǫ̃(2−1λ)CX(f)||J0||1.
For the second sum, we have the bound

2Ñ g̃−|X|−1 max
X⊆B0(r)

∑

y∈Λ\B0(r+2−1λ)

∫

|∂xf)(qX)|dqX

∫

|∂xu0
x,y(qx, qy)||dqy ≤

≤ 2Ñ g̃−|X|−1CX(f) max
x∈B0(r)

∑

y⊆Bc
0(r+2−1λ)

J0
x−y ≤ 2Ñ g̃−|X|−1CX(f)ε0(2

−1λ).

Here, we used the fact that ρ and ρΛ satisfy the same bound given in (1.4). Hence, the
two considered integrals containing the difference ρ − ρΛ converge to zero for increasing
λ which takes integer values. The convergence of the right-hand side of (5.9) is uniform
on the time interval, for which |z| < g̃∗, where g̃∗ = g∗(tβ−1, β), since g̃ is uniformly

bounded from below, and Ñ and ǫ̃(2−1λ) are uniformly bounded from above on this time
interval. The expression

∫

f(qX)ρΛ(qX ; t)dqX

converges to
∫

f(qX)ρ(qX ; t)dqX

also uniformly on this time interval. It is well known that the derivative of a limit of
a convergent sequence of functions on a bounded interval coincides with a limit of the
sequence of their derivatives if the sequence of their derivatives converges uniformly to
its limit. Hence, (1.2′) is true and the Theorem is proven.
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6. Appendix

Proof of Lemma 5.2. From the translation invariance of the Wiener measure, one
derives

ψt(qX) =

∫

P0(dwX)Ψt(wX + qX), Ψt(wX + qX) = e−βU3(wX+qX ),

where ωX + qX = (ωx + qx, x ∈ X) and

U3(wX) = Ũ(wX) − 1

2
U0(wX(0)) =

t
∫

0

U2(wX(τ))dτ + U1(wX(t)).

For U1, we have the superstability bound

U1(qX) ≥
∑

x∈X

u−
1 (qx) ≥ −|X |ū1, u−

1 (qx) = u1(qx) − ||J1||1q2(n1−1)
x − 2||J1||1,

where ū1 ≥ 0. Here, we used the inequality q2l1 ≤ q2(n1−1) + 1. From (2.5) and the
positivity of U ′

2 and (2.11′), one derives the superstability bound for U2,

U2(qX) ≥
∑

x∈X

u−
2 (qx) ≥ −ū2|X |, u−

2 (qx) = ũ(qx) − ||J0||1ṽ(qx),

where ū2 is a non-negative constant. The superstability bounds for U2, U1 yield the
bound

ψt(qX) ≤ eβ|X|(tū2+ū1)

which follows from the superstability bound for U3. We have

U3(wX) ≥
∑

x∈X

u−
3 (wx) ≥ −(ū2t + ū1)|X |, u−

3 (wx) =

t
∫

0

u−
2 (wx(τ))dτ − u−

1 (wx(t)).

Using (2.10), applying the inequalities

U ′
2(qX) ≤ 2|X| ∑

x �=y∈X

(∂xu0
x,y)

2(qx, qy) ≤ 2|X|−1
∑

x �=y∈X

(J0
x−y)2(v2

0,1(qx) + v2
0,1(qy)) ≤

≤ 2|X|a2
1||(J0)2||1

∑

x∈X

(q2(2l0−1)
x + 1),

and the similar bounds for the term with the second derivatives in the expression for U2,
one sees that there exists the positive number J̄2 such that

U2(qX) ≤
∑

x∈X

(|ũ(qx)| + J̄2(|qx|2(2n−1)−1 + 1)).

It is possible to derive an analog of the above inequality for ∂xU ′
2(qX) and the bound

|∂xU2(qX)| ≤ J̄3

∑

x∈X

(|qx|2(2n−1)−1 + 1).

To prove the Lemma, one has to show that it is possible to differentiate twice the right-
hand side of (2.3) under the sign of the Wiener integral. Let

Tx;rf(wX) = f(wX\x, wx + r).

Then one has to show that, for an arbitrary sequence of positive numbers rn such that
lim

n→∞
rn = 0, the following equality holds:

∫

P0(dwX)∂xΨt(wX + qX) = lim
n→∞

∫

PqX
(dwX)r−1

n (Tx,rn
Ψt(wX) − Ψt(wX)) =
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(6.1) = ∂x

∫

PqX
(dwX)Ψt(wX).

It is clear that one has to rely on the Lebesgue dominated convergence theorem and
show that the function under the sign of the first integral is uniformly bounded by an
integrable function. The function under the sign of the second integral is less than

exp{−βU3(wX)}r−1
n |Tx,rn

U3(wX) − U3(wX)|e|Tx,rnU3(wX)−U3(wX)|.

Here, we used the inequality |ea − 1| ≤ |a|e|a|. Derivatives in qx of U3(ωX + qX) are
calculated in an obvious way, since one deals with polynomials in Wiener paths. It follows
from the mean-value theorem, the above inequality for |∂xU2|, and similar inequalities
for the derivatives of U1 (the inequality for the partial derivatives of u1;Y mentioned in
Introduction has to be applied) that there exists the positive number J̄3 such that

0 ≤ r′n ≤ rn, r−1
n |Tx,rn

U3(wX) − U3(wX)| = |∂xU3(wX\x, wx + r′n)| ≤

(6.2) ≤ J̄3

∑

x∈X

[

t
∫

0

|wx(τ)|2(2n−1)−1dτ + |wx(t)|2n1−1 + 2)].

The last inequality, the previous one, and the superstability bound for U3 establish that
the function under the sign of the second integral in (6.1) is bounded by an integrable
function independent of n, since the degree of the polynomial ũ is greater than

2(2n− 1) − 1,

and the degree of the polynomial u1 is greater than 2n1 − 1. This proves (6.1). The
equality

∂xΨt(wX + qX) = −β exp{−βU3(wX + qX)}∂xU3(wX + qX)

and the superstability bound for U3 prove that |∂xψt| ≤ C1. To prove that ψt admits
a bounded second derivative in qx, one has to prove (6.1), where ∂xΨt is substituted
for Ψt. Using the formulas

aea − a′ea′

= a(ea − ea′

) + ea′

(a − a′) = ea[a(1 − ea′−a) + ea′−a(a − a′)],

|aea − a′ea′ | ≤ ea(|a||a′ − a|e|a′−a| + e|a
′−a||a′ − a|2) ≤ 2ea+|a′−a||a′ − a|(|a′| + |a|)

for

a′ = −βTx,rn
U3(wX), a = −βU3(wX),

the superstability bound for U3, and (6.2), we verify without any difficulty that ψt(qX)
is a twice differentiable function, and there exists a positive constant C2 such that

|∂2
xψt| ≤ C2.

Lemma is proven.

Remark. From (5.2-3) for m = 1 and the statement inverse to the Fubini theorem
[6], it follows that the function |u∗(ω, ω′)|2 is integrable by the measure P (dω)P (dω′).
From the Fubini theorem, it follows also that the function v2

∗(ω) is integrable by P (dω).
We have utilized the statement inverse to the Fubini theorem in the proof of Lemma 5.1.
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