

D. V. GUSAK (HUSAK)

## ON SOME GENERALIZATIONS OF THE POLLACHEK–KHINCHINE FORMULA

For the skip-free Poisson process  $\xi(t)$  ( $t \geq 0, \xi(0) = 0$ ),

$$\xi(t) = at + S(t), \quad a < 0, \quad S(t) = \sum_{k \leq \nu(t)} \xi_k, \quad \xi_k > 0, \quad \xi(0) = 0,$$

where  $\nu(t)$  is a simple Poisson process with intensity  $\lambda > 0$ , the moment generating function (m.g.f.) of  $\xi^+ = \sup_{0 \leq t < \infty} \xi(t)$  is defined by the well-known Pollacheck–Khinchine formula under the condition  $m = E\xi(1) < 0$  (see [1-3]).

For a homogeneous process  $\xi(t)$  with bounded variation, we establish prelimit and limit generalizations of this formula, which define the m.g.f. of

$$\xi^+(\theta_s) = \sup_{0 \leq t \leq \theta_s} \xi(t), \quad \xi^+ = \lim_{s \rightarrow 0} \xi^+(\theta_s) \quad (P\{\theta_s > t\} = e^{-st}, \quad s > 0).$$

These generalizations are essentially based on the condition  $P\{\tau^+(0) = \gamma^+(0) = 0\} = 0$ , where  $(\tau^+(0), \gamma^+(0))$  is the initial ladder point of  $\xi(t)$  ( $t \geq 0, \xi(0) = 0$ ).

Some other relations for the m.g.f. of  $\xi^+(\theta_s)$  and  $\xi^+$  are established for the general lower semicontinuous process  $\xi(t)$  on the base of results in [3-5].

### 1. INTRODUCTION

Let  $\xi(t)$  be a lower continuous compound Poisson process with cumulant function  $\psi(\alpha)$ :

$$Ee^{i\alpha\xi(t)} = e^{t\psi(\alpha)}, \quad t \geq 0; \quad \psi(\alpha) = i\alpha a + \lambda(\varphi(\alpha) - 1),$$

$$a < 0, \lambda > 0, \varphi(\alpha) = Ee^{i\alpha\xi_k}, \quad F(x) = P\{\xi_k < x\}, \quad x \geq 0, \quad \bar{F}(x) = 1 - F(x).$$

Under the condition

$$m = E\xi(1) = a + \lambda\mu_1 < 0, \quad \mu_1 = E\xi_k, \quad F(0) = 0,$$

the moment generating function (m.g.f.) of  $\xi^+ = \sup_{0 \leq t < \infty} \xi(t)$  is defined by the classic Pollacheck–Khinchine formula

$$Ee^{-z\xi^+} = \frac{p_+}{1 - q_+ \bar{F}(z)/\mu_1}, \quad p_+ = P\{\xi^+ = 0\} = 1 - q_+, \quad \bar{F}(z) = \int_0^\infty \bar{F}(x)e^{-zx} dx. \quad (1)$$

At first, we consider the process  $\xi(t)$  with a bounded variation

$$\psi(\alpha) = i\alpha a + \int_{-\infty}^\infty (e^{i\alpha x} - 1)\Pi(dx), \quad \int_{|x| \leq 1} |x|\Pi(dx) < \infty, \quad a \leq 0, \quad (2)$$

and denote its extremal values and ladder points as

$$\xi^\pm(t) = \sup_{0 \leq t' \leq t} (\inf) \xi(t'), \quad \xi^\pm = \sup_{0 \leq t < \infty} \xi(t), \quad \tau^-(x) = \inf\{t > 0 : \xi(t) < -x\},$$

$$\tau^+(x) = \inf\{t > 0 : \xi(t) > x\}, \quad \gamma^+(x) = \xi(\tau^+(x)) - x, \quad x \geq 0.$$

$$P\{\tau^+(x) < \infty\} = 1, \quad \text{if } m \geq 0, \quad P\{\tau^+(x) < \infty\} < 1, \quad \text{if } m < 0.$$

2000 *Mathematics Subject Classification.* Primary 60 G 50; Secondary 60 K 10.

*Key words and phrases.* Semicontinuous processes, Pollacheck–Khinchine formula.