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C. A. AGAYEVA AND Q. U. ABUSHOV

THE MAXIMUM PRINCIPLE FOR SOME NONLINEAR
STOCHASTIC CONTROL SYSTEM WITH VARIABLE STRUCTURE

Necessary conditions of optimality are derived for the stochastic control problem for
a dynamical system with variable structure. The system is described by stochas-
tic differential equations, when a control enters the drift and diffusion coefficients.
The maximum principle for some non-linear stochastic control system with endpoint
constraint is proved.

1. INTRODUCTION

Systems with stochastic uncertainties have raised a lot of interest in problems of nu-
clear fission, communication systems, self-oscillating systems, etc., where the influences
of random disturbances cannot be ignored [1-3]. Variations of the structure of a system
mean that it may go over at some moment from one law of movement to another. After
a variation of the structure, the parameters of the initial state of the system depend
on its previous ones. This joins them into a single system with variable structure [4-
5]. The modern optimal stochastic control theory has been developed along the lines of
Pontryagin’s maximum principle and Bellman’s dynamic programming [6]. The earliest
papers on the extension of Pontryagin’s maximum principle to stochastic control prob-
lems are [7-10]. The necessary conditions of optimality for stochastic control systems
with the controlled diffusion coefficient are considered in [11, 12]. At the early stage of
researches, the necessary condition of optimality in terms of the maximum principle for
variable-structure stochastic control systems with the uncontrolled diffusion coefficient
was obtained in [13, 14]. The present paper is dedicated to a stochastic optimal control
problem for a system with variable structure, when the diffusion coefficient also contains
a control.

2. STATEMENT OF THE PROBLEM

Let (Q, F!, P),l = 1,...,7 be the probability spaces with filtration {F},t € [t;_1,t],1 =
Loorh, 0=ty <ty <...<t,=T. Let w},w?, ..., w} beindependent Wiener processes,
Fl = E(wé,tl,l <g<t<t),l=1,..,r let L%l (a,b; R™) be the space of all predictable
processes such that F f: |z¢(w)|?dt < 400, and let R™*" be the space of linear transfor-
mations from R™ to R™. Let also O; C R™,Q; C R™,l =1,...,r, be open sets, R" be
an n-dimensional Euclidean space, and T = [0,T] be a finite interval.

Consider the following stochastic control system with variable structure:

dat = gl (@l ul, t)dt + fl 2t ul, t)dwl, te (t_1,t], 1 =T,7; (1)
a:ftkl = a:i;ll, =21 xtlo = xo; (2)
ub e Ul = {ul(-,) € L (t_1, t;; R™)|u!(t,-) e U' € R™,1 = 1,7 a.c.}, (3)

where U',1 = 1, r are non-empty bounded sets.
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2 C. A. AGAYEVA AND Q. U. ABUSHOV

The problem is concluded in the minimization of a cost functional:
T T tl
J)y=>"Ju)y=>" E[sal(a:;) +/ plat,ul, t)dt] (4)
=1 =1 ti—1

which is defined on the solutions of system (1)-(3) generated by all admissible controls
U=U!%xU? x...xU" under the condition

Eq(«h) € G C R, (5)
where G is a closed convex set in R*.

Definition 1. The set of functions {2z} = z!(t,7),t € [t;—1,t],0 = 1,...,7}, is said to
be a solution of the equation with variable structure which corresponds to an element
7" € A", if the function x! € O, at the point ¢; satisfies condition (2), while it is
absolutely continuous on the interval [t;,¢;41] with probability 1 and satisfies Eq. (1)
almost everywhere.

Consider the sets

Ai:ﬁOjXﬁQj,izl,...,T, (6)
j=1 j=1

with the elements 7! = (xtll,:cfz, - ,xil,ul,uz, cooul), l=1,..,r

Definition 2. The element 7" € A, is said to be admissible if the corresponding solution
{xbt € [ti_1,t],1 =1,...,7}, of system (1)-(3) satisfies condition (5).

By A?, we denote the set of admissible controls.

Definition 3. The element 7" € A, is said to be an optimal solution of problem (1)-(5)
if there exists a solution {Z!,t € [t;_1,#],l = 1,...,7}, of system (1)-(2) and admissible
controls @t,t € [t;_1,t],1 = 1,...,r, such that the pairs (!,4l),l = 1,...,r, minimize
functional (4).

Let us assume that the following requirements are satisfied:

I. Functions ¢', f',p',1 =1, ..., and their derivatives are continuous in (z,u,t) :

gl(a:,u7t); O xQ;xT — R™;
fl(x,u,t) © O x Qp x T — RM*™,
pl($7u,t) : Ol X Ql x T — Rl.

II. When (¢, u) are fixed, then the functions ¢', f!, p!,l = 1,...,r, are twice continuously
differentiable with respect to , g\, f.,,pL. are bounded, and the following condition of
linear growth is satisfied:

(1 + |2~ (9" (2w, O + |gel (@, w, )] + [ (2, u, 1)+
H fala, )] + p' (@, w, )] + [Pl (2, u,t)]) < N.
II1. Functions ¢!(z) : R™ — Rl =1,...,7, are twice continuously differentiable, and
|0 (@)] + (@) < N1+ |z]), |¢he] < N
IV. Function g(z) : R™ — RF is twice continuously differentiable, and

lg(z)| + |gz(x)] < N(1 + |z]), |gzz(z)| < N.
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3. MAIN RESULT

The following result that is a necessary condition of optimality for problem (1)—(5)
has been obtained. At first, the stochastic optimal control problem (1)—(4) is being
considered.

Theorem 1. Let conditions I-III hold, and let (x!,u}),l = 1,...r be a solution of
problem (1)—(4). Then there exist the random processes (1}, 8;) € L%, (ti—1,t;; R™) x
L%l (tlfl,tl;Rn"Xm) and ((I)é,Ké) S L%,l (tl,htl;Rnl) X L%,l (tlfl,tl;Ranm), which are
the solutions of the adjoint equations

{dwi = —HL(}, ab,ul t)dt + Bldw!, tiy <t <ty 1=1,.,75 -

wé[ = _QOZZ' (xél)’

A0} = —[g;" (x}, up, 1) @) + gy (x, up, t)+
1 (g, 1)@ FL (e, uf, ) dt + [, uf, ) K]+ K fL(x),ul, 1)+
+Hy, (), o, up, )]dt + Kidwy, ti0 <t <t
o}, = —ph,(af,),

andV ul € U', 1 =1,...,r, a.c. fulfills the following:

H' (g, zg, u',0) — H' (g, zp, ug, 0)+

+0'5Aulfl*(m107uf97 9)q>l9Aulfl(xl95 Ulea 0) <0, ae b€ [tl—lvtl]' (9)

(8)

Here,
Hl(wt;xhuht) = wtgl(xhuht) + Btfl(xtauht) _pl(mtautat)7 te [tl—htl]a l = Wa
and M* denotes the transpose of the element M.

Proof. The existence and uniqueness of solutions of the stochastic adjoint systems (7),(8)
stem from the following results [7]. O

Let A; and B; be the predictable bounded matrices.

Lemma 1. The equation
dd; = At‘l)tdf, + Btd)tdwt, 0<t<1
Oy =1,
has a unique solution ®; with Esup ||®:||* < oo, s > 1. The matriz ®; has an inverse
one, and ¥y = <I>t_1 18 a solution of the equation
d\I/t = —(\I/tAt — \I/tBtBt) — \IltBtdwt,
Wy =1.
Proof. See [7]. O
Theorem 2. Let £ : @ — R™ be an T1-measurable square integrable variable, and let
a; € L%, Then the stochastic differential equation
dpt = —(Aipi + Bi gt — ar) + qdwy, 0 <t < 1,
p1=¢£

has a unique solution (ps,q;) € L? x L?. Moreover, p; and q; can be represented as

1
pr = —\I/TE{(I)TE —|—/ @:asdsﬂ},
t

qt = —B:Pt - \IIZ‘gt,
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where g; is obtained from the relation

1 1 t
E{(Ifff —|—/ @:asdsﬂt} = E{‘I)Tg —l—/ ‘I{:asds} —l—/ gsdws.
t t 0

Proof. See [7].

Here, Lo is the space of all predictable processes in [0 1].

O

Now we will show the fulfillment of (9). Let @, = u}+ A%, I = T,7 be some admissible
controls, and let fi =zl + Afﬁ, I = 1,r, be the corresponding trajectories of system

(1)=(3). Then

dAfi =g l(ffwﬂé,t) g (af, up, t)ldt + [f! (ft,ui,t) FHt, uf, t)]dw; =
={Auy (xtﬂutﬂ )+gz(xt7ut7 )Axt +0. 5Axtgxx(xt’ut’ t)Az, fdi+
H{ A b ub t) + Lol ul, ) AT 4+ 0547 fL (xk, ul, t) Az bdtw!
+77t7 te (tll,tl],

Az, =0,1=1,..,r,

where

1
= { [ ok + et )~ g Gl ] A
+05/ A_l*[g;c:c(xt +:u‘Axtvuta ) g;c;c(xtvutv )]Axtdﬂ}dt"'
+ {/ [fglc*(xé'i_,qufévutv ) fl*(xtvutv )]Axtdﬂ'i_

+0-5/ A_l*[ (xt +MAxtautv t) = fo o (xtvutv )]Axtdu}dwt
According to Itd’s formula [2], we have

A(p AT = dipl* AT + P AATL + {8 [ A fH (), ul, t)+
fl(xtauta )A +05Afl* : (xtauta )A ]

1
+ﬁil§*/ [f (xt +/J/A.1?é,ﬂé, )_fl(xmum )]Axtdu_’_
0

1
.50 / AT (1L, (2 + pATL T 1) — L (a0, T, 1)) AT Yt
and

d(ATYBLAT) = ATV dPLAT! +Afg*q>1A + dATRLAT +
+{Kl*[ uf (xt,ut, )+f (xtvutv )A
+05Afl* l (xt,ut, )A ] [ ﬂf (xt,ui,t)—k
+f (xt’utv )A +O5Afl* iz(xtvutv )A ]@i[Agfl(xi,ui,t)—i—
+ fh(ah, uf, ) AT, + 0.5ATL fL, (2, up, t) AT bt

Almost certainly, the uniqueness of solutions of the adjoint stochastic equations (7)

and (8) follows from Lemma 1 and Theorem 2 [7].

We define the stochastic processes ¢! and ®., [ = 1,...,r, at the point ¢; as follows:

wél = _Som(xftl)
@), = ~Pha(a1,)-
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With regard for (10)—(12), the expression for an increment of the cost functional (4)
along the admissible control looks like

ZE{ (z,) (xé,,)+/tltll[pl($i,ﬂé,t)—pl(mt,ut, )]dt}

t
= —ZE/ [l Ami gt (b, ul, t) + B A fl (2l ul, t) — Anp! (2l ul, t)+

ti—1
+0.505 f1* (g, g, )Y A [ (af, uy, 1) —
—0.5AF f1* (), ul, )@} fL (2}, up, ) AT, + AT Aqug! (2, ul, 1) @LAT, —
— AT gL (ah, ub, ) PLAT, + AT A fH(al, ul, ) KIAT, — AT fL(2), ul, t) K[ AT, +

Fl Aqigh (b, ub, ) AT + B A fL(ah, ub, ) AT — Agpl (o, ul, t) AT | dt+zntl .

1=1
(13)
where
1
Wi, = =B [ ATl =l + i) et AT, di-
, 1
_E/ { o Aji*(l - [ :c;c(xt +HAxtauta ) p;c;c(xtvutv )]A‘xtdu}dt"'
1 (14)
[ 8 il Tl ) — e )T
ti—1 0
171 1
+E / AT 080 (Fhalad o+ T ) fhy . D) A,
ti—1 J0
Performing a simple transformation of expression (14), we have
=Y AW ZE/ Ag H' (9! 2t ul 1) + Ap HL (9L, 2l 6 AT 4
1=1 ti-1

0.5 f1* (), up, ) ) A f1(a}, ul, 1) — 0.5ATL f1* (af, ul, )@ fL (2}, i, ) AT, +
+A$f€*A_lg (xuuu )q)let Axf;g;lc(xhuu )q)letl +Axi*A_’f (xtauh )KlA_l

_Axétfx(xhuta )K Axtl Jdt + Zml 1 (15)
1=1
Consider the spike variation

0, t & (01,0, +€1),e1 € [ti—1,ty)

Aub = A, =
Uy ut’el ﬂl — uéa te [0179l +€l)’ ﬂl € LQ(QaFelﬂP;Rm)’

where 0,1 = 1,7, are Lebesgue points, and &; are enough small numbers.
Then expression (15) takes the form

01+e;
AgJ (u ZE/ (A H (¢l 2l ul, 1)+

+0.5A0 f1* (k, ul, ) B AL fl(2h, ul, 1)) dt + ZnaHﬂ. (16)
=1
The following lemma will be used in the estimation of increment (16) .
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Lemma 2. Let us assume that conditions I-1I1 are satisfied. If e, — 0, | =1,...,7, then

E|xff€l — 4|2 < Ney, where xf”al are trajectories of system (1)—(2) corresponding to the

controls u?'. = ul + Au?"_ | respectively.
t,el t ter? P

Proof. We denote T} ., = xf}el —a}. It is clear that V ¢ € [t;—1,60;) T} ., = 0,1 = 1,r. Then,
forVite [91, 0, + 61),

~1
dxt,sl

— [gl(xé + Elfé,sl,ﬂl,t) — gl(fci,uft,t)]dt—i—
+[fl(xé + glgi,emalvt) - fl(xéa uf&at)]dwéa te (017 91 + El)

xehﬂ - —(gl(q,‘él,ﬂl,el) _g(xlepuélael))

or
1 frte Lol ~l l leodo o0
x@ﬂrsl,e, :/0 [g (J?S +€lxs,sl7u 75) —4g (I‘S,US,S)]dS—f—
1

01+€;

01+€;
+ / 19! (b, b, 0r) — g'(at ., s))ds + / Fat+ e, ul,s)—
9[ 9[

Ov+e;

— [y, u, 8)]dw, +/0 g (x4, 0, 5) — g (af, , 0, 61)]ds.
1

Therefore, conditions I-IT and the Gronwall’s inequality yield

tey

~ 2 2 0 2 2 2
Bl SN[RE o fafl, ~alf 428 s o ah
6, <t<0;+¢; 0, <t<0;4¢;

+ sup  erElg'(al, i, t) — g'(ah,, T, 0) P+
0,<t<6,+e,

01+€1
+eE / P, ub ) — F(ah b O0) Pt
0

l

2 Ot Lol ool ol 2
+51E/ lg' (xy, uy,t) — g (xal,ual,91)| dt|.
0,

Hence,
E|%i+sl,sl|2 <elN, et =0, Vte [91,91 —l—el).

For V t € [0 + €!,;], we have
Ay o = (g (wp + €Tt g, 1) — 9" (g, )]+ [ (g + T o, 1) — f (it ug, D] duw;.

Consequently, we obtain
1 1
dii,el = / gl (x! + ualfé’gl,ui,t)fi’sldudt —|—/ fL(zh + ualfi’sl,ui,t)fi’sl dudt,
0 0

Pt = —(0' @bttt 09 — gl 0.
Hence,
E|T; 1> <e'N, forVie [0 +&t), if e, — 0.
Thus,

sup E|5f:,sl|2 < Ng, l=1,r.
ti—1<t<t,

Lemma 2 is proved. O



THE MAXIMUM PRINCIPLE FOR SOME NONLINEAR STOCHASTIC... 7

Due to Lemma 2, expression (14) yields the estimation
o, " = ofer).
Then, according to the optimality of ul, I = 1,7, it follows from (16) that
AgiJ(u) = —Ephi Aqig! (xhe, ubi, 0") — Agip! (xhy, uby, 01+

+0-5Aglfl*(l‘lel ) ulel ) el)q)lelAﬂlfl(J?lgz , ulez s el) + 0(61) > 0.

Hence, due to the sufficient smallness of &, relation (9) is satisfied. Theorem 1 is proved.

Then using Theorem 1 and the Ekeland variation principle [15], we obtain the following
necessary condition of optimality for the stochastic control problem with the endpoint
constraint (5).

Theorem 3. Let conditions I-IV hold, and let (z,ul),l = T,7 be solutions of problem
(1)-(5). Then ezist the nonzero (Ao, \1) € RET! and the mndom processes (YL, BL) €
L%l (tlfl, t; an) X L%l (tlfl, t;; R™ an) and (@i, Ktl) € L%l (tlfl, t1; Rnl) X

L%l (ti—1,t;; R™*™) which are solutions of the adjoint equations

dpt = —HL(! oh ul, t)dt + Bldwl, 4, <t <t, 1=T1r;
v = —eh(ag), 1=1,r = 1 (17)
w; = )‘Osox(xT) - Aqu(xT)
d(I)l [ (xtvuw )q)l +q)tgx(xtauiat)+
fl*(xtaut’ )(I)lfl(xtvutv )dt"i_fl*(xtvuéa )Kl"i_Klfl(xftauiat)—"
+HL, (Wl 2t ul )]dt + Kldw!, t1 <t <t;,l=T1r; (18)

(bil = _Qoxx(xtl) l= 1 r—= 1
(b;“ = Aowxx(xT) - Alq;c:c(xT)a
and ¥V u! € U1 =T1,r, a.c. fulfills the following:
H' (g, g, ', 0) — H' (g, x5, up, 0)+
+0.5A 0 f1 (h, uly, 0)BLA L fL (2, ub, 0) <0 ace. 6 € [t_y, 1] (19)
Proof. For any natural j, we introduce the approximating functional

<ZE{ («l) /tl p(zh, ul, )dt} Eq(er)> -

ti—1

2
— min + — Ea(xr 2
(e,y)e€ lly q(@p)|I1?,

0—1/3—24 (z}) /tl plal, ul, )dt]

ti—1

E ={(c,y) : ¢ < 1%y € G}, and I° is the minimal value of the functional in (1)
(5). Let V! = (U},d") be the space of controls obtained by introducing the metric
d'(u,v) = (L@ P){(t,w) € [ti—1,t)) x Q: vl #ul}, and let V =V x VZx ... x V" be
the complete metric space.

It is easy to show that

Lemma 3. Let us assume that condz’tions I-1V hold, ui’n,l = 1,...,r is a sequence of
admissible controls from Vi, and xt is a sequence of the corresponding trajectories of
system (1) (3). If d(u ut) — 0, n — oo, then lim, oo {sSUp,;, | <i<y, Blzb™—2l12} =0,
where x! is a trajectory corresponding to an admissible control ul,l =1,r.
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Due to Lemma 3, we obtain the continuity of the functional J; : V' — R",. Then,
according to the Ekeland variation principle we have that there exists a control ui’J
d(ub? ul) < \/_and Vaul e VI Ji(uh?) < Jj(uh) 4+ Ed(utd ul), g5 = %.This inequality

means that (z7,ul7) is a solution of the following problem:

Ii(u) = Jj(u )—i—\/_Z; 1 ftl ) ut,ut )dt—>m1n
dxt _g(q"uuu )dt—i_f(xtvum )dwta te (tl 17tl]
xilll—xtl 1=2r; ) =0

ut EUd

(20)

Let (247, ul7) be a solution of problem (20). Then, according to Theorem 1, there
exist the random processes ¥ € L2, (t—1,t;; R™, B e L2, (tj—1,t;; R™*™) which are
solutions of the system

dypb? = —HL[Y  2b7 ubd t)dt 4 B dwy, t€ [t t), 1 =T,
Pyl = —sox(xtl N, l=T,r—1; (21)
(N /\{)Sﬁ’z( Ty )—)\]1%( T )

and the random processes (®47, K1) e L%, (ti—1, ti; R™) x L%, (ti—1, t;; R™>*™) which
are solutions of the adjoint equations
d(I)l,j = igz (xt autijvt)q)l’j + q)iijglz (xt autijvt)—i_
fl*(xt ,ut’],t)‘l)l’jfl (xt ,ut’],t)dt—i——l-fl*(xt ,ut’],t)Kl’j —|—Kl’jfl (xt ,utij,t)_i_
+HL (T kT ,ut’],t)]dt+Kl’jdwt, o <t<t,l=1,.
1, )
(btlj - _Qogcx(xtl ) l= 1 17

Q);] = _A{)saxx( Ty )_ >‘]1q:c;c( Ty )a
_ ‘ (22)
where non-zero (A}, and \]) € R**! meet the requirement

S t .
(N, X)) = (— ¢ +1/j+ ZE[ (zr) /t Pl up? bt |, —y; + EW?))/I?,
-1
and, almost certainly for any @' € U',l = 1,7, we have

li 1Lj — Li
Hl(w / xt]a 17 t) — Hl( ¢ axt aut]vt)'i‘

. (23)
+ 050 f (@b ubd @b A b ubd 1) <0, ae. t e [tig,ti], L=T,r.

We now show some results which are needed in what follows. Since [0, A = 1, we
may think in view of conditions I-IV that (M), A]) — (X, and A1), if j — oo.

Lemma 4. Let wi;j be a solution of system (17), and let wi,, be a solution of system
(21). Then

1 . t
E [ Wy —¢iPdt+E [ |87 - BiPdt — 0, 1=T,r, if dup’,ul) — 0, j — oc.

ti—1 ti—1

Proof. Tt is clear that, V ¢ € [t;—1, ],
d(wi’j — ) = (Hli t axit ,ut’j,t] H [, @y, ug, t])dt + (ﬂt’] Bi)dw; =
—(7 gy ) + By f(w?  ug? 6) — pl (i uy? t) — gl (h, up, 1) —
—BL i, up, t) + Pl uf, 0)dt + (B — B})dw,.
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Let us square both sides of the equation. According to the It formula, ¥V s € [t,.—1,T],
T
By —ip|* — Elpy? —1/J§|:2E/ A (A AR AN B AL AR AR
+gr (g up, )07 — o) + (F (@ up 6) = fo (g, up, )80 + 17 (af, up, £)

(877 = B7) — py(ay?, UI’jat)+P£(IEI,UH)]dt+E/ 187 — By |dt.

Taking assumptions I-IV into account and using simple transformations, we obtain

T T
E / 1679 — Br2dt + Bl — gl < EN / o — o Pdi+

T
+ENe [ |97 - grPde+ Bl - vl
S
Hence, according to the Gronwall inequality, we have
Bl — L2 < DeNT=%) ae. in [t,_1,T], (21)

where the constant D is determined in the following way: D = E WTJ — 4|2, According

o (17) and (21), we obtain w;j — ¢ and D — 0. Consequently, it follows from (21)
that 77 — 7 in L%, (t,—1,T; R™) and 877 — BT in L%, (t,—1,T; R">*"). Then, from
the expression

. . tl .
Bl — i[> — Elyb — ¢t ? =2E / W7 — vD)(gh (@p? up? 1) —

—ght (2}, up, t ))W’J"‘g;lc*(xtauta )Wt’j ¥ + (f4 (xi autJ’t)
_fl*(xtauta ))ﬁ] fl*(xhum ))(ﬁt’] ﬁé)"‘

t
1,j 1.7
—|—pfc(xi,ué,t) _pl (xt vu’]lta )]dt + E/ |ﬂt] - 6é|2dt,
S

making simple transformations, and taking assumptions I-IV into account, we obtain

2 . . 2 .
B [ 16 - Pde+ Bl - gl < BN [0 - vifae

t . .
+ENe |19 = g + Bluy - ui
S
Hence, according to the Gronwall inequality, we have
Bl —l)? < DeN(t=5) g6 in [ti—1,t], L=1,7—1,

where the constant D is determined as D = F |1pi;j — 9} |* with D — 0. Then, it follows
from (21) that 9% — % in L%l (ti—1,t;; R™) and B9 — Bl in L%, (t1—1,ty; RM>m™).
Lemma 4 is proved. O

Lemma 5. Let <I>i’lj be a solution of system (18), and let @il be a solution of system
(22). Then
ty L 2 L
E |7 — ®L|2dt + E |K,? — K}|Jdt —0, l=1,....,7, if j — oc.

ti—1 ti—1
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Proof.
d(®7 — @) = —{(gh (7, uy? 1)y — gl (a],ul 1)) ®B}) + (B gl (277 ui? 1) —
(btgx(mt’ut’ t) + (fl*(xt aUtJat)q)lJf (xt vut’jat) fl*(xtvut’ )‘blf (mé,ui,t))—i—
(o (y uy? )K= S (g, )G + (K Sy up? 6) = K, g, 1)+
FHL (@ 2 ubd ) — HE (@, 2 ul, ) Yt + (K77 — KD)duw!.

Due to the Ité formula for V s € [t;—1,%;), we have

i .
E|q)ld <I>il|2 — E|®Y — ®L* < QE/ [‘I’fﬁ’j — ®}][(g% (xt ,ut’j,t)
S

g;c (xtvuta ))q)l’] +g;lc*(xtautv )((I)l,j (I) )+
(fl*(xt ,ut’J,t) fl*(xtvuw ))Klu_’_fl*(mt,ut, )(Kl’j Ké)"’

l, , l,j l,j
+ch (@tj,xtj,utj,t)—ch (@{,xt,ut, )—i—Hl (@tj,xé,ué,t)—

1 .
—HL (@, 2L, ul, t))dt + E/ |Kb — K2t
S
Then, after simple transformations, we obtain

2 ) )
E/ K7 — Kl2dt + B|o)7 — olf? <

2 . 171
< EN/ L —(I)é|2dt+EN€/ |K — Kl]? dt+E|(I)lJ ‘I’ill2~
S

S

According to the Gronwall inequality, we have
E|®Y — L2 < De VNt qein [, t),

where the constant D is defined as
1 .
D= E|o)7 — @ |? +EN5/ |KP — KY2dt.

So that @;j — ®7.. Hence, according to assumptions I-IV and expressions (18) and (22),
we have

@b — ol in L%, (t,—1,T; R™) if j — cc.
Then, according to the sufficient smallness of ¢, we have D — 0. Consequently,
®17 — @ in L2, (t;_1,1; R™) and
Ktl’j — K!in L3 (ti—1,t; R, 1 =T,7r — 1, for j — oo.
Lemma 5 is proved. O
It is follow from Lemmas 4 and 5 that we can pass to the limit in systems (21) and

(22) and prove the validity of (17) and (18). In a similar way, by passing to the limit in
(23), we obtain that (19) is true. Theorem 3 is proved. O
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