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C. A. AGAYEVA AND Q. U. ABUSHOV

THE MAXIMUM PRINCIPLE FOR SOME NONLINEAR
STOCHASTIC CONTROL SYSTEM WITH VARIABLE STRUCTURE

Necessary conditions of optimality are derived for the stochastic control problem for
a dynamical system with variable structure. The system is described by stochas-
tic differential equations, when a control enters the drift and diffusion coefficients.
The maximum principle for some non-linear stochastic control system with endpoint
constraint is proved.

1. Introduction

Systems with stochastic uncertainties have raised a lot of interest in problems of nu-
clear fission, communication systems, self-oscillating systems, etc., where the influences
of random disturbances cannot be ignored [1-3]. Variations of the structure of a system
mean that it may go over at some moment from one law of movement to another. After
a variation of the structure, the parameters of the initial state of the system depend
on its previous ones. This joins them into a single system with variable structure [4-
5]. The modern optimal stochastic control theory has been developed along the lines of
Pontryagin’s maximum principle and Bellman’s dynamic programming [6]. The earliest
papers on the extension of Pontryagin’s maximum principle to stochastic control prob-
lems are [7-10]. The necessary conditions of optimality for stochastic control systems
with the controlled diffusion coefficient are considered in [11, 12]. At the early stage of
researches, the necessary condition of optimality in terms of the maximum principle for
variable-structure stochastic control systems with the uncontrolled diffusion coefficient
was obtained in [13, 14]. The present paper is dedicated to a stochastic optimal control
problem for a system with variable structure, when the diffusion coefficient also contains
a control.

2. Statement of the problem

Let (Ω, F l, P ), l = 1, ..., r be the probability spaces with filtration {F lt , t ∈ [tl−1, tl], l =
1, ..., r}, 0 = t0 < t2 < . . . < tr = T. Let w1

t , w
2
t , . . . , w

r
t be independent Wiener processes,

F lt = σ(wlq, tl−1 ≤ q ≤ t ≤ tl), l = 1, ..., r, let L2
F l(a, b;Rn) be the space of all predictable

processes such that E
∫ b
a
|xt(ω)|2dt < +∞, and let Rm×n be the space of linear transfor-

mations from Rm to Rn. Let also Ol ⊂ Rnl , Ql ⊂ Rml , l = 1, . . . , r, be open sets, Rn be
an n-dimensional Euclidean space, and T = [0, T ] be a finite interval.

Consider the following stochastic control system with variable structure:

dxlt = gl(xlt, u
l
t, t)dt+ f l(xlt, u

l
t, t)dw

l
t, t ∈ (tl−1, tl], l = 1, r; (1)

xltl−1
= xl−1

tl−1
, l = 2, r; x1

t0 = x0; (2)

ult ∈ U l∂ ≡ {ul(·, ·) ∈ L2
F (tl−1, tl;Rm)|ul(t, ·) ∈ U l ⊂ Rm, l = 1, r a.c.}, (3)

where U l, l = 1, r are non-empty bounded sets.
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The problem is concluded in the minimization of a cost functional:

J(u) =
r∑
l=1

J l(ul) =
r∑
l=1

E

[
ϕl(xltl) +

∫ tl

tl−1

pl(xlt, u
l
t, t)dt

]
(4)

which is defined on the solutions of system (1)-(3) generated by all admissible controls
U = U1 × U2 × . . .× U r under the condition

Eq(xrT ) ∈ G ⊂ Rk, (5)

where G is a closed convex set in Rk.

Definition 1. The set of functions {xlt = xl(t, πl), t ∈ [tl−1, tl], l = 1, . . . , r}, is said to
be a solution of the equation with variable structure which corresponds to an element
πr ∈ Ar, if the function xlt ∈ Ol at the point tl satisfies condition (2), while it is
absolutely continuous on the interval [tl, tl+1] with probability 1 and satisfies Eq. (1)
almost everywhere.

Consider the sets

Ai =
i∏

j=1

Oj ×
i∏

j=1

Qj, i = 1, . . . , r, (6)

with the elements πl = (x1
t1 , x

2
t2 , . . . , x

l
tl , u

1, u2, . . . , ul), l = 1, . . . , r.

Definition 2. The element πr ∈ Ar is said to be admissible if the corresponding solution
{xlt, t ∈ [tl−1, tl], l = 1, . . . , r}, of system (1)-(3) satisfies condition (5).

By A0
r, we denote the set of admissible controls.

Definition 3. The element π̃r ∈ A0
r , is said to be an optimal solution of problem (1)-(5)

if there exists a solution {x̃lt, t ∈ [tl−1, tl], l = 1, . . . , r}, of system (1)-(2) and admissible
controls ũlt, t ∈ [tl−1, tl], l = 1, . . . , r, such that the pairs (x̃lt, ũlt), l = 1, . . . , r, minimize
functional (4).

Let us assume that the following requirements are satisfied:
I. Functions gl, f l, pl, l = 1, ..., r and their derivatives are continuous in (x, u, t) :

gl(x, u, t) : Ol ×Ql × T → Rnl ;

f l(x, u, t) : Ol ×Ql × T → Rnl×nl ;

pl(x, u, t) : Ol ×Ql × T → R1.

II. When (t, u) are fixed, then the functions gl, f l, pl, l = 1, ..., r, are twice continuously
differentiable with respect to x, glxx, f lxx, plxx are bounded, and the following condition of
linear growth is satisfied:

(1 + |x|)−1(|gl(x, u, t)|+ |glxl(x, u, t)|+ |f l(x, u, t)|+

+|f lx(x, u, t)|+ |pl(x, u, t)|+ |plx(x, u, t)|) ≤ N.

III. Functions ϕl(x) : Rnl → R1, l = 1, ..., r, are twice continuously differentiable, and

|ϕl(x)|+ |ϕlx(x)| ≤ N(1 + |x|), |ϕlxx| ≤ N.

IV. Function q(x) : Rnr → Rk is twice continuously differentiable, and

|q(x)|+ |qx(x)| ≤ N(1 + |x|), |qxx(x)| ≤ N.
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3. Main result

The following result that is a necessary condition of optimality for problem (1)–(5)
has been obtained. At first, the stochastic optimal control problem (1)–(4) is being
considered.

Theorem 1. Let conditions I-III hold, and let (xlt, ult), l = 1, ..., r be a solution of
problem (1)–(4). Then there exist the random processes (ψlt, β

l
t) ∈ L2

F l(tl−1, tl;Rnl) ×
L2
F l(tl−1, tl;Rnl×nl) and (Φlt,K l

t) ∈ L2
F l(tl−1, tl;Rnl) × L2

F l(tl−1, tl;Rnl×nl), which are
the solutions of the adjoint equations{

dψlt = −H l
x(ψ

l
t, x

l
t, u

l
t, t)dt+ βltdw

l
t, tl−1 ≤ t < tl, l = 1, ..., r;

ψltl = −ϕlx(xltl),
(7)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dΦlt = −[gl∗x (xlt, u

l
t, t)Φ

l
t + Φltg

l
x(x

l
t, u

l
t, t)+

+f l∗x (xlt, ult, t)Φltf lx(xlt, ult, t)dt+ f l∗x (xlt, ult, t)K l
t +K l

tf
l
x(xlt, ult, t)+

+H l
xx(ψ

l
t, x

l
t, u

l
t, t)]dt+K l

tdw
l
t, tl−1 ≤ t < tl,

Φltl = −plxx(xltl),

(8)

and ∀ ul ∈ U l, l = 1, ..., r, a.c. fulfills the following:

H l(ψlθ, x
l
θ, u

l, θ)−H l(ψlθ, x
l
θ, u

l
θ, θ)+

+0.5Δulf l∗(xlθ , u
l
θ, θ)Φ

l
θΔulf l(xlθ , u

l
θ, θ) ≤ 0, a.e. θ ∈ [tl−1, tl]. (9)

Here,

H l(ψt, xt, ut, t) = ψtg
l(xt, ut, t) + βtf

l(xt, ut, t)− pl(xt, ut, t), t ∈ [tl−1, tl], l = 1, r,

and M∗ denotes the transpose of the element M.

Proof. The existence and uniqueness of solutions of the stochastic adjoint systems (7),(8)
stem from the following results [7]. �

Let At and Bt be the predictable bounded matrices.

Lemma 1. The equation

dΦt = AtΦtdt+BtΦtdwt, 0 < t ≤ 1
Φ0 = I,

has a unique solution Φt with E sup ‖Φt‖2s < ∞, s ≥ 1. The matrix Φt has an inverse
one, and Ψt = Φ−1

t is a solution of the equation

dΨt = −(ΨtAt −ΨtBtBt)−ΨtBtdwt,

Ψ0 = I.

Proof. See [7]. �

Theorem 2. Let ξ : Ω → Rn be an T1-measurable square integrable variable, and let
at ∈ L2. Then the stochastic differential equation

dpt = −(A∗
t pt +B∗

t qt − at) + qtdwt, 0 ≤ t < 1,
p1 = ξ

has a unique solution (pt, qt) ∈ L2 × L2. Moreover, pt and qt can be represented as

pt = −Ψ∗
1E

{
Φ∗

1ξ +
∫ 1

t

Φ∗
sasds|T

}
,

qt = −B∗
t pt −Ψ∗

t gt,



4 C. A. AGAYEVA AND Q. U. ABUSHOV

where gt is obtained from the relation

E

{
Φ∗

1ξ +
∫ 1

t

Φ∗
sasds|Tt

}
= E

{
Φ∗

1ξ +
∫ 1

t

Φ∗
sasds

}
+
∫ t

0

gsdws.

Proof. See [7]. �

Here, L2 is the space of all predictable processes in [0, 1].
Now we will show the fulfillment of (9). Let ult = ult+Δult, l = 1, r be some admissible

controls, and let xlt = xlt + Δxlt, l = 1, r, be the corresponding trajectories of system
(1)–(3). Then⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dΔxlt = [gl(xlt, u
l
t, t)− gl(xlt, u

l
t, t)]dt+ [f l(xlt, u

l
t, t)− f l(xlt, ult, t)]dwlt =

= {Δulgl(xlt, u
l
t, t) + glx(x

l
t, u

l
t, t)Δx

l
t + 0.5Δx∗t g

l
xx(x

l
t, u

l
t, t)Δxt}dt+

+{Δulf l(xlt, u
l
t, t) + f lx(x

l
t, u

l
t, t)Δx

l
t + 0.5Δx∗t f

l
xx(x

l
t, u

l
t, t)Δxt}dtwlt

+η1
t , t ∈ (tl1 , tl],

Δxltl−1
= 0, l = 1, ..., r,

(10)

where

η1
t =

{∫ 1

0

[gl∗x (xlt + μΔxlt, u
l
t, t)− gl∗x (xlt, u

l
t, t)]Δx

l
tdμ+

+ 0.5
∫ 1

0

Δxl∗t [gl∗xx(x
0
t + μΔxlt, u

l
t, t)− gl∗xx(xlt, ult, t)]Δxltdμ

}
dt+

+
{∫ 1

0

[f l∗x (xlt + μΔxlt, u
l
t, t)− f l∗x (xlt, u

l
t, t)]Δx

l
tdμ+

+ 0.5
∫ 1

0

Δxl∗t [f l∗xx(x
0
t + μΔxlt, u

l
t, t)− f l∗xx(xlt, ult, t)]Δxltdμ

}
dwlt.

According to Itô’s formula [2], we have

d(ψl∗t Δxlt) = dψl∗t Δxlt + ψl∗t dΔx
l
t + {βl∗t [Δulf l(xlt, u

l
t, t)+

f lx(x
l
t, u

l
t, t)Δx

l
t + 0.5Δxl∗t f

l
xx(x

l
t, u

l
t, t)Δx

l
t]+

+ βl∗t

∫ 1

0

[f lx(x
0
t + μΔxlt, u

l
t, t)− f lx(xlt, ult, t)]Δxltdμ+

+ 0.5βl∗t

∫ 1

0

Δxl∗t [f lxx(x
0
t + μΔxlt, u

l
t, t)− f lxx(x0

t , u
l
t, t)]Δx

l
t}dt

(11)

and
d(Δxl∗t ΦltΔx

l
t) = Δxl∗t dΦ

l
tΔx

l
t + Δxl∗t ΦltΔx

l
t + dΔxl∗t ΦltΔx

l
t+

+ {K l∗
t [Δuf

l(xlt, u
l
t, t) + f lx(x

l
t, u

l
t, t)Δx

l
t+

+ 0.5Δxl∗t f
l
xx(x

l
t, u

l
t, t)Δx

l
t] + [Δuf

l
x(x

l
t, u

l
t, t)+

+ f lx(x
l
t, u

l
t, t)Δx

l
t + 0.5Δxl∗t f

l
xx(x

l
t, u

l
t, t)Δx

l
t]Φ

l
t[Δuf

l(xlt, u
l
t, t)+

+ f lx(x
l
t, u

l
t, t)Δx

l
t + 0.5Δxl∗t f

l
xx(x

l
t, u

l
t, t)Δx

l
t]}dt.

(12)

Almost certainly, the uniqueness of solutions of the adjoint stochastic equations (7)
and (8) follows from Lemma 1 and Theorem 2 [7].

We define the stochastic processes ψlt and Φlt, l = 1, . . . , r, at the point tl as follows:

ψltl = −ϕx(xltl)
Φltl = −plxx(xltl).
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With regard for (10)–(12), the expression for an increment of the cost functional (4)
along the admissible control looks like

ΔJ(u) =
r∑
l=1

E

{
ϕl(xltl)− ϕl(xltl) +

∫ tl

tl−1

[pl(xlt, u
l
t, t)− pl(xlt, ult, t)]dt

}
=

= −
r∑
l=1

E

∫ tl

tl−1

[ψl∗t Δulgl(xlt, u
l
t, t) + βl∗t Δulf l(xlt, u

l
t, t)−Δulpl(xlt, u

l
t, t)+

+0.5Δulf l∗(xlt, u
l
t, t)Φ

l
tΔulf l(xlt, u

l
t, t)−

−0.5Δxl∗tl f
l∗(xlt, u

l
t, t)Φ

l
tf
l
x(x

l
t, u

l
t, t)Δx

l
tl + Δxl∗tl Δulgl(xlt, u

l
t, t)Φ

l
tΔx

l
tl−

−Δxl∗tl g
l
x(x

l
t, u

l
t, t)Φ

l
tΔx

l
tl

+ Δxl∗tl Δulf l(xlt, u
l
t, t)K

l
tΔx

l
tl
−Δxl∗tl f

l
x(x

l
t, u

l
t, t)K

l
tΔx

l
tl
+

+ψl∗t Δulglx(x
l
t, u

l
t, t)Δx

l
tl

+ βl∗t Δulf lx(x
l
t, u

l
t, t)Δx

l
tl
−Δulplx(x

l
t, u

l
t, t)Δx

l
tl
]dt+

r∑
l=1

ηtltl−1
,

(13)
where

ηtltl−1
= −E

∫ 1

0

Δxl∗tl (1 − μ)[ϕl∗xx(x
l
tl + μΔxltl)− ϕ∗

xx(x
l
tl)]Δx

l
tldμ−

− E
∫ tl

tl−1

{∫ 1

0

Δxl∗t (1 − μ)[pl∗xx(x
l
t + μΔxlt, u

l
t, t)− pl∗xx(xlt, ult, t)]Δxltdμ

}
dt+

+ E

∫ tl

tl−1

{∫ 1

0

Δxl∗t (1 − μ)ψl∗t [glxx(x
l
t + μΔxlt, u

l
t, t)− glxx(xlt, ult, t)]Δxltdμ

}
dt+

+ E

∫ tl

tl−1

∫ 1

0

Δxl∗t (1− μ)βl∗t [f lxx(x
l
t + μΔxlt, u

l
t, t)− f lxx(xlt, ult, t)]Δxtdμdt.

(14)

Performing a simple transformation of expression (14), we have

ΔJ(u) =
r∑
l=1

ΔJ l(ul) = −
r∑
l=1

E

∫ tl

tl−1

[ΔulH l(ψlt, x
l
t, u

l
t, t) + ΔulH l

xl(ψlt, x
l
t, u

l
t, t)Δx

l
t+

+0.5Δulf l∗(xlt, u
l
t, t)Φ

l
tΔulf l(xlt, u

l
t, t)− 0.5Δxl∗tl f

l∗(xlt, u
l
t, t)Φ

l
tf
l
x(x

l
t, y

l
t, t)Δx

l
tl
+

+Δxl∗tl Δulgl(xlt, u
l
t, t)Φ

l
tΔx

l
tl −Δxl∗tl g

l
x(x

l
t, u

l
t, t)Φ

l
tΔx

l
tl + Δxl∗tl Δulf l(xlt, u

l
t, t)K

l
tΔx

l
tl−

−Δxl∗tl f
l
x(x

l
t, u

l
t, t)K

l
tΔx

l
tl ]dt+

r∑
l=1

ηtltl−1
. (15)

Consider the spike variation

Δult = Δuθ
l

t,εl =

{
0, t /∈ [θl, θl + εl), εl ∈ [tl−1, tl)
ũl − ult, t ∈ [θl, θl + εl), ũl ∈ L2(Ω, F θl , P ;Rm),

where θl, l = 1, r, are Lebesgue points, and εl are enough small numbers.
Then expression (15) takes the form

ΔθJ(u) =
r∑
l=1

E

∫ θl+εl

θl

[ΔulH l(ψlt, x
l
t, u

l
t, t)+

+0.5Δulf l∗(xlt, u
l
t, t)Φ

l
tΔulf l(xlt, u

l
t, t)]dt+

r∑
l=1

ηθl+εl

θl
. (16)

The following lemma will be used in the estimation of increment (16) .
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Lemma 2. Let us assume that conditions I-III are satisfied. If εl → 0, l = 1, ..., r, then
E|xθl

t,εl
− xlt|2 ≤ Nεl, where xθl

t,εl
are trajectories of system (1)–(2) corresponding to the

controls uθl
t,εl

= ult + Δuθl
t,εl

, respectively.

Proof. We denote x̃lt,εl
= xθl

t,εl
−xlt. It is clear that ∀ t ∈ [tl−1, θl) x̃lt,εl

= 0, l = 1, r. Then,
for ∀ t ∈ [θl, θl + εl),

dx̃lt,εl
= [gl(xlt + εlx̃lt,εl

, ũl, t)− gl(xlt, ult, t)]dt+

+[f l(xlt + εlx̃lt,εl
, ũl, t)− f l(xlt, ult, t)]dwlt, t ∈ (θl, θl + εl)

x̃lθl,εl
= −(gl(xlθl

, ũl, θl)− g(xlθl
, ulθl

, θl))

or

x̃lθl+εl,εl
=
∫ θl+εl

θl

[gl(xls + εlx̃
l
s,εl

, ul, s)− gl(xls, uls, s)]ds+

+
∫ θl+εl

θl

[gl(xlθ , u
l
θ1, θl)− gl(xls, uls, s)]ds+

∫ θl+εl

θl

[f l(xls + εlx̃ls,εl
, uls, s)−

−f l(xls, uls, s)]dwls +
∫ θν+εl

θl

[gl(xls, ũ
l, s)− gl(xlθl

, ũl, θl)]ds.

Therefore, conditions I-II and the Gronwall’s inequality yield

E|x̃lθl+εl,εl
|2 ≤ N

[
ε2lE sup

θl≤t≤θl+εl

|xθl
t,εl
− xlt|2 + ε2lE sup

θl≤t≤θl+εl

|xlt − xlθl
|2+

+ sup
θl≤t≤θl+εl

ε2lE|gl(xlt, ũl, t)− gl(xlθl
, ũl, θl)|2+

+εlE
∫ θl+εl

θl

|f l(xlt, ult, t)− f l(xlθl
, ulθl

, θl)|2dt+

+ε2lE
∫ θl+εl

θl

|gl(xlt, ult, t)− gl(xlθl
, ulθl

, θl)|2dt
]
.

Hence,
E|x̃lt+εl,εl |2 ≤ εlN, εl → 0, ∀ t ∈ [θl, θl + εl).

For ∀ t ∈ [θl + εl, tl], we have

dx̃lt,εl = [gl(xlt + εlx̃lt,ε, u
l
t, t)− gl(xlt, ult, t)]dt+ [f l(xlt + εlx̃lt,ε, u

l
t, t)− f(xlt, u

l
t, t)]dw

l
t.

Consequently, we obtain

dx̃lt,εl =
∫ 1

0

glx(x
l
t + μεlx̃lt,εl , u

l
t, t)x̃

l
t,εldμdt+

∫ 1

0

f lx(x
l
t + μεlx̃lt,εl , u

l
t, t)x̃

l
t,εldμdt,

x̃lθl+εl,εl = −(gl(xlθl+εl , u
l
θl+εl , θ

l)− g(xlθl+εl , ũ
l, θl)).

Hence,
E|x̃lt,εl |2 ≤ εlN, for ∀ t ∈ [θl + εl, tl], if εl → 0.

Thus,
sup

tl−1≤t≤tl
E|x̃lt,εl |2 ≤ Nεl, l = 1, r.

Lemma 2 is proved. �
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Due to Lemma 2, expression (14) yields the estimation

ηθl+εl

θl
= o(εl).

Then, according to the optimality of ult, l = 1, r, it follows from (16) that

ΔθlJ(u) = −E[ψl∗θlΔulgl(xlθl , u
l
θl , θ

l)−Δulpl(xlθl , u
l
θl , θ

l)+

+0.5Δulf l∗(xlθl , u
l
θl , θ

l)ΦlθlΔulf l(xlθl , u
l
θl , θ

l) + o(εl) ≥ 0.

Hence, due to the sufficient smallness of εl, relation (9) is satisfied. Theorem 1 is proved.
Then using Theorem 1 and the Ekeland variation principle [15], we obtain the following

necessary condition of optimality for the stochastic control problem with the endpoint
constraint (5).

Theorem 3. Let conditions I-IV hold, and let (xlt, u
l
t), l = 1, r be solutions of problem

(1)–(5). Then exist the nonzero (λ0, λ1) ∈ Rk+1 and the random processes (ψlt, βlt) ∈
L2
F l(tl−1, tl;Rnl)× L2

F l(tl−1, tl;Rnl×nl) and (Φlt,K
l
t) ∈ L2

F l(tl−1, tl;Rnl)×
L2
F l(tl−1, tl;Rnl×nl) which are solutions of the adjoint equations⎧⎪⎨⎪⎩

dψlt = −H l
x(ψ

l
t, x

l
t, u

l
t, t)dt+ βltdw

l
t, tl1 ≤ t < tl, l = 1, r;

ψltl = −ϕlx(xltl), l = 1, ..., r − 1;
ψrT = λ0ϕ

r
x(x

r
T )− λ1q

r
x(x

r
T ).

(17)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dΦlt = −[gl∗x (xlt, ult, t)Φlt + Φltglx(xlt, ult, t)+
+f l∗x (xlt, u

l
t, t)Φ

l
tf
l
x(x

l
t, u

l
t, t)dt+ f l∗x (xlt, u

l
t, t)K

l
t +K l

tf
l
x(x

l
t, u

l
t, t)+

+H l
xx(ψlt, xlt, ult, t)]dt+K l

tdw
l
t, tl−1 ≤ t < tl, l = 1, r;

Φltl = −ϕlxx(xltl), l = 1, r − 1;
ΦrT = −λ0ϕ

r
xx(xrT )− λ1q

r
xx(xrT ),

(18)

and ∀ ul ∈ U l, l = 1, r, a.c. fulfills the following:

H l(ψlθ, x
l
θ, u

l, θ)−H l(ψlθ, x
l
θ, u

l
θ, θ)+

+0.5Δulf l∗(xlθ, u
l
θ, θ)Φ

l
θΔulf l(xlθ, u

l
θ, θ) ≤ 0 a.e. θ ∈ [tl−1, tl]. (19)

Proof. For any natural j, we introduce the approximating functional

Jj(u) = Sj

( r∑
l=1

E

[
ϕl(xltl) +

∫ tl

tl−1

p(xlt, u
l
t, t)dt

]
, Eq(xrT )

)
=

= min
(c,y)∈E

√√√√∣∣∣∣c− 1/j −
r∑
l=1

E

[
ϕl(xltl) +

∫ tl

tl−1

p(xlt, ult, t)dt
]∣∣∣∣2 + ‖y − Eq(xrT )‖2,

E = {(c, y) : c ≤ I0, y ∈ G}, and I0 is the minimal value of the functional in (1)–
(5). Let V l ≡ (U lt , dl) be the space of controls obtained by introducing the metric
dl(u, v) = (L ⊗ P ){(t, ω) ∈ [tl−1, tl] × Ω : vlt �= ult}, and let V = V 1 × V 2 × . . . × V r be
the complete metric space.

It is easy to show that

Lemma 3. Let us assume that conditions I-IV hold, ul,nt , l = 1, ..., r is a sequence of
admissible controls from V l, and xl,nt is a sequence of the corresponding trajectories of
system (1)–(3). If d(ul,nt , ult)→ 0, n→∞, then limn→∞{suptl−1≤t≤tl E|xl,nt −xlt|2} = 0,
where xlt is a trajectory corresponding to an admissible control ult, l = 1, r.
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Due to Lemma 3, we obtain the continuity of the functional Jj : V → Rn,. Then,
according to the Ekeland variation principle, we have that there exists a control ul,jt :
d(ul,jt , u

l
t) ≤ √εj and, ∀ ul ∈ V l, Jj(ul,j) ≤ Jj(ul)+

√
εjd(ul,j , ul), εj = 1

j . This inequality

means that (xl,jt , u
l,j
t ) is a solution of the following problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ij(u) = Jj(u) +√εj

∑r
l=1 E

∫ tl
tl−1

δ(ult, u
l,j
t )dt→ min

dxlt = g(xlt, ult, t)dt+ f(xlt, ult, t)dwlt, t ∈ (tl−1, tl]
xl−1
tl−1 = xl−1

tl
, l = 2, r; x0

t0 = x0

ult ∈ U l∂ .

(20)

Let (xl,jt , u
l,j
t ) be a solution of problem (20). Then, according to Theorem 1, there

exist the random processes ψl,jt ∈ L2
F t(tl−1, tl;Rnl), βl,jt ∈ L2

F t(tl−1, tl;Rnl×nl) which are
solutions of the system⎧⎪⎨⎪⎩

dψl,jt = −H l
x[ψ

l,j
t , xl,jt , u

l,j
t , t]dt+ βl,jt dwt, t ∈ [tl−1, tl), l = 1, r;

ψl,jtl = −ϕlx(xl,jtl ), l = 1, r − 1;
ψrT = −λj0ϕrx(xr,jT )− λj1qx(xr,jT )

(21)

and the random processes (Φl,jt ,K
l,j
t ) ∈ L2

F l(tl−1, tl;Rnl) × L2
F l(tl−1, tl;Rnl×nl) which

are solutions of the adjoint equations⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dΦl,jt = −[gl∗x (xl,jt , u
l,j
t , t)Φ

l,j
t + Φl,jt glx(x

l,j
t , u

l,j
t , t)+

+f l∗x (xl,jt , u
l,j
t , t)Φ

l,j
t f

l
x(x

l,j
t , u

l,j
t , t)dt+ +f l∗x (xl,jt , u

l,j
t , t)K

l,j
t +K l,j

t f lx(x
l,j
t , u

l,j
t , t)+

+H l
xx(ψ

l,j
t , xl,jt , u

l,j
t , t)]dt+K l,j

t dwlt, tl−1 ≤ t < tl, l = 1, ..., r;
Φl,jtl = −ϕlxx(xl,jtl ), l = 1, ..., r − 1;
Φr,jT = −λj0ϕrxx(xr,jT )− λj1qrxx(xr,jT ),

(22)
where non-zero (λj0 and λj1) ∈ Rk+1 meet the requirement

(λj0, λ
j
1) =

(
− cj + 1/j +

r∑
l=1

E

[
ϕl(xl,jtl ) +

∫ tl

tl−1

pl(xl,jt , u
l,j
t , t)dt

]
,−yj + Eq(xr,jT )

)
/I0
j ,

and, almost certainly for any ul ∈ U l, l = 1, r, we have

H l(ψl,jt , xl,jt , u
l
t, t)−H l(ψl,jt , xl,jt , u

l,j
t , t)+

+ 0.5Δulf l∗(xl,jt , u
l,j
t , t)Φ

l,j
t Δulf l(xl,jt , u

l,j
t , t) ≤ 0, a.e. t ∈ [tl−1, tl], l = 1, r.

(23)

We now show some results which are needed in what follows. Since ‖(λj0, λj1)‖ = 1, we
may think in view of conditions I-IV that (λj0, λ

j
1)→ (λ0, and λ1), if j −→∞.

Lemma 4. Let ψl,jtl be a solution of system (17), and let ψltl be a solution of system
(21). Then

E

∫ tl

tl−1

|ψl,jt − ψlt|2dt+ E

∫ tl

tl−1

|βl,jt − βlt|2dt→ 0, l = 1, r, if d(ul,jt , u
l
t)→ 0, j →∞.

Proof. It is clear that, ∀ t ∈ [tl−1, tl],

d(ψl,jt − ψlt) = −(H l
x[ψ

l,j
t , xl,jt , u

l,j
t , t]−H l

x[ψ
l
t, x

l
t, u

l
t, t])dt+ (βl,jt − βlt)dwt =

= −(ψl,jt glx(x
l,j
t , u

l,j
t , t) + βl,jt f lx(x

l,j
t , u

l,j
t , t)− plx(xl,jt , ul,jt , t)− ψltglx(xlt, ult, t)−

−βltf lx(xlt, ult, t) + plx(x
l
t, u

l
t, t))dt+ (βl,jt − βlt)dwt.
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Let us square both sides of the equation. According to the Itô formula, ∀ s ∈ [tr−1, T ],

E|ψr,jT − ψrT |2 − E|ψr,js − ψrs |=2E
∫ T

s

[ψr,jt − ψrt ][(gr∗x (xr,jt , ur,jt , t)− (gr∗x (xrt , u
r
t , t))ψ

r,j
t +

+gr∗x (xrt , u
r
t , t)(ψ

r,j
t − ψrt ) + (f r∗x (xr,jt , ur,jt , t)− f r∗x (xrt , u

r
t , t))β

r,j
t + f r∗x (xrt , u

r
t , t)×

×(βr,jt − βrt )− prx(xr,jt , ur,jt , t) + prx(x
r
t , u

r
t , t)]dt+ E

∫ T

s

|βr,jt − βrt |2dt.

Taking assumptions I-IV into account and using simple transformations, we obtain

E

∫ T

s

|βr,jt − βrt |2dt+ E|ψr,js − ψrs |2 ≤ EN

∫ T

s

|ψr,jt − ψrt |2dt+

+ENε
∫ T

s

|βr,jt − βrt |2dt+ E|ψr,jT − ψrT |2.

Hence, according to the Gronwall inequality, we have

E|ψl,js − ψls|2 ≤ DeN(T−s) a.e. in [tr−1, T ], (21)

where the constant D is determined in the following way: D = E|ψl,jT −ψlT |2. According
to (17) and (21), we obtain ψr,jT → ψrT and D → 0. Consequently, it follows from (21)
that ψr,js → ψrs in L2

F r(tr−1, T ;Rnr) and βr,js → βrs in L2
F r(tr−1, T ;Rnr×nr ). Then, from

the expression

E|ψl,jtl − ψltl |2 − E|ψl,js − ψls|2 = 2E
∫ tl

s

(ψl,jt − ψlt)[(gl∗x (xl,jt , u
l,j
t , t)−

−gl∗x (xlt, u
l
t, t))ψ

l,j
t + gl∗x (xlt, u

l
t, t)(ψ

l,j
t − ψlt) + (f l∗x (xl,jt , u

l,j
t , t)−

−f l∗x (xlt, u
l
t, t))β

j
t + f l∗x (xlt, u

l
t, t))(β

l,j
t − βlt)+

+plx(x
l
t, u

l
t, t)− plx(xl,jt , u,jlt, t)]dt+ E

∫ tl

s

|βl,jt − βlt|2dt,

making simple transformations, and taking assumptions I-IV into account, we obtain

E

∫ tl

s

|βl,jt − βlt|2dt+ E|ψl,js − ψls|2 ≤ EN

∫ tl

s

|ψl,jt − ψlt|2dt+

+ENε
∫ tl

s

|βl,jt − βlt|2dt+ E|ψl,jtl − ψltl |2.

Hence, according to the Gronwall inequality, we have

E|ψl,js − ψls|2 ≤ DeN(tl−s) a.e. in [tl−1, tl], l = 1, r − 1,

where the constant D is determined as D = E|ψl,jtl − ψltl |2 with D → 0. Then, it follows
from (21) that ψl,js → ψls in L2

F l(tl−1, tl;Rnl) and βl,js → βls in L2
F l(tl−1, tl;Rnl×nl).

Lemma 4 is proved. �

Lemma 5. Let Φl,jtl be a solution of system (18), and let Φltl be a solution of system
(22). Then

E

∫ tl

tl−1

|Φl,jt − Φlt|2dt+ E

∫ tl

tl−1

|K l,j
t −K l

t|2dt→ 0, l = 1, ..., r, if j →∞.
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Proof.

d(Φl,jt − Φlt) = −{(gl∗x (xl,jt , u
l,j
t , t))Φ

l,j
t − gl∗x (xjt , u

j
t , t))Φ

l
t) + (Φl,jt g

l
x(x

l,j
t , u

l,j
t , t)−

−Φltg
l
x(x

j
t , u

j
t , t)) + (f l∗x (xl,jt , u

l,j
t , t)Φ

l,j
t f

l
x(x

l,j
t , u

l,j
t , t)− f l∗x (xlt, u

l
t, t)Φ

l
tf
l
x(x

l
t, u

l
t, t))+

+(f l∗x (xl,jt , u
l,j
t , t)K

l,j
t − f l∗x (xlt, u

l
t, t)K

l
t) + (K l,j

t f lx(x
l,j
t , u

l,j
t , t)−K l

t(x
l
t, u

l
t, t))+

+H l
xx(Φ

l,j
t , x

l,j
t , u

l,j
t , t)−H l

xx(Φ
l
t, x

l
t, u

l
t, t)}dt+ (K l,j

t −K l
t)dw

l
t.

Due to the Itô formula for ∀ s ∈ [tl−1, tl), we have

E|Φl,jtl − Φltl |2 − E|Φl,js − Φls|2 ≤ 2E
∫ tl

s

[Φl,jt − Φlt][(g
l∗
x (xl,jt , u

l,j
t , t)−

−gl∗x (xjt , u
j
t , t))Φ

l,j
t + gl∗x (xjt , u

j
t , t)(Φ

l,j
t − Φlt)+

+(f l∗x (xl,jt , u
l,j
t , t)− f l∗x (xlt, u

l
t, t))K

l,j
t + f l∗x (xlt, u

l
t, t)(K

l,j
t −K l

t)+

+H l
xx(Φ

l,j
t , x

l,j
t , u

l,j
t , t)−H l

xx(Φ
j
t , x

j
t , u

j
t , t) +H l

xx(Φ
l,j
t , x

l
t, u

l
t, t)−

−H l
xx(Φ

l
t, x

l
t, u

l
t, t)]dt+ E

∫ tl

s

|K l,j
t −K l

t|2dt.

Then, after simple transformations, we obtain

E

∫ tl

s

|K l,j
t −K l

t|2dt+ E|Φl,jt − Φlt|2 ≤

≤ EN

∫ tl

s

|Φl,jt − Φlt|2dt+ ENε

∫ tl

s

|K l,j
t −K l

t|2dt+ E|Φl,jtl − Φltl |2.

According to the Gronwall inequality, we have

E|Φl,js − Φls|2 ≤ De−N(tl−s) a.e. in [tl−1, tl),

where the constant D is defined as

D = E|Φl,jtl − Φltl |2 + ENε

∫ tl

s

|K l,j
t −K l

t|2dt.

So that Φr,jT → ΦrT . Hence, according to assumptions I-IV and expressions (18) and (22),
we have

Φl,js → Φls in L2
F r(tr−1, T ;Rnr) if j →∞.

Then, according to the sufficient smallness of ε, we have D → 0. Consequently,

Φl,jt → Φlt in L2
F l(tl−1, tl;Rnl) and

K l,j
t → K l

t in L2
F l(tl−1, tl;Rnl×nl), l = 1, r − 1, for j →∞.

Lemma 5 is proved. �

It is follow from Lemmas 4 and 5 that we can pass to the limit in systems (21) and
(22) and prove the validity of (17) and (18). In a similar way, by passing to the limit in
(23), we obtain that (19) is true. Theorem 3 is proved. �
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