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A. F. NOVOSYADLO

MULTIDIMENSIONAL DIFFUSION PROCESS WITH PARTIAL
REFLECTION ON A FIXED HYPERPLANE AND WITH

GENERALIZED DIFFUSION CHARACTERISTICS

We investigate the problem on pasting two parts of a diffusion process with variable
coefficients on a hyperplane with additional conjugation condition of the Wentzel
type given on it. A semigroup of operators that describe the unknown generalized

diffusion process is obtained by using the method of classical potential theory.

1. Introduction and problem posing

By Rd, d ≥ 2, we denote the real d-dimensional Euclidean space. Let Dm = {x =
(x1, . . . , xd) ∈ Rd : (−1)mxd > 0},m = 1, 2, be domains in Rd, and let S = Rd−1 = {x ∈
Rd : xd = 0} and Dm = Dm ∪ S be the boundary and the closure of Dm, respectively.
We suppose that, on Dm, m = 1, 2, a diffusion homogeneous process with bounded
continuous symmetric and nonnegative definite diffusion matrix b(x) = (bij(x))

d
i,j=1 and

a bounded continuous vector of transposition a(x) = (ai(x))
d
i=1, x ∈ Rd are defined.

We denote the generating differential operator of this process by L. We suppose
also that, on S, the bounded continuous functions q1(x), q2(x), βkl(x), αk(x), (k, l =
1, . . . , d − 1) are defined and are such that β(x) =

(
βkl(x)

)
is a symmetric nonnegative

definite matrix, q1(x) ≥ 0, q2(x) ≥ 0, and q1(x) + q2(x) �= 0, x ∈ S. These functions will
describe the corresponding continuations of the diffusion process after going out on S
and, under the common Wentzel condition (see [1,2,3]), will be responsible for the partial
reflection in one of the domainsD1 or D2 and for the diffusion and the transposition along
the border.

Our aim is to construct the semigroup of operators (Tt)t≥0 that describes a continuous
unprecipice process of Feller on Rd such that its parts in D1 and D2 coincide with the
diffusion process operated by L, and the behavior of the process at the points of S is
defined under the given Wentzel conjugation condition. The solution of this problem
with some additional estimations of operator’s coefficients L and the boundary Wentzel
operator are first obtained by the author by applying some analytic methods with the use
of parabolic potentials that were constructed using the common fundamental solution for
a uniformly parabolic operator.

We prove that the obtained process can be interpreted as a generalized diffusion
process in the sense of N.I. Portenko [4].

Let us recall [2-4] that, within the analytic approach, the problem of existence of
the required semigroup actually reduces to the solution of the corresponding problem
of conjugation for a linear parabolic equation of the second order, in which one of two
conditions of conjugation, like the equation in a domain, is described by a linear second-
order differential operator. In the considered case, the Wentzel condition is set by a
uniform elliptic second-order operator by variables tangential to the border that also
include the derivatives in the direction of a normal to S. Let us mention that the
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earlier common problem was investigated by analytic methods in [3,5], where an integral
representation of the required semigroup was used in the construction of the special
parabolic potential of a simple layer.

Moreover, the parabolic case of the initial-boundary-value Wentzel problem with sec-
ond derivatives with respect to tangential variables in the boundary condition was con-
sidered also in [6] and investigated therein in the Hölder class with the use of a local
method. We mention also works [7,8,9], where the problem of construction of a general-
ized diffusion was investigated by methods of stochastic analysis.

In this paper, we use the following notations: T is a fixed positive number; x′ =
(x1, . . . , xd−1) is a point in Rd−1; by x′, we sometimes denote a point like (x1, . . . , xd−1, 0);

(x, y) =
d∑
i=1

xiyi, (x′, y′) =
d−1∑
i=1

xiyi; ν(x′) = (νi(x′))
d
i=1 , νi ≡ 0, i = 1, . . . , d− 1, νd ≡ 1,

is a single vector of the normal to the surface S at the point x′, N(x′) = b(x′) ν(x′) is
the normal vector; Dt = D1

t = ∂/∂t, Di = ∂/∂xi, Dij = ∂2/∂xi∂xj , i, j = 1, . . . , d,
are the operations of differentiation; Dr

t and Dp
x are, respectively, the symbols of partial

derivatives with respect to t of order r and with respect to x of order p, where r and
p are integer nonnegative numbers; ∇ = (D1, . . . , Dd), ∇′ = (D1, . . . , Dd−1) are the
”spatial” gradients; ��xxf(·, x) = f(·, x)−f(·, x̃), ��ttf(t, ·) = f(t, ·)−f(t̃, ·); B(Rd) is the
Banach space of bounded and measurable functions ϕ with the norm ‖ϕ‖ = sup

x∈Rd

|ϕ(x)|;
Cl(D)

(
Cl(D)

)
, l = 0, 1, 2,

(
C0(D) = C(D)

)
is the set of functions continuous in D (in

D) that have derivatives Dp
x, p ≤ l, continuous in D (in D,) where D is the subset

Rd; C(Ω)
(
C(Ω)

)
is the set of functions continuous in Ω (Ω), where Ω is a subset from

the domain (0,∞) × Rd; C1,2(Ω)
(
C1,2(Ω)

)
is the set of functions continuous in Ω (Ω)

that have derivatives Dr
t , D

p
x, r = 1, p ≤ 2, continuous in Ω (in Ω); H l+λ(D) and

H(l+λ)/2, l+λ(Ω), l = 0, 1, 2, λ ∈ (0, 1), are the spaces of Hölder’s functions with norms
||ϕ||Hl+λ(D) and ||ϕ||H(l+λ)/2, l+λ(Ω), respectively (see [10, Ch. II]); H

0

(l+λ)/2, l+λ([0, T ]×
Rd−1) is the subset of functions from H(l+λ)/2, l+λ([0, T ]×Rd−1), that together with its
permissible derivatives with re4spect to t vanish for t = 0. Everywhere below, C and c
are positive constants, whose specific values are usually irrelevant. The other notations
will be explained in the places, where they appear for the first time.

2. Fundamental solution (f.s.) for a uniformly parabolic operator and

potentials generated by it

Let us consider a uniformly parabolic operator in the domain (t, x) ∈ (0,∞) × Rd of
the form

(1) Dt − L ≡ Dt − 1
2

d∑
i,j=1

bij(x)Dij −
d∑
i=1

ai(x)Di,

whose real-valued coefficients satisfy the conditions

A1) (b(x)Θ,Θ) ≥ C0|Θ|2, C0 > 0, ∀x ∈ Rd, ∀Θ ∈ Rd;

A2) bij ∈ Hλ(Rd), ai ∈ Hλ(Rd), bij = bji, i, j = 1, . . . , d.

Let g(t, x, y) (t > 0, x, y ∈ Rd) be the f.s. for the operator Dt−L constructed by the
Levy method (see [10, Ch. IV; 4, Ch. II]):

g(t, x, y) = g0(t, x, y) + g1(t, x, y),

where

g0(t, x, y) = g
(y)
0 (t, x − y) = (2πt)−d/2(det b(y))−

1
2 exp

{
− 1

2t
(
b−1(y)(y − x), y − x)}
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(by b−1(y), we denote here the inverse matrix to the matrix b(y)), and the function
g1(t, x, y) is written in view of the integral operator with kernel g0 and density Φ0 that
can be found from some integral equation.

The function g(t, x, y) is nonnegative, continuous by the set of variables, continuously
differentiable with respect to t, and twice continuously differentiable with respect to x.
Moreover, at t ∈ (0, T ], x, y ∈ Rd, the inequality

|Dr
tD

p
xg(t, x, y)| ≤ Ct−

d+2r+p
2 exp

{
−c |y − x|

2

t

}
, 2r + p ≤ 2,(2)

holds.
The main part of the f.s. g0, as a function of the arguments t and x, is infinitely

differentiable for t > 0 and satisfies inequality (2) for any integer nonnegative values of r
and p. The function g(y)

0 (t, z) and its derivatives with respect to t and z satisfy the Hölder
condition by the variable y (see inequality (11.4) in [10]). We will use also estimates
(13.2) and (13.3) from [10] that will be applied to differences ��xx(Dr

tD
p
x g(t, x, y)) and

��tt(Dr
tD

p
x g(t, x, y)), respectively, and relations (2.38) and (2.39) from [4].

We now define the following integrals using the f.s. g:

u0(t, x) =
∫

Rd

g(t, x, y)ϕ(y)dy, u1(t, x) =
∫ t

0

dτ

∫
Rd−1

g(t− τ, x, y′)V (τ, y′)dy′.(3)

Here, ϕ(x) (x ∈ Rd), V (t, x′) (t > 0, x′ ∈ Rd−1) are given functions. The functions
u0(t, x) and u1(t, x) are, respectively, the Poisson potential and the potential of a simple
layer.

It is worth to mention some properties of parabolic potentials (see [10-12]). First,
we consider the function u1(t, x). If V (t, x′) is a continuous bounded function, then
the double integral in (3) exists, and the function u1(t, x) is continuous on [0,∞)× Rd,
satisfies the equation (Dt − L)u1 = 0 in the domain (0,∞) × Dm, m = 1, 2, and the
initial condition u1(0, x) = 0. In the case where V ∈ H

0

λ/2, λ([0, T ] × Rd−1), we have

u1 ∈ H
0

1+λ
2 , 1+λ([0, T ] × Dm). Below, we will use also the formula of ”jump” for the

potential of a simple layer (see [2,4,12]). Under our conditions, it has the form

∂u1(t, x′, 0±)
∂N(x′)

=
∫ t

0

dτ

∫
Rd−1

∂g(t− τ, x′, y′)
∂N(x′)

V (τ, y′)dy′ ∓ V (t, x′), t > 0.(4)

Here, the expressions ∂u1(t,x
′,0−)

∂N(x′) and ∂u1(t,x′,0+)
∂N(x′) mean the limit of the conormal deriva-

tive ∂u1(t,x)
∂N(x′) at the point x′ ∈ Rd−1, when x tends to x′ from the side of the domain D1

and D2, respectively. The integral on the right-hand side of (4) is called a direct value
of the conormal derivative of the potential of a simple layer. Its existence follows from
the inequality∣∣∣∣∂g(t, x′, y′)∂N(x′)

∣∣∣∣ ≤ C(t− τ)− d+1−λ
2 exp

{
−c |x

′ − y′|
t− τ

}
, 0 ≤ τ < t ≤ T, x′, y′ ∈ Rd−1.

Obviously, the existence of the potential u1 can be considered under more general con-
ditions concerning the density V .

We now consider the potential u0 from (3). If we suppose that ϕ is a bounded con-
tinuous function on Rd, then the function u0(t, x) is continuous at t ≥ 0, x ∈ Rd,
satisfies the equation (Dt − L)u0 = 0 in the domain (t, x) ∈ (0,∞) × Rd, and the
initial condition u0(0, x) = ϕ(x) for x ∈ Rd. In addition, if ϕ ∈ H2+λ(Rd), then
u0 ∈ H(2+λ)/2, 2+λ([0, T ]× Rd).

Remark 2.1. During establishing the existence of the classical solution of the conjugation
problem that will be formulated in Section 3, we should impose additional restrictions
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on higher coefficients bij of the operator L from (1); this is related to the necessity to
differentiate the function g with respect to the variable y. Further, we suppose that the
coefficients of the operator L satisfy the condition

A2′) bij ∈ H1+λ(Rd), ai ∈ Hλ(Rd), bij = bji, i, j = 1, . . . , d,

instead of condition A2). In monograph [10, Ch. IV, §16], it is noted that, under
conditions A1) and A2′), the f.s. g has the derivatives ∂g

∂yj
, ∂2g
∂xk∂yj

, ∂3g
∂xi∂xk∂yj

, ∂2g
∂t∂yj

,

i, j, k = 1, . . . , d, that are continuous functions at x �= y which satisfy inequalities of the
form (16.3) and (16.4). In addition, we suppose that the density V in the integral from
(3) belongs to the Hölder space H(1+λ)/2, 1+λ([0, T ]×S). Then it can be shown that the
function u1 has the derivatives Dp

x′u, p ≤ 2, at t > 0, x ∈ Dm, m = 1, 2, that change
continuously during the transition through the boundary S.

3. The conjugation problem for the second-order parabolic equation and

its solution

Let us consider the operator L defined in (1) and the functions qm (m = 1, 2),
αk, βkl (k, l = 1, . . . , d − 1), defined on S. We suppose that conditions A1), A2′) are
true for the coefficients of the operator L and the functions qm, αk, and βkl satisfy the
conditions

B1) (β(x′)Θ′,Θ′) ≥ δ0|Θ′|2, δ0 > 0, ∀x′ ∈ Rd−1, ∀Θ′ ∈ Rd−1;

B2) βkl, αk, qm ∈ Hλ(Rd−1), βkl = βlk, k, l = 1, . . . , d− 1, m = 1, 2;

B3) q1(x′) ≥ 0, q1(x′) ≥ 0, inf(q1(x′) + q2(x′)) > 0, x′ ∈ Rd−1.

Our aim consists in finding the solution (in the classical sense) of the conjugation
problem:

(Dt − L)u(t, x) = 0, (t, x) ∈ (0,∞)×Dm, m = 1, 2 ,(5)

u(0, x) = ϕ(x), x ∈ Rd ,(6)

u(t, x′, 0−) = u(t, x′, 0+), (t, x′) ∈ (0,+∞)× Rd−1,(7)

L0u(t, x′, 0) ≡ 1
2

d−1∑
k,l=1

βkl(x′)Dklu(t, x′, 0) +
d−1∑
k=1

αk(x′)Dku(t, x′, 0)−

− q1(x′)Ddu(t, x′, 0−) + q2(x′)Ddu(t, x′, 0+) = 0, (t, x′) ∈ (0,∞)× Rd−1,(8)

where ϕ ∈ C(Rd) ∩ B(Rd) is the given function.
We will suppose that the solution u(t, x) bounded by the spatial variable is a con-

tinuous function in the domain [0,+∞) × Rd, belongs to the set C1,2((0,∞) × Dm),
m = 1, 2, and satisfies conditions (6)-(8). In addition, the derivatives with respect to the
tangential variables Dku,Dklu, k, l = 1, . . . , d − 1, as well as the function u, must also
change continuously during the transition through S.

Let us determine the classical solubility of problem (5)-(8) in assumption that the
initial function ϕ from (6) satisfies the conditions

(9) ϕ ∈ H2+λ(Rd), L0ϕ(x′, 0) = 0, x′ ∈ Rd−1.

Theorem 3.1. Let the coefficients of the operators L and L0 satisfy conditions A1),
A2′) and B1)-B3), respectively, and let the function ϕ satisfy condition (9). Then there
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exists a unique classical solution of problem (5)-(8), for which the estimation

(10) |u(t, x)|+
d−1∑
i=1

|Diu(t, x)|+
d−1∑
i,j=1

|Diju(t, x)| ≤ C||ϕ||H2+λ

holds at (t, x) ∈ [0, T ]×Dm, m = 1, 2.

Proof. First of all, we will prove the existence of the solution u(t, x). We will search
it in the form

u(t, x) = u0(t, x) + u1(t, x), (t, x) ∈ (0,∞)× Rd,(11)

where the function V included into u1 is unknown and should be determined.
Let us consider the condition of conjugation (8). Extracting the conormal derivative

in the expression for L0 and using formula (4), we transform it to the form

L′
0u(t, x′, 0) ≡ 1

2

d−1∑
k,l=1

β
(0)
kl (x′)Dklu(t, x′, 0) +

d−1∑
k=1

α
(0)
k (x′)Dku(t, x′, 0)−

− u(t, x′, 0) = Θ(0)(t, x′), (t, x′) ∈ (0,∞)× Rd−1,(12)

where

β
(0)
kl (x′) = (q1(x′) + q2(x′))

−1(bdd(x′))
1
2βkl(x′),

α
(0)
k (x′) = (bdd(x′))

1
2

(
(q1(x′) + q2(x′))

−1
αk(x′)− q(x′) bkd(x′)

)
,

q(x′) =
q2(x′)− q1(x′)
q1(x′) + q2(x′)

, |q(x′)| ≤ 1, x′ ∈ Rd−1,

Θ(0)(t, x′) = (bdd(x′))−
1
2 V (t, x′)−

∫ t

0

dτ

∫
Rd−1

[ q(x′)
(bdd(x′))

1
2

∂g(t− τ, x′, y′)
∂N(x′)

+

+ g(t− τ, x′, y′)
]
V (τ, y′)dy′ − q(x′)

(bdd(x′))
1
2

∂u0(t, x′, 0)
∂N(x′)

− u0(t, x′, 0).

We will consider equality (12) as an autonomous elliptic equation on S = Rd−1 for the
function u(t, x′, 0) = v(t, x′), and the variable t will be interpreted here as a parameter.
From the conditions of Theorem 1, it follows that the coefficients of this equation belong
to the space Hλ(Rd−1). If we will suppose in advance that the unknown function V
is Hölder by both variables with the coefficient λ, then it is obvious that the function
Θ(0) will belong to the same Hölder class (by variable x′). In addition, the conditions
of Theorem 1 and the presence of the term (−1) · u(t, x′, 0) on the left-hand side of Eq.
(12) guarantee also the existence, for the uniformly elliptic operator L′

0, the main f.s.
Γ(x′, y′) (x′, y′ ∈ Rd−1, x′ �= y′) (see [13, Ch. III, §20], [14]) that can be presented in
our case by the formula

Γ(x′, y′) =
∫ ∞

0

e−sG(s, x′, y′)ds,

where G(s, x′, y′) (s > 0, x′, y′ ∈ Rd−1) is the f.s. of the uniformly parabolic operator

L′ =
1
2

d−1∑
k,l=1

β
(0)
kl (x′)Dkl +

d−1∑
k=1

α
(0)
k (x′)Dk −Ds.

Note that, for the f.s. G, one can formulate properties analogous to those formulated in
Section 2 for the f.s. g.
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Using the f.s. Γ, the unique solution of Eq. (12) can be written in the form

v(t, x′) = −
∫

Rd−1
Γ(x′, z′) Θ(0)(t, z′)dz′ =

= −
∫ ∞

0

e−sds
∫

Rd−1
G(s, x′, z′) Θ(0)(t, z′)dz′, (t, x′) ∈ (0,∞)× S.(13)

Thus, in addition to formula (11), where we should take (t, x) = (t, x′), we have obtained
also relation (13) for the function u(t, x′, 0) = v(t, x′). Comparing the right-hand sides
of these relations, we obtain the integral equation for V in the form∫ t

0

dτ

∫
Rd−1

K(t− τ, x′, y′) V (τ, y′)dy′ +
∫ ∞

0

e−sds×

×
∫

Rd−1
G(s, x′, z′)(bdd(z′))−

1
2 V (t, z′)dz′ = ψ(t, x′), (t, x′) ∈ (0,∞)× Rd−1,(14)

where

K(t− τ , x′, y′) = g(t− τ, x′, y′)−
∫ ∞

0

e−sds×

×
∫

Rd−1
G(s, x′, z′)

(
q(z′)

(bdd(z′))
1
2

∂g(t− τ, z′, y′)
∂N(z′)

+ g(t− τ, z′, y′)
)
dz′,

ψ(t, x′) =
∫ ∞

0

e−sds
∫

Rd−1
G(s, x′, z′)×

×
(

q(z′)
(bdd(z′))

1
2

∂u0(t, z′, 0)
∂N(z′)

+ u0(t, z′, 0)
)
dz′ − u0(t, x′, 0).

Equation (14) is an integral first-kind equation. For the purpose of its transformation,
we introduce an operator E acting by the formula

E(t, x′)ψ =

√
2
π

{
Dt

∫ t

0

(t− τ)− 1
2 dτ

∫
Rd−1

[
h(t̂− τ, x′, y′)+

+
∫ ∞

0

(1− u

t− τ )e−
u2

2(t−τ) du

∫
Rd−1

h(t̂− τ, x′, v′) G(u, v′, y′)dv′
]
ψ(τ, y′)dy′

}∣∣∣∣
t̂=t

,

where h(t, x′, y′) (t > 0, x′, y′ ∈ Rd−1) is the f.s. of the operator

Dt − 1
2

d−1∑
i,j=1

b̃ij(x′)Dij , b̃ij = bij − bid bjd
bdd

, i, j = 1, . . . , d− 1.

Let us prove that the function ψ̂(t, x′) = E(t, x′)ψ satisfies the condition

(15) ψ̂ ∈ H
0

(1+λ′)/2, 1+λ′
([0, T ]× Rd−1), λ′ = λ/2.

This can be easily done using the relations

(16)
√
π

2
ψ̂(t, x′) = −

{
Dt

∫ t

0

(t− τ)− 1
2 dτ

∫
Rd−1

[
h(t̂− τ, x′, y′) +

∫ ∞

0

Du e
− u2

2(t−τ) du×

×
∫

Rd−1
h(t̂− τ, x′, v′) G(u, v′, y′)dv′

]
�x′
y′u0(τ, y′, 0)dy′

}∣∣∣∣
t̂=t

+
{
Dt

∫ t

0

(t− τ)− 1
2 dτ×

×
∫

Rd−1

q(y′)
(bdd(y′))

1
2

∂u0(τ, y′, 0)
∂N(y′)

dy′
∫ ∞

0

e−
u2

2(t−τ) du×

×
∫

Rd−1
h(t̂− τ, x′, v′) G(u, v′, y′)dv′

}∣∣∣∣
t̂=t
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(17)
√
π

2
Diψ̂(t, x′) = −

{
Dt

∫ t

0

(t− τ)− 1
2 dτ

∫
Rd−1

[
Dih(t̂− τ, x′, y′)+

+
∫ ∞

0

Du e
− u2

2(t−τ) du

∫
Rd−1

Dih(t̂− τ, x′, v′) �x′
v′G(u, v′, y′)dv′

]
�x′
y′u0(τ, y′, 0)dy′

}∣∣∣∣
t̂=t

+

+
{
Dt

∫ t

0

(t− τ)− 1
2 dτ

∫
Rd−1

q(y′)
(bdd(y′))

1
2

∂u0(τ, y′, 0)
∂N(y′)

dy′
∫ ∞

0

e−
u2

2(t−τ) du×

×
∫

Rd−1
Dih(t̂− τ, x′, v′)�x′

v′G(u, v′, y′)dv′
}∣∣∣∣

t̂=t

, i = 1, . . . , d− 1.

Before estimating the integral on the right-hand sides of (16) and (17), we note that
conditions (9) yield

ψ(0, x) =
∫ ∞

0

e−sds
∫

Rd−1
G(s, x′, z′)

(
q(z′)

(bdd(z′))
1
2

∂ϕ(z′, 0)
∂N(z′)

+ ϕ(z′, 0)
)
dz′ − ϕ(x′, 0) = 0.

That is why in the expression for ψ(t, x′) and, as a result, in expressions for ψ̂(t, x′) and
Diψ̂(t, x′), the function u0(t, x) can be replaced by the function Φ(t, x) = u0(t, x)−ϕ(x),
t > 0, x ∈ Rd. Whence and from the properties of u0, we obtain

(18) Φ ∈ H(2+λ)/2, 2+λ([0, T ]× Rd), Dp
xΦ(0, x) = 0, p ≤ 2.

Now we can estimate ψ̂ and Diψ̂, i = 1, . . . , d− 1. First, we consider ψ̂(t, x′). Taking
the derivative with respect to t on the right-hand side of (16), we obtain the formula

(19)
√
π

2
ψ̂(t, x′) =

=
1
2

∫ t

0

(t− τ)− 3
2 dτ

∫
Rd−1

h(t− τ, x′, y′)[�x′
y′Φ(τ, y′, 0)− (y′ − x′,∇′Φ(τ, x′, 0)]dy′−

−
∫ t

0

dτ

∫
Rd−1

�x′
y′Φ(τ, y′, 0)dy′

∫ ∞

0

DuDt

(
(t− τ)− 1

2 e−
u2

2(t−τ)

)
du×

×
∫

Rd−1
h(t− τ, x′, v′) [�x′

v′G(u, v′, y′)− (v′ − x′,∇′G(u, x′, y′))]dv′−

−
∫ t

0

dτ

∫
Rd−1

�x′
y′DtΦ(t− τ, y′, 0)dy′

∫ ∞

0

Du

(
τ−

1
2 e−

u2
2τ

)
G(u, x′, y′)du+

+
∫ t

0

dτ

∫
Rd−1

q(y′)
(bdd(y′))

1
2

∂Φ(τ, y′, 0)
∂N(y′)

dy′
∫ ∞

0

Dt

(
(t− τ)− 1

2 e−
u2

2(t−τ)

)
du×

×
∫

Rd−1
h(t− τ, x′, v′)�x′

v′G(u, v′, y′)dv′ +
∫ t

0

dτ

∫
Rd−1

q(y′)
(bdd(y′))

1
2
�t
τ

∂Φ(τ, y′, 0)
∂N(y′)

dy′×

×
∫ ∞

0

Dt

(
(t− τ)− 1

2 e−
u2

2(t−τ)

)
G(u, x′, y′)du +

∫ ∞

0

t−
1
2 e−

u2
2t du×

×
∫

Rd−1
G(u, x′, y′)

q(y′)
(bdd(y′))

1
2

∂Φ(t, y′, 0)
∂N(y′)

dy′ =
∑6

i=1
Mi.

Estimating the terms Mi on the right-hand side of (19), we consider condition (18), the
theorem on average, the inequality σμe−εσ ≤ const for 0 ≤ σ < ∞, ε > 0, μ > 0, and
estimation (2) for the f.s. h and G. We have

|ψ̂(t, x′)| ≤ C||ϕ||H2+λ(Rd) t
1+λ′

2 , (t, x′) ∈ [0, T ]× Rd−1, λ′ = λ/2.
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Similarly, using (16)-(18) and properties of the fundamental solutions, we derive the
relations ∣∣∣��ttψ(t, x′)

∣∣∣ ≤ C||ϕ||H2+λ(Rd)(t− t̃)
1+λ′

2 , 0 ≤ t̃ < t ≤ T, x′ ∈ Rd−1,∣∣∣��ttDiψ(t, x′)
∣∣∣ ≤ C||ϕ||H2+λ(Rd)(t− t̃)

λ′
2 , 0 ≤ t̃ < t ≤ T, x′ ∈ Rd−1,∣∣∣��x′

x′Diψ(t, x′)
∣∣∣ ≤ C||ϕ||H2+λ(Rd)|x′ − x̃′|λ

′
, t ∈ [0, T ], x′, x̃′ ∈ Rd−1,

whence (15) follows.
We now prove that the application of the operator E to both sides of Eq. (14) trans-

forms this equation to an equivalent Volterra equation of the second type

(20) V (t, x′) +
∫ t

0

dτ

∫ d−1

R

K0(t− τ, x′, y′)V (τ, y′)dy′ = ψ0(t, x′), t > 0, x′ ∈ Rd−1,

where ψ0(t, x′) = (bdd(x′))
1
2 E(t, x′)ψ. For the kernel K0(t − τ, x′, y′) at 0 ≤ τ < t ≤

T ,x′, y′ ∈ Rd−1, the estimation∣∣∣K0(t− τ, x′, y′)
∣∣∣ ≤ C

[
(t− τ)− d+1−λ

2 e−c
|x′−y′|2

t−τ +

+ (t− τ)−1+ λ−γ
4 Φc,γ(t− τ, x′, y′)

]
, 0 < γ < λ,(21)

Φc,γ(t− τ, x′, y′) =
∫ ∞

0

u−1+γ/2e−c
u2

t−τ (t− τ + u)−
d−1
2 e−c

|x′−y′|2
t−τ+u du

holds.
Inequality (21) for the kernel K0 allows us to apply the method of successive approx-

imations to Eq. (20) and, as a result, to obtain V . Additionally, we check that the
solution V has the same smoothness as the function ψ0, i.e., V satisfies condition (15).
Actually, this condition in combination with conditions A2′), (9), and estimation (2)
ensure the existence of all the derivatives from Eq. (5) for u1 and, therefore, for u, as
well as the condition of conjugation (8) and, hence, the validity of inequality (10).

After we have proved that u(t, x) satisfies (8), let us pass to the proof of (5)-(7).
These equations follow directly from properties of the potentials u0 and u1 mentioned in
Section 2.

Finally, proving the statement of Theorem 1 on the uniqueness of the solution, we
note that the function u(t, x) constructed by formulas (11) and (20) can be considered
in each of the domains (t, x) ∈ (0,∞) × Dm , m = 1, 2, as a solution of the parabolic
first boundary-value problem

(Dt − L)u = 0, (t, x) ∈ (0,∞)×Dm, m = 1, 2,

u(0, x) = ϕ(x), x ∈ Dm, m = 1, 2,

u(t, x′) = v(t, x′), (t, x′) ∈ (0,∞)× Rd−1,

under the concordance condition v(0, x′) = ϕ(x′, 0), x′ ∈ Rd−1, where the function
v(t, x′) is defined by formula (13).

Theorem 1 is proved. �

Remark 3.1. The existence of a unique classical solution of problem (5)-(8) can be es-
tablished also without the assumption about the concordance condition L0ϕ(x′, 0) = 0
for the function ϕ (see (9)), leaving other conditions of Theorem 1 without changes. In
this case, the solution u(t, x) will be also defined by formulas (11) and (20). For it, the
estimation

(22) |u(t, x)| ≤ C||ϕ||H2+λ(Rd), (t, x) ∈ [0, T ]× Rd
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will be true.

4. Construction of a generalized diffusion process

From Theorem 1, it follows that a family of linear operators (Tt)t≥0 can be defined
on the set of smooth functions ϕ. The action of the operators can be determined by the
formula

(23) Ttϕ(x) = T
(0)
t ϕ(x) + T

(1)
t ϕ(x),

where T (0)
t ϕ(x) = u0(t, x), T

(1)
t ϕ(x) = u1(t, x), the functions u0 and u1 are presented

in (3), and the density V in the potential of a simple layer u1 is a solution of the integral
equation (20). Let us prove now that the operator Tt can be applied to functions ϕ from
the class B(Rd). For that, it is enough to establish the existence of the double integral in
(3), since the existence of the function T

(0)
t ϕ(x) is a simple consequence of the validity

of the inequality ((t, x) ∈ (0, T ]× Rd)

(24)
∣∣Dr

t D
p
x u0(t, x)

∣∣ ≤ C ||ϕ|| t− 2r+p
2 , 2p+ r ≤ 2,

where we should set r = p = 0.
Thus, we suppose that ϕ ∈ B(Rd) and consider the integral equation (20). To estimate

its right-hand side ψ0, we can use (19) once again, by replacing the function Φ by u0

everywhere and the term M3 by the term

(25)

M ′
3 = −

∫ t/2

0

dτ

∫
Rd−1

�x′
y′Dtu0(t− τ, y′, 0)dy′

∫ ∞

0

G(u, x′, y′)Du

(
τ−

1
2 e−

u2
2τ

)
du−

−
∫ t

t/2

dτ

∫
Rd−1

�x′
y′Dtu0(t− τ, y′, 0)dy′

∫ ∞

0

G(u, x′, y′)�t
τDu

(
τ−

1
2 e−

u2
2τ

)
du−

−
∫ ∞

0

Du

(
t−

1
2 e−

u2
2t

)
du

∫
Rd−1

G(u, x′, y′)�x′
y′u0(t/2, y′, 0)dy′.

In a similar way, we split the integrals in the expressions for M1 and M5 from (19)
into two terms. Then, by using (2) and (24), we find

(26) |ψ0(t, x′)| ≤ C ||ϕ|| t−1/2, (t, x′) ∈ (0, T ]× Rd−1.

It follows from inequalities (21) and (26) that the method of successive approximations
can be applied to Eq. (20) in this case as well.

Thus, if ϕ ∈ B(Rd), then there exists a unique solution V (t, x′) of the integral equation
(20) which is continuous at t > 0, x′ ∈ Rd−1 and, in each domain of the form (t, x′) ∈
(0, T ]× Rd−1, allows estimation (26). Inequalities (2) and (26) will ensure the existence
of the function T (1)

t ϕ(x) and the validity of the estimation

|T (1)
t ϕ(x)| ≤ C ||ϕ||, (t, x) ∈ (0, T ]× Rd.

Uniting (24) (at r = p = 0) and (26), the same estimation can be obtained for the
function Ttϕ(x).

Next, basing on (19) and taking (25) and inequalities (2), (24), and (26) into account,
we can formulate one more important property of the solution of the integral equation
(20) and, as a result, of the family of operators (Tt): if for a sequence of functions ϕn(x) on
Rd such that sup

n
||ϕn|| <∞, lim

n→∞ϕn(x) = ϕ(x) for all x ∈ Rd, then lim
n→∞V (t, x′, ϕn) =

V (t, x′, ϕ), lim
n→∞ Ttϕn(x) = Ttϕ(x) for all t > 0, x′ ∈ Rd−1, x ∈ Rd. This allows us to

check various properties of the operator Tt only on the smooth functions ϕ, specifically on
those that belong to space H2+λ(Rd). Taking this remark into account and proceeding
similarly as in [3,4,5], we make sure easily that, for the family of operators (Tt)t≥0 ,
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the following properties are true: 10)||Tt|| ≤ 1 for all t ≥ 0; 20)Ttϕ(x) ≥ 0 for all
t ≥ 0, x ∈ Rd, whenever the function ϕ ∈ B(Rd) is nonnegative. In other words,
ϕ(x) ≥ 0 for all x ∈ Rd; 30) and, for all t ≥ 0, s ≥ 0, the relation Tt+s = Tt Ts holds, i.e.
the family (Tt)t≥0 is a semigroup of operators.

From the previous properties of the operator Tt, it follow that there exists the transi-
tion probability P (t, x, dy) in Rd such that

Ttϕ(x) =
∫

Rd

P (t, x, dy)ϕ(y)

for all t > 0, x ∈ Rd, ϕ ∈ B(Rd). An additional analysis of the constructed semigroup
shows that the respective Markov process is a continuous Feller process and a generalized
diffusion process. Its local characteristics of motion are determined by using the relation

lim
t↓0

1
t

∫
Rd

ϕ(x)
[ ∫

Rd

(y − x,Θ)P (t, x, dy)
]
dx =

∫
Rd

ϕ(y)
(
α(y),Θ

)
dy+

+
∫
S

ϕ(y′, 0)
(
α̂(y′),Θ

)
dy′,

lim
t↓0

1
t

∫
Rd

ϕ(x)
[ ∫

Rd

(y − x,Θ)2P (t, x, dy)
]
dx =

∫
Rd

ϕ(y)(b(y)Θ,Θ)dy+

+
∫
S

ϕ(y′, 0)
(
β̂(y′)Θ′,Θ′) dy′,(27)

where Θ ∈ Rd, Θ′ ∈ Rd−1, and ϕ is any continuous finite function defined on Rd

α̂(y′) = (α̂i(y′))
d
i=1 , α̂i(y

′) =
αi(y′)

q1(y′) + q2(y′)
, i = 1, . . . , d− 1, α̂d(y′) = q(y′),

β̂(y′) =
(
β̂kl(y′)

)d−1

k,l=1
, β̂kl(y′) =

βkl(y′)
q1(y′) + q2(y′)

=
β

(0)
kl (y′)√
bdd(y′)

.

Thus, we have proved such a theorem.

Theorem 4.1. Let, for coefficients of the operator L from (1) and operator L0 from (8),
conditions A1), A2′), and B1)-B3) hold, respectively. Then the semigroup of operators
constructed by formulas (23) and (20) determines uniquely a continuous Feller process
in Rd, i.e., a generalized diffusion one with characteristics that are expressed by relations
(27).

References

1. A. D. Wentzel, On boundary conditions for multidimensional diffusion process, Probab. Theory
Appl. 4 (1959), 172-185.

2. E. B. Dynkin, Markov Processes, Plenum, New York, 1969.
3. B. I. Kopytko, N. I. Portenko, Analytical methods of pasting together of diffusion processes,

in: Lecture Notes in Mathematics (1983), no. 1021, 320–326.
4. N. I. Portenko, Generalized Diffusion Processes, Amer. Math. Soc., Providence, RI, 1990.
5. B. I. Kopytko, Semigroups of operators that describe a diffusion process in domain with general

boundary conditions, Dopov. NAN Ukr., (1995), no. 9, 15-18.
6. B. V. Bazalii, On one model problem with second derivatives on geometrical variables in bound-

ary condition for parabolic equation of the second order, Math. Zam. 63 (1998), no. 3, 468-473.
7. S. V. Anulova, Diffusion processes with singular characteristics, Intern. Symposium on Sto-

chastic Differ. Equations, Abstr., Vilnius, 1978, pp. 7-11.
8. L. L. Zaitseva, On stochastic continuity of generalized diffusion processes constructed as the

strong solution to an SDE, Theory of Stochastic Processes 11 (27) (2005), no. 12, 125–135.
9. N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-

Holland, Amsterdam, 1981.



DIFFUSION PROCESS ON R
d WITH GENERALIZED MOTION CHARACTERISTICS 83

10. O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural’tseva, Linear and Quasi-Linear Equations
of Parabolic Type, Amer. Math. Soc., Providence, RI, 1968.

11. S. D. Ivasyshen, Green’s Matrices of Parabolic Boundary-Value Problems, Vyshchya Shkola,
Kiev, 1990 (in Russian).

12. Ye. A. Baderko, Solution of problem with angled derivative for parabolic equation using method
of boundary integral equations, Diff. Uravn. 25 (1989), no. 1, 14–20.

13. C. Miranda, Partial Differential Equations of Elliptic Type, Springer, Berlin, 1970.
14. A. N. Konjenkov, On the relation between the fundamental solution of elliptic and parabolic

equations, Diff. Uravn. 38 (2002), no. 2, 245–256.

Ivan Franko National University, Department of Higher Mathematics, 1, Universytetska

Str., Lviv 79602, Ukraine

E-mail address: nandrew183@gmail.com


