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A. F. NOVOSYADLO

MULTIDIMENSIONAL DIFFUSION PROCESS WITH PARTIAL
REFLECTION ON A FIXED HYPERPLANE AND WITH
GENERALIZED DIFFUSION CHARACTERISTICS

We investigate the problem on pasting two parts of a diffusion process with variable
coefficients on a hyperplane with additional conjugation condition of the Wentzel
type given on it. A semigroup of operators that describe the unknown generalized
diffusion process is obtained by using the method of classical potential theory.

1. INTRODUCTION AND PROBLEM POSING

By R?, d > 2, we denote the real d-dimensional Euclidean space. Let D, = {x =
(w1,...,mq) € RY: (=1)™zq > 0},m = 1,2, be domains in R?, and let S =R¥"! = {z €
R? : 24 = 0} and D,, = D,, U S be the boundary and the closure of D,,, respectively.
We suppose that, on D,,, m = 1,2, a diffusion homogeneous process with bounded
continuous symmetric and nonnegative definite diffusion matrix b(z) = (bij(x))?,j:1 and

a bounded continuous vector of transposition a(x) = (a; (x))le, z € R? are defined.

We denote the generating differential operator of this process by L. We suppose
also that, on S, the bounded continuous functions ¢i(z), ¢2(x), Bri(x), ax(z), (k1 =
1,...,d — 1) are defined and are such that 3(z) = (Bu(z)) is a symmetric nonnegative
definite matrix, ¢1(xz) > 0, g2(x) > 0, and ¢1(z) + g2(x) # 0, x € S. These functions will
describe the corresponding continuations of the diffusion process after going out on S
and, under the common Wentzel condition (see [1,2,3]), will be responsible for the partial
reflection in one of the domains D or Ds and for the diffusion and the transposition along
the border.

Our aim is to construct the semigroup of operators (7}),, that describes a continuous

unprecipice process of Feller on R¢ such that its parts in D; and D; coincide with the
diffusion process operated by L, and the behavior of the process at the points of S is
defined under the given Wentzel conjugation condition. The solution of this problem
with some additional estimations of operator’s coefficients L and the boundary Wentzel
operator are first obtained by the author by applying some analytic methods with the use
of parabolic potentials that were constructed using the common fundamental solution for
a uniformly parabolic operator.

We prove that the obtained process can be interpreted as a generalized diffusion
process in the sense of N.I. Portenko [4].

Let us recall [2-4] that, within the analytic approach, the problem of existence of
the required semigroup actually reduces to the solution of the corresponding problem
of conjugation for a linear parabolic equation of the second order, in which one of two
conditions of conjugation, like the equation in a domain, is described by a linear second-
order differential operator. In the considered case, the Wentzel condition is set by a
uniform elliptic second-order operator by variables tangential to the border that also
include the derivatives in the direction of a normal to S. Let us mention that the

2000 Mathematics Subject Classification. Primary 60J60.
Key words and phrases. Diffusion process. Generalized characteristics. Analytical methods.

73



74 A. F. NOVOSYADLO

earlier common problem was investigated by analytic methods in [3,5], where an integral
representation of the required semigroup was used in the construction of the special
parabolic potential of a simple layer.

Moreover, the parabolic case of the initial-boundary-value Wentzel problem with sec-
ond derivatives with respect to tangential variables in the boundary condition was con-
sidered also in [6] and investigated therein in the Hoélder class with the use of a local
method. We mention also works [7,8,9], where the problem of construction of a general-
ized diffusion was investigated by methods of stochastic analysis.

In this paper, we use the following notations: T is a fixed positive number; 2’ =
(71,...,24-1) is apoint in R4~1; by 2/, we sometimes denote a point like (21, ..., z4_1,0);

1,

d d—1
(xvy) = Z TiYis (x,ay/) = Z TiYis l/((E,) = (Vi(x/))?zl y Vi = 07 i= ]-a e '7d - ]-7 Vd =
i=1 i=1
is a single vector of the normal to the surface S at the point 2/, N(a') = b(z') v(2') is
the normal vector; D; = D} = 9/0t, D; = 8/0z;, Dij = 0?/0x;0x;, i,j = 1,...,d,
are the operations of differentiation; D} and D? are, respectively, the symbols of partial
derivatives with respect to t of order r and with respect to = of order p, where r and
p are integer nonnegative numbers; V = (Dq,...,Dq), V' = (D1,...,D4_1) are the
"spatial” gradients; AZf(-,x) = f(-,x)— f(-,T), ALf(t,-) = fl(t, )—f(?fN7 )5 B(RY) is the
Banach space of bounded and measurable functions ¢ with the norm ||| = sup |¢(x)|;
z€ER4

CY(D) (CYD)),1=0,1,2, (C°(D) = C(D)) is the set of functions continuous in D (in
D) that have derivatives D?, p < [, continuous in D (in D,) where D is the subset
R C(Q) (C(Q)) is the set of functions continuous in © (€2), where © is a subset from
the domain (0,00) x R% CH2(€) (C™2(2)) is the set of functions continuous in Q ()
that have derivatives Dy, D, r = 1,p < 2, continuous in  (in Q); H'™(D) and
HIHN/2HMQ) 1 = 0,1,2, A € (0,1), are the spaces of Hélder’s functions with norms
||80||H1+A(5) and ||80||Hu+w2,l+x(ﬁ)a respectively (see [10, Ch. II}); Ig(H)\)/Q’H)\([OaT] X
R4~1) is the subset of functions from H+N/21HA ([0, T] x R4™1), that together with its
permissible derivatives with redspect to t vanish for ¢ = 0. Everywhere below, C' and ¢
are positive constants, whose specific values are usually irrelevant. The other notations
will be explained in the places, where they appear for the first time.

2. FUNDAMENTAL SOLUTION (FS) FOR A UNIFORMLY PARABOLIC OPERATOR AND
POTENTIALS GENERATED BY IT

Let us consider a uniformly parabolic operator in the domain (t,z) € (0,00) x R? of
the form

d d
(1) Dt — L= Dt — % Z b”(x)D” — Zaz(x)D“
i,j=1 i=1
whose real-valued coefficients satisfy the conditions
Al) (b(z)©,0) > CylO)?, Cy >0, Yz € RY, VO € R?;
A2) by € HMR?Y), a; € HMNRY), byj = bji, 4,5 =1,...,d.

Let g(t,x,y) (t >0, z,y € R?) be the f.s. for the operator D; — L constructed by the
Levy method (see [10, Ch. IV; 4, Ch. II]):

g(t,z,y) = go(t,z,y) + g1(t, x, y),

where

go(t,.9) = g0, — y) = (2m) (et b))~ exp { — o (7 W)y — 7)oy — )}
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(by b=1(y), we denote here the inverse matrix to the matrix b(y)), and the function
g1(t,x,y) is written in view of the integral operator with kernel gy and density ®¢ that
can be found from some integral equation.

The function g(t, z,y) is nonnegative, continuous by the set of variables, continuously
differentiable with respect to ¢, and twice continuously differentiable with respect to x.
Moreover, at t € (0,T], z,y € R, the inequality

2
@ D} Dlg(t,a.)| < O 75 exp {‘%} . Zr+psy,

holds.
The main part of the f.s. gg, as a function of the arguments ¢ and =z, is infinitely

differentiable for ¢t > 0 and satisfies inequality (2) for any integer nonnegative values of r

and p. The function g(()y) (t, z) and its derivatives with respect to t and z satisfy the Holder

condition by the variable y (see inequality (11.4) in [10]). We will use also estimates
(13.2) and (13.3) from [10] that will be applied to differences AZ(D} D? g(t,z,y)) and
NYDyDPE g(t,x,y)), respectively, and relations (2.38) and (2.39) from [4].

We now define the following integrals using the f.s. g:

@) wit.o)= [ atamewan  weo = [ar [ glt=ray)Viay.

Here, ¢(z) (x € RY), V(t,2')(t > 0,2’ € R4"1) are given functions. The functions
uo(t,x) and wuy(t, x) are, respectively, the Poisson potential and the potential of a simple
layer.

It is worth to mention some properties of parabolic potentials (see [10-12]). First,
we consider the function w;(t,x). If V(¢,2') is a continuous bounded function, then
the double integral in (3) exists, and the function u;(,z) is continuous on [0, 00) x R4,
satisfies the equation (D; — L)u; = 0 in the domain (0,00) X D,,, m = 1,2, and the
initial condition u1(0,z) = 0. In the case where V € Ig)‘m’)‘([O,T] x R471), we have

L5214 D : ” s )
up € H 22 7([0,T] X Dyy). Below, we will use also the formula of ”jump” for the

potentlal of a simple layer (see [2,4 12]) Under our conditions, it has the form

) t Oj: ,
(@ Qulr,bd) / P[P R F Ve, e
Rd—1
Here, the expressions auggf;fx’,?f) nd au}j(]f,f ,()H) mean the limit of the conormal deriva-
Oui (t,z)

tive NG At the point 2’ € R4!, when z tends to z’ from the side of the domain D;
and Ds, respectively. The integral on the right-hand side of (4) is called a direct value
of the conormal derivative of the potential of a simple layer. Its existence follows from

the inequality

9g(t,2",y’)

ON (z')
Obviously, the existence of the potential u; can be considered under more general con-
ditions concerning the density V.

We now consider the potential ug from (3). If we suppose that ¢ is a bounded con-
tinuous function on RY, then the function wug(t,x) is continuous at ¢t > 0, x € R
satisfies the equation (D; — L)ug = 0 in the domain (¢,z) € (0,00) x R% and the
initial condition uo(0,7) = ¢(x) for x € RL In addition, if ¢ € H?*T*(R?), then
ug € HETN/2.240([0, T] x RY).

r
SC’(t—T)_dJr; Aexp{—clwtiyl}7 0<7<t<T o,y eRIL
-7

Remark 2.1. During establishing the existence of the classical solution of the conjugation
problem that will be formulated in Section 3, we should impose additional restrictions
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on higher coefficients b;; of the operator L from (1); this is related to the necessity to
differentiate the function g with respect to the variable y. Further, we suppose that the
coeflicients of the operator L satisfy the condition

A2') by € HYPANRY), a; € HMRY), bij = by, 4,5 =1,...,d,

instead of condition A2). In monograph [10, Ch. IV, §16], it is noted that, under

conditions A1) and A2'), the f.s. ¢ has the derivatives 88_;’ 855%, &c,;g:cz(‘syj’ a?;gjv
i,j,k =1,...,d, that are continuous functions at = # y which satisfy inequalities of the
form (16.3) and (16.4). In addition, we suppose that the density V in the integral from
(3) belongs to the Holder space H1+2)/2:142([0, T] x S). Then it can be shown that the
function u; has the derivatives D¥,u, p < 2, at t > 0,z € D, m = 1,2, that change

continuously during the transition through the boundary S.

3. THE CONJUGATION PROBLEM FOR THE SECOND-ORDER PARABOLIC EQUATION AND
ITS SOLUTION

Let us consider the operator L defined in (1) and the functions g¢,, (m = 1,2),
ak, Bri (k,1 = 1,...,d — 1), defined on S. We suppose that conditions A1), A2') are
true for the coefficients of the operator L and the functions g, ax, and [y; satisfy the
conditions

B1) (B(z)©,0") > 6|0, dp >0, Vo' € R¥™! vO' e R,
Bz) ﬁkla Ak, Gm € H)\(Rdil)a ﬁkl = ﬁlka kal = 1) .- '7d - 17 m = 1727
B3) qi(z') >0, ¢1(z') > 0, inf(q1 (') + g2(2')) > 0, 2’ € R,

Our aim consists in finding the solution (in the classical sense) of the conjugation
problem:

(5)  (D¢—L)u(t,z) =0, (t,x)€ (0,00) XDy, m=12,
6)  w(0,z)=p(x), zeR?,
(7)  u(t,2’,0—) =u(t,2’,0+), (t,z) € (0, +oo) x R4,

Bri(x )Dklut x' 0 Zak )Dyu(t, x' ,0)—

(8) - QI(x/)Ddu(ta SC,, 0_) + Q2(x,)Ddu(ta z 70+) = 07 (ta T ) € (Oa OO) X Rd717

where ¢ € C(RY) N B(RY) is the given function.

We will suppose that the solution u(t,z) bounded by the spatial variable is a con-
tinuous function in the domain [0,+o00) x R? belongs to the set C12((0,00) x D,y,),
m = 1,2, and satisfies conditions (6)-(8). In addition, the derivatives with respect to the
tangential variables Dyu, Diju, k,1 = 1,...,d — 1, as well as the function u, must also
change continuously during the transition through S.

Let us determine the classical solubility of problem (5)-(8) in assumption that the
initial function ¢ from (6) satisfies the conditions

(9) o € H*™R?Y), Lop(z',0)=0, 2/ € R

Theorem 3.1. Let the coefficients of the operators L and Lg satisfy conditions Al),
A2') and B1)-B3), respectively, and let the function ¢ satisfy condition (9). Then there
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exists a unique classical solution of problem (5)-(8), for which the estimation

d—1 d—1
(10) lu(t, )| + Y [Diut, )|+ Y [Dijult, z)] < C|lo|| g
i=1 i,5=1

holds at (t,x) € [0,T] X Dy, m = 1,2.

Proof. First of all, we will prove the existence of the solution u(t,z). We will search
it in the form

(11) u(ta (E) = UO(ta (E) + ul(tvx)v (ta (E) € (07 OO) X Rda

where the function V included into u; is unknown and should be determined.
Let us consider the condition of conjugation (8). Extracting the conormal derivative
in the expression for Lo and using formula (4), we transform it to the form

d—1

ou(t,z',0) E% Z ') Diu(t, o, O—i—Za(O) )Dju(t,x’,0)—
k,l=1 k=1
(12) —u(t,z’,0) =00 (t,z"), (t,2') € (0,00) x R¥L,
where
(@) = (@) + @2(2") " (baa(a))* B "),
V@) = baa@)? (@) + @) ar(@) - @) bale’))

N ’
q(x'>:—q2(’” D) ) <1, of € RO,
€z

/ / !
(0) N — .13 8g(t—7,$,y)
OO (1, 2/) = (bua(a’))~}V(t,2') /dT/R“ bddm,)% e
q(z')  Quo(t,2',0)

(baa(x'))z  ON(2')

We will consider equality (12) as an autonomous elliptic equation on S = R4~ for the
function u(t, 2’,0) = v(t,z’), and the variable ¢ will be interpreted here as a parameter.
From the conditions of Theorem 1, it follows that the coefficients of this equation belong
to the space H*(R?~1). If we will suppose in advance that the unknown function V'
is Holder by both variables with the coefficient A, then it is obvious that the function
0 will belong to the same Holder class (by variable z’). In addition, the conditions
of Theorem 1 and the presence of the term (—1) - u(t,2’,0) on the left-hand side of Eq.
(12) guarantee also the existence, for the uniformly elliptic operator L{,, the main f.s.
(2, y) («',y € RI7Y af # o) (see [13, Ch. III, §20], [14]) that can be presented in
our case by the formula

+g(t—7,2"y)|V(r,y)dy —

F(m',y'):/ e *G(s, 2,y )ds,
0

where G(s,2",y') (s >0, 2/,y’ € R971) is the f.s. of the uniformly parabolic operator

d—1
1
y ¥ AV D+ T oD D

k=1

Note that, for the f.s. G, one can formulate properties analogous to those formulated in
Section 2 for the f.s. g.
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Using the f.s. T, the unique solution of Eq. (12) can be written in the form
v(t, ') = —/ (', 2") 0Ot 2)dz =
Rd—1
(o]
(13) = —/ e=ds [ Gls,a, ) 0O, ), (ta') € (0,00) x S.
0 Rd—1

Thus, in addition to formula (11), where we should take (¢, z) = (t,2’), we have obtained
also relation (13) for the function u(t,2’,0) = v(t,2’). Comparing the right-hand sides
of these relations, we obtain the integral equation for V' in the form

t 0
/ dr Kt —m7,2",y) V(r,y)dy + / e *dsx
0 Ri-1 0

(14)  x G(s, 2, 2 ) (baa(2) 2V (t, 2)d2 = p(t, '), (t,2) € (0,00) x R4,

Rd-1
where

Kt—r,2y)=gt—7,2"y)— / e %dsx
0
q(2')

ag(t —7,2",y")
(baa(=")z  ON(Z')

W(t,x) :/ e °ds G(s,2',2") x
0 Ré—1

q(ZI> 8u0(t72;’70) / / /
X ((bdd(zl))% 8N(Z/) +u0(t,2 ,0)>d2 —UO(t,J) ,0).

Equation (14) is an integral first-kind equation. For the purpose of its transformation,
we introduce an operator £ acting by the formula

Et,x' W =1/= {Dt (t—71)" sz/ [h(f—T,x’,y')—i—
]Rd 1
+/ (1-— )e 30t T>du/ h(t —7,2",0") G(u,v',y')dv'}w(ﬂy')dy'}
0 t—rT1 Rd—1

where h(t,z',y") (¢t >0, 2',y" € R¥1) is the f.s. of the operator

X G(Syxlazl) < +g(t_7—7'zlayl)> dzla

]Rd—l

)
t=t

1
1 = = big bja . .
Dt—§i;1bij(x')pij, bij:bij—Tdf, ij=1,...,d—1.

Let us prove that the function i(t, x') = E(t, 2') satisfies the condition
(15) ) e 1;1““”/2’ ([0, 7] x REY), N = A/2.

This can be easily done using the relations

t o0 2
(16) \/71p t,z’) { / (t— T)_%dT/ [h(f— T2, y") +/ Dy e 209 dux
0 Rd—1 0

t
/ h(t — 1,2’ 0v") G(u,v’,y')dv’] A”:uo(T v, O)dy'} {Dt/ (t— 1) 2drx
Ri-1 0

!
></ Q(y)lauOTyOd / e2<ff>du><
a1 (baa(y'))2

X/Rd_lh(t 2’ v') Gu, v,y )dv '}

i=t
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(17) \/gDﬂ;(t,x') = —{Dt /Ot(t —7)"2dr /Rd_1 [Dih(f— T2 y)+

o0 ’U.2 ~ !’ !’
+ / D, e 2t du Dih(t — 72", v") AL G(u, ', y’)dv'} ANATICRTE O)dy’}
0 Rd-1

t /
+{Dt/ (t—T)_%dT/ aw) T 8u0 (r. y 0 d / e == *>du><
0 ri-1 (baa(y'))?

X Dih(t — 7,2 v") A Gu, v,y )dv '}
)

i=t

,i=1,...,d—1.
=t

RA—1 i

Before estimating the integral on the right-hand sides of (16) and (17), we note that
conditions (9) yield

q(z")  9¢(z',0)
(baa(2"))z ON(2')

P(0,2) = /000 e *ds G(s, 2, z’)( + (2, 0)>dz’ —p(2',0) = 0.

Rd—1

That is why in the expression for (¢, z’) and, as a result, in expressions for zZ(t, x’) and
D;(t, x’), the function ug(t, z) can be replaced by the function (¢, x) = uo(t, z) — (),
t >0, z € RY. Whence and from the properties of 1y, we obtain

(18) e HEV/220([0, 7] x RY),  DI(0,2) =0, p< 2.

Now we can estimate 1Z and Dﬂ/p\,i =1,...,d— 1. First, we consider {b\(t, x’). Taking
the derivative with respect to ¢ on the right-hand side of (16), we obtain the formula

(19) \/71/)tx

[t [ he B 0) — (0 0
0 Rd—1

t , oo ,
_/ dr A$,¢(T7y',0)dy// D, D, (((‘,—T)ée_m_r)>dux
0 Rd—1 o
- / h(t =72, 0') [ALG(u,,y) = (v = 2, V'Glu, 2/, y)))]dv' —
Rd—1

oo

t 2
/ dr A”/Dt Ot —71,y,0)dy / D, (T_%e_%)G(u,x',y’)du—l-
Rd—1

y')  0%(r,y,0) ,/ 1 _u?
d d D,((t —7) 3 T )d
/ T/Rdl (baaly')E ONG) Y t(( ) ze )“X

/ (b !/
x/ h(t — 72" 0') A G(u, v,y )do’ +/ dT/ ay’) Aia (T’y’o)dy'x
Ri—1 R

a1 (baa(y'))* ON(y')
x / Dt((t—T)_ie_m>G(u,m/7y/)du+/ t_%e_%_fdux
0 0
(y') 02(t, y 0
X G(uvxlvy,) 1 1 M;.
R~ (baa(y'))z IN(y Z

Estimating the terms M, on the right-hand side of (19), we consider condition (18), the
theorem on average, the inequality c*e™? < const for 0 < o < 0o, e > 0, 4 > 0, and
estimation (2) for the f.s. h and G. We have

Wt < Ollpllgzrsgay £ 7, (t,2") €[0,T] x RTL, X = A/2,
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Similarly, using (16)-(18) and properties of the fundamental solutions, we derive the
relations

~ 14X/
2

|Afut, )| < Cllplliro gt - )

|AIDw(t,a')

, 0<t<t<T, 2’ e R,

< Cllollger @t — %, 0<T<t<T, 2/ € RTY,

‘AgiDlw(f'ax/) < C||¢||H2+’\(Rd)|x/ - J,;le7 te [OaT]7 xlw%l € Rd_la

whence (15) follows.

We now prove that the application of the operator £ to both sides of Eq. (14) trans-
forms this equation to an equivalent Volterra equation of the second type

t d—1
(20) V(t, ) +/ dr Kot — 7,2,y \V (1,9 )dy = o(t,z), t>0, 2" € R,
0 R

where ¢o(t, ') = (bag(z'))2E(t, '), For the kernel Ko(t — 7,2',y/) at 0 < 7 < t <
T,2',y" € R¥1, the estimation

dti-x _, |z'—y'|2

}Ko(t—r,x',y’)}SC[(t—T)_ T e T T 4

(21) b (=) TS (=T y)], 0<y <A
o0 w2 _ ‘1/7y1‘2
D (t =72, y) = / e (R u)f%e_cmdu
0
holds.

Inequality (21) for the kernel Ky allows us to apply the method of successive approx-
imations to Eq. (20) and, as a result, to obtain V. Additionally, we check that the
solution V has the same smoothness as the function g, i.e., V satisfies condition (15).
Actually, this condition in combination with conditions A2), (9), and estimation (2)
ensure the existence of all the derivatives from Eq. (5) for uy and, therefore, for u, as
well as the condition of conjugation (8) and, hence, the validity of inequality (10).

After we have proved that u(t,z) satisfies (8), let us pass to the proof of (5)-(7).
These equations follow directly from properties of the potentials ug and u; mentioned in
Section 2.

Finally, proving the statement of Theorem 1 on the uniqueness of the solution, we
note that the function u(t,x) constructed by formulas (11) and (20) can be considered
in each of the domains (¢,z) € (0,00) X D,,, m = 1,2, as a solution of the parabolic
first boundary-value problem

(Dt — L)u=0, (t,x)€ (0,00) X Dy, m=1,2,

u(0,z) = p(z), x €Dy, m=1,2,

u(t,z') = v(t,a), (t,a') € (0,00) x R,
under the concordance condition v(0,2') = ¢(2/,0), ' € R4 where the function
v(t,z') is defined by formula (13).

Theorem 1 is proved. [J

Remark 3.1. The existence of a unique classical solution of problem (5)-(8) can be es-
tablished also without the assumption about the concordance condition Lop(z’,0) = 0
for the function ¢ (see (9)), leaving other conditions of Theorem 1 without changes. In

this case, the solution u(t, z) will be also defined by formulas (11) and (20). For it, the
estimation

(22) |’U,(f,,1,‘)| < CHSOHHQ‘*'*(]Rd’)a (t,l‘) € [O7T] X Rd
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will be true.

4. CONSTRUCTION OF A GENERALIZED DIFFUSION PROCESS

From Theorem 1, it follows that a family of linear operators (73):>o can be defined
on the set of smooth functions ¢. The action of the operators can be determined by the
formula

(23) Typ(z) = T, p(z) + T Vp(x),

where Tt(o)go(x) = uo(t, x), Tt(l)ga(a:) = uy (¢, z), the functions ug and u; are presented
in (3), and the density V in the potential of a simple layer u; is a solution of the integral
equation (20). Let us prove now that the operator T; can be applied to functions ¢ from
the class B(RY). For that, it is enough to establish the existence of the double integral in
(3), since the existence of the function Tt(o)go(x) is a simple consequence of the validity
of the inequality ((¢,z) € (0,T] x R9)
(24) D} DY wo(t,z)| < Cllgl|t~ 35, 2p+r <2,
where we should set r = p = 0.

Thus, we suppose that ¢ € B(R?) and consider the integral equation (20). To estimate
its right-hand side 1y, we can use (19) once again, by replacing the function ® by ug
everywhere and the term M3 by the term

(25)

t/2 , 0o w2
M} = —/ dr Ay Dyuo(t — 7,9/, O)dy’/ G(u, ',y D, (T*%e’?) du—
0 Ri-1 0

t , 00 2
—/ dr Ay Dyug(t — T, y’,O)dy'/ G(u, 2,y )ALD, (T_%e_F> du—
t/2 Rd-1 0
0o 2 ,
—/ D, (f%e’ﬁ) du Glu, 2",y ) ANyruo(t/2,y,0)dy’.
0 Rd-1

In a similar way, we split the integrals in the expressions for M7 and M; from (19)
into two terms. Then, by using (2) and (24), we find

(26) ot )| < Cllgl[t72, (t,2") € (0,T] x R

It follows from inequalities (21) and (26) that the method of successive approximations
can be applied to Eq. (20) in this case as well.

Thus, if ¢ € B(RY), then there exists a unique solution V (¢, 2’) of the integral equation
(20) which is continuous at ¢t > 0, 2’ € R?¥"! and, in each domain of the form (¢,2') €
(0,7] x R~ allows estimation (26). Inequalities (2) and (26) will ensure the existence

of the function Tt(l)go(x) and the validity of the estimation
TVe@)] < Cliell. (t.a) € (0,7) x R,

Uniting (24) (at » = p = 0) and (26), the same estimation can be obtained for the
function Ty (z).

Next, basing on (19) and taking (25) and inequalities (2), (24), and (26) into account,
we can formulate one more important property of the solution of the integral equation
(20) and, as a result, of the family of operators (T3): if for a sequence of functions ¢, (z) on
R? such that sup [|pn|| < 0o, lim ¢,(z) = ¢(x) for all x € RY, then lim V(¢ 2/, ¢,) =
V(t,2', ), lim Typ,(x) = Typ(x) for all t > 0, 2/ € R¥"! z € RY This allows us to

n—oo
check various properties of the operator T; only on the smooth functions ¢, specifically on

those that belong to space H?t*(R9). Taking this remark into account and proceeding
similarly as in [3,4,5], we make sure easily that, for the family of operators (7}),~,,
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the following properties are true: 1°9)||T3|| < 1 for all ¢ > 0; 2°)Typ(z) > 0 for all
t > 0,z € R% whenever the function ¢ € B(R?) is nonnegative. In other words,
o(z) >0 for all x € R%; 3%) and, for all t > 0, s > 0, the relation T}, , = T; T, holds, i.e.
the family (7}), is a semigroup of operators.

From the previous properties of the operator T}, it follow that there exists the transi-
tion probability P(t,z,dy) in R? such that

Tip(x) = /d P(t,z,dy) ¢(y)
R L
for all t > 0, » € R% ¢ € B(R?). An additional analysis of the constructed semigroup

shows that the respective Markov process is a continuous Feller process and a generalized
diffusion process. Its local characteristics of motion are determined by using the relation

ltig)l% 9 o(x) UW(:L/ - x,@)P(t,x,dy)} dx = /Rd o(y)(a(y), ©)dy+
+ [ ol 0) (@l 0)dy
S

ing [ o] - a02Pt o= [ owome.on:

[AN
Rd Rd

(27) + [ o0 (e e) dy.
where © € R?, © € R?!, and ¢ is any continuous finite function defined on R?

ay) = @)y aly) = —WL i1 am 1, ) = o),

- a(y')+ay)
; A ] Buy) 0 ()
N / N — — kl .
6(2/ ) (Bkl(y )) k=1 ) ﬂkl (y ) T (y/) + g0 (y/) \/m

Thus, we have proved such a theorem.

Theorem 4.1. Let, for coefficients of the operator L from (1) and operator Lg from (8),
conditions Al), A2'), and B1)-B3) hold, respectively. Then the semigroup of operators
constructed by formulas (23) and (20) determines uniquely a continuous Feller process
in RY, i.e., a generalized diffusion one with characteristics that are expressed by relations

(27).
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