

GOGI PANTSULAIA

ON A STANDARD PRODUCT OF AN ARBITRARY FAMILY OF σ -FINITE BOREL MEASURES WITH DOMAINS IN POLISH SPACES

Let α be an infinite parameter set, and let $(\alpha_i)_{i \in I}$ be its any partition such that α_i is a non-empty finite subset for every $i \in I$. For $j \in \alpha$, let μ_j be a σ -finite Borel measure defined on a Polish metric space (E_j, ρ_j) . We introduce a concept of a standard $(\alpha_i)_{i \in I}$ -product of measures $(\mu_j)_{j \in \alpha}$ and investigate its some properties. As a consequence, we construct "a standard $(\alpha_i)_{i \in I}$ -Lebesgue measure" on the Borel σ -algebra of subsets of \mathbb{R}^α for every infinite parameter set α which is invariant under a group generated by shifts. In addition, if $\text{card}(\alpha_i) = 1$ for every $i \in I$, then "a standard $(\alpha_i)_{i \in I}$ -Lebesgue measure" m^α is invariant under a group generated by shifts and canonical permutations of \mathbb{R}^α . As a simple consequence, we get that a "standard Lebesgue measure" $m^\mathbb{N}$ on $\mathbb{R}^\mathbb{N}$ improves R. Baker's measure [2].

Let $(X_i, \mathbf{B}_i, \mu_i)$ ($i \in \mathbb{N}$) be a family of regular Borel measure spaces, where X_i is a Hausdorff topological space. In [4], it was proved that a Borel measure μ exists on $\prod_{i \in \mathbb{N}} X_i$ (with respect to the product topology) such that if $K_i \subseteq X_i$ is compact for all $i \in \mathbb{N}$ and $\prod_{i \in \mathbb{N}} \mu_i(K_i)$ converges, then $\mu(\prod_{i \in \mathbb{N}} K_i) = \prod_{i \in \mathbb{N}} \mu_i(K_i)$. Note that a special case of this result (in the case where $X_i = \mathbb{R}$ and μ_i is Lebesgue measure) has been proved only recently in [1]. Slightly later on, work [2] has improved the result in [4] as follows: there exists of a Borel measure λ on $\prod_{i \in \mathbb{N}} X_i$ such that if $R_i \subseteq X_i$ is measurable for $i \in \mathbb{N}$ and $\prod_{i \in \mathbb{N}} \mu_i(R_i)$ converges, then $\lambda(\prod_{i \in \mathbb{N}} R_i) = \prod_{i \in \mathbb{N}} \mu_i(R_i)$.

Note that both above-mentioned constructions in the case where multiplied measures coincide with a specific σ -finite Borel measure μ in a Hausdorff topological space X give a measure $\mu^\mathbb{N}$ which is not invariant under permutations of the $\mathbb{R}^\mathbb{N}$. To eliminate this defect, we introduce a notion of a *standard product of measures* and prove its existence under some assumptions. Our approach, unlike [4], [1],[2], is based on the notion of a standard product of a family of real numbers. Main results of the article are the theorem about the existence of a *standard product of measures* and its invariance under action of some group of transformations. In the case where multiplied measures coincide with a Lebesgue measure on \mathbb{R} , our product occurs to be invariant under permutations of the $\mathbb{R}^\mathbb{N}$ (see [7]) unlike Baker's measures [1],[2]. In addition, our construction is essentially different from the points of view of [4] and [2], because it allows one to construct a *standard product of measures* for an arbitrary (not only for countable) family of σ -finite Borel measures with domains in Polish spaces.

Suppose that X is a topological space. The Borel sets $\mathcal{B}(X)$ are the σ -algebra generated by the open sets of a topological space X , and the Baire sets $\mathcal{B}_0(X)$ are the smallest σ -algebra making all real-valued continuous functions measurable. In 1957 (see [5]), Mařík proved that all normal countably paracompact spaces have the following property: Every Baire measure extends to a regular Borel measure. Spaces which have this property have come to be known as Mařík spaces.

2000 *Mathematics Subject Classification.* Primary 28A35, 28Cxx, 28Dxx; Secondary 28C20, 28D10, 28D99.

Key words and phrases. Infinite-dimensional Lebesgue measure, product of σ -finite measures.

The designated project has been fulfilled by financial support of the Georgia National Science Foundation (Grants: # GNSF / ST 08/3 – 391, # GNSF / ST 09/3 – 611).

The present manuscript is devoted to the application of properties of some Marík spaces to the definition of a product of an infinite family of σ -finite Borel measures with domains in Polish spaces.

In order to do it, we recall some important notions and well-known results from general topology and probability theory.

X is a Hausdorff space iff distinct points in X have disjoint neighbourhoods. X is a regular space if and only if, given any closed set F and any point x that does not belong to F , there exists a neighbourhood U of x and a neighbourhood V of F that are disjoint. X is a normal space if and only if, given any disjoint closed sets E and F , there are neighbourhoods U of E and V of F that are also disjoint. X is a regular Hausdorff space if and only if it is both regular and Hausdorff. X is a completely regular space if and only if, given any closed set F and any point x that does not belong to F , there is a continuous function f from X to the real line \mathbb{R} such that $f(x) = 0$ and $f(y) = 1$ for every y in F . X is a Tychonoff space, if and only if it is both completely regular and Hausdorff.

Lemma 1 ([9], Theorem 4, p. 981) *The following statements about a product of nonempty metric spaces are equivalent:*

- (i) *The product is normal.*
- (ii) *At most \aleph_0 of the factor spaces are noncompact.*

Lemma 2 [10] *Every normal regular space is completely regular, and every normal Hausdorff space is Tychonoff.*

Recall that a Borel measure μ defined on a Hausdorff topological space (X, τ) is called Radon if

$$(\forall Y)(Y \in \mathcal{B}(X) \ \& \ 0 \leq \mu(Y) < +\infty \rightarrow \mu(Y) = \sup_{\substack{K \subseteq Y \\ K \text{ is compact in } X}} \mu(K)) \diamond$$

and called dense if the condition \diamond holds for $Y = X$.

A family $(U_i)_{i \in I}$ of open subsets in (X, τ) is called a generalized sequence if

$$(\forall i_1)(\forall i_2)(i_1 \in I \ \& \ i_2 \in I \rightarrow (\exists i_3)(i_3 \in I \rightarrow (U_{i_1} \subset U_{i_3} \ \& \ U_{i_2} \subset U_{i_3}))).$$

A Borel probability measure μ defined on X is called τ -smooth if, for an arbitrary generalized sequence $(U_i)_{i \in I}$, the condition

$$\mu\left(\bigcup_{i \in I} U_i\right) = \sup_{i \in I} \mu(U_i)$$

is valid.

A Baire probability measure μ on X is called τ_0 -smooth if, for an arbitrary generalized sequence $(U_i)_{i \in I}$ of open Baire subsets in X , for which $\bigcup_{i \in I} U_i$ is also a Baire subset, the condition

$$\mu\left(\bigcup_{i \in I} U_i\right) = \sup_{i \in I} \mu(U_i)$$

is valid.

The following lemma plays a key role in our future investigations.

Lemma 3 ([12], Theorem 3.3, p. 42) *Let X be a completely regular topological space, and let μ be a Baire probability measure defined on the σ -algebra $\mathcal{B}_0(X)$. Then*

- (a) *if μ is τ_0 -smooth, there exists a unique τ -smooth Borel extension on X .*
- (b) *if the space X is Hausdorff and μ is dense on $\mathcal{B}_0(X)$, then μ admits a unique Radon extension on $\mathcal{B}(X)$.*

Let $(E_j, \tau_j)_{j \in \alpha}$ be a family of Hausdorff topological spaces. By $(\prod_{j \in \alpha} E_j, \tau)$, we denote the Tychonoff product of the family of topological spaces $(E_j, \tau_j)_{j \in \alpha}$.

Lemma 4 *Let $(E_j, \rho_j)_{j \in \alpha}$ be a family of non-empty Polish metric spaces such that at most \aleph_0 of them are noncompact, and let μ_j be a Borel probability measure on E_j for $j \in \alpha$. Then the product measure $\prod_{j \in \alpha} \mu_j$ is τ_0 -smooth and dense on $\prod_{j \in \alpha} E_j$.*

Proof. The product $\prod_{j \in \alpha} \mu_j$ is initially defined on the Baire σ -field $\mathcal{B}_0(\prod_{j \in \alpha} E_j)$ as in [12].

Let $(U_i)_{i \in I}$ be an arbitrary generalized sequence of open Baire subsets in $\prod_{j \in \alpha} E_j$, for which $\bigcup_{i \in I} U_i$ is also a Baire subset.

The latter relation getting together with an assumption of Lemma 4 stated that at most \aleph_0 of the family $(E_j, \rho_j)_{j \in \alpha}$ are noncompact imply that there exist a countable subset $\alpha_0 \subseteq \alpha$ and $U_{\alpha_0} \in \mathcal{B}(\prod_{j \in \alpha_0} E_j)$ such that

$$\bigcup_{i \in I} U_i = U_{\alpha_0} \times \left(\prod_{j \in \alpha \setminus \alpha_0} E_j \right)$$

and

$$(\forall j)(j \in \alpha \setminus \alpha_0 \rightarrow (E_j, \rho_j) \text{ is compact}).$$

By the inner regularity of the Borel probability measure $\prod_{j \in \alpha_0} \mu_j$ with a domain in a Polish space, there exists an increasing family of compact sets $(F_k)_{k \in \mathbb{N}}$ such that $F_k \subseteq U_{\alpha_0}$ and

$$\lim_{n \rightarrow \infty} \left(\prod_{j \in \alpha_0} \mu_j \right) (F_n) = \left(\prod_{j \in \alpha_0} \mu_j \right) (U_{\alpha_0}).$$

We set $D_n = F_n \times \prod_{j \in (\alpha \setminus \alpha_0)} E_j$ for $n \in \mathbb{N}$. It is obvious that $(D_n)_{n \in \mathbb{N}}$ is an increasing family of compact subsets in $\prod_{j \in \alpha} E_j$ such that

$$\lim_{n \rightarrow \infty} \left(\prod_{j \in \alpha} \mu_j \right) (D_n) = \left(\prod_{j \in \alpha} \mu_j \right) (\bigcup_{i \in I} U_i).$$

It is obvious that $(U_i)_{i \in I}$ is covering D_n for every $n \in \mathbb{N}$. Hence, using the definition of a generalized sequence of open sets in a topological space, we can construct such a sequence $(i_n)_{n \in \mathbb{N}}$ of indices of I that the sequence $(U_{i_n})_{n \in \mathbb{N}}$ will be increasing and $D_n \subseteq U_{i_n}$ for $n \in \mathbb{N}$. We have

$$\left(\prod_{j \in \alpha} \mu_j \right) (D_n) \leq \left(\prod_{j \in \alpha} \mu_j \right) (U_{i_n})$$

for every $n \in \mathbb{N}$. Hence,

$$\begin{aligned} \left(\prod_{j \in \alpha} \mu_j \right) (\bigcup_{i \in I} U_i) &= \lim_{n \rightarrow \infty} \left(\prod_{j \in \alpha} \mu_j \right) (D_n) \leq \\ &\leq \lim_{n \rightarrow \infty} \left(\prod_{j \in \alpha} \mu_j \right) (U_{i_n}) \leq \left(\prod_{j \in \alpha} \mu_j \right) (\bigcup_{i \in I} U_i). \end{aligned}$$

The latter relation means that the condition

$$\left(\prod_{j \in \alpha} \mu_j \right) \left(\bigcup_{i \in I} U_i \right) = \sup_{i \in I} \left(\prod_{j \in \alpha} \mu_j \right) (U_i)$$

holds. Thus, the measure $\prod_{j \in \alpha} \mu_j$ is τ_0 -smooth on $\prod_{j \in \alpha} E_j$.

Let us show that the measure $\prod_{j \in \alpha} \mu_j$ is dense.

We set

$$\alpha_1 = \{j : E_j \text{ is not compact}\}.$$

It is clear that, for the Borel measure $\prod_{j \in \alpha_1} \mu_j$, there exists an increasing sequence of compact subsets $(F_k)_{k \in \mathbb{N}}$ in $\prod_{j \in \alpha_1} E_j$ that

$$\lim_{k \rightarrow +\infty} \left(\prod_{j \in \alpha_1} \mu_j \right) (F_k) = 1.$$

Now it is easy to see that $(F_k \times \prod_{j \in \alpha \setminus \alpha_1} E_j)_{k \in \mathbb{N}}$ is an increasing sequence of compact subsets in $\prod_{j \in \alpha} E_j$ such that

$$\lim_{k \rightarrow +\infty} \left(\prod_{j \in \alpha} \mu_j \right) (F_k \times \prod_{j \in \alpha \setminus \alpha_1} E_j) = 1. \quad \square$$

Lemma 5 *Let $(E_j, \rho_j)_{j \in \alpha}$ be a family of non-empty Polish metric spaces such that at most \aleph_0 of them are noncompact, and let μ_j be a Borel probability measure on E_j for $j \in \alpha$. Then there exists a unique τ -smooth Radon extension of the Baire measure $\prod_{j \in \alpha} \mu_j$ from the σ -algebra $\mathcal{B}_0(\prod_{j \in \alpha} E_j)$ to the σ -algebra $\mathcal{B}(\prod_{j \in \alpha} E_j)$.*

Proof. By Lemma 1, $\prod_{j \in \alpha} E_j$ is normal. Hence, in order to show that $\prod_{j \in \alpha} E_j$ is regular, it is sufficient to show that every point $(x_j)_{j \in \alpha}$ is closed in $\prod_{j \in \alpha} E_j$. But the latter relation follows from the Tychonoff well-known theorem because the point $(x_j)_{j \in \alpha}$ can be considered as a product of compact sets $(\{x_j\})_{j \in \alpha}$. Thus, it is normal and regular. By Lemma 2, we claim that the $(\prod_{j \in \alpha} E_j, \tau)$ is a completely regular topological space. Applications of Lemma 3 and Lemma 4 end the proof of Lemma 5. \square

We have the following lemma.

Lemma 6 ([6], Lemma 4.4, p. 67) *Let (E_1, τ_1) and (E_2, τ_2) be two topological spaces. By $\mathcal{B}(E_1)$ and $\mathcal{B}(E_2)$ (respectively, $\mathcal{B}(E_1 \times E_2)$), we denote the class of all Borel subsets generated by the topologies τ_1 and τ_2 (respectively, $\tau_1 \times \tau_2$). If at least one of these topological spaces has a countable base, then the equality*

$$\mathcal{B}(E_1) \times \mathcal{B}(E_2) = \mathcal{B}(E_1 \times E_2)$$

holds.

Let us recall the definition of a standard product of non-negative real numbers

$$(\beta_j)_{j \in \alpha} \in [0, +\infty]^\alpha.$$

Definition 1 A standard product of the family of numbers $(\beta_j)_{j \in \alpha}$ is denoted by $(\mathbf{S}) \prod_{j \in \alpha} \beta_j$ and defined as follows:

(S) $\prod_{j \in \alpha} \beta_j = 0$ if $\sum_{j \in \alpha^-} \ln(\beta_j) = -\infty$, where $\alpha^- = \{j : \ln(\beta_j) < 0\}$ ¹, and
(S) $\prod_{j \in \alpha} \beta_j = e^{\sum_{j \in \alpha} \ln(\beta_j)}$ if $\sum_{j \in \alpha^-} \ln(\beta_j) \neq -\infty$.

Let (E, S) be a measurable space, and let \mathcal{R} be any subclass of the σ -algebra S . Let $(\mu_B)_{B \in \mathcal{R}}$ be such a family of σ -finite measures that, for $B \in \mathcal{R}$, we have $\text{dom}(\mu_B) = S \cap \mathcal{P}(B)$, where $\mathcal{P}(B)$ denotes the power set of the set B .

Definition 2 A family $(\mu_B)_{B \in \mathcal{R}}$ is called to be consistent if

$$(\forall X)(\forall B_1, B_2)(X \in S \ \& \ B_1, B_2 \in \mathcal{R} \rightarrow \mu_{B_1}(X \cap B_1 \cap B_2) = \mu_{B_2}(X \cap B_1 \cap B_2)).$$

The following assertion plays a key role in our future investigation.

Lemma 7 ([7], Lemma 1) *Let $(\mu_B)_{B \in \mathcal{R}}$ be a consistent family of σ -finite measures. Then there exists a measure $\mu_{\mathcal{R}}$ on (E, S) such that*

(i) $\mu_{\mathcal{R}}(B) = \mu_B(B)$ for every $B \in \mathcal{R}$;
(ii) if there exists a non-countable family of pairwise disjoint sets $\{B_i : i \in I\} \subseteq \mathcal{R}$ such that $0 < \mu_{B_i}(B_i) < \infty$, then the measure $\mu_{\mathcal{R}}$ is non- σ -finite;

¹We set $\ln(0) = -\infty$

(iii) if G is a group of measurable transformations of E such that $G(\mathcal{R}) = \mathcal{R}$ and

$$(\forall B)(\forall X)(\forall g)((B \in \mathcal{R} \ \& \ X \in S \cap \mathcal{P}(B) \ \& \ g \in G) \rightarrow \mu_{g(B)}(g(X)) = \mu_B(X)),$$

then the measure $\mu_{\mathcal{R}}$ is G -invariant.

Remark 1 Let $(E_j, \rho_j)_{j \in \alpha}$ be again a sequence of non-empty Polish metric spaces such that at most \aleph_0 of them are noncompact. Let $(\mu_j)_{j \in \alpha}$ be a sequence of Borel non-zero diffused finite measures with $\text{dom}(\mu_j) = \mathcal{B}(E_j)$ for $j \in \alpha$ and

$$0 < (\mathbf{S}) \prod_{j \in \alpha} \mu_j(E_j) < +\infty.$$

By Lemma 5, we claim that there exists a unique τ -smooth and Radon Borel extension λ of the Baire probability measure $\prod_{j \in \alpha} \frac{\mu_j}{\mu_j(E_j)}$. A Borel measure

$$(\mathbf{S}) \prod_{j \in \alpha} \mu_j(E_j) \times \lambda$$

is called a standard product of the family of finite Borel measures $(\mu_j)_{j \in \alpha}$ and is denoted by $(\mathbf{S}) \prod_{j \in \alpha} \mu_j$.

We put

$$\tau_i = \prod_{j \in \alpha_i} \mu_j.$$

Lemma 8 Let α be again an arbitrary infinite parameter set, and let $(\alpha_i)_{i \in I}$ be its any partition such that α_i is a non-empty finite subset of α for every $i \in I$. Let μ_j be a σ -finite diffused Borel measure defined on a Polish space (E_j, ρ_j) for $j \in \alpha$.

By $\mathcal{R}_{(\alpha_i)_{i \in I}}$, we denote the family of all measurable rectangles $R \subseteq \prod_{j \in \alpha} E_j$ of the form $\prod_{i \in I} R_i$ with the property $0 \leq (\mathbf{S}) \prod_{i \in I} \tau_i(R_i) < \infty$ such that at most \aleph_0 of R_i 's are noncompact (i.e., $\text{card}\{i : i \in I \ \& \ R_i \text{ is not compact in } \prod_{j \in \alpha_i} E_j\} \leq \aleph_0$.)

We suppose that there exists $R_0 = \prod_{i \in I} R_i^{(0)} \in \mathcal{R}_{(\alpha_i)_{i \in I}}$ such that

$$0 < (\mathbf{S}) \prod_{i \in I} \tau_i(R_i^{(0)}) < \infty.$$

For $X \in \mathcal{B}(R)$, we set $\mu_R(X) = 0$ if

$$(\mathbf{S}) \prod_{i \in I} \tau_i(R_i) = 0,$$

and

$$\mu_R(X) = (\mathbf{S}) \prod_{i \in I} \tau_i(R_i) \times \left(\prod_{i \in I} \frac{\tau_i(R_i)}{\tau_i(R_i)} \right)(X)$$

otherwise, where $\frac{\tau_i(R_i)}{\tau_i(R_i)}$ is a Borel probability measure defined on R_i as follows:

$$(\forall X)(X \in \mathcal{B}(R_i) \rightarrow \frac{\tau_i(R_i)}{\tau_i(R_i)}(X) = \frac{\tau_i(X)}{\tau_i(R_i)}).$$

Then the family of measures $(\mu_R)_{R \in \mathcal{R}}$ is consistent.

Proof. Let $R_1 = \prod_{i \in I} R_i^{(1)}$ and $R_2 = \prod_{i \in I} R_i^{(2)}$ be two elements of the class $\mathcal{R} = \mathcal{R}_{(\alpha_i)_{i \in I}}$.

Without loss of generality, it can be assumed that $0 < (\mathbf{S}) \prod_{i \in I} \tau_i(R_i^{(1)}) < \infty$ and $0 < (\mathbf{S}) \prod_{i \in I} \tau_i(R_i^{(2)}) < \infty$.

We will show that $\mu_{R_1}(X) = \mu_{R_2}(X)$ for every $X \in \mathcal{B}(R_1 \cap R_2)$. In this case, it is sufficient to show that $\mu_{R_1}(Y) = \mu_{R_2}(Y)$ for every elementary measurable rectangle $Y = \prod_{i \in I} Y_i$ in $R_1 \cap R_2$. Note here that, as an elementary measurable rectangle $Y = \prod_{i \in I} Y_i$

in $R_1 \cap R_2$, we assume a subset of $R_1 \cap R_2$ such that $Y_i \in \mathcal{B}(R_i^{(1)} \cap R_i^{(2)})$ for every $i \in \mathbb{N}$. Moreover, there exists a finite subset I_0 of I such that $Y_i = R_i^{(1)} \cap R_i^{(2)}$ for $i \in I \setminus I_0$.

For every $i \in I$ and for every $Y_i \in \mathcal{B}(R_i^{(1)} \cap R_i^{(2)})$, we have

$$\tau_i(Y_i \cap R_i^{(1)} \cap R_i^{(2)}) = \tau_i(Y_i \cap R_i^{(1)}) = \tau_i(Y_i \cap R_i^{(2)}).$$

The latter relation yields

$$(\mathbf{S}) \prod_{i \in I} \tau_i(Y_i \cap R_i^{(1)} \cap R_i^{(2)}) = (\mathbf{S}) \prod_{i \in I} \tau_i(Y_i \cap R_i^{(1)}) = (\mathbf{S}) \prod_{i \in I} \tau_i(Y_i \cap R_i^{(1)}).$$

Hence, we get

$$\begin{aligned} \mu_{R_1}(\prod_{i \in I} Y_i) &= (\mathbf{S}) \prod_{i \in I} \tau_i(Y_i \cap R_i^{(1)}) = (\mathbf{S}) \prod_{i \in I} \tau_i(Y_i \cap R_i^{(1)} \cap R_i^{(2)}) = \\ &= (\mathbf{S}) \prod_{i \in I} \tau_i(Y_i \cap R_i^{(2)}) = \mu_{R_2}(\prod_{i \in I} Y_i). \end{aligned}$$

Since a class $\mathcal{A}(R_1 \cap R_2)$ of all finite disjoint unions of elementary measurable rectangles in $R_1 \cap R_2$ is a ring, and since, by definition, the class $\mathcal{B}_0(R_1 \cap R_2)$ of Baire subsets of $R_1 \cap R_2$ is a minimal σ -ring generated by the ring $\mathcal{A}(R_1 \cap R_2)$, we claim (cf. [3], Theorem B, p. 27) that the class of all those sets of $R_1 \cap R_2$, for which this equality holds, coincides with the class $\mathcal{B}_0(R_1 \cap R_2)$.

Since restrictions of μ_{R_1} and μ_{R_2} to the class $\mathcal{B}_0(R_1 \cap R_2)$ coincide, and $R_1 \cap R_2$ is a product of non-empty Polish metric spaces such that at most \aleph_0 of them are noncompact, we claim by Lemma 5 that their Borel extensions coincide so that the extended Borel measure is unique, τ -smooth, and Radon. The latter relation means that the family of measures $(\mu_R)_{R \in \mathcal{R}}$ is consistent, and Lemma 8 is proved. \square

Let α be again an arbitrary infinite parameter set, and let $(\alpha_i)_{i \in I}$ be its any partition such that α_i is a non-empty finite subset of the α for every $i \in I$. Let μ_j be a σ -finite continuous Borel measure defined on a Polish space (E_j, ρ_j) for $j \in \alpha$.

We denote, by $\mathcal{R}_{(\alpha_i)_{i \in I}}$, the family of all measurable rectangles $R \subseteq \prod_{j \in \alpha} E_j$ of the form $\prod_{i \in I} R_i$ with the property $0 \leq (\mathbf{S}) \prod_{i \in I} \tau_i(R_i) < \infty$ such that at most \aleph_0 of R_i 's are noncompact.

We suppose that there exists $R_0 = \prod_{i \in I} R_i^{(0)} \in \mathcal{R}_{(\alpha_i)_{i \in I}}$ such that

$$0 < (\mathbf{S}) \prod_{i \in I} \tau_i(R_i^{(0)}) < \infty.$$

We say that a Borel measure $\nu_{(\alpha_i)_{i \in I}}$ defined on $\mathcal{B}(\prod_{j \in \alpha} E_j)$ is called a standard $(\alpha_i)_{i \in I}$ -product of the family of σ -finite continuous Borel measures $(\mu_j)_{j \in \alpha}$ if, for every

$$R = \prod_{i \in I} R_i \in \mathcal{R}_{(\alpha_i)_{i \in I}},$$

we have

$$\nu_{(\alpha_i)_{i \in I}}(R) = (\mathbf{S}) \prod_{i \in I} \tau_i(R_i),$$

where $\tau_i = \prod_{j \in \alpha_i} \mu_j$ for $i \in I$.

Theorem 1. *Let μ_j be a σ -finite diffused Borel measure defined on a Polish space (E_j, ρ_j) for $j \in \alpha$. Let α be again an arbitrary infinite parameter set, let $(\alpha_i)_{i \in I}$ be its*

any partition such that α_i is a non-empty finite subset of α for every $i \in I$, and let us suppose that there exists $R_0 = \prod_{i \in I} R_i^{(0)} \in \mathcal{R}_{(\alpha_i)_{i \in I}}$ such that

$$0 < (\mathbf{S}) \prod_{i \in I} \tau_i(R_i^{(0)}) < \infty.$$

Then there exists a standard $(\alpha_i)_{i \in I}$ -product of the family $(\mu_j)_{j \in \alpha}$.

Proof. For $X \in \mathcal{B}(R)$, we set $\mu_R(X) = 0$ if

$$(\mathbf{S}) \prod_{i \in I} \tau_i(R_i) = 0,$$

and

$$\mu_R(X) = (\mathbf{S}) \prod_{i \in I} \tau(R_i) \times \left(\prod_{i \in I} \frac{\tau_i R_i}{\tau_i(R_i)} \right) (X)$$

otherwise, where $\frac{\tau_i R_i}{\tau_i(R_i)}$ is a Borel probability measure defined on R_i as follows:

$$(\forall X)(X \in \mathcal{B}(R_i) \rightarrow \frac{\tau_i R_i}{\tau_i(R_i)}(X) = \frac{\tau_i(X)}{\tau_i(R_i)}).$$

By Lemma 8, the family of measures $(\mu_R)_{R \in \mathcal{R}}$ is consistent. We set

$$\nu_{(\alpha_i)_{i \in I}} = \mu_{\mathcal{R}_{(\alpha_i)_{i \in I}}},$$

where the measure $\mu_{\mathcal{R}_{(\alpha_i)_{i \in I}}}$ is defined by Lemma 7.

This completes the proof of Theorem 1. \square

In the sequel, we denote a standard $(\alpha_i)_{i \in I}$ -product of the family $(\mu_j)_{j \in \alpha}$ by

$$(\mathbf{S}, (\alpha_i)_{i \in I}) \prod_{j \in \alpha} \mu_j.$$

Here, we present a certain example of the family of σ -finite continuous Borel measures $(\mu_j)_{j \in \mathbb{N}}$ defined on the real axis \mathbb{R} and of two different partitions $(\alpha_i)_{i \in \mathbb{N}}$ and $(\beta_i)_{i \in \mathbb{N}}$ of \mathbb{N} , for which

$$(\mathbf{S}, (\alpha_i)_{i \in \mathbb{N}}) \prod_{j \in \mathbb{N}} \mu_j \neq (\mathbf{S}, (\beta_i)_{i \in \mathbb{N}}) \prod_{j \in \mathbb{N}} \mu_j.$$

Example 1 We set $\alpha = \mathbb{N}$. For $j \in \mathbb{N}$, let l_j be a linear Lebesgue measure on \mathbb{R} . Let $\alpha_i = \{i\}$ and $\beta_i = \{2i + 1, 2(i + 1)\}$ for $i \in \mathbb{N}$.

We set

$$Y_i = [0, \frac{1}{2}] \times [0, 2].$$

It is obvious that

$$((\mathbf{S}, (\beta_i)_{i \in \mathbb{N}}) \prod_{j \in \mathbb{N}} l_j) \left(\prod_{i \in \mathbb{N}} Y_i \right) = 1$$

and

$$((\mathbf{S}, (\alpha_i)_{i \in \mathbb{N}}) \prod_{j \in \mathbb{N}} l_j) \left(\prod_{i \in \mathbb{N}} Y_i \right) = 0.$$

In view of Theorem 1 and Example 1, we state the following

Problem 1 Under assumptions of Theorem 1, describe all pairs of partitions $(\alpha_i)_{i \in I}$ and $(\beta_i)_{i \in I}$ of α , for which $(\mathbf{S}, (\alpha_i)_{i \in I}) \prod_{j \in \alpha} \mu_j = (\mathbf{S}, (\beta_i)_{i \in I}) \prod_{j \in \alpha} \mu_j$.

The next statement is an immediate consequence of Theorem 1.

Theorem 2. *Under assumptions of Theorem 1, if each measure μ_j is G_j -left-and-right-invariant, where G_j denotes a group of Borel transformations of the E_j for $j \in \alpha$, then the measure $(\mathbf{S}, (\alpha_i)_{i \in I}) \prod_{j \in \alpha} \mu_j$ is $\prod_{j \in \alpha} G_j$ -left-and-right-invariant.*

Proof. We set $G = \prod_{j \in \alpha} G_j$. Let us show that the measure $(\mathbf{S}, (\alpha_i)_{i \in I}) \prod_{j \in \alpha} \mu_j$ is G -left-and-right-invariant. Indeed, let $g, f \in G$ and $X \in \mathcal{B}(\prod_{j \in \alpha} E_j)$.

If X is not covered by a countable family of elements of $\mathcal{R}_{(\alpha_i)_{i \in I}}$, then such will be gXf , because the class $\mathcal{R}_{(\alpha_i)_{i \in I}}$ is left-and-right-invariant, i.e., $g\mathcal{R}_{(\alpha_i)_{i \in I}}f = \mathcal{R}_{(\alpha_i)_{i \in I}}$ for every $g, f \in G$. Hence, by the definition of the measure $(\mathbf{S}, (\alpha_i)_{i \in I}) \prod_{j \in \alpha} \mu_j$, we have

$$((\mathbf{S}, (\alpha_i)_{i \in I}) \prod_{j \in \alpha} \mu_j)(gXf) = +\infty.$$

Now let X be covered by the family $(A_k)_{k \in \mathbb{N}}$ of elements of $\mathcal{R}_{(\alpha_i)_{i \in I}}$ such that $A_0 = \emptyset$. Then gXf will be covered by the family $(gA_kf)_{k \in \mathbb{N}}$ of elements of $\mathcal{R}_{(\alpha_i)_{i \in I}}$. Hence, we get

$$\begin{aligned} ((\mathbf{S}, (\alpha_i)_{i \in I}) \prod_{j \in \alpha} \mu_j)(gXf) &= \sum_{n=1}^{\infty} \lambda_{gA_n f}((gA_n f \setminus \cup_{k=0}^{n-1} gA_k f) \cap gXf) = \\ &= \sum_{n=1}^{\infty} \lambda_{gA_n f}(g((A_n f \setminus \cup_{k=0}^{n-1} A_k f) \cap Xf)) = \\ &= \sum_{n=1}^{\infty} \lambda_{A_n f}((A_n f \setminus \cup_{k=0}^{n-1} A_k f) \cap Xf) = \\ &= \sum_{n=1}^{\infty} \lambda_{A_n f}((A_n \setminus \cup_{k=0}^{n-1} A_k) \cap Xf) = \\ &= \sum_{n=1}^{\infty} \lambda_{A_n}((A_n \setminus \cup_{k=0}^{n-1} A_k) \cap X) = ((\mathbf{S}, (\alpha_i)_{i \in I}) \prod_{j \in \alpha} \mu_j)(X). \quad \square \end{aligned}$$

By the scheme used in the proof of Theorem 2, one can prove the following assertion.

Theorem 3 *Under the assumptions of Theorem 1, if each measure μ_j is G_j -left-invariant, where G_j denotes a group of Borel transformations of the E_j for $j \in \alpha$, then the measure $(\mathbf{S}, (\alpha_i)_{i \in I}) \prod_{j \in \alpha} \mu_j$ is a $\prod_{j \in \alpha} G_j$ -left-invariant.*

Observation 1. *Under the conditions of Theorem 1, the measure $(\mathbf{S}, (\alpha_i)_{i \in I}) \prod_{j \in \alpha} \mu_j$ is Radon.*

Proof. Let $0 < ((\mathbf{S}, (\alpha_i)_{i \in I}) \prod_{j \in \alpha} \mu_j)(X) < \infty$. This means that $X \in \mathcal{B}(\prod_{j \in \alpha} E_j)$ is covered by any countable family $(A_n)_{n \in \mathbb{N}}$ of elements of $\mathcal{R}_{(\alpha_i)_{i \in I}}$ such that $A_0 = \emptyset$ and

$$((\mathbf{S}, (\alpha_i)_{i \in I}) \prod_{j \in \alpha} \mu_j)(X) = \sum_{n=1}^{\infty} \lambda_{A_n}((A_n \setminus \cup_{k=0}^{n-1} A_k) \cap X).$$

Since the measure λ_{A_n} is Radon, we can choose a compact set

$$F_n \subseteq (A_n \setminus \cup_{k=0}^{n-1} A_k) \cap X$$

such that

$$\lambda_{A_n}(((A_n \setminus \cup_{k=0}^{n-1} A_k) \cap X) \setminus F_n) < \frac{\epsilon}{2^{n+1}}$$

for $n \in \mathbb{N}$.

Moreover, we can choose a natural number n_ϵ such that

$$\sum_{n=n_\epsilon+1}^{\infty} \lambda_{A_n}((A_n \setminus \bigcup_{k=0}^{n-1} A_k) \cap X) < \frac{\epsilon}{2}.$$

Finally, we get

$$\begin{aligned} ((\mathbf{S}, (\alpha_i)_{i \in I}) \prod_{j \in \alpha} \mu_j)(X \setminus \bigcup_{s=0}^{n_\epsilon} F_s) &= \\ \sum_{n=1}^{\infty} \lambda_{A_n}((A_n \setminus \bigcup_{k=0}^{n-1} A_k) \cap (X \setminus \bigcup_{s=0}^{n_\epsilon} F_s)) &= \\ \sum_{n=1}^{n_\epsilon} \lambda_{A_n}((A_n \setminus \bigcup_{k=0}^{n-1} A_k) \cap (X \setminus \bigcup_{s=0}^{n_\epsilon} F_s)) + \\ \sum_{n=n_\epsilon+1}^{\infty} \lambda_{A_n}((A_n \setminus \bigcup_{k=0}^{n-1} A_k) \cap (X \setminus \bigcup_{s=0}^{n_\epsilon} F_s)) &\leq \\ \sum_{n=1}^{n_\epsilon} \lambda_{A_n}(((A_n \setminus \bigcup_{k=0}^{n-1} A_k) \cap X) \setminus F_n) + \\ \sum_{n=n_\epsilon+1}^{\infty} \lambda_{A_n}((A_n \setminus \bigcup_{k=0}^{n-1} A_k) \cap X) &\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \quad \square \end{aligned}$$

Remark 3 For $j \in \alpha$, we set $E_j = \mathbb{R}$ and $\mu_j = m$, where m denotes a linear Lebesgue measure on \mathbb{R} .

Let $(\alpha_i)_{i \in I}$ be any partition of α such that α_i is non-empty finite for every $i \in I$.

It is clear that $\prod_{j \in \alpha} [a_j, b_j] \in \mathcal{R}_{(\alpha_i)_{i \in I}}$ if $0 \leq (\mathbf{S}) \prod_{i \in I} m^{\alpha_i}(\prod_{j \in \alpha_i} [a_j, b_j]) < \infty$, where m^{α_i} is a Lebesgue measure on \mathbb{R}^{α_i} .

Then the measure $(\mathbf{S}, (\alpha_i)_{i \in I}) \prod_{j \in \alpha} \mu_j$ has the following property:

$$((\mathbf{S}, (\alpha_i)_{i \in I}) \prod_{j \in \alpha} \mu_j)(\prod_{j \in \alpha} [a_j, b_j]) = (\mathbf{S}) \prod_{j \in \alpha} (b_j - a_j).$$

The measure $(\mathbf{S}, (\alpha_i)_{i \in I}) \prod_{j \in \alpha} \mu_j$ is called a standard " $(\alpha_i)_{i \in I}$ -Lebesgue measure" on \mathbb{R}^α .

When $\text{card}(\alpha_i) = 1$ for every $i \in I$, then $(\mathbf{S}, (\alpha_i)_{i \in I}) \prod_{j \in \alpha} \mu_j$ is called a standard Lebesgue measure on \mathbb{R}^α and is denoted by m^α .

Let f be any permutation of α . A mapping $A_f : \mathbb{R}^\alpha \rightarrow \mathbb{R}^\alpha$ defined by $A_f((x_i)_{i \in \alpha}) = (x_{f(i)})_{i \in \alpha}$ for $(x_i)_{i \in \alpha} \in \mathbb{R}^\alpha$ is called a canonical permutation of \mathbb{R}^α .

Note that, in our situation, $\mathcal{R}_{(\alpha_i)_{i \in I}}$ is the family of all measurable rectangles $R \subseteq \mathcal{B}(\mathbb{R}^\alpha)$ of the form $\prod_{i \in \alpha} Y_i$ with the property $0 \leq (\mathbf{S}) \prod_{i \in \alpha} m(Y_i) < \infty$ such that at most \aleph_0 of them are noncompact (i.e., the card $\{i : i \in I \text{ & } Y_i \text{ is not compact in } \prod_{i \in \alpha_i} E_i\} \leq \aleph_0$). It is obvious that a measure m^α is invariant under a group $\mathcal{P}(\mathbb{R}^\alpha)$ generated by shifts and canonical permutations of \mathbb{R}^α and

$$m^\alpha(\prod_{i \in \alpha} Y_i) = (\mathbf{S}) \prod_{i \in \alpha} m(Y_i).$$

Remark 4 We can say that the main shortcoming of Baker's measures [1], [2] is that they are not invariant under the group of all canonical permutations of $\mathbb{R}^\mathbb{N}$.

Indeed, let us consider the following infinite-dimensional rectangular set

$$X = \prod_{k=1}^{\infty} [0, e^{\frac{(-1)^k}{k}}].$$

Then, for every non-zero real number a , there exists a canonical permutation f_a of \mathbb{R}^∞ such that $\lambda(A_f(X)) = a$, where λ is any Baker's measure [1], [2].

Such a difference between our and Baker's measures is caused by the phenomenon that a standard (unlike an ordinary) product of the infinite family of real numbers is invariant under all permutations.

Acknowledgments. The author expresses his thanks to the anonymous referee for the careful reading of the manuscript and helpful remarks.

REFERENCES

1. R. BAKER, "Lebesgue measure" on \mathbb{R}^∞ . *Proc. Amer. Math. Soc.* **113**, (1991), 1023–1029.
2. R. BAKER, "Lebesgue measure" on \mathbb{R}^∞ . II. *Proc. Amer. Math. Soc.* **132**, (2004), 2577–2591.
3. P. R. HALMOS, *Measure Theory*, Princeton, Van Nostrand, 1950.
4. P. A. LOEB AND D. A. ROSS, Infinite products of infinite measures. *Illinois J. Math.* **49**, (2005), no. 1, 153–158.
5. J. MAŘÍK, The Baire and Borel measure, *Czechoslovak Math. J.* **7**, (1957), 248–253.
6. G. R. PANTSULAI, *Invariant and Quasiinvariant Measures in Infinite-Dimensional Topological Vector Spaces*, Nova Sci., New York, 2007.
7. G. R. PANTSULAI, On ordinary and standard Lebesgue measures on R^∞ , *Bull. Polish Acad. Sci.* **73**, (2009), 209–222.
8. C. A. ROGERS, *Hausdorff Measures*, Cambridge Univ. Press, Cambridge, 1970.
9. A. H. STONE, Paracompactness and product spaces *Bull. Amer. Math. Soc.* **54**, (1948), 977–982.
10. W. STEPHEN, *General Topology*, Addison-Wesley, London, 1970.
11. S. Y. WEN, A certain regular property of the method I construction and packing measure, *Acta Math. Sin. (Engl. Ser.)* **23**, (2007), no. 10, 1769–1776.
12. N. N. VAKHANYA, V. I. TARIELADZE, S. A. CHOBANYAN, *Probability Distributions in Banach Spaces*, Nauka, Moscow (1985) (in Russian).

DEPARTMENT OF MATHEMATICS, GEORGIAN TECHNICAL UNIVERSITY, KOSTAVA STREET-77, 0175 TBILISI-75, GEORGIA

INSTITUTE OF APPLIED MATHEMATICS, TBILISI STATE UNIVERSITY, UNIVERSITY STREET-2, 0143 TBILISI-43, GEORGIA

E-mail address: gogi_pantsulaia@hotmail.com