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GOGI PANTSULAIA

ON A STANDARD PRODUCT OF AN ARBITRARY FAMILY OF
σ-FINITE BOREL MEASURES WITH DOMAINS IN POLISH SPACES

Let α be an infinite parameter set, and let (αi)i∈I be its any partition such that αi

is a non-empty finite subset for every i ∈ I. For j ∈ α, let μj be a σ-finite Borel
measure defined on a Polish metric space (Ej , ρj). We introduce a concept of a
standard (αi)i∈I -product of measures (μj)j∈α and investigate its some properties.
As a consequence, we construct ”a standard (αi)i∈I -Lebesgue measure” on the Borel
σ-algebra of subsets of �α for every infinite parameter set α which is invariant under
a group generated by shifts. In addition, if card(αi) = 1 for every i ∈ I, then ”a
standard (αi)i∈I -Lebesgue measure” mα is invariant under a group generated by
shifts and canonical permutations of �α. As a simple consequence, we get that a
”standard Lebesgue measure” m�on �� improves R. Baker’s measure [2].

Let (Xi,Bi, μi) (i ∈ N) be a family of regular Borel measure spaces, where Xi is
a Hausdorff topological space. In [4], it was proved that a Borel measure μ exists on∏
i∈N

Xi (with respect to the product topology) such that if Ki ⊆ Xi is compact for all
i ∈ N and

∏
i∈N

μi(Ki) converges, then μ(
∏
i∈N

Ki) =
∏
i∈N

μi(Ki). Note that a special
case of this result (in the case where Xi = R and mi is Lebesgue measure) has been
proved only recently in [1]. Slightly later on, work [2] has improved the result in [4] as
follows: there exists of a Borel measure λ on

∏
i∈N

Xi such that if Ri ⊆ Xi is measurable
for i ∈ N and

∏
i∈N

μi(Ri) converges, then λ(
∏
i∈N

Ri) =
∏
i∈N

μi(Ri).

Note that both above-mentioned constructions in the case where multiplied measures
coincide with a specific σ-finite Borel measure μ in a Hausdorff topological space X give
a measure μN which is not invariant under permutations of the XN. To eliminate this
defect, we introduce a notion of a standard product of measures and prove its existence
under some assumptions. Our approach, unlike [4], [1],[2], is based on the notion of a
standard product of a family of real numbers. Main results of the article are the theorem
about the existence of a standard product of measures and its invariance under action of
some group of transformations. In the case where multiplied measures coincide with a
Lebesgue measure on R, our product occurs to be invariant under permutations of the
RN (see [7]) unlike Baker’s measures [1],[2]. In addition, our construction is essentially
different from the points of view of [4] and [2], because it allows one to construct a
standard product of measures for an arbitrary (not only for countable) family of σ-finite
Borel measures with domains in Polish spaces.

Suppose that X is a topological space. The Borel sets B(X) are the σ-algebra gen-
erated by the open sets of a topological space X , and the Baire sets B0(X) are the
smallest σ-algebra making all real-valued continuous functions measurable. In 1957 (see
[5]), Mařík proved that all normal countably paracompact spaces have the following
property: Every Baire measure extends to a regular Borel measure. Spaces which have
this property have come to be known as Mařík spaces.
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The present manuscript is devoted to the application of properties of some Mařík
spaces to the definition of a product of an infinite family of σ-finite Borel measures with
domains in Polish spaces.

In order to do it, we recall some important notions and well-known results from general
topology and probability theory.

X is a Hausdorff space iff distinct points in X have disjoint neighbourhoods. X is a
regular space if and only if, given any closed set F and any point x that does not belong
to F , there exists a neighbourhood U of x and a neighbourhood V of F that are disjoint.
X is a normal space if and only if, given any disjoint closed sets E and F , there are
neighbourhoods U of E and V of F that are also disjoint. X is a regular Hausdorff space
if and only if it is both regular and Hausdorff. X is a completely regular space if and
only if, given any closed set F and any point x that does not belong to F , there is a
continuous function f from X to the real line R such that f(x) is 0 and f(y) is 1 for
every y in F . X is a Tychonoff space, if and only if it is both completely regular and
Hausdorff.

Lemma 1 ([9], Theorem 4, p. 981) The following statements about a product of
nonempty metric spaces are equivalent:

(i) The product is normal.
(ii) At most ℵ0 of the factor spaces are noncompact.

Lemma 2 [10] Every normal regular space is completely regular, and every normal
Hausdorff space is Tychonoff.

Recall that a Borel measure μ defined on a Hausdorff topological space (X, τ) is called
Radon if

(∀Y )(Y ∈ B(X) & 0 ≤ μ(Y ) < +∞→ μ(Y ) = sup
K⊆Y

K is compact in X

μ(K)) ♦

and called dense if the condition ♦ holds for Y = X .
A family (Ui)i∈I of open subsets in (X, τ) is called a generalized sequence if

(∀i1)(∀i2)(i1 ∈ I & i2 ∈ I → (∃i3)(i3 ∈ I → (Ui1 ⊂ Ui3 & Ui2 ⊂ Ui3))).

A Borel probability measure μ defined on X is called τ -smooth if, for an arbitrary
generalized sequence (Ui)i∈I , the condition

μ(
⋃
i∈I
Ui) = sup

i∈I
μ(Ui)

is valid.
A Baire probability measure μ on X is called τ0-smooth if, for an arbitrary generalized

sequence (Ui)i∈I of open Baire subsets in X , for which
⋃
i∈I
Ui is also a Baire subset, the

condition
μ(
⋃
i∈I
Ui) = sup

i∈I
μ(Ui)

is valid .
The following lemma plays a key role in our future investigations.

Lemma 3 ([12], Theorem 3.3, p. 42) Let X be a completely regular topological
space, and let μ be a Baire probability measure defined on the σ-algebra B0(X). Then

(a) if μ is τ0-smooth, there exists a unique τ-smooth Borel extension on X.
(b) if the space X is Hausdorff and μ is dense on B0(X), then μ admits a unique

Radon extension on B(X).
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Let (Ej , τj)j∈α be a family of Hausdorff topological spaces. By (
∏
j∈α Ej , τ), we

denote the Tychonoff product of the family of topological spaces (Ej , τj)j∈α.

Lemma 4 Let (Ej , ρj)j∈α be a family of non-empty Polish metric spaces such that at
most ℵ0 of them are noncompact, and let μj be a Borel probability measure on Ej for
j ∈ α. Then the product measure

∏
j∈α μj is τ0-smooth and dense on

∏
j∈α Ej.

Proof. The product
∏
j∈α μj is initially defined on the Baire σ-field B0(

∏
j∈αEj) as in

[12].
Let (Ui)i∈I be an arbitrary generalized sequence of open Baire subsets in

∏
j∈α Ej ,

for which
⋃
i∈I
Ui is also a Baire subset.

The latter relation getting together with an assumption of Lemma 4 stated that at
most ℵ0 of the family (Ej , ρj)j∈α are noncompact imply that there exist a countable
subset α0 ⊆ α and Uα0 ∈ B(

∏
j∈α0

Ej) such that⋃
i∈I
Ui = Uα0 × (

∏
j∈α\α0

Ej)

and
(∀j)(j ∈ α \ α0 → (Ej , ρj) is compact).

By the inner regularity of the Borel probability measure
∏
j∈α0

μj with a domain
in a Polish space, there exists an increasing family of compact sets (Fk)k∈N such that
Fk ⊆ Uα0 and

lim
n→∞

( ∏
j∈α0

μj
)
(Fn) =

( ∏
j∈α0

μj
)
(Uα0).

We set Dn = Fn×
∏
j∈(α\α0)Ej for n ∈ N. It is obvious that (Dn)n∈N is an increasing

family of compact subsets in
∏
j∈α Ej such that

lim
n→∞

(∏
j∈α

μj
)
(Dn) =

(∏
j∈α

μj
)
(∪i∈IUi).

It is obvious that (Ui)i∈I is covering Dn for every n ∈ N. Hence, using the definition
of a generalized sequence of open sets in a topological space, we can construct such
a sequence (in)n∈N of indices of I that the sequence (Uin)n∈N will be increasing and
Dn ⊆ Uin for n ∈ N. We have(∏

j∈α
μj
)
(Dn) ≤

(∏
j∈α

μj
)
(Uin)

for every n ∈ N. Hence,(∏
j∈α

μj
)
(∪i∈IUi) = lim

n→∞
(∏
j∈α

μj
)
(Dn) ≤

lim
n→∞

(∏
j∈α

μj
)
(Uin) ≤ (∏

j∈α
μj
)
(∪i∈IUi).

The latter relation means that the condition(∏
j∈α

μj
)
(
⋃
i∈I
Ui) = sup

i∈I

(∏
j∈α

μj
)
(Ui)

holds. Thus, the measure
∏
j∈α μj is τ0-smooth on

∏
j∈α Ej .

Let us show that the measure
∏
j∈α μj is dense.

We set
α1 = {j : Ej is not compact}.
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It is clear that, for the Borel measure
∏
j∈α1

μj , there exists an increasing sequence
of compact subsets (Fk)k∈N in

∏
j∈α1

Ej that

lim
k→+∞

(
∏
j∈α1

μj)(Fk) = 1.

Now it is easy to see that (Fk ×
∏
j∈α\α1

Ej)k∈N is an increasing sequence of compact
subsets in

∏
j∈αEj such that

lim
k→+∞

(
∏
j∈α

μj)(Fk ×
∏

j∈α\α1

Ej) = 1. �

Lemma 5 Let (Ej , ρj)j∈α be a family of non-empty Polish metric spaces such that
at most ℵ0 of them are noncompact, and let μj be a Borel probability measure on Ej
for j ∈ α. Then there exists a unique τ-smooth Radon extension of the Baire measure∏
j∈α μj from the σ-algebra B0(

∏
j∈αEj) to the σ-algebra B(

∏
j∈α Ej).

Proof. By Lemma 1,
∏
j∈αEj is normal. Hence, in order to show that

∏
j∈α Ej is

regular, it is sufficient to show that every point (xj)j∈α is closed in
∏
j∈αEj . But the

latter relation follows from the Tychonoff well-known theorem because the point (xj)j∈α
can be considered as a product of compact sets ({xj})j∈α. Thus, it is normal and regular.
By Lemma 2, we claim that the (

∏
j∈α Ej , τ) is a completely regular topological space.

Applications of Lemma 3 and Lemma 4 end the proof of Lemma 5. �

We have the following lemma.

Lemma 6 ([6], Lemma 4.4, p. 67 ) Let (E1, τ1) and (E2, τ2) be two topological
spaces. By B(E1) and B(E2) (respectively, B(E1×E2)), we denote the class of all Borel
subsets generated by the topologies τ1 and τ2 (respectively, τ1 × τ2). If at least one of
these topological spaces has a countable base, then the equality

B(E1)×B(E2) = B(E1 × E2)

holds.
Let us recall the definition of a standard product of non-negative real numbers

(βj)j∈α ∈ [0,+∞]α.

Definition 1 A standard product of the family of numbers (βj)j∈α is denoted by
(S)

∏
j∈α βj and defined as follows:

(S)
∏
j∈α βj = 0 if

∑
i∈α− ln(βj) = −∞, where α− = {j : ln(βj) < 0} 1, and

(S)
∏
j∈α βj = e

�
j∈α ln(βj) if

∑
j∈α− ln(βj) �= −∞.

Let (E,S) be a measurable space, and let R be any subclass of the σ-algebra S. Let
(μB)B∈R be such a family of σ-finite measures that, for B ∈ R, we have dom(μB) =
S ∩ P(B), where P(B) denotes the power set of the set B.

Definition 2 A family (μB)B∈R is called to be consistent if

(∀X)(∀B1, B2)(X ∈ S & B1, B2 ∈ R → μB1(X ∩B1 ∩B2) = μB2(X ∩B1 ∩B2)).

The following assertion plays a key role in our future investigation.

Lemma 7 ([7], Lemma 1) Let (μB)B∈R be a consistent family of σ-finite measures.
Then there exists a measure μR on (E,S) such that

(i) μR(B) = μB(B) for every B ∈ R;
(ii) if there exists a non-countable family of pairwise disjoint sets {Bi : i ∈ I} ⊆ R

such that 0 < μBi(Bi) <∞, then the measure μR is non-σ-finite;

1We set ln(0) = −∞
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(iii) if G is a group of measurable transformations of E such that G(R) = R and

(∀B)(∀X)(∀g)((B ∈ R &X ∈ S ∩ P(B) & g ∈ G)→ μg(B)(g(X)) = μB(X)),

then the measure μR is G-invariant.

Remark 1 Let (Ej , ρj)j∈α be again a sequence of non-empty Polish metric spaces
such that at most ℵ0 of them are noncompact. Let (μj)j∈α be a sequence of Borel
non-zero diffused finite measures with dom(μj) = B(Ej) for j ∈ α and

0 < (S)
∏
j∈α

μj(Ej) < +∞.

By Lemma 5, we claim that there exists a unique τ -smooth and Radon Borel extension
λ of the Baire probability measure

∏
j∈α

μj

μj(Ej)
. A Borel measure

(S)
∏
j∈α

μj(Ej)× λ

is called a standard product of the family of finite Borel measures (μj)j∈α and is denoted
by (S)

∏
j∈α μj .

We put
τi =

∏
j∈αi

μj .

Lemma 8 Let α be again an arbitrary infinite parameter set, and let (αi)i∈I be its
any partition such that αi is a non-empty finite subset of α for every i ∈ I. Let μj be a
σ-finite diffused Borel measure defined on a Polish space (Ej , ρj) for j ∈ α.

By R(αi)i∈I
, we denote the family of all measurable rectangles R ⊆ ∏

j∈α Ej of the
form

∏
i∈I Ri with the property 0 ≤ (S)

∏
i∈I τi(Ri) < ∞ such that at most ℵ0 of Ri’s

are noncompact(i.e., card{i : i ∈ I & Ri is not compact in
∏
j∈αi

Ej} ≤ ℵ0.)

We suppose that there exists R0 =
∏
i∈I R

(0)
i ∈ R(αi)i∈I

such that

0 < (S)
∏
i∈I

τi(R
(0)
i ) <∞.

For X ∈ B(R), we set μR(X) = 0 if

(S)
∏
i∈I

τi(Ri) = 0,

and
μR(X) = (S)

∏
i∈I

τ(Ri)×
(∏
i∈I

τiRi

τi(Ri)
)
(X)

otherwise, where
τiRi

τi(Ri)
is a Borel probability measure defined on Ri as follows:

(∀X)(X ∈ B(Ri)→ τiRi

τi(Ri)
(X) =

τi(X)
τi(Ri)

).

Then the family of measures (μR)R∈R is consistent.

Proof. Let R1 =
∏
i∈I R

(1)
i and R2 =

∏
i∈I R

(2)
i be two elements of the class R =

R(αi)i∈I
.

Without loss of generality, it can be assumed that 0 < (S)
∏
i∈I τi(R

(1)
i ) < ∞ and

0 < (S)
∏
i∈I τi(R

(2)
i ) <∞.

We will show that μR1(X) = μR2(X) for every X ∈ B(R1 ∩ R2). In this case, it is
sufficient to show that μR1(Y ) = μR2(Y ) for every elementary measurable rectangle Y =∏
i∈I Yi in R1 ∩R2. Note here that, as an elementary measurable rectangle Y =

∏
i∈I Yi
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in R1 ∩R2, we assume a subset of R1 ∩R2 such that Yi ∈ B(R(1)
i ∩R(2)

i ) for every i ∈ N.

Moreover, there exists a finite subset I0 of I such that Yi = R
(1)
i ∩R(2)

i for i ∈ I \ I0.
For every i ∈ I and for every Yi ∈ B(R(1)

i ∩R(2)
i ), we have

τi(Yi ∩R(1)
i ∩R(2)

i ) = τi(Yi ∩R(1)
i ) = τi(Yi ∩R(2)

i ).

The latter relation yields

(S)
∏
i∈I

τi(Yi ∩R(1)
i ∩R(1)

i ) = (S)
∏
i∈I

τi(Yi ∩R(1)
i ) = (S)

∏
i∈I

τi(Yi ∩R(1)
i ).

Hence, we get

μR1(
∏
i∈I

Yi) = (S)
∏
i∈I

τi(Yi ∩R(1)
i ) = (S)

∏
i∈I

τi(Yi ∩R(1)
i ∩R(2)

i )) =

(S)
∏
i∈I

τi(Yi ∩R(2)
i )) = μR2(

∏
i∈I

Yi).

Since a classA(R1∩R2) of all finite disjoint unions of elementary measurable rectangles
in R1 ∩ R2 is a ring, and since, by definition, the class B0(R1 ∩ R2) of Baire subsets of
R1∩R2 is a minimal σ-ring generated by the ring A(R1∩R2), we claim (cf. [3], Theorem
B, p. 27) that the class of all those sets of R1∩R2, for which this equality holds, coincides
with the class B0(R1 ∩R2).

Since restrictions of μR1 and μR2 to the class B0(R1 ∩R2) coincide, and R1 ∩R2 is a
product of non-empty Polish metric spaces such that at most ℵ0 of them are noncompact,
we claim by Lemma 5 that their Borel extensions coincide so that the extended Borel
measure is unique, τ -smooth, and Radon. The latter relation means that the family of
measures (μR)R∈R is consistent, and Lemma 8 is proved. �

Let α be again an arbitrary infinite parameter set, and let (αi)i∈I be its any partition
such that αi is a non-empty finite subset of the α for every i ∈ I. Let μj be a σ-finite
continuous Borel measure defined on a Polish space (Ej , ρj) for j ∈ α.

We denote, by R(αi)i∈I
, the family of all measurable rectangles R ⊆ ∏

j∈αEj of the
form

∏
i∈I Ri with the property 0 ≤ (S)

∏
i∈I τi(Ri) < ∞ such that at most ℵ0 of Ri’s

are noncompact.
We suppose that there exists R0 =

∏
i∈I R

(0)
i ∈ R(αi)i∈I

such that

0 < (S)
∏
i∈I

τi(R
(0)
i ) <∞.

We say that a Borel measure ν(αi)i∈I
defined on B(

∏
j∈α Ej) is called a standard

(αi)i∈I -product of the family of σ-finite continuous Borel measures (μj)j∈α if, for every

R =
∏
i∈I

Ri ∈ R(αi)i∈I
,

we have

ν(αi)i∈I
(R) = (S)

∏
i∈I

τi(Ri),

where τi =
∏
j∈αi

μj for i ∈ I.
Theorem 1. Let μj be a σ-finite diffused Borel measure defined on a Polish space

(Ej , ρj) for j ∈ α. Let α be again an arbitrary infinite parameter set, let (αi)i∈I be its
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any partition such that αi is a non-empty finite subset of α for every i ∈ I, and let us
suppose that there exists R0 =

∏
i∈I R

(0)
i ∈ R(αi)i∈I

such that

0 < (S)
∏
i∈I

τi(R
(0)
i ) <∞.

Then there exists a standard (αi)i∈I -product of the family (μj)j∈α.

Proof. For X ∈ B(R), we set μR(X) = 0 if

(S)
∏
i∈I

τi(Ri) = 0,

and
μR(X) = (S)

∏
i∈I

τ(Ri)×
(∏
i∈I

τiRi

τi(Ri)
)
(X)

otherwise, where
τiRi

τi(Ri)
is a Borel probability measure defined on Ri as follows:

(∀X)(X ∈ B(Ri)→ τiRi

τi(Ri)
(X) =

τi(X)
τi(Ri)

).

By Lemma 8, the family of measures (μR)R∈R is consistent. We set

ν(αi)i∈I
= μR(αi)i∈I

,

where the measure μR(αi)i∈I
is defined by Lemma 7.

This completes the proof of Theorem 1. �

In the sequel, we denote a standard (αi)i∈I -product of the family (μj)j∈α by

(S, (αi)i∈I)
∏
j∈α

μj .

Here, we present a certain example of the family of σ-finite continuous Borel measures
(μj)j∈N defined on the real axis R and of two different partitions (αi)i∈N and (βi)i∈N of
N, for which

(S, (αi)i∈N)
∏
j∈N

μj �= (S, (βi)i∈N)
∏
j∈N

μj .

Example 1 We set α = N. For j ∈ N, let lj be a linear Lebesgue measure on R. Let
αi = {i} and βi = {2i+ 1, 2(i+ 1)} for i ∈ N.

We set

Yi = [0,
1
2
]× [0, 2].

It is obvious that (
(S, (βi)i∈N)

∏
j∈N

lj
)
(
∏
i∈N

Yi) = 1

and (
(S, (αi)i∈N)

∏
j∈N

lj
)
(
∏
i∈N

Yi) = 0.

In view of Theorem 1 and Example 1, we state the following

Problem 1 Under assumptions of Theorem 1, describe all pairs of partitions (αi)i∈I
and (βi)i∈I of α, for which (S, (αi)i∈I)

∏
j∈α μj = (S, (βi)i∈I)

∏
j∈α μj .

The next statement is an immediate consequence of Theorem 1.
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Theorem 2. Under assumptions of Theorem 1, if each measure μj is Gj-left-and-
right-invariant, where Gj denotes a group of Borel transformations of the Ej for j ∈ α,
then the measure (S, (αi)i∈I)

∏
j∈α μj is

∏
j∈αGj-left-and-right-invariant.

Proof. We set G =
∏
j∈αGj . Let us show that the measure (S, (αi)i∈I)

∏
j∈α μj is

G-left-and-right-invariant. Indeed, let g, f ∈ G and X ∈ B(
∏
j∈αEj).

If X is not covered by a countable family of elements of R(αi)i∈I
, then such will be

gXf, because the class R(αi)i∈I
is left-and-right-invariant, i.e., gR(αi)i∈I

f = R(αi)i∈I
for

every g, f ∈ G. Hence, by the definition of the measure ((αi)i∈I)
∏
j∈α μj , we have(

(S, (αi)i∈I)
∏
j∈α

μj
)
(gXf) = +∞.

Now let X be covered by the family (Ak)k∈N of elements of R(αi)i∈I
such that A0 = ∅.

Then gXf will be covered by the family (gAkf)k∈N of elements of R(αi)i∈I
. Hence, we

get

(
(S, (αi)i∈I)

∏
j∈α

μj
)
(gXf) =

∞∑
n=1

λgAnf ((gAnf \ ∪n−1
k=0gAkf) ∩ gXf) =

∞∑
n=1

λgAnf (g((Anf \ ∪n−1
k=0Akf) ∩Xf)) =

∞∑
n=1

λAnf ((Anf \ ∪n−1
k=0Akf) ∩Xf) =

∞∑
n=1

λAnf ((An \ ∪n−1
k=0Ak) ∩X)f) =

∞∑
n=1

λAn((An \ ∪n−1
k=0Ak) ∩X) =

(
(S, (αi)i∈I)

∏
j∈α

μj
)
(X). �

By the scheme used in the proof of Theorem 2, one can prove the following assertion.
Theorem 3 Under the assumptions of Theorem 1, if each measure μj is Gj-left-

invariant, where Gj denotes a group of Borel transformations of the Ej for j ∈ α, then
the measure (S, (αi)i∈I)

∏
j∈α μj is a

∏
j∈αGj-left-invariant.

Observation 1. Under the conditions of Theorem 1, the measure (S, (αi)i∈I)
∏
j∈α μj

is Radon.

Proof. Let 0 <
(
(S, (αi)i∈I)

∏
j∈α μj

)
(X) < ∞. This means that X ∈ B(

∏
j∈αEj) is

covered by any countable family (An)n∈N of elements of R(αi)i∈I
such that A0 = ∅ and

(
(S, (αi)i∈I)

∏
j∈α

μj
)
(X) =

∞∑
n=1

λAn((An \ ∪n−1
k=0Ak) ∩X).

Since the measure λAn is Radon, we can choose a compact set

Fn ⊆ (An \ ∪n−1
k=0Ak) ∩X

such that
λAn

(
((An \ ∪n−1

k=0Ak) ∩X) \ Fn
)
<

ε

2n+1

for n ∈ N.
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Moreover, we can choose a natural number nε such that
∞∑

n=nε+1

λAn((An \ ∪n−1
k=0Ak) ∩X) <

ε

2
.

Finally, we get (
(S, (αi)i∈I)

∏
j∈α

μj
)
(X \ ∪nε

s=0Fs) =

∞∑
n=1

λAn((An \ ∪n−1
k=0Ak) ∩ (X \ ∪nε

s=0Fs)) =

nε∑
n=1

λAn((An \ ∪n−1
k=0Ak) ∩ (X \ ∪nε

s=0Fs))+

∞∑
n=nε+1

λAn((An \ ∪n−1
k=0Ak) ∩ (X \ ∪nε

s=0Fs)) ≤

nε∑
n=1

λAn(((An \ ∪n−1
k=0Ak) ∩X) \ Fn)+

∞∑
n=nε+1

λAn((An \ ∪n−1
k=0Ak) ∩X) ≤ ε

2
+
ε

2
= ε. �

Remark 3 For j ∈ α, we set Ej = R and μj = m, where m denotes a linear Lebesgue
measure on R.

Let (αi)i∈I be any partition of α such that αi is non-empty finite for every i ∈ I.
It is clear that

∏
j∈α[aj , bj] ∈ R(αi)i∈I

if 0 ≤ (S)
∏
i∈I m

αi(
∏
j∈αi

[aj , bj]) <∞, where
mαi is a Lebesgue measure on Rαi .

Then the measure (S, (αi)i∈I)
∏
j∈α μj has the following property:(

(S, (αi)i∈I)
∏
j∈α

μj
)
(
∏
j∈α

[aj , bj]) = (S)
∏
j∈α

(bi − ai).

The measure (S, (αi)i∈I)
∏
j∈α μi is called a standard ”(αi)i∈I -Lebesgue measure” on

Rα.
When card(αi) = 1 for every i ∈ I, then (S, (αi)i∈I)

∏
j∈α μi is called a standard

Lebesgue measure on Rα and is denoted by mα.
Let f be any permutation of α. A mapping Af : Rα → Rα defined by Af ((xi)i∈α) =

(xf(i))i∈α for (xi)i∈α ∈ Rα is called a canonical permutation of Rα.
Note that, in our situation, R(αi)i∈I

is the family of all measurable rectangles R ⊆
B(Rα) of the form

∏
i∈α Yi with the property 0 ≤ (S)

∏
i∈αm(Yi) <∞ such that at most

ℵ0 of them are noncompact(i.e., the card {i : i ∈ I & Yi is not compact in
∏
i∈αi

Ei} ≤
ℵ0.). It is obvious that a measure mα is invariant under a group P(Rα) generated by
shifts and canonical permutations of Rα and

mα(
∏
i∈α

Yi) = (S)
∏
i∈α

m(Yi).

Remark 4 We can say that the main shortcoming of Baker’s measures [1], [2] is that
they are not invariant under the group of all canonical permutations of RN.

Indeed, let us consider the following infinite-dimensional rectangular set

X =
∞∏
k=1

[0, e
(−1)k

k ].
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Then, for every non-zero real number a, there exists a canonical permutation fa of
R∞ such that λ(Af (X)) = a, where λ is any Baker’s measure [1], [2].

Such a difference between our and Baker’s measures is caused by the phenomenon
that a standard (unlike an ordinary) product of the infinite family of real numbers is
invariant under all permutations.
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