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GOGI PANTSULAIA

ON A STANDARD PRODUCT OF AN ARBITRARY FAMILY OF
o-FINITE BOREL MEASURES WITH DOMAINS IN POLISH SPACES

Let a be an infinite parameter set, and let («;);cs be its any partition such that a;
is a non-empty finite subset for every i € I. For j € a, let pu; be a o-finite Borel
measure defined on a Polish metric space (Ej,p;). We introduce a concept of a
standard (a;);er-product of measures (pj)jca and investigate its some properties.
As a consequence, we construct ”a standard («;);c-Lebesgue measure” on the Borel
o-algebra of subsets of R* for every infinite parameter set o which is invariant under
a group generated by shifts. In addition, if card(e;) = 1 for every ¢ € I, then "a
standard (o;);er-Lebesgue measure” m® is invariant under a group generated by
shifts and canonical permutations of R*. As a simple consequence, we get that a
"standard Lebesgue measure” mN on RN improves R. Baker’s measure [2].

Let (X;,B;, ;) (¢ € N) be a family of regular Borel measure spaces, where X; is
a Hausdorff topological space. In [4], it was proved that a Borel measure p exists on
[L;cn Xi (with respect to the product topology) such that if K; C X; is compact for all
i € Nand [],cn pi(K3) converges, then p(] [, oy Ki) = [ ;e pi (/). Note that a special
case of this result (in the case where X; = R and m; is Lebesgue measure) has been
proved only recently in [1]. Slightly later on, work [2] has improved the result in [4] as
follows: there exists of a Borel measure A on HiEN X; such that if R; C X, is measurable
for i € N and [, o pi(Ri) converges, then N[ [;cn Ri) = [1;en ii(Ri)-

Note that both above-mentioned constructions in the case where multiplied measures
coincide with a specific o-finite Borel measure i in a Hausdorff topological space X give
a measure p which is not invariant under permutations of the X~. To eliminate this
defect, we introduce a notion of a standard product of measures and prove its existence
under some assumptions. Our approach, unlike [4], [1],[2], is based on the notion of a
standard product of a family of real numbers. Main results of the article are the theorem
about the existence of a standard product of measures and its invariance under action of
some group of transformations. In the case where multiplied measures coincide with a
Lebesgue measure on R, our product occurs to be invariant under permutations of the
RY (see [7]) unlike Baker’s measures [1],[2]. In addition, our construction is essentially
different from the points of view of [4] and [2], because it allows one to construct a
standard product of measures for an arbitrary (not only for countable) family of o-finite
Borel measures with domains in Polish spaces.

Suppose that X is a topological space. The Borel sets B(X) are the o-algebra gen-
erated by the open sets of a topological space X, and the Baire sets By(X) are the
smallest o-algebra making all real-valued continuous functions measurable. In 1957 (see
[5]), Masik proved that all normal countably paracompact spaces have the following
property: Every Baire measure extends to a regular Borel measure. Spaces which have
this property have come to be known as Maiik spaces.
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The present manuscript is devoted to the application of properties of some Maiik
spaces to the definition of a product of an infinite family of o-finite Borel measures with
domains in Polish spaces.

In order to do it, we recall some important notions and well-known results from general
topology and probability theory.

X is a Hausdorff space iff distinct points in X have disjoint neighbourhoods. X is a
regular space if and only if, given any closed set F' and any point = that does not belong
to F, there exists a neighbourhood U of = and a neighbourhood V of F' that are disjoint.
X is a normal space if and only if, given any disjoint closed sets E and F', there are
neighbourhoods U of E and V of F that are also disjoint. X is a regular Hausdorff space
if and only if it is both regular and Hausdorff. X is a completely regular space if and
only if, given any closed set F' and any point x that does not belong to F', there is a
continuous function f from X to the real line R such that f(x) is 0 and f(y) is 1 for
every y in F. X is a Tychonoff space, if and only if it is both completely regular and
Hausdorff.

Lemma 1 ([9], Theorem 4, p. 981) The following statements about a product of
nonempty metric spaces are equivalent:

(i) The product is normal.

(i) At most Rq of the factor spaces are noncompact.

Lemma 2 [10] Every normal regular space is completely regular, and every normal
Hausdorff space is Tychonoff.

Recall that a Borel measure p defined on a Hausdorff topological space (X, 7) is called
Radon if

(VY)Y € B(X) &0 < pu(Y) < +oo — pu(Y) = sup n(K)) <
KCY
K is compact in X
and called dense if the condition < holds for Y = X.
A family (U;);er of open subsets in (X, 7) is called a generalized sequence if

(Vll)(VZg)(Zl cl&irel — (323)(’&3 el — (U“ C Uis & UiQ C Uls)))

A Borel probability measure p defined on X is called 7-smooth if, for an arbitrary
generalized sequence (U;);er, the condition

M(UUi) = sup u(U;)
iEl iel
is valid.
A Baire probability measure p on X is called mg-smooth if, for an arbitrary generalized
sequence (U;);er of open Baire subsets in X, for which |JU; is also a Baire subset, the
i€l
condition
M(UUi) = supu(U;)
iEl el
is valid .
The following lemma plays a key role in our future investigations.

Lemma 3 ([12], Theorem 3.3, p. 42) Let X be a completely reqular topological
space, and let v be a Baire probability measure defined on the o-algebra Bo(X). Then

(a) if p is To-smooth, there exists a unique T-smooth Borel extension on X.

(b) if the space X is Hausdorff and p is dense on By(X), then p admits a unique
Radon extension on B(X).
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Let (Ej;,7j)jea be a family of Hausdorff topological spaces. By (Hj€a E;,7), we
denote the Tychonoff product of the family of topological spaces (E;, 7j)jea-

Lemma 4 Let (Ej, pj)jca be a family of non-empty Polish metric spaces such that at
most Ng of them are noncompact, and let u; be a Borel probability measure on Ej; for

Jj € a. Then the product measure [[;c,, pt;j is To-smooth and dense on [[,c,, E;.

Proof. The product [];,, p; is initially defined on the Baire o-field Bo(][;¢, £;) as in
[12].
Let (U;)ier be an arbitrary generalized sequence of open Baire subsets in []

for which (JU; is also a Baire subset.
icl
The latter relation getting together with an assumption of Lemma 4 stated that at
most Ry of the family (E;, pj)jea are noncompact imply that there exist a countable

subset ag C o and U, € B([[;¢,, ;) such that

Ui =Uao x C 1T E

i€l jEa\ag

jE€a

]Ea

and
(Vj)(j € o\ ag — (Ej, p;) is compact).
By the inner regularity of the Borel probability measure Hje ao Hj With a domain
in a Polish space, there exists an increasing family of compact sets (Fj)ren such that

Fy, CU,, and
Jim (T )8 = (11 1) Ua)

JEao JjEao
We set D,, = F,, x Hje(a\ozo) E; for n € N. It is obvious that (Dy)nen is an increasing
family of compact subsets in [[._ , E; such that

JEa
Jim ( H 15)(Dn) = ( H 115) (UierUs).

It is obvious that (U;);cs is covering D,, for every n € N. Hence, using the definition
of a generalized sequence of open sets in a topological space, we can construct such
a sequence (in)nen of indices of I that the sequence (U;, )nen will be increasing and
D,, CU;, forn € N. We have

in
( H Mj)( S H M] 177
JE« JE
for every n € N. Hence,

(I ) (ierts) = Jim (J] ws)(Dn) <

JjEa JjEa

dim ([T w)@i) < (] ) (WierUs).
JjEa JEx

The latter relation means that the condition
(TT ) (Jua) *Sup ([T m)w
JEa icl JjEa
holds. Thus, the measure [, #; is To-smooth on []
Let us show that the measure H ica Mj 18 dense.

We set
a; = {j: Ej is not compact}.

JjEa J
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It is clear that, for the Borel measure [] jear Mis there exists an increasing sequence

of compact subsets (Fi)ken in [[;¢,, Ej that
li O(F) = 1.
Jim (T ws)(F)
JjEay
Now it is easy to see that (F} x Hjea\al E;)ken is an increasing sequence of compact

subsets in [, Ej such that

kggloo(n ) (Fis < Il en=1 O
JjEa jEa\a1

Lemma 5 Let (Ej, p;)jca be a family of non-empty Polish metric spaces such that

at most Rg of them are noncompact, and let p1; be a Borel probability measure on Ej

for j € a. Then there exists a unique T-smooth Radon extension of the Baire measure

[jca 1y from the o-algebra Bo(] ], E;) to the o-algebra B(I;c, E;)-
Proof. By Lemma 1, Hjea E; is normal. Hence, in order to show that Hjea E; is
regular, it is sufficient to show that every point (z;);eq is closed in Han E;. But the

latter relation follows from the Tychonoff well-known theorem because the point (z;);ea
can be considered as a product of compact sets ({z;})jeq. Thus, it is normal and regular.
By Lemma 2, we claim that the (H]Ea E;,T) is a completely regular topological space.
Applications of Lemma 3 and Lemma 4 end the proof of Lemma 5. g

We have the following lemma.

Lemma 6 ([6], Lemma 4.4, p. 67 ) Let (E1,71) and (E2,72) be two topological
spaces. By B(E1) and B(Es) (respectively, B(E1 x Es)), we denote the class of all Borel
subsets generated by the topologies 71 and To (respectively, T X 12). If at least one of
these topological spaces has a countable base, then the equality

B(El) X B(EQ) = B(El X EQ)

holds.

Let us recall the definition of a standard product of non-negative real numbers

(Bi)jea € [0,400]".

Definition 1 A standard product of the family of numbers (5;);co is denoted by

(S) [ eq B; and defined as follows:
(S)[LjeaB; = 0if >0, In(B;) = —o0, where o= = {j : In(B;) < 0} ! and

() [Ljea B = eXaca ™) 30 In(B;) # —oo.

Let (E,S) be a measurable space, and let R be any subclass of the o-algebra S. Let

(1B)Ber be such a family of o-finite measures that, for B € R, we have dom(ug) =
S NP(B), where P(B) denotes the power set of the set B.

Definition 2 A family (up)per is called to be consistent if
(VX)(VBl,BQ)(X €S & By,B; R — WB, (X NBiN Bg) = up, (X NBiN Bg))
The following assertion plays a key role in our future investigation.

Lemma 7 ([7], Lemma 1) Let (up)per be a consistent family of o-finite measures.
Then there exists a measure ur on (E,S) such that

(i) pr(B) = jup(B) for every B € R;

(i) if there exists a non-countable family of pairwise disjoint sets {B; : i € I} CR
such that 0 < pp,(B;) < 0o, then the measure g is non-o-finite;

We set In(0) = —oo
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(iii) if G is a group of measurable transformations of E such that G(R) = R and
(VB)(VX)(Y)((B € R &X € SNP(B) & g € G) — iy (9(X)) = (X)),
then the measure ugr is G-invariant.

Remark 1 Let (Ej,p;)jea be again a sequence of non-empty Polish metric spaces
such that at most Xy of them are noncompact. Let (u;)jea be a sequence of Borel
non-zero diffused finite measures with dom(u;) = B(E;) for j € @ and

0< (S) H ‘LLJ(EJ) < +o00.
JEQ
By Lemma 5, we claim that there exists a unique 7-smooth and Radon Borel extension
A of the Baire probability measure [] jca /hl(L—JJE;) A Borel measure

(S) [T s (E5) > A
JEQ
is called a standard product of the family of finite Borel measures (1t;);jea and is denoted
by (S)1jeq 1s-
We put
Ti = H ‘Ll,j.
JEa;

Lemma 8 Let « be again an arbitrary infinite parameter set, and let (co;);er be its
any partition such that oy is a non-empty finite subset of o for every i € I. Let p; be a
o-finite diffused Borel measure defined on a Polish space (Ej, p;) for j € a.

By R(a;),e;» we denote the family of all measurable rectangles R C Hj6a E; of the
form T];c; Ri with the property 0 < (S)[[;c; 7:(Ri) < oo such that at most No of R;’s
are noncompact(i.e., card{i:i € I & R; is not compact in [[,c,, Ej} < Ro.)

We suppose that there exists Ry = [[;c; REO) € R(a)ics Such that

0< ) [nER") < ~.
iel
For X € B(R), we set pp(X) =0 if
S) [[ () =0,
i€l
and

TiR,;
i€l iel NV
otherwise, where :(;) is a Borel probability measure defined on R; as follows:
TiR, 7i(X)
X)X i (X)) = .
(VX)(X € B(Ri) — Ti(Ri)( Ti(Ri))

Then the family of measures (W) rer S consistent.

Proof. Let Ry = [[;c; Rl(l) and Ry = [[,¢; RZ@) be two elements of the class R =
Riai)ier-

Without loss of generality, it can be assumed that 0 < (S)[[,c; Ti(Rgl)) < oo and
0<(S)[es Ti(R§2)) < o00.

We will show that pupr, (X) = pr,(X) for every X € B(R; N Ry). In this case, it is
sufficient to show that g, (Y) = ug,(Y) for every elementary measurable rectangle Y =
[I;c; Yi in Ri N Ry. Note here that, as an elementary measurable rectangle Y =[], Y;
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in R1 N Ry, we assume a subset of Ry N Ry such that Y; € B(Rgl) N R’gz)) for every i € N.
Moreover, there exists a finite subset Iy of I such that Y; = Rgl) N RZ@) fori € T\ Io.
For every ¢ € I and for every Y; € B(Rgl) N Rz@))7 we have
(Y, nRY N RP) = (v n RY) = 7, (v, n RP),
The latter relation yields
S) [[7(vi n R ARY) = (8)[[(vi n RY) = (8) [[ re(vi n BLV).
el el el

Hence, we get

pr([Tv0) = ) [[rvin BY) = (8) [[ (Vi n R N RP))) =
1=y el el
S) [[7(vin B®) = pr (] Y2).
el el

Since a class A(R1NRy) of all finite disjoint unions of elementary measurable rectangles
in Ry N Ry is a ring, and since, by definition, the class By(R; N R2) of Baire subsets of
R1N Ry is a minimal o-ring generated by the ring A(R; N R2), we claim (cf. [3], Theorem
B, p. 27) that the class of all those sets of Ry N Ry, for which this equality holds, coincides
with the class Bo(R1 N Rz).

Since restrictions of pg, and pg, to the class By(Ry N R2) coincide, and Ry N Rz is a
product of non-empty Polish metric spaces such that at most Xy of them are noncompact,
we claim by Lemma 5 that their Borel extensions coincide so that the extended Borel
measure is unique, 7-smooth, and Radon. The latter relation means that the family of
measures (ur)rer is consistent, and Lemma 8 is proved. O

Let a be again an arbitrary infinite parameter set, and let («;);er be its any partition
such that o; is a non-empty finite subset of the « for every ¢ € I. Let p1; be a o-finite
continuous Borel measure defined on a Polish space (Ej, p;) for j € a.

We denote, by R(q,),c,, the family of all measurable rectangles R C [],,, Ej; of the
form [[,c; Ri with the property 0 < (S)[[;c; 7i(Ri) < oo such that at most Ry of R;’s
are noncompact.

We suppose that there exists Ry =[]

i€l

el Rgo) € R(ai)ic; such that
S) [[7(R") < co.
iel
We say that a Borel measure v(,,),., defined on ZS’(HJE(y ;) is called a standard
(cvi)ier-product of the family of o-finite continuous Borel measures (14;) e if, for every

R= HRi € ’R’(m)a‘,ezv
iel
we have
V((’(i)iel(R) = (S) HTl(R )
iel
where 7; = [[;,,, py fori € I.

Theorem 1. Let p1; be a o-finite diffused Borel measure defined on a Polish space
(Ej,p;) for j € a. Let o be again an arbitrary infinite parameter set, let (o)ier be its
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any partition such that o, is a non-empty finite subset of o for every i € I, and let us
suppose that there exists Ro = [[;¢; Rgo) € R(a;)ics Such that

0<(S) HTi(REO)) < 0.
icl
Then there exists a standard (cv)icr-product of the family (14;)jca-

Proof. For X € B(R), we set up(X) =0 if
(S) HTi(Ri) =0,
iel

and

ur(X) = () [ 7(Ri) x (] =2 )(x)

i€l i€l 7i(Ri)

Ti
i

otherwise, where — (;?) is a Borel probability measure defined on R; as follows:

By Lemma 8, the family of measures (ur)rer is consistent. We set

V(a)ier = 'LLR(ai)ieI’

where the measure PR (o) q is defined by Lemma 7.
This completes the proof of Theorem 1. a

In the sequel, we denote a standard (o;);er-product of the family (¢;)jeqa by

(S, (i)ier) T 1s-
JE
Here, we present a certain example of the family of o-finite continuous Borel measures
(i5) en defined on the real axis R and of two different partitions (o )ien and (8;);en of
N, for which

(S, (i)ien) [T 15 # (S, (B)iew) [ ] 14+
JEN JjEN
Example 1 We set o = N. For j € N, let [; be a linear Lebesgue measure on R. Let
a; ={i} and 8; = {20 +1,2(: + 1)} for : € N.

We set

mzm;qu

It is obvious that

(S, (Biew) [T ) (I T Y0) =1
JEN €N
and

(S, (ei)iew) [T L) (J T Yi) = 0.
jeEN  ieN
In view of Theorem 1 and Example 1, we state the following

Problem 1 Under assumptions of Theorem 1, describe all pairs of partitions (o )ier
and (61‘)1‘6[ of [ for which (S, (ai)iej) Hj&‘a Ky = (S, (61‘)1‘61) Honz M-

The next statement is an immediate consequence of Theorem 1.
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Theorem 2. Under assumptions of Theorem 1, if each measure j; is G;-left-and-
right-invariant, where G; denotes a group of Borel transformations of the E; for j € o,
then the measure (S, (a;)icr) [[jcn 1y 8 [1jcq Gi-left-and-right-invariant.

Proof. We set G = [[;c,G;. Let us show that the measure (S, (c;)icr) [[;c, 1y 18
G-left-and-right-invariant. Indeed let g, f € G and X € B([[;c,, Ej)-

If X is not covered by a countable family of elements of R ,,),.,, then such will be
gX f, because the class R(q,),.; is left-and-right-invariant, i.e., gR(a,),c; f = R(ay);e; for
every g, f € G. Hence, by the definition of the measure ((@i)icr)[1;c, 15, We have

((S, (w)ier) [T i) (9 X f) =
JEQ
Now let X be covered by the family (A )ren of elements of R4y, , such that Ay = 0.

Then gX f will be covered by the family (gAxf)ren of elements of R(,,),.,. Hence, we
get

((Ss (@)ien) [T 1) (9X £) = D Agans((9Anf \UiZ59ALS) N gX f) =

JEa n=1

ZAgA F(g(Anf \ U Arf) N X f)) =
Z M, (Anf \UZgAf) N X f) =
n=1

Z A, (A \UPZ A N X) f) =

n=1

Z ((An \ UpZgAR) N X) = (S, (a)ier) [T i) (X

jE€a

By the scheme used in the proof of Theorem 2, one can prove the following assertion.

Theorem 3 Under the assumptions of Theorem 1, if each measure u; is Gj-left-
invariant, where G; denotes a group of Borel transformations of the E; for j € «, then
the measure (S, (@)icr) [Ljeq 1) @ a [1;eq Gi-left-invariant.

Observation 1. Under the conditions of Theorem 1, the measure (S, («;)icr) H]Ea K
is Radon.

Proof. Let 0 < ((S, (®i)ier) [Tica 11;)(X) < co. This means that X € B(Iljcq E5) is
covered by any countable family (A, )nen of elements of R(q,),., such that Ay = () and

iel

o0
(S, (@i)ier) [T 1) (X) = D Aa, (An \ R0 Ak) N X).
JjEa n=1
Since the measure A4, is Radon, we can choose a compact set
F, C (A \UP g A N X
such that

€

A (A \ULZAR) N X\ Fn) < oy

for n € N.
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Moreover, we can choose a natural number n. such that

> A, ((An \UpZ3AR) N X) <

n=n+1

€
5
Finally, we get

(S ()ien) T 1) (X \ Uz Fy) =

jE€a

DA, (An \UpZgAr) N (X \ Ui Fy)) =

n=1

S (A \ U2 A) 1 (X \ UM o))+

n=1

Y A (A \ U204 N (X N\ UL F)) <
n=n.+1

3 A (A \ UPZ24) 0 X)\ B+

n=1

37 A (A \ Ui A N X) <

n=n+1

+-—=e O

€ €
2 2

Remark 3 For j € a, we set E; = R and p1; = m, where m denotes a linear Lebesgue
measure on R.

Let (c;)ier be any partition of « such that «; is non-empty finite for every i € I.

It is clear that [];c,[a;,b;] € Ry, if 0 < (S) [Licy m* ([ e, [as,bj]) < oo, where
m®i is a Lebesgue measure on R%:.

Then the measure (S, («;)ier) Han ; has the following property:

(S, ()ier) [T ) (] Tl b5]) = (8) [T (b5 — a0).
Jjea JjEa JEa

The measure (S, (o;)ier) []
Re.

When card(a;) = 1 for every i € I, then (S, (a)icr) [[ e, pi is called a standard
Lebesgue measure on R* and is denoted by m®.

Let f be any permutation of a. A mapping Ay : R® — R® defined by A;((zi)ica) =
(7 4i))ica for (zi)ica € R is called a canonical permutation of R®.

Note that, in our situation, R(a,),., is the family of all measurable rectangles R C
B(R®) of the form [];.,, ¥; with the property 0 < (S) [],c, m(Yi) < co such that at most
Ny of them are noncompact(i.e., the card {i : i € I & Y; is not compact in [[;c, Ei} <
Ng.). It is obvious that a measure m® is invariant under a group P(R®) generated by
shifts and canonical permutations of R* and

m([]v0) = 8) [ m(x).

i€Ex [1<teY

jea Mi is called a standard ” («;);er-Lebesgue measure” on

Remark 4 We can say that the main shortcoming of Baker’s measures [1], [2] is that
they are not invariant under the group of all canonical permutations of RY.
Indeed, let us consider the following infinite-dimensional rectangular set

0 N
X =TJl0.e7).
k=1
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Then, for every non-zero real number a, there exists a canonical permutation f, of
R such that A(A;(X)) = a, where X is any Baker’s measure [1], [2].

Such a difference between our and Baker’s measures is caused by the phenomenon
that a standard (unlike an ordinary) product of the infinite family of real numbers is
invariant under all permutations.
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