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CONVERGENCE OF INDEPENDENT RANDOM VARIABLE SUM
DISTRIBUTIONS TO SIGNED MEASURES AND APPLICATIONS TO

THE LARGE DEVIATIONS PROBLEM

We study properties of symmetric stable measures with index α > 2, α �= 2k, k ∈ �.
Such measures are signed ones and hence they are not probability measures. We show
that, in some sense, these signed measures are limit measures for sums of independent
random variables.

1. Introduction

Let {ξi}∞i=1 be a sequence of independent identically distributed symmetric random
variables (for simplicity, we consider only a symmetric case). We suppose that the
distribution P1 of the random variable ξ1 satisfies the following condition:

P1((x,+∞)) = P(ξ1 > x) =
b

xα
(1 + o(1)), x→ +∞. (1)

It is well known (see [1]) that, for α ∈ (0, 2), the distribution P1 belongs to a domain
of attraction of a symmetric stable law with index α. This means that the distributions
of normalized sums

1
n1/α

n∑
i=1

ξi

weakly converge, as n → ∞, to a symmetric stable distribution Qα with index α. The
characteristic function q̂α(p) of Qα is equal to exp(−c|p|α), c > 0.

It is worth to note (see [1]) that the asymptotic behavior of the tail probability P(ξ1 >
x) coincides with the asymptotic behavior of the tail probability of the limit stable
distribution. The corresponding statement is not true for the Central Limit Theorem.

In our work, we suppose that the random variable ξ1 satisfies (1) with α > 2, α �= 2k,
k ∈ N. As above, we consider only a symmetric case. It follows from (1) that the
distribution P1 belongs to the domain of attraction of the normal law. This means
that the distributions of the normalized sums 1√

n

∑n
i=1 ξi weakly converge to a normal

distribution.
In our paper, we consider the distributions of normalized sums

1
n1/α

n∑
i=1

ξi (2)

with a weaker normalization n1/α (exactly the same normalization as in the case α ∈
(0, 2)). By Pn and pn, we denote, respectively, the distribution of the random variable
(2) and the corresponding density. Additionally, we suppose that pn ∈ L2(R) for all n
large enough.
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It is clear that the sequence Pn has no weak limit. Nevertheless, we construct a
sequence of corrections Bαn (each correction is an operator L2(R)→ L2(R)) such that the
sequence Bαnpn converges in L2(R) to a function qα, i.e. qα = (L2) limn→∞ Bαnpn.

Each operator Bαn acts as follows:
Bαnpn = pn + pn ∗ ζn.

Here, for every n, ζn is an inverse Fourier transform of some smooth even function with
bounded support, and

∫∞
−∞ ζn(x)dx = 0.

For α ∈ ∪∞
k=1(4k, 4k + 2), the Fourier transform q̂α of the limit function qα is

q̂α(p) = exp(−c|p|α), c > 0 (3)
(exactly as in the case α ∈ (0, 2)). But, for α ∈ ∪∞

k=1(4k − 2, 4k), the function q̂α is of
another form, namely

q̂α(p) = exp(c0|p|α − c1p4k), c0, c1 > 0. (4)
By Qα, we denote a signed measure in R with the density qα. It follows from (3) and

(4) that, for every α > 2, Qα(R) =
∫∞
−∞ qα(x)dx = 1, but the limit measure Qα is not a

probability measure, because it is a signed one.
It is very important to note that, for every α > 2, α �= 2k, k ∈ N, the support of

the negative part of the signed measure Qα belongs to some finite interval. Outside this
interval, the measure Qα is positive. Moreover, the asymptotic behavior of its density
at infinity is of the form c

|x|1+α , c > 0 (exactly as in the classical case α ∈ (0, 2)). This
fact partly explains the difference between the form of the Fourier transform of qα for
α ∈ ∪∞

k=1(4k − 2, 4k) and for α ∈ ∪∞
k=1(4k, 4k + 2). On the contrary, the inverse Fourier

transform of the function f(p) = exp(−c|p|α) for α ∈ ∪∞
k=1(4k−2, 4k) is negative outside

some finite interval.
Although the limit measureQα is not a probability one, nevertheless in the last section

of the paper, we prove a theorem about large deviations of sums of independent random
variables using the positive part (actually, the positive tail) of the limit measure. This
result is close to the result of S.V. Nagaev ([3, 2]).

The results of the present paper extend those of our previous paper [5], where only
the case α ∈ (2, 4) ∪ (4, 6) was considered.

2. Necessary notations

We introduce necessary notations. Let {ξi}∞i=1 be a sequence of independent identically
distributed symmetric random variables. We suppose that the distribution of the random
variable ξ1 satisfies (1). Put a = αb.

We suppose that α > 2 and α �= 2k, k ∈ N. By f = f(p), we denote the characteristic
function of ξ1. For k < α, we denote the k−th order moment of the random variable ξ1
by μk = Eξk1 and the corresponding semiinvariant by sk. Since P1 is symmetric, f(p) is
a real-valued function, and μk �= 0 and sk �= 0 only for even numbers k.

In addition, we suppose that

|f(p)| ≤ K

|p|δ (5)

for some K > 0, δ > 0, so that, for n > 2
δ , the distribution of the sum

∑n
i=1 ξi has a

square-integrable density.

3. Limit theorems. The case α ∈ ∪∞
k=1(4k, 4k + 2)

Let α ∈ (4k, 4k+ 2) for some k ∈ N. We suppose that the characteristic function f(p)
of the random variable ξ1 satisfies (5) and consider the representation

f(p) = E cos pξ1 = 1− μ2p
2

2!
+
μ4p

4

4!
− · · ·+ μ4kp

4k

(4k)!
+
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E

(
cos pξ1 − 1 +

p2ξ21
2!

− p4ξ41
4!

+ · · · − p4kξ4k1
(4k)!

)
=

1− μ2p
2

2!
+
μ4p

4

4!
− · · ·+ μ4kp

4k

(4k)!
− T (p), (6)

where

T (p) = −2
∫ ∞

0

(
cos px− 1 +

p2x2

2!
− p4x4

4!
+ · · · − p4kx4k

(4k)!

)
dP1(x) > 0, (7)

Lemma 3.1. T (p) ∼ c2|p|α, as p→ 0, where

c2 = −2a
∫ ∞

0

(cos y − 1 +
y2

2!
− y4

4!
+ · · · − y4k

(4k)!
)
dy

y1+α
=

πa

Γ(1 + α) sin πα
2

> 0.

Proof. We present −T (p) in the form

−T (p) = 2
∫ ∞

0

(
cos px− 1 +

p2x2

2!
− · · · − p4kx4k

(4k)!

)
dP1(x) =

2
∫ 1

0

(. . . )dP1 + 2
∫ ∞

1

(. . . )dP1.

It is clear that
∫ 1

0
(. . . )dP1 = o(|p|α). Taking (1) into account, we obtain∫ ∞

1

(. . . )dP1 = a|p|α
∫ ∞

0

(cos y − 1 +
y2

2!
− · · · − y4k

(4k)!
)
dy

y1+α
+ o(|p|α). �

Further, it follows from (6) and Lemma 1 that, for the logarithm of the characteristic
function, we have the representation

log f(p) = v(p)− T (p) + o(|p|α) = v(p)− c2|p|α + o(|p|α), (8)
where

v(p) = −s2p
2

2!
+
s4p

4

4!
− · · ·+ s4kp

4k

(4k)!
,

and s2, . . . , s4m are semiinvariants of the random variable ξ1.

Lemma 3.2. There exist ε0, d0 > 0 such that, for |p| ≤ ε0,

0 ≤ f(p)e−v(p) ≤ e−d0|p|
α

and
e−v(p) ≥ 1.

Proof. It is trivial that the second inequality is true in a small neighborhood of the origin.
The first one follows from (8) and Lemma 1. �

Choose a decreasing function χ ∈ C∞(R) such that χ(x) = 1 for x ≤ 1 and χ(x) = 0
for x ≥ 2. We define a sequence of smooth functions ϕn = ϕn(p) by

ϕn(p) = exp
(− v(p)χ(n1/(4k+2)|p|)).

Further, by Pn, we denote the distribution of the random variable 1
n1/α

∑n
i=1 ξi, and

fn stands for the characteristic function of Pn. We have

fn(p) = (f(
p

n1/α
))n =

(
1− μ2p

2

2!n2/α
+

μ4p
4

4!n4/α
− · · ·+ μ4kp

4k

(4k)!n4k/α
− T (

p

n1/α
)
)n
.

It is clear that such a sequence of functions has no limit. In order to obtain a convergent
sequence, we multiply the function fn by

ψn(p) =
(
ϕn(

p

n1/α
)
)n
. (9)

Theorem 3.1. The sequence fnψn converges in L2(R) as n → ∞ to a function q̂α,

where q̂α(p) = exp(−c2|p|α).
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Proof. First, we show that fnψn converges to q̂α pointwise. Note that, for every fixed p
and n large enough, |p|n1/(4k+2)−1/α < 1. So, using (8), we have(

f(
p

n1/α
)ϕn(

p

n1/α
)
)n

= exp
[
n

(
log f(

p

n1/α
)− v( p

n1/α
)
)]

=

exp
[
n

(
v(

p

n1/α
)− c2 |p|

α

n
+ o(

1
n

)− v( p

n1/α
)
)]

=

exp
[− c2|p|α + o(1)

] −→
n→∞ exp(−c2|p|α).

Next, we show that fnψn → q̂α not only pointwise but in L2−sense as well.
We have

fn(p)ψn(p) = An(p) +Bn(p), (10)

where
An(p) = fn(p)ψn(p)1[0,2n1/αn−1/(4k+2)](|p|)

and
Bn(p) = fn(p)ψn(p)1(2n1/αn−1/(4k+2),∞)(|p|).

Note that, for every p ∈ R, An(p) → q̂α(p) as n→∞, and, by Lemma 2, the functions
A2
n are majorized by the function e−2d0|p|α . Using the Lebesgue majorized convergence

theorem, we get that An −→
n→∞ q̂α in L2(R).

It remains to check that ‖Bn‖L2 → 0 as n→∞. First, we note that M = sup |f(p)| <
1 on the interval [2n1/α−1/(4k+2),∞), and, hence,

|f(p)| ≤ min(M,
K

pδ
) = M min(1,

K

Mpδ
). (11)

Using (11), we have

‖Bn‖2L2
=
∫ ∞

2n1/αn−1/(4k+2)

(
fn(p)ψn(p)

)2
dp =∫ ∞

2n1/αn−1/γ

(
f(

p

n1/α
)
)2n

dp = n1/α

∫ ∞

2n−1/γ

(f(u))2ndu ≤

n1/αM2n

(∫ (K/M)1/δ

2n−1/γ

du+
∫ ∞

(K/M)1/δ

( K

Muδ
)2n

du

)
≤

n1/αM2n

((
K

M

)1/δ

+
1

2nδ − 1

(
K

M

)1/δ )
.

Hence, ‖Bn‖L2 → 0 as n→∞. �

4. Limit theorems. The case α ∈ ∪∞
k=1(4k − 2, 4k)

Let α ∈ (4k − 2, 4k) for some k ∈ N. Then, for the characteristic function f(p) of the
random variable ξ1, we have the representation

f(p) = E cos(pξ1) =

1− μ2p
2

2!
+ · · · − μ4k−2p

4k−2

(4k − 2)!
+ E

(
cos(pξ1)− 1 +

p2ξ21
2!

− · · ·+ p4k−2ξ4k−2
1

(4k − 2)!

)
=

1− μ2p
2

2!
+ · · · − μ4k−2p

4k−2

(4k − 2)!
+ T (p), (12)

where

T (p) = 2
∫ ∞

0

(
cos px− 1 +

p2x2

2!
− · · ·+ p2k−2x2k−2

(2k − 2)!

)
dP1(x) > 0. (13)
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Lemma 4.1. T (p) ∼ c0|p|α as p→ 0, where

c0 = 2a
∫ ∞

0

(
cos y − 1 +

y2

2!
− · · ·+ y4k−2

(4k − 2)!
) dy

y1+α
=

−πa
Γ(1 + α) sin πα

2

> 0. (14)

Proof. It can be proved by the same arguments as those in Lemma 1. �

Further, it follows from (12) and Lemma 3 that
log f(p) = v(p) + c0|p|α + o(|p|α), (15)

where

v(p) = −s2p
2

2!
+
s4p

4

4!
− · · · − s4k−2p

4k−2

(4k − 2)!
,

(we recall that s2, . . . , s4k−2 are semiinvariants of the random variable ξ1.)

Lemma 4.2. There exist ε0, d0 > 0 such that, for |p| ≤ ε0, the following inequality is
true:

0 ≤ f(p)e−v(p) ≤ ed0|p|
α

. (16)

Proof. The statement of this lemma follows from (15) and Lemma 3. �

We choose a decreasing function χ ∈ C∞(R), such that χ(x) = 1 for x ≤ 1 χ(x) = 0
for x ≥ 2. Further, for α ∈ (4k − 2, 4k), we choose γ = γ(α), so that γ = 4k for k > 1.
For k = 1, we put γ = 4 for α ∈ [3, 4), and γ ∈ (α,min(4, 2α

4−α )) for α ∈ (2, 3).
Now we fix a positive constant c1 and define a sequence of functions ψn, n ∈ N by

ψn(p) = exp
(
− n

(
v
( p

n1/α

)
+
c1p

4k

n

)
χ

( |p|
n1/α−1/γ

))
. (17)

Lemma 4.3. There exists n0 such that, for all n ≥ n0,

inf
p
ψn(p) = 1.

Proof. We prove the lemma only for k > 1, when γ = 4k (the case k = 1 can be treated
by the same arguments).

The function ψn(p) is not equal to 1 only if

|p| ≤ 2
n1/α

n1/4k
. (18)

We now show that, for such p and n large enough,
c1p

4k

n
≤ −v( p

n1/α

)
. (19)

First, we note that −v(p) ∼ s2p
2

2 , as p→ 0 and, hence, for p small enough, we have

−v(p) > s2p
2

4
. (20)

It follows from (20) that (19) is true if p satisfies the condition

|p| ≤Mn(1− 2
α ) 1

4k−2 , (21)

where M = ( s24c1
)

1
4k−2 .

To prove the statement of the lemma, it is sufficient to prove that inequality (18)
stronger than (21) or

0 <
1
α
− 1

4k
<

α− 2
α(4k − 2)

. (22)

It is easy to check that (22) is true for k > 1, α ∈ (4k − 2, 4k). �

By Pn and fn, we denote, respectively, the distribution of the random variable 1
n1/α∑n

i=1 ξi and the characteristic function of Pn.
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We have

fn(p) = (f(
p

n1/α
))n =

(
1− μ2p

2

2!n2/α
+ · · · − μ4k−2p

4k−2

(4k − 2)!n(4k−2)/α
+ T (

p

n1/α
)
)n
. (23)

It is clear that this sequence has no limit. In order to construct a convergent sequence,
we multiply fn by ψn given by (17).

Theorem 4.1. The sequence fnψn converges in L2(R) as n → ∞ to the function q̂α,

where q̂α(p) = exp
(
c0|p|α − c1p4k

)
with a constant c0 > 0 defined by (14).

Proof. First, we show that, for every p ∈ R , fn(p)ψn(p)→ q̂α(p).
Note that, for every p fixed and n large enough, |p|n1/γ−1/α < 1. So, using (15) and

Lemma 3, we obtain

fn(p)ψn(p) = exp
(
n

(
log f(

p

n1/α
)− v( p

n1/α
)
))

exp(−c1p4k) =

exp
(
n

(
v(

p

n1/α
) + c0

|p|α
n

+ o(
1
n

)− v( p

n1/α
)
))

exp(−c1p4k) −→
n→∞ ec0|p|

α−c1p4k

.

To prove the theorem, it is sufficient to check that the convergence fnψn → q̂α takes
place not only pointwise, but in L2 sense as well. This can be proved by the same
arguments as those in Theorem 1. �

5. The application to the large deviation problem

As above, by Pn and pn, we denote the distribution of 1
n1/α

∑n
i=1 ξi and the correspond-

ing density, respectively. Further, by ζn, we denote the inverse Fourier transform of the
function ψn−1.We recall that the functions ψn are defined by (9) for α ∈ ∪∞

k=1(4k, 4k+2)
and by (17) for α ∈ ∪∞

k=1(4k − 2, 4k).
It is clear that ∫ ∞

−∞
ζn(x)dx = ψn(0)− 1 = 0. (24)

It follows from Theorems 1 and 2 that the sequence pn+pn ∗ ζn converges in L2(R) to
the function qα. The asymptotic behavior of qα is described by the following statement.

Lemma 5.1. We have
qα(x) =

a

x1+α
+O(

1
x1+2α

) (25)

as x→∞, where a = −c0
π Γ(1 + α) sin πα

2 for α ∈ (4k − 2, 4k) and a = c2
π Γ(1 + α) sin πα

2
for α ∈ (4k, 4k + 2).

Proof. The proof can be found in [4]. �
The main aim of this section is to show that the asymptotic behavior of pn is the same

as the asymptotic behavior of qα.
We need some additional assumptions. Namely, we suppose that, for

α ∈
∞⋃
k=1

(4k − 2, 4k),

the characteristic function f of the random variable ξ1 has the representation

f(p) = 1− μ2p
2

2!
+ · · · − μ4k−2p

4k−2

(4k − 2)!
+ c0|p|α −R(p), (26)

where the function R(p) is of the form

R(p) = p[α]+1R0(p), (27)
and the function R0 is [α] + 2 times continuously differentiable in a neighborhood of the
origin (as usual, by [α], we denote the integer part of α).
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Similarly, we suppose for α ∈ ∪∞
k=1(4k, 4k + 2) that the characteristic function f has

the representation

f(p) = 1− μ2p
2

2!
+ · · ·+ μ4kp

4k

(4k)!
− c2|p|α +R(p), (28)

where the function R(p) satisfies (27). We also suppose that, outside of a neighborhood
of the origin, the function f is [α]+2 times continuously differentiable, and all derivatives
f (i)(p), i = 1, 2 . . . , [α] + 2, are bounded.

For example, for every A > 0, the distribution P1 with density V of the form

V (x) =
αA

2
1

|x|1+α 1[A,∞)(|x|)
satisfies the last condition. Moreover, its characteristic function f(p) satisfies (26) for
α ∈ ∪∞

k=1(4k − 2, 4k) and (28) for α ∈ ∪∞
k=1(4k, 4k + 2).

Below, we need the following trivial statement.

Lemma 5.2. Let ĝ be the Fourier transform of a function g. Suppose that, for some
l ∈ N , ĝ(l) ∈ L1(R). Then, for every x ∈ R, we have

|g(x)| ≤ 1
2π

1
|x|l

∫
R

|ĝ(l)(p)|dp. (29)

By hn, we denote the function
hn(p) = fn(p)ψn(p)− q̂α(p).

It follows from Theorems 1 and 2 that ‖hn‖L2 → 0 as n→∞.
In what follows, by C, we denote a positive constant. The same letter C may denote

different constants.
We now consider separately the case α ∈ (4k − 2, 4k) and α ∈ (4k, 4k + 2). First, we

consider the case α ∈ (4k, 4k + 2).

Theorem 5.1. For α ∈ (4k, 4k + 2), we have∫
R

|h([α]+2)
n (p)|dp ≤ C

n
4m+2

α −1
.

Proof. Let α ∈ [4k+ 1, 4k+ 2) (the case α ∈ (4k, 4k+ 1) can be considered by the same
arguments). First, we estimate∫

|p|≤n1/α− 1
4k+2

|h(4k+3)
n (p)|dp.

It follows from (28) that
log f(p) = v(p)− c2|p|α + p4k+2T0(p), (30)

and the function T0 is 4k + 3 times continuously differentiable in a neighborhood of
the origin.

For |p| ≤ n1/α− 1
4k+2 , using (30), we have

hn(p) = fn(p)ψn(p)− exp(−c2|p|α) = exp
(
n

(
log f(

p

n1/α
)− v(p)

))
− exp(−c2|p|α)

= exp(−c2|p|α)
[

exp
(− n(

p

n1/α
)4k+2T0(

p

n1/α
)
)− 1

]
.

(31)
Note that function (31) is 4k + 3 times differentiable at the origin.
From (31), we get the following estimate:∫

|p|≤n1/α− 1
4k+2

|h(4k+3)
n (p)|dp ≤ C

n
4k+2

α −1
. (32)
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Further, arguing as in the proof of Theorem 1, we can show that, for every N ∈ N, there
exists C > 0 such that∫

|p|>n1/α− 1
4k+2

|h(4k+3)
n (p)|dp ≤ Cn−N . �

Theorem 5.2. For α ∈ (4k − 2, 4k), we have∫
R

|h([α]+2)
n (p)|dp ≤ C

n
4k
α −1

.

Proof. The statement can be proved by the same arguments as those in Theorem 3. �
It follows from Lemma 7 and Theorems 3 and 4 that, for every x ∈ R, α ∈ (4k−2, 4k),

we have
|pn(x) + pn ∗ ζn(x)− qα(x)| ≤ C

n
4k
α −1|x|[α]+2

. (33)

For α ∈ (4k, 4k + 2), we have

|pn + pn ∗ ζn(x)− qα(x)| ≤ C

n
4m+2

α −1|x|[α]+2
. (34)

Combining (33),(34), and Lemma 6, we get

pn + pn ∗ ζn(x) ∼ a

|x|1+α , as x→∞.
Our next aim is to compare the asymptotic behaviors of pn + pn ∗ ζn and pn. To this

end, we use Lemma 7 once again.
We put dn(p) = fn(p)ψn(p)− fn(p) = fn(p)

(
ψn(p)− 1

)
.

Theorem 5.3. For every α ∈ ∪∞
k=1

(
(4k − 2, 4k) ∪ (4k, 4k + 2)

)
, we have∫

R

|d([α]+2)
n (p)|dp ≤ Cρ[α+1]−α

n ,

where ρn = n1/2−1/α →∞ as n→∞.
Proof. Assume that α ∈ [4k + 1, 4k + 2). In this case, we have to prove that∫

R

|d(4k+3)
n (p)|dp ≤ Cρ4k+2−α

n . (35)

As above, we derive firstly an estimate for
∫
|p|≤n1/α− 1

4k+2
|d(4k+3)
n (p)|dp. When |p| ≤

n1/α− 1
4k+2 , by (9) and (31), we have

dn(p) = fn(p)ψn(p)− fn(p) = fn(p)ψn(p)[1− ψ−1
n (p)] =

exp(−c2|p|α) exp
(
n
( p

n1/α

)4k+2
T0(

p

n1/α
)
)[

1− exp
(
nv(

p

n1/α
)
)]
. (36)

We get ∫
|p|≤n1/α− 1

4k+2
|d(4k+3)
n (p)|dp =∫

|p|≤ρ−1
n

|d(4k+3)
n (p)|dp+

∫
ρ−1

n <|p|≤n1/α− 1
4k+2

|d(4k+3)
n (p)|dp = An +Bn. (37)

It is not difficult to prove that there exists a constant C > 0 such that

|An| ≤ C
n

n2/α

∫ ρ−1
n

0

pα−4k−1dp = Cρ2
nρ

4k−α
n = Cρ4k+2−α

n

and

|Bn| ≤ C

∫
ρ−1

n <|p|≤n1/α− 1
4k+2

pα−4k−3e−c2p
α

dp ≤
∫ ∞

ρ−1
n

pα−4k−3e−c2p
α

dp ≤ Cρ4k+2−α
n .
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Our next step is to estimate∫
n

1/α− 1
4k+2 ≤|p|≤2n

1/α− 1
4k+2

|d(4k+3)
n (p)|dp.

Note that, for every n ∈ N, p ∈ R, we have ψ−1
n (p) ≤ 1. Arguing as above, we get

that, for every N ∈ N, there exists C > 0 such that∫
n

1/α− 1
4k+2 ≤|p|≤2n

1/α− 1
4k+2

|d(4k+3)
n (p)|dp ≤ Cn−N .

To complete the proof, we note that dn(p) = 0 for |p| > 2n1/α− 1
4k+2 .

The estimate for the case α ∈ (4k − 2, 4m) ∪ (4k, 4k + 1) can be proved by the same
arguments. �
Corollary 5.1. Let us discuss the connection between our results and the local limit
theorems for large deviations (see [3],[2]). To be definite, we assume that α ∈ [4k +
1, 4k + 2). It follows from Theorems 3, 4, and 5 that

pn(x) =
a

|x|1+α +O(
1

|x|4k+3
) + gn(x), as x→∞,

where

|gn(x)| ≤
(
n1/2−1/α

)4k+2−α

|x|4k+3
.

It is clear now that the asymptotic behavior pn(x) ∼ a
|x|1+α , x→∞ is true if(

n1/2−1/α
)4k+2−α

|x|4k+3
= o(

1
|x|1+α ),

or, what is the same, √
n

1
xn1/α

−→
n→∞ 0.

References

1. I.A. Ibragimov, Yu.V. Linnik Independent and Stationary Sequences of Random Variables,
Wolters-Noordhoff, Groningen, 1972.

2. S. V. Nagaev Large deviations of sums of independent random variables. Ann. Prob. 7 (1979),
no. 5, 745–789.

3. Nagaev S. V. Local limit theorems for large deviations. Theory Probab. Appl. 5(1960), no. 2,
234–235.
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5. N. V. Smorodina, M. M. Faddeev The Lévy–Khinchin representation of a class of signed stable

measures, J. of Math. Sci. 159 (2009), no. 3, 363–375.

St.-Petersburg State University, St.-Petersburg, Russia

E-mail address: smorodin@ns2691.spb.edu

St.-Petersburg State University, St.-Petersburg, Russia

E-mail address: mmf@ns2691.spb.edu


