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N. V. SMORODINA AND M. M. FADDEEV

CONVERGENCE OF INDEPENDENT RANDOM VARIABLE SUM
DISTRIBUTIONS TO SIGNED MEASURES AND APPLICATIONS TO
THE LARGE DEVIATIONS PROBLEM

We study properties of symmetric stable measures with index a > 2, a # 2k, k € N.
Such measures are signed ones and hence they are not probability measures. We show
that, in some sense, these signed measures are limit measures for sums of independent
random variables.

1. INTRODUCTION

Let {&1}32, be a sequence of independent identically distributed symmetric random
variables (for simplicity, we consider only a symmetric case). We suppose that the
distribution P; of the random variable &; satisfies the following condition:

Pi((z,+0)) =P(& > x) = 14+0(1)), ©— +oo. (1)

It is well known (see [1]) that, for « € (0,2), the distribution P; belongs to a domain
of attraction of a symmetric stable law with index «. This means that the distributions

of normalized sums
1 n
nl/e Z gi
i=1

weakly converge, as n — 00, to a symmetric stable distribution Q% with index «. The
characteristic function ¢%(p) of Q is equal to exp(—¢|p|®), ¢ > 0.

It is worth to note (see [1]) that the asymptotic behavior of the tail probability P(&; >
x) coincides with the asymptotic behavior of the tail probability of the limit stable
distribution. The corresponding statement is not true for the Central Limit Theorem.

In our work, we suppose that the random variable &; satisfies (1) with « > 2, « # 2k,
k € N. As above, we consider only a symmetric case. It follows from (1) that the
distribution P; belongs to the domain of attraction of the normal law. This means
that the distributions of the normalized sums ﬁ >, & weakly converge to a normal

—al

distribution.
In our paper, we consider the distributions of normalized sums

1 n
/e > & (2)
i=1

with a weaker normalization n'/® (exactly the same normalization as in the case a €
(0,2)). By P, and p,, we denote, respectively, the distribution of the random variable
(2) and the corresponding density. Additionally, we suppose that p, € Lo(R) for all n
large enough.
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It is clear that the sequence P, has no weak limit. Nevertheless, we construct a
sequence of corrections BY (each correction is an operator La(R) — L2(R)) such that the
sequence BSp, converges in Ly(R) to a function ¢%, i.e. ¢® = (L2) limy— oo BSPr.

Each operator BY acts as follows:

ngn = Dn + Dn * Cn
Here, for every n, (, is an inverse Fourier transform of some smooth even function with
bounded support, and ffooo Cn(z)dx = 0.

For a € U | (4k, 4k + 2), the Fourier transform ¢® of the limit function ¢ is
7“(p) = exp(—c|p|®), ¢>0 (3)

exactly as in the case a € (0,2)). But, for v € U, (4k — 2, 4k), the function ¢° is of
k=1
another form, namely

7“(p) = exp(co|p|® — e1p™), ¢co,¢1 > 0. (4)

By 9%, we denote a signed measure in R with the density ¢®. It follows from (3) and
(4) that, for every o > 2, Q*(R) = [*_¢*(x)dx = 1, but the limit measure Q is not a
probability measure, because it is a signed one.

It is very important to note that, for every o > 2, # 2k, k € N, the support of
the negative part of the signed measure Q% belongs to some finite interval. Outside this
interval, the measure Q% is positive. Moreover, the asymptotic behavior of its density
at infinity is of the form fz=, ¢ >0 (exactly as in the classical case o € (0,2)). This
fact partly explains the difference between the form of the Fourier transform of ¢ for
a € U2, (4k — 2,4k) and for o € U2, (4k, 4k + 2). On the contrary, the inverse Fourier
transform of the function f(p) = exp(—c[p|®) for a € U2, (4k — 2, 4k) is negative outside
some finite interval.

Although the limit measure Q% is not a probability one, nevertheless in the last section
of the paper, we prove a theorem about large deviations of sums of independent random
variables using the positive part (actually, the positive tail) of the limit measure. This
result is close to the result of S.V. Nagaev ([3, 2]).

The results of the present paper extend those of our previous paper [5], where only
the case o € (2,4) U (4, 6) was considered.

2. NECESSARY NOTATIONS

We introduce necessary notations. Let {;}5°, be a sequence of independent identically
distributed symmetric random variables. We suppose that the distribution of the random
variable &; satisfies (1). Put a = ab.

We suppose that > 2 and «a # 2k, k € N. By f = f(p), we denote the characteristic
function of & . For k < «, we denote the k—th order moment of the random variable &;
by pr = E€F and the corresponding semiinvariant by si. Since P is symmetric, f(p) is
a real-valued function, and pg # 0 and sg # 0 only for even numbers k.

In addition, we suppose that

K
[f(p)| < e ()

for some K > 0, 6 > 0, so that, for n > %, the distribution of the sum .7 ;& has a
square-integrable density.

3. LiMIT THEOREMS. THE CASE o € U2, (4k, 4k + 2)

Let v € (4k, 4k + 2) for some k € N. We suppose that the characteristic function f(p)
of the random variable &; satisfies (5) and consider the representation

2 4 4k
_ ) o Y .
f(p) =Ecosp& = 1 + o + (k)]

+
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242 404 4k ¢4k
RS A3 PG
E(cosp§1—1+T—T+---— (4k)' =
2 4 4k
H2p Hap HakD
1- . -7 6
STRT g T (6)
where
oo 2,.2 4.4 4k Ak
B p*z?  plx p*x
T(p)_—Z/O (cospm—l—l—T— 1 +o = ah)! )dpl(x)>0, (7)
Lemma 3.1. T(p) ~ c2|p|®, as p — 0, where
oo 2 4 4k
vy Y dy ma
e a/o (cosy =1t G~ T T @y T Tl a)smz
Proof. We present —7'(p) in the form
oo 2,2 4k Ak
px pr
—T(p) =2 B Y A A d —
(p) /0 (cospx + 51 @n)! > P1(x)

2/01(...)d731+2/100(...)d7?1.

It is clear that fol(. ..)dP1 = o(]p|*). Taking (1) into account, we obtain

0o oo 2 4k
— alplo T SR L o
/1 (...)dPy = alp| /0 (cosy — 1+ o (4k)!)y1+°‘ +o(jp[*). O

Further, it follows from (6) and Lemma 1 that, for the logarithm of the characteristic
function, we have the representation

log f(p) = v(p) — T(p) + o(|p|*) = v(p) — c2|p|* + o(|p|*), (8)
where ) . "
__ S2p S4p~ | S4kP
e TR eI
and so, ..., 84y, are semiinvariants of the random variable &;.

Lemma 3.2. There ezist €9, do > 0 such that, for |p| < o,
0< f(p)e v < g=dolpl®
and
e—v(P) > 1.

Proof. Tt is trivial that the second inequality is true in a small neighborhood of the origin.
The first one follows from (8) and Lemma 1. O

Choose a decreasing function y € C*°(R) such that x(x) =1 for z <1 and x(z) =0
for > 2. We define a sequence of smooth functions ¢,, = ¢, (p) by

en(p) = exp (— v(p)x(n*/ T2 |p|)).

Further, by P,,, we denote the distribution of the random variable ﬁ Z?zl &, and
fn stands for the characteristic function of P,,. We have

2 4 4k n
_ D \yn _ (1 _ _H2P Hap— Hakp _ p
In(p) = (f(nl/a)) N (1 2in2/a T Aimire * (4k)In4k/e T(nl/a)> '
It is clear that such a sequence of functions has no limit. In order to obtain a convergent
sequence, we multiply the function f, by

Ualp) = (pal—7))" ©)

Theorem 3.1. The sequence fpib, converges in La2(R) as n — oo to a function q°,
where q°(p) = exp(—cz|p|®).
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Proof. First, we show that f,t, converges to ¢® pointwise. Note that, for every fixed p
and n large enough, [p|n'/(F+2)=1/* < 1. So, using (8), we have

(f(nia)%(nﬁa))n = exp [n(logf(nﬁa) —’U(nﬁa))] =

exp {n<v(n5a) - @% + 0(%) - v(nﬁa))] _

exp [ —cop|* + 0(1)} — exp(—ca|p|®).

Next, we show that f,v, — 6‘3 not only pointwise but in Ly—sense as well.
We have

fn(P)¥n(p) = An(p) + Bn(p), (10)
where
An(p) = fa(P)n(P) L0 2n1/an—1/@nt2)(P])
and
Bp(p) = fn(p)¥n(P)L2n1/an—1/@r12) o0y (IP])-

Note that, for every p € R, A, (p) — aa(p) as n — 00, and, by Lemma 2, the functions
A2 are majorized by the function e~2dolPl”  Using the Lebesgue majorized convergence
theorem, we get that 4, — ¢° in Lo(R).

n—oo

It remains to check that || By||, — 0 as n — oo. First, we note that M = sup|f(p)| <
1 on the interval [2n'/*=1/(4#%+2) 55) and, hence,

Ky (11)

K
|f(p)| < min(M7 F) = Mmin(l, M—p§

Using (11), we have
B3, = | (Fa o)t (p)) dp =
2

nl/ap—1/(4k+2)

LR = [T (s

nl/an—1/~ n—1/v

(K/M)Y? o K
nt/opp2n du + (— "du ) <
§
on—1/~ (K/M)1/8 Mu

1/6 1/6
nl/aM2n 5 / + 1 5 /
M 2nd — 1\ M '

Hence, ||BpllL, — 0 as n — oo. O

4. LIMIT THEOREMS. THE CASE «a € U2 | (4k — 2,4k)

Let o € (4k — 2,4k) for some k € N. Then, for the characteristic function f(p) of the
random variable &1, we have the representation

f(p) = Ecos(p&1) =

2 4k—2 202 4k—2 p4k—2
H2p Hak—2p [ S p &
LT SPTPE a  ei
TR (@ —zyr TE(eoslp) — 1+ 55 T 2)
2 4k—2
H2p Hak—2D
s I s S B o 12
where

2k72x2k72

e8] 2(E2
T(p):2/0 <COpr—1+%—"'+}ﬁ>d7D1($)>0~ (13)
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Lemma 4.1. T(p) ~ co|p|* as p — 0, where

00 2 4k—2 d _
co:2a/ (cosy—1+% —oqp Y )|) LS ™ >0.  (14)
O .

2! (4k = 2)!7 ytte  T(14 a)sin 52

Proof. Tt can be proved by the same arguments as those in Lemma 1. O

Further, it follows from (12) and Lemma 3 that

log f(p) = v(p) + colp|* + o(|p|*), (15)
where
. sop? | sap? sap—2p™h 2
B T
(we recall that s, ..., s4x—2 are semiinvariants of the random variable &;.)

Lemma 4.2. There exist €9,dy > 0 such that, for |p| < eq, the following inequality is
true:

0 < f(p)e ") < elPl”, (16)
Proof. The statement of this lemma follows from (15) and Lemma 3. O

We choose a decreasing function x € C*°(R), such that x(zr) =1 for z <1 x(z) =0
for > 2. Further, for a € (4k — 2,4k), we choose v = (), so that v = 4k for k > 1.
For k =1, we put v =4 for a € [3,4), and v € (o, min(4, 22%)) for o € (2,3).

Now we fix a positive constant ¢; and define a sequence of functions ¢,, n € N by

ntp) = e (= (o) + 2 ) (Y ), 17)

Lemma 4.3. There exists ng such that, for all n > ny,
i%f Yn(p) = 1.

Proof. We prove the lemma only for k > 1, when v = 4k (the case k = 1 can be treated
by the same arguments).
The function ¥, (p) is not equal to 1 only if
nl/a
lp| < ZW' (18)
We now show that, for such p and n large enough,

Clp4k<_ ( 'Y )

- v( s (19)
First, we note that —uv(p) ~ 822112, as p — 0 and, hence, for p small enough, we have
2
—v(p) > 2 (20)
It follows from (20) that (19) is true if p satisfies the condition
p| < MpO—® s, (21)

where M = (%)4’@1—2.

To prove the statement of the lemma, it is sufficient to prove that inequality (18)
stronger than (21) or

1 1 a—2
0<——— < —/——. 22
a 4k T a4k —2) (22)
It is easy to check that (22) is true for k > 1, « € (4k — 2, 4k). O

By P,, and f,,, we denote, respectively, the distribution of the random variable #

>, & and the characteristic function of P,.
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We have

2 4k—2 n
_ D \\n _ _ k2P o Hak—2P b
F) = FGE = (1= g oo - e TR )
It is clear that this sequence has no limit. In order to construct a convergent sequence,

we multiply f,, by ¥, given by (17).

Theorem 4.1. The sequence fp1, converges in La(R) as n — oo to the function 6‘3,
where q®(p) = exp (co|p|a — clp4k) with a constant ¢y > 0 defined by (14).

Proof. First, we show that, for every p € R | f,,(p)n(p) — q/a(p)
Note that, for every p fixed and n large enough, |p|n/7=%/® < 1. So, using (15) and
Lemma 3, we obtain

Fu)n(s) = exp (i (Tox £ = o(-F) ) ) exp-enn™) =

@ 1 o :
P (n <U(L) * CO% Foln) =l ; ))) exp(—c1p™) — el —ep™t,

nl/a n nl/a n—oo
To prove the theorem, it is sufficient to check that the convergence f,v¢,, — 65 takes

place not only pointwise, but in Ly sense as well. This can be proved by the same
arguments as those in Theorem 1. O

5. THE APPLICATION TO THE LARGE DEVIATION PROBLEM

As above, by P,, and p,,, we denote the distribution of nl% >, & and the correspond-
ing density, respectively. Further, by (,, we denote the inverse Fourier transform of the
function v, —1. We recall that the functions 1, are defined by (9) for v € U2 | (4k, 4k+2)
and by (17) for o € U2, (4k — 2, 4k).

It is clear that

/ Cn(z)de =, (0) —1=0. (24)
It follows from Theorems 1 and 2 that the sequence p,, + py, * ¢, converges in La(R) to
the function ¢®. The asymptotic behavior of ¢% is described by the following statement.

Lemma 5.1. We have 1

0*(2) = = + Ol=53) (25)

as x — oo, where a = =2T'(1 4 «)sin &t for a € (4k —2,4k) and a = 2I'(1 + a) sin &5
for a € (4k, 4k + 2).

Proof. The proof can be found in [4]. O

The main aim of this section is to show that the asymptotic behavior of p,, is the same
as the asymptotic behavior of ¢¢.
We need some additional assumptions. Namely, we suppose that, for

ae @k -2 4k),

k=1
the characteristic function f of the random variable &; has the representation
fi2p® frag—2p™ 2
= ]_ — P A e [C 2 2
f(p) o T 0 — )] + colp|® — R(p), (26)
where the function R(p) is of the form
R(p) = pl*I* Ry (p), (27)

and the function Ry is [a] + 2 times continuously differentiable in a neighborhood of the
origin (as usual, by [a], we denote the integer part of ).
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Similarly, we suppose for a € U3° | (4k, 4k + 2) that the characteristic function f has
the representation

pop? pagp®

Jp) =1 ==+

where the function R(p) satisfies (27). We also suppose that, outside of a neighborhood
of the origin, the function f is [a]+2 times continuously differentiable, and all derivatives
fO(p),i=1,2...,[a] + 2, are bounded.

For example, for every A > 0, the distribution P; with density V of the form

aA 1
Vi(z) = TWHA,OO)(WD

— c2|p|* + R(p), (28)

satisfies the last condition. Moreover, its characteristic function f(p) satisfies (26) for
a € U2, (4k — 2,4k) and (28) for o € U2, (4k, 4k + 2).
Below, we need the following trivial statement.

Lemma 5.2. Let g be the Fourier transform of a function g. Suppose that, for some
1eN, g® e Li(R). Then, for every x € R, we have

9() < 5= [ B0, (29)

By h,, we denote the function

ha(p) = fu(P)¥n(p) — ¢*(p).

It follows from Theorems 1 and 2 that ||hy|z, — 0 as n — oco.

In what follows, by C, we denote a positive constant. The same letter C' may denote
different constants.

We now consider separately the case a € (4k — 2,4k) and « € (4k,4k + 2). First, we
consider the case a € (4k,4k + 2).

Theorem 5.1. For a € (4k,4k + 2), we have

C
jg|hga}*m(Pﬂa@ S “mmo

Proof. Let « € [4k + 1,4k + 2) (the case a € (4k, 4k + 1) can be considered by the same
arguments). First, we estimate

/< o gk RG3) (p)|dp.
rIsn

It follows from (28) that
log f(p) = v(p) — ca|p|* + p***To(p), (30)
and the function Ty is 4k + 3 times continuously differentiable in a neighborhood of
the origin.
For |p| < n!/*~ 7% using (30), we have

ha(p) = Fu(p)n (p) — exp(—calpl®) = exp <n(1ogf< Py v<p>)) ~ exp(—ealpl®)

nl/a

—exp(-cal®) | exp (= ()T () - 1],
(31)
Note that function (31) is 4k + 3 times differentiable at the origin.
From (31), we get the following estimate:
[ WO 0y < . (32
lpl<n™ /" ARF2

n o«
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Further, arguing as in the proof of Theorem 1, we can show that, for every N € N, there
exists C' > 0 such that

/ 1a— |h$z4k+3) (P)|dp < cn N, O
Ip|>n ikf2

Theorem 5.2. For o € (4k — 2,4k), we have
C
[ e <~
R na

Proof. The statement can be proved by the same arguments as those in Theorem 3. [

It follows from Lemma 7 and Theorems 3 and 4 that, for every € R, « € (4k—2, 4k),
we have

c

[pn(z) + pn * CGu(x) — ¢*(2)] < m (33)
For a € (4k, 4k + 2), we have
o C
|pn + Pn * Cn ({E) —q ({E)| < Imiz (34)

n &=t gl +2
Combining (33),(34), and Lemma 6, we get
a
Pn +pn*Cn(x)N—|m|1+a, as r — o0.

Our next aim is to compare the asymptotic behaviors of p,, + p, * ,, and p,. To this
end, we use Lemma 7 once again.

We put dn(p) = fu(0)tn(®) = fa(0) = fu() (Vu(p) — 1).

Theorem 5.3. For every oo € U2 <(4k —2,4k) U (4k, 4k + 2)), we have

/ |+ (p)|dp < Cplott—,
R

12=1/a _, 55 g5 m — oo.

where p, =n

Proof. Assume that « € [4k + 1,4k + 2). In this case, we have to prove that

[ wlap < ot (3)
As above, we derive firstly an estimate for f\p\@ﬂ“*ﬁig |d$z4k+3) (p)|dp. When |p| <

== (9) and (31), we have
dn(p) = fa(P)¥n(p) = fu(p) = (@) (D)1 — ¥ ()] =

o D \4k+2 p p
exp(-cali®)exw () P ) [ ()| 60
We get,
[
[pl<n’/ o752
[ el [ O p)dp = A, + B (37)
Ip|<pn’ pnt<|pl<n’/ * T AkF2

It is not difficult to prove that there exists a constant C' > 0 such that

-1

n n Ak _ _
| 4n| < CHQ/O( /0 pa 4k ldp C EL ;llk « C ;lLk+2 «
and

(o)

a—4k—3  —cop®™ a—4k—3 —cop® Ak+2—a

IBnISC/l a1 P e P dpﬁ/lp e” P dp < Cp, :
pn <|p|<n 1k+2 Pn



102 N. V. SMORODINA AND M. M. FADDEEV

Our next step is to estimate

/1 PR Va1 _ |d£z4k+3)(p)|dp-
n'/ AR <|p|<on /T AR

Note that, for every n € N, p € R, we have 1, }(p) < 1. Arguing as above, we get
that, for every NV € N| there exists C' > 0 such that

|d*3) (p)|dp < Cn~ Y.

1 1
/rzl/“‘—4k+2 <|p|<2n'/*"TE

)
To complete the proof, we note that d,,(p) = 0 for |p| > 2n
The estimate for the case o € (4k — 2,4m) U (4k, 4k + 1) can be proved by the same

arguments. O

1
1/0‘_4k+2.

Corollary 5.1. Let us discuss the connection between our results and the local limit
theorems for large deviations (see [3],]2]). To be definite, we assume that o € [4k +
1,4k + 2). It follows from Theorems 3, 4, and 5 that

a 1
pn(z) = |z e + O(|x|4k+3) +gn(), asz — oo,

where
(n1/2—1/a)4’9+2*a

900 < e

It is clear now that the asymptotic behavior p,(x) ~ leﬁ’ T — 00 is true if

(n1/2—1/a)4k+2—0¢ 1

|z[3R+3 O(|x|1+a)’

or, what is the same,
1
vVn—— — 0.

xnl/a n—oo
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