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O. SUGAKOVA

DENSITY ESTIMATION BY OBSERVATIONS WITH ADMIXTURE

We consider a two-component mixture model, in which the component of interest (the
primary component) is assumed to be symmetrically distributed, and the admixture
distribution has a known probability density function (pdf). The mixing probability
and the mean of the primary component are unknown as well. A kernel estimate for
the primary component’s pdf is proposed. Under some assumptions, the asymptotic
normality of this estimate is demonstrated.

1. Introduction

In this paper, we consider i.i.d. real valued observations {ξ1, ξ2, . . . , ξN} taken from a
mixture of two components: the primary component with an unknown distribution and
the admixture, whose distribution is known. It will be assumed that both components
have probability density functions and the pdf of the primary component is symmetric
around its median. Thus, the pdf of ξi is

(1) ψ(x) = pf(x− a) + (1− p)f0(x),
where f0(x) is the known admixture pdf, a ∈ R is the median of the primary component,
f(x) is the pdf of the primary component centered by a (f is an even function: f(−x) =
f(x)), and p ∈ (0, 1) is the mixing probability. The parameters a and p (which are called
Euclidean parameters) are assumed to be unknown. The pdf f is the nonparametric
part of the model. There is a vast literature devoted to the estimation of parameters and
distributions of two-component mixtures [1-3].

Model (1) was introduced in [1], where estimates for a and p are constructed, and their
consistency is demonstrated. Another estimate for a based on generalized estimating
equations (GEE) approach was proposed in [3]. There, the asymptotic normality of this
estimate is demonstrated.

An estimate f̂ for f was proposed in [1] on the basis of the estimates for a and p
obtained in that article and a kernel estimate for ψ. The consistency of this estimate in
the L1- norm was demonstrated.

The aim of this paper is to investigate the asymptotic behavior of f̂ and its modifica-
tion in the case where the true pdf f is twice continuously differentiable.

2. Statement of the Problem

To derive an estimate for f, we note that, by (1),

(2) f(x) =
1
p

(ψ(x+ a)− (1− p)f0(x + a)) .

We will replace the unknown parameters in this formula by their estimates. For the
estimation of the pdf ψ(x), we use the kernel estimate [4, p.57]

(3) ψ̂N (x) =
1

NhN

N∑
j=1

K

(
x− ξj
hN

)
,
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where K is a kernel that is pdf on R, and {hN , N ≥ 1} is a bandwidth such that hN → 0
and NhN →∞ as N →∞.

A generalized estimating equation (GEE) for a is proposed in [3]. Here, we consider
unbiased estimating equations of the form

(4) ĥ(α) = 0,

where

ĥ(α) =
1
N

N∑
j=1

(g1(x − α)G2(α)− g2(x− α)G1(α)) ;

g1(x), g2(x) are some fixed odd functions; Gi(α) =
∫∞
−∞ gi(x− α)f0(x)dx.

Statistics âN is called a GEE-estimate with the estimating pair (g1, g2), if ĥ(âN ) = 0
a.s. In [3], the asymptotic normality of âN was demonstrated. A consistent GEE estimate
âN is constructed with the estimating pair g1(x) = x; g2(x) = x3. This âN is called a
moment estimate.

To estimate the parameter p, we use the method of moments. We denote m0 =∫∞
−∞ xf0(x)dx. Equating the theoretical and empirical moments of observations, we

obtain the equation for the estimate p̂N :

p̂(a−m0) +m0 =
1
N

N∑
j=1

ξj .

Since a is unknown, we replace it by a GEE estimate âN from (4). So,

(5) p̂N =
1

âN −m0

⎛⎝ 1
N

N∑
j=1

ξj −m0

⎞⎠ .

The resulting estimate for f is

(6) f̂N(x) =
1
p̂N

(
ψ̂N (x + âN)− (1− p̂N )f0(x + âN)

)
.

This estimate has the same form as the estimate proposed in [1], but we use here
another estimates for a and p. Additionally, we consider a symmetrized version of our
estimate:

(7) f̃N(x) =
f̂N (x) + f̂N (−x)

2
.

3. Main results

Different numerical constants will be denoted by c1, c2, . . . , ck. The sign ⇒ means the
weak convergence of distributions.

To derive asymptotic results, we will use the following assumptions.
(i) Assumptions about the kernel:

K(x)− is a finitely supported function, i.e. ∃ [a, b] ∈ R, that K(x) = 0 if x �∈ [a, b];

Var[a,b]K ′(x) < c1,where Var[a,b] means the functional variation on [a, b];

d2 =
∫ ∞

−∞
K2(z)dz <∞;

∫ ∞

−∞
zK(z)dz = 0.

(ii) Assumptions about density’s components:
f(x) and f0(x) are twice continuously differentiable;

|f ′(x)| < c2; |f ′
0(x)| < c3; m0 �= a;
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−∞
x2f(x)dx <∞;

∫ ∞

−∞
x2f0(x)dx <∞.

(iii) Assumptions about the estimating functions for a:
g′i(x), G

′
i(x) are continuous on R;

E(gi(ξ1 − a))2 <∞, i = 1, 2; E
∂

∂α
h(ξ1, α)|α=a �= 0;

for some ε > 0, δ > 0 :

E sup
α:|a−α|<ε

|g′i(ξ1 − α)|1+δ <∞, i = 1, 2.

(iv) âN is a consistent estimate for a;
(v) Assumption about the bandwidth hN :

hN = CN−1/5, C − some constant.
Remark 3.1. In practice, the parameter C of the bandwidths hN is usually taken to
be dependent on the data ξ1, . . . , ξN . For example, in the so-called Silverman’s rule-

of-thumb, we have CN =
(

8
√
πD

3d2

) 1
5
Ŝ, where Ŝ2 is the sample variance of the data.

To simplify the presentation, we consider only a constant C, but the results can be
generalized to the case where CN → C as n→∞.

Denote D =
∫∞
−∞ z2K(z)dz.

Theorem 3.1. Assume that assumptions (i)-(v) hold.
Then

N
2
5

(
f̂N (x)− f(x)

)
⇒ η1,

where η1 is a normal random variable distributed as

N

(
D2C2

2p
ψ′′(x+ a),

d2

Cp2
ψ(x+ a)

)
.

The next theorem describes the asymptotic behavior of the symmetrized estimate (7).

Theorem 3.2. Assume that (i)-(v) hold. Then

N
2
5

(
f̃N (x)− f(x)

)
⇒ η2,

where η2 is the normal random variable distributed as

N

(
D2C2

4p
(ψ′′(x + a) + ψ′′(−x+ a)) ,

d2

4Cp2
(ψ(x+ a) + ψ(−x+ a))

)
.

Remark 3.2. For example, in the case where f(x) and f0(x) are standard Gaussian
densities and âN is a moment estimate, assumptions (ii)-(iv) hold.

4. Proofs of results

Proof. of Theorem 3.1.
From

f(x) = f0(x+ a) +
1
p
(ψ(x+ a)− f0(x+ a))

and (5), we get
f̂N (x)− f(x) = εN1 + εN2 + εN3 + εN4 ,

where

εN1 =
(

1− 1
p̂N

)
(f0(x+ âN )− f0(x+ a));



106 O. SUGAKOVA

εN2 =
1
p̂N

(
ψ̂N (x+ âN )− ψ(x + âN)

)
; εN3 =

1
p̂N

(ψ(x+ âN )− ψ(x + a)) ;

(8) εN4 =
p− p̂N
pp̂N

(ψ(x+ a)− f0(x+ a)).

At first, we will consider the convergence rate of Euclidean parameters of the estimates
âN and p̂N . By Theorem 2.1 from [3]: if (iii) holds,

(9) âN − a = Op

(
1√
N

)
.

Remark 4.1. For any random sequence εN , the notation εN = Op

(
1√
N

)
means that

lim
C→∞

lim sup
N→∞

P
{√

N |εN | > C
}

= 0.

We now consider an estimate of the parameter p. From (5)

(10) p̂N − p =
1

âN −m0

⎛⎝ 1
N

N∑
j=1

ξj −m0(1 − p)− ap
⎞⎠− p

âN −m0
(âN − a) .

By the central limit theorem [4, p.179],

(11)
1
N

N∑
j=1

ξj −m0(1− p)− ap = Op

(
1√
N

)
.

Equations (9)-(11) imply that

(12) p̂N − p = Op

(
1√
N

)
.

Due to (9), the boundedness of derivatives of ψ(x), f0(x), and the Lagrangian theorem,
we conclude that, for some intermediate points θ1 and θ2 between âN and a,

εN1 =
(

1− 1
p̂N

)
f ′
0(x+ θ1)(âN − a) = Op

(
1√
N

)
,

(13) εN3 =
1
p̂N

ψ′(x + θ2)(âN − a) = Op

(
1√
N

)
.

From (12) we derive the same convergence rate for εN4 .

(14) εN4 = Op

(
1√
N

)
.

It remains to consider εN2 . Let us expand it as

(15) εN2 = δN1 + δN2 + δN3 ; where

δN1 =
1
p̂N

(
ψ̂N (x+ âN )− ψ̂N (x+ a)

)
,

(16) δN2 = − 1
p̂N

(ψ(x+ âN )− ψ(x+ a)) , δN3 =
1
p̂N

(
ψ̂N (x+ a)− ψ(x+ a)

)
.

Obviously, δN2 is Op
(

1√
N

)
as N → ∞. The asymptotic behavior of the third term is

described by the following theorem.
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Theorem 4.1. [4, p.57] Assume that

D =
∫ ∞

−∞
z2K(z)dz <∞; d2 =

∫ ∞

−∞
K2(z)dz <∞;

∫ ∞

−∞
zK(z)dz = 0;

and the function ψ(x) is doubly differentiable. The estimate ψ̂(x) defined by (3) can be
represented as

ψ̂N (x) = ψN (x) +
ζN (x)√
NhN

,

where

ψN (x) = Eψ̂N (x) =
∫ ∞

−∞
K(z)ψ(x− zhN)dz →N→∞ ψ(x) ;

ζN (x) =
1√
NhN

N∑
j=1

(
K

(
x− ξj
hN

)
− EK

(
x− ξj
hN

))
⇒ ζ;

where ζ is a zero mean Gaussian r.v. with variance d2ψ(x).

By Taylor’s formula,

ψN (x) =
∫ ∞

−∞
K(z)ψ(x− zhN)dz =

=
∫ ∞

−∞
K(z)

(
ψ(x) − zhNψ′(x) +

z2hN
2

2
ψ′′(θx,hN )

)
dz =

= ψ(x) +
hN

2

2

∫ ∞

−∞
z2K(z)ψ′′(θx,hN )dz = ψ(x) +

hN
2D2

2
ψ′′(x) + o(hN 2).

So, by Theorem 4.1,

ψ̂N (x+ a)− ψ(x + a) =
D2ψ′′(x+ a)

2
h2
N +

ζN (x+ a)√
NhN

+ o(h2
N ),

where ζN (x + a) converges weakly to ζ(x + a) distributed as N(0, d2ψ(x + a)). By
assumption (iiv), hN = CN−1/5, so

δN3 =
N−2/5

p

(
C2D2ψ′′(x+ a)

2
+
ζN (x+ a)√

C

)
+

+
N−2/5

pp̂N
(p− p̂N)

(
C2D2ψ′′(x+ a)

2
+
ζN (x+ a)√

C

)
+ o(N−2/5) =

(17) =
N−2/5

p

(
C2D2ψ′′(x + a)

2
+
ζN (x+ a)√

C

)
+ o(N−2/5).

For the first term in (15), we have

(18) δN1 =
ψ̂′
N (x+ θ3)
p̂N

(âN − a),
where θ3 is an intermediate point between âN and a.

Consider

ψ̂′
N (x) =

1
Nh2

N

N∑
j=1

K ′
(
x− ξj
hN

)
=

1
h2
N

∫ ∞

−∞
K ′

(
x− y
hN

)
dμN (y),

where μN (y) = 1
N

∑N
j=1 I {ξj < y} is the empirical measure (I{A} is an indicator of a

set A ). Similarly, we denote

ψ̃N (x) =
1
h2
N

∫ ∞

−∞
K ′

(
x− y
hN

)
dP (y),
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where P (x) = P{ξ1 < x}. Then

(19) ψ̂′
N (x) = ψ̃N (x) +

1
h2
N

∫ ∞

−∞
K ′

(
x− y
hN

)
d (μN (y)− P (y)) .

Changing variables and integrating by parts, we obtain

ψ̃N (x) =
1
h2
N

∫ ∞

−∞
K ′

(
x− y
hN

)
ψ(y)dy =

∫ ∞

−∞
K(z)ψ′(x − zhN)dz = ψ′(x) +O(h2

N ).

To estimate δN1 , we need the following inequality ([5, p.138]): if f(x) is a function con-
tinuous on [a, b], and g(x) is a function with bounded variation on [a, b], then∣∣∣∣∣

∫ b

a

f(x)dg(x)

∣∣∣∣∣ ≤ max
x∈[a,b]

|f(x)| ·Varx∈[a,b]g(x).

So,
1
h2
N

∣∣∣∣∫ ∞

−∞
K ′

(
x− y
hN

)
d (μN (y)− P (y))

∣∣∣∣ =

1
h2
N

∣∣∣∣∫ ∞

−∞
(μN (y)− P (y)) dK ′

(
x− y
hN

)∣∣∣∣ ≤
≤ 1
h2
N

vary∈RK ′
(
x− y
hN

)
· sup
y∈R

|μN (y)− P (y)| .

By assumption (i), Vary∈RK ′
(
x−y
hN

)
is finite. By the Vapnik–Chervonenkis inequality

[6, p.231],

(20) P
{

sup
y∈R

|μN (y)− P (y)| > ε

}
≤ 6(2N + 1) exp

(
−ε

2(N − 1)
2

)
.

For ε ≥ lnN√
N

, the right-hand side of (20) tends to zero as N →∞. So we conclude that

|μN (y)− P (y)| = Op

(
lnN√
N

)
.

Substituting the derived results on the asymptotics of both terms and hN = CN−1/5 to
(19), we conclude that

(21) ψ̂′
N (x) = ψ′(x) + o(h2

N ) +Op

(
1
h2
N

logN√
N

)
= ψ′(x) +Op(lnN ·N−1/10).

This yields δN1 = Op

(
1√
N

)
. So,

(22) εN2 =
N−2/5

p

(
C2D2ψ′′(x+ a)

2
+
ζN (x+ a)√

C

)
+ op(N−2/5).

Substituting (13), (14), and (21) into (7), we derive the statement of Theorem 3.1 �

Proof. of theorem 3.2. Obviously,

(23) f̃N(x) − f(x) =
f̂N (x)− f(x)

2
+
f̂N (−x)− f(−x)

2
.

Let us apply Theorem 4.1 to the first and second terms of (23). We have

f̂N(x) − f(x) =
N−2/5

p

(
C2D2ψ′′(x+ a)

2
+
ζN (x+ a)√

C

)
+ op(N−2/5);

(24) f̂N (−x)− f(−x) =
N−2/5

p

(
C2D2ψ′′(−x+ a)

2
+
ζN (−x+ a)√

C

)
+ op(N−2/5),
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where ζN (x + a) and ζN (−x+ a) are defined as

ζN (x+ a) =
1√
NhN

N∑
j=1

(
K

(
x+ a− ξj

hN

)
− EK

(
x+ a− ξj

hN

))
;

ζN (−x+ a) =
1√
NhN

N∑
j=1

(
K

(−x+ a− ξj
hN

)
− EK

(−x+ a− ξj
hN

))
.

Lemma 4.1. If (i)-(v) hold and x �= a,(
ζN (x + a)
ζN (−x+ a)

)
⇒
(
ζ1

ζ2

)
, where

(
ζ1

ζ2

)
is a zero mean normal vector with covariance matrix

B = d2

(
ψ(x+ a) 0

0 ψ(−x+ a)

)
Proof. of lemma 4.1. We will use the central limit theorem in the following form.

Theorem 4.2. [7 , p. 201] Let ξ1,N , . . . , ξN,N be random vectors independent for fixed
N with Eξj,N = 0; ζN =

∑N
j=1 ξj,N . Denote

σ2
j,N = Eξj,Nξ

T
j,N ; σ2

N =
N∑
j=1

σ2
j,N .

Assume that
1)σ2

N → σ2, where σ2 is some positive definite matrix;
2) The Lindeberg condition

BN =
N∑
j=1

E
(
ξ2j,N ; |ξj,N | > τ

)→ 0; N →∞

holds for any constant τ > 0. Then the random vector ζN converges weakly to a zero-
mean normal vector with the covariance matrix σ2.

Let us show that the assumptions of Theorem 4.2 hold for the vector sequence(
ζN (x+ a)
ζN (−x+ a)

)
. By the theorem, 3.1

DζN (x + a)→ d2ψ(x + a); DζN (−x+ a)→ d2ψ(−x+ a).

For the covariance of the entries, we have

Cov(ζN (x + a), ζN (−x+ a)) =

= E

⎛⎝ N∑
j=1

1√
NhN

(
K

(
x+ a− ξj

hN

)
− EK

(
x+ a− ξj

hN

))
×

×
N∑
j=1

1√
NhN

(
K

(−x+ a− ξj
hN

)
− EK

(−x+ a− ξj
hN

))⎞⎠ =

=
1

NhN

N∑
j=1

E

(
K

(
x+ a− ξj

hN

)
− EK

(
x+ a− ξj

hN

))(
K

(−x+ a− ξj
hN

)
−

−EK
(−x+ a− ξj

hN

))
=

1
hN

(
EK

(
x+ a− ξ1

hN

)
K

(−x+ a− ξ1
hN

)
−
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−EK
(
x+ a− ξ1

hN

)
EK

(−x+ a− ξ1
hN

))
=
∫ ∞

−∞
K(s)K

(
s− 2x

hN

)
×

×ψ(x+ a− shN )ds− hN
∫ ∞

−∞
K(s)ψ(x+ a− shN )ds

∫ ∞

−∞
K(s)ψ(−x+ a− shN)ds.

Since K(x) is finitely supported, ψ(x) is bounded, x �= a, and hN → 0,

Cov(ζN (x+ a), ζN (−x+ a))→ 0, N →∞.
Then, by (i), K(x) < c4. So, by the Chebyshev inequality,

BN =
1

NhN

N∑
j=1

E

((
K

(
x+ a− ξj

hN

)
− EK

(
x+ a− ξj

hN

))2

+

+
(
K

(−x+ a− ξj
hN

)
− EK

(−x+ a− ξj
hN

))2
)
×

×χ
{(

K

(
x+ a− ξj

hN

)
− EK

(
x+ a− ξj

hN

))2

+

+
(
K

(−x+ a− ξj
hN

)
− EK

(−x+ a− ξj
hN

))2

> τ2NhN

}
≤

≤ 8c24
hN

P

{(
K

(
x+ a− ξj

hN

)
− EK

(
x+ a− ξj

hN

))2

+

+
(
K

(−x+ a− ξj
hN

)
− EK

(−x+ a− ξj
hN

))2

> τ2NhN

}
≤ 8c24
hN

8c24
τ2NhN

. Since hN = CN−1/5, the rhs of the inequality tends to zero. Lindeberg’s condition is
verified, and Lemma 4.1 is proved. �

To complete the proof of Theorem 3.2, it is sufficient to substitute (24) in (23) and
take the asymptotics of normal components into account. �
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