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O. SUGAKOVA

DENSITY ESTIMATION BY OBSERVATIONS WITH ADMIXTURE

We consider a two-component mixture model, in which the component of interest (the
primary component) is assumed to be symmetrically distributed, and the admixture
distribution has a known probability density function (pdf). The mixing probability
and the mean of the primary component are unknown as well. A kernel estimate for
the primary component’s pdf is proposed. Under some assumptions, the asymptotic
normality of this estimate is demonstrated.

1. INTRODUCTION

In this paper, we consider i.i.d. real valued observations {&1, &2, ..., &N} taken from a
mixture of two components: the primary component with an unknown distribution and
the admixture, whose distribution is known. It will be assumed that both components
have probability density functions and the pdf of the primary component is symmetric
around its median. Thus, the pdf of §; is

(1) Y(z) =pf(z—a)+ (1 —p)fo(z),

where fo(z) is the known admixture pdf, a € R is the median of the primary component,
f(z) is the pdf of the primary component centered by a (f is an even function: f(—z) =
f(z)), and p € (0,1) is the mixing probability. The parameters a and p (which are called
Euclidean parameters) are assumed to be unknown. The pdf f is the nonparametric
part of the model. There is a vast literature devoted to the estimation of parameters and
distributions of two-component mixtures [1-3].

Model (1) was introduced in [1], where estimates for a and p are constructed, and their
consistency is demonstrated. Another estimate for a based on generalized estimating
equations (GEE) approach was proposed in [3]. There, the asymptotic normality of this
estimate is demonstrated.

An estimate f for f was proposed in [1] on the basis of the estimates for a and p
obtained in that article and a kernel estimate for ¢). The consistency of this estimate in
the Li- norm was demonstrated.

The aim of this paper is to investigate the asymptotic behavior of f and its modifica-
tion in the case where the true pdf f is twice continuously differentiable.

2. STATEMENT OF THE PROBLEM

To derive an estimate for f, we note that, by (1),

() f(x) = }9 ((z +a) — (1 - p) folz +a)).

We will replace the unknown parameters in this formula by their estimates. For the
estimation of the pdf ¢(z), we use the kernel estimate [4, p.57]

®) i) = i K ()
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where K is a kernel that is pdf on R, and {hy, N > 1} is a bandwidth such that hy — 0
and Nhy — oo as N — oo.

A generalized estimating equation (GEE) for a is proposed in [3]. Here, we consider
unbiased estimating equations of the form

(4) h(a) =0,
where
| X
h(a) = Z (91(z — a)Ga(@) = g2( — a)G1(a)) ;
g1(x), g2(x) are some fixed odd functions; G;(a) = [*_ gi(z — a)fo(z)dx

Statistics ay is called a GEE-estimate with the estimating pair (g1, g2), if iL(dN) =0
a.s. In [3], the asymptotic normality of @y was demonstrated. A consistent GEE estimate
ay is constructed with the estimating pair g (x) = x; go(2z) = 2%. This ay is called a
moment estimate.

To estimate the parameter p, we use the method of moments. We denote mg =
ffooo xfo(x)dz. Equating the theoretical and empirical moments of observations, we
obtain the equation for the estimate py :

pla—mo) +mo = — Zﬁa

Since a is unknown, we replace it by a GEE estimate dy from (4). So,

(5) ﬁN = Z f] mo

CLN — myo
The resulting estimate for f is
A 1 o
(6) @) = 5= (e +an) = (1 =)ol +an))

This estimate has the same form as the estimate proposed in [1], but we use here
another estimates for a and p. Additionally, we consider a symmetrized version of our
estimate:

(7) fn(z) =

3. MAIN RESULTS

Different numerical constants will be denoted by ¢y, ¢a, ..., cx. The sign = means the
weak convergence of distributions.

To derive asymptotic results, we will use the following assumptions.

(i) Assumptions about the kernel:

K (x) — is a finitely supported function, i.e. 3 [a,b] € R, that K(x) =0if « & [a, b];

Vary, 5 K '(x) < c1, where Var(, 5 means the functional variation on [a, b];

o0 o0
d? = / K?(2)dz < oo; / zK(z)dz = 0.
—o00 —00

(ii) Assumptions about density’s components:
f(x) and fo(x) are twice continuously differentiable;

[F(@) <e2 |fo(@)] <es; mo#a;



DENSITY ESTIMATION BY OBSERVATIONS WITH ADMIXTURE 105

/OO 22 f(x)dr < oo; /OO 22 fo(z)dr < cc.

oo o
(iii) Assumptions about the estimating functions for a:
gi(z), Gj(x) are continuous on R;
. 0
E(gi(fl _a/))Q < 00,1 = 1527 Ea_ah(gha)'(y:a?éo;
for some ¢ > 0,0 >0 :
E sup |gi(& — cu)|1+(S < 00,i=1,2.

ala—al<e

(iv) an is a consistent estimate for a;
(v) Assumption about the bandwidth hy:

hy = CN~Y5 C — some constant.

Remark 3.1. In practice, the parameter C of the bandwidths Ay is usually taken to
be dependent on the data &;,...,&y. For example, in the so-called Silverman’s rule-

of-thumb, we have Cy = (8‘3/(?3)5 S’, where S2 is the sample variance of the data.

To simplify the presentation, we consider only a constant C, but the results can be
generalized to the case where Cy — C as n — oo.

Denote D = [%_22K(z)d=.

Theorem 3.1. Assume that assumptions (i)-(v) hold.
Then

NE (fu(@) - £@) = m,

where 11 is a normal random variable distributed as

pc? P2
N (Do) e+ ).

The next theorem describes the asymptotic behavior of the symmetrized estimate (7).
Theorem 3.2. Assume that (i)-(v) hold. Then
0 [~
NE (fw(@) = f@)) = m,

where 2 is the normal random variable distributed as

2012 )
N (% W"(x +a) + " (—x +a)), %})2 ((z +a) +(—x + a))> .

Remark 3.2. For example, in the case where f(z) and fo(x) are standard Gaussian
densities and Gy is a moment estimate, assumptions (ii)-(iv) hold.

4. PROOFS OF RESULTS

Proof. of Theorem 3.1.
From

£(@) = fola +0) + (¥la + @) = folar +a)
and (5), we get
In(@) = flz) =€l +e +e5 +ef,

where

el = (1 - %) (fo(z +an) — fo(z + a));
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Eév:AiQ[}N(!E-FdN)_w(x"‘dN)); ey = Al (U(z +an) —(z +a));

P —DPN
(8) el =2 (W(z+a) - folz +a)).
PPN
At first, we will consider the convergence rate of Euclidean parameters of the estimates
an and py. By Theorem 2.1 from [3]: if (iii) holds,

. 1
(9) aN—a—Op<\/—N).
Remark 4.1. For any random sequence ¢y, the notation ey = O, (LN) means that
Jim_ limsup P {\/N|5N| > c} —0.
We now consider an estimate of the parameter p. From (5)
i 1 1 ¢ .
(10) PN =P =G~ N;ﬁj—mo(l—p)—ap —m(aN—a)-

By the central limit theorem [4, p.179],

1 o 1
(11) LN g —moll—p) —ap =0, (= ).
N; o (m)
Equations (9)-(11) imply that
(12) pn—p=0, (%ﬁ) |

Due to (9), the boundedness of derivatives of 9 (z), fo(z), and the Lagrangian theorem,
we conclude that, for some intermediate points #; and 0 between ay and a,

= (1 ) St ey -0 = 0, ().

(13) Y = e+ 0y -0 = 0, ().

From (12) we derive the same convergence rate for 2.

(14) V=0, (%) .

It remains to consider €Y. Let us expand it as

(15) el =0 +6) + Y,  where

5 = ]% (@N(J?erzv) —¢N($+a)) ,

1 .
(16) 9 = ——— (o +an) ~ Y@+ a), & = -

(Q/AJN(Q: +a)— Yz + a)) )

Obviously, 6 is O, (ﬁ) as N — oo. The asymptotic behavior of the third term is
described by the following theorem.
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Theorem 4.1. [/, p.57] Assume that

oo

D= / 2)dz < o0; d* = / K?(2)dz < oo; / 2K (z)dz = 0;
and the function (z) is doubly differentiable. The estimate 1) (x) defined by (8) can be
represented as

I (@) = (@) + @]VV(;Z)V ,

where

Q/JN( ) EQ/JN / K :L' — th)dz —N—o00 1/}(1[:) 5

)25

where ¢ is a zero mean Gaussian r.v. with variance d*y(z).

By Taylor’s formula,

(z) = /_ T K()(o — 2hy)dz =

/ i ( ) = 2hay! (@) + 22N2¢”(9:c,h1\,))dz:

2 " hN2D2 " 2
= @)+ [ PR Oun e = 9(@) + 2 @) + olh®).
So, by Theorem 4.1,
2,11
(ot a) = (o +0) = T SO o),

where (y(z + a) converges weakly to ((z + a) distributed as N(0,d%y(z + a)). By
assumption (iiv), hy = CN~'/% so

5y = N~—2/5 <C2D21/)”(x+a) N CN(x—l—a)) N

2 Ve
N5 C?D*)"(x+a) | (n(z+ G)) —2/5y _
e (p —pn) ( 5 + Nei +o(N )=
B N_2/5 CQDQ’lp”(Z“Fa) CN(J?“‘G)) —2/5
() == ( > T )T
For the first term in (15), we have
(18) o = w(w —a)

where 3 is an intermediate point between ay and a.

Consider
1 [ T—y
= — K,
) hy [w ( hn ) dyinr(v)

Il Nh2 Z (

where pn(y) = + ijl I{¢ <y} is the empirical measure (I{A} is an indicator of a
set A ). Similarly, we denote

into) =g [ (52 art)
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where P(z) = P{{1 < z}. Then
5, - 1 [ ,(z—y
(19) o) =i + 5 [ K (52 dluv) - ).
N J—oc0 N

Changing variables and integrating by parts, we obtain

7 1 >~ (T Y >~ ’ / 2

YN () = 7z K i V(y)dy = K(2)Y'(x — zhn)dz = ¢'(x) + O(hiy).

N J—o0 —00

To estimate 61, we need the following inequality ([5, p.138]): if f(z) is a function con-
tinuous on [a, b], and g(x) is a function with bounded variation on [a, b], then

[ o] < g 1o Vet
So,
1/ (2o
% /_O:O (un(y) — P(y)) dK’ (xh—jvy)‘ 5
< %UaryeRK, <xhjvy> Slelg“w(y) o

By assumption (i), VaryepK’ (%) is finite. By the Vapnik—Chervonenkis inequality
(6, p.-231],

@) P {swlint) - PO >} <0eN + e (-
YyER

52(N2— 1)) .

For e > %, the right-hand side of (20) tends to zero as N — co. So we conclude that

In N
- P =0, —= ).
() = Pl = 0, ()
Substituting the derived results on the asymptotics of both terms and hy = CN~1/% to
(19), we conclude that
1 log N

(21) ¢x<x>=w’<x>+o<h%>+op(@ -

) ='(x) + Op(In N - N~1/10),

This yields 6%V = O, (ﬁ) So,

N72/5 02D2 "
(22) 8é\f _ p ( ¢2(a:+a) + CN%" a)) —|—0p(N72/5).

Substituting (13), (14), and (21) into (7), we derive the statement of Theorem 3.1 [
Proof. of theorem 3.2. Obviously,

(23) () = f(z) = fN<a’>2— f@) fN<—x>2— f(=x)
Let us apply Theorem 4.1 to the first and second terms of (23). We have
A —-2/5 212,/
In(x) — f(z) = Np (C D 1/)2@"'@) +CN(jga)>+op(N2/5);

R N—2/5 (CQDQW’(—JH-G) N (N(—z+a)
p 2 VG

) +0p(N72/%),
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where (n(z + a) and CN(—J: + a) are defined as

( <x+a gj>_EK<x+;N 5;));

CN(_x+a):\/]$—i::< (%) EK(%@»

Lemma 4.1. If (i)-(v) hold and z # a,
(n(z+a) ¢t
<CN(—$+G)> - <42>

1
, where (g2> is a zero mean normal vector with covariance matric

B=d <Wo+ " w(—a?+ a)>

Proof. of lemma 4.1. We will use the central limit theorem in the following form.

(v (@ +a) =

Theorem 4.2. [7, p. 201] Let & v,y - .., €N N be random vectors independent for fized
N with E€;y = 0; (v = Y1 &.n- Denote

N
JiN = Efj,ijT?N; 0]2\, = ZJJ%N.
j=1
Assume that
1)o3 — o2, where a? is some positive definite matriz;
2) The Lindeberg condition
N
By = ZE(@%N; &N ] > T) —0; N — o0
j=1

2

holds for any constant T > 0. Then the random vector (N converges weakly to a zero-

mean normal vector with the covariance matriz o2.

Let us show that the assumptions of Theorem 4.2 hold for the vector sequence

(CfVN((—xa?—'——i—a(i)) By the theorem, 3.1

D¢y (z +a) = d*Y(z + a); DCy(—z+a) — d°¢Y(—z + a).
For the covariance of the entries, we have

Con(Cnla +a), C(— +) =

=" ZW( () e ()
X (e (P e (F)

=i 2 (1 () e () (e ()

—z+a—¢ 1 r+a—& —r+a—§&
() (o (5 ()
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(5 (2559) - [ - )

xw(x—i—a—shN)ds—hN/ K(s)w(x—i—a—sh]v)ds/ K(s)Y(—x + a — shy)ds.
Since K (x) is finitely supported, ¢ (z) is bounded, = # a, and hy — 0,

Cov({n(z +a),(n(—x+a)) = 0, N — oo.

Then, by (i), K(x) < ¢4. So, by the Chebyshev inequality,

BN—NL}W?:E (K(“L;‘N 53)—EK<x+;N fﬁ)) +
(e () e () )
e (8 () e (=) +
() () o)
gi—ch (K(x’Lh‘lN gJ>—E1r<<‘p‘”+;v 53)) +
= hy T2Nhy

hN hN

_ _ £ _ —£\\?2 2 2
+<K(7m+a EJ)—EK<7x+a ’EJ)) > 2Ny b < 3484

. Since hy = CN~1/5_ the rhs of the inequality tends to zero. Lindeberg’s condition is
verified, and Lemma 4.1 is proved. O

To complete the proof of Theorem 3.2, it is sufficient to substitute (24) in (23) and
take the asymptotics of normal components into account. O

7.
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