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S. A. ALIEV AND T. E. HASHIMOVA

ASYMPTOTIC BEHAVIOR OF THE CONDITIONAL PROBABILITY
OF THE NONLINEAR BOUNDARY CROSSING BY A RANDOM

WALK

We study the asymptotic behavior of the conditional probability of the boundary
crossing by a random walk with distribution belonging to the attraction domain of
a stable distribution with parameter α.

1. Introduction

Let ξn, n ≥ 1 be a sequence of independent identically distributed random variables
determined on some probability space (Ω,F , P ) , and let fa (t) , t > 0, be some family of
nonlinear (non-random) functions (boundaries) with respect to the parameter a > 0.

Consider the first passage time

τa = inf{n ≥ 1 : Sn ≥ fa (n)} (inf {∅} = ∞)

in the case where the random walk Sn = ξ1 + · · ·+ξn, n ≥ 1 crosses a nonlinear boundary
fa (t) , t > 0.

In the present paper, we study the asymptotic behavior P
(
τa ≥ n/Sn = x

)
, Sn = Sn

n ,
of the conditional probability of the nonlinear boundary crossing by a random walk with
infinite variance.

This problem was studied in [1],[2],[4] in the case of a finite variance Dξ1 < ∞ for
some class of nonlinear boundaries fa (t) and random walks.

As was noted in [1],[2] (see also [4]), such conditional probabilities play an important
role in studying the local probabilities arising in the boundary problems with random
walks.

2. Conditions and Notations

We assume that μ = Eξ1 > 0 and the distribution of a random variable ξ1 belongs
to the attraction domain of a stable distribution Gα (x) with the characteristic index
α ∈ (1, 2] and the density gα (x) . That is, the convergence

P

(
Sn − nμ

A (n)
≤ x

)
→ Gα (x) as n→∞, x ∈ R,

holds. Here, A (n) = n1/αL (n) , L (x) , and x > 0 is a showily varying function at infinity
[7].

For the boundary fa (t) , we assume that it satisfies the following regularity conditions
(see [5]):

1) For each a, the function fa (t) monotonically increases and is continuously differ-
entiable for t > 0,

2) n (a)→∞ and a→∞ so that 1
nfa (t)→ μ and f ′

a (n) → θ ∈ [0, μ) ,
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3) For each a, the function f ′
a (t) oscillates weakly at infinity, i.e. f ′

a(m)
f ′

a(n) → 1 as n→∞
and n

m → 1.
By W, we denote a class of functions satisfying conditions 1)-3).
The class W is described in [5] in detail.
By la (n, x) = P

(
τa ≥ n/Sn = x

)
, we denote the conditional probability of the cross-

ing of a nonlinear boundary fa (t) by the sums Sn, n ≥ 1 at Sn = x.
We have

la (n, x) = P
(
Sk ≤ fa (k) , 1 ≤ k ≤ n− 1/Sn = x

)
=

= P
(
Sn − Sk ≥ Sn − fa (k) : 1 ≤ k ≤ n− 1/Sn = x

)
=

= P
(
Sn−k ≥ nx− fa (k) : 1 ≤ k ≤ n− 1/Sn = x

)
=

= P
(
Sk ≥ fa (n)− fa (n− k) + nx− fa (n) : 1 ≤ k ≤ n− 1/Sn = x

)
or

la (n, x) = P
(
Sk ≥ kf ′

a (m) + δa (n, x) : 1 ≤ k ≤ n− 1/Sn = x
)
, (1)

where δa (n, x) = nx − fa (n) , and m = m (n, k) is some intermediate point from the
segment [n− k, n].

Equality (1) is a starting point for the approximation of the conditional probability
of crossing, la (n, x) , as a→∞ and n = n (a)→∞.

Introduce the notation

L′
a (n, x, u) = P

(
Sk − kf ′

a (m) ≥ u, 1 ≤ k ≤ n− 1/Sn = x
)
,

La (n, x, u) = P
(
Sk − kθ ≥ u, 1 ≤ k ≤ n− 1/Sn = x

)
,

ψ (u) = P (T ≥ u) , T = inf
k≥1

(Sk − kθ) , u ∈ R.

It is easy to see that
la (n, x) = L′

a (n, x, δa (n, x)) . (2)

Remark 2.1. Note that the function La (n, x, u) of u is non-increasing and continuous
from the left-hand side, and the function ψ (u) possesses these properties and has a set
of continuity points consisting of all those u ≥ 0, for which

P (min (S1 − θ, S2 − 2θ, . . . , Sk − kθ) = u) = 0 for all k ≥ 1.

3. Formulation and Proof of the Basic Result

Theorem 3.1. Let fa (t) ∈W, and let the above-mentioned conditions for the distribution
of the random variable ξ1 be satisfied. Furthermore, for the characteristic function h (t)
of the random variable ξ1, let the condition∫ ∞

−∞
|h (t)|m dt <∞ (3)

hold for some m ≥ 1.
If x = x (a)→ μ and n = n (a) →∞ as a→∞ so that

x− μ = O (A (n) /n) and δ (n, x) = O (1) ,

then
La (n, x, u)→ ψ (u) (L′

a (n, x, u)→ ψ (u))

for all u ≥ 0.

Corollary 3.1. Let the conditions of Theorem 3.1 be satisfied. If δ (n, x) → u ≥ 0, then

la (n, x) → ψ (u) as a→∞.
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Corollary 3.2. While fulfilling the conditions of Corollary 3.1, we have

la (n, x) → (μ− θ) r (u) , a→ 0,

where
r (u) =

1
ES′

τ

P (S′
τ > u) , τ = inf {n ≥ 1 : S′

n = Sn − θn > 0} .

Note that the function r (u) , u ≥ 0 is the density of a limit distribution of overshoots
of the random walk S′

n = Sn − θn, n ≥ 1 (see [2]).

Remark 3.1. Note that condition (3) implies, in particular, that the function ψ (u) is
continuous for u ≥ 0, since the sum Sn has a bounded continuous density for all n ≥ m,
while satisfying condition (3). Note also that the condition δ (n, x) = O (1) can be
replaced by the condition fa(n)−nμ

A(n) = O (1).

In order to prove the theorem, we need the following auxiliary lemmas of independent
interest.

By pn (x) , we denote the distribution density of the sum for n ≥ m and assume

qnk = qnk (x1, . . . , xk/x) =

{
pn−k(nx−yk)

pn(nx) , if pn (nx) > 0,
1, if pn (nx) = 0

and
Qnk = Qnk (B/x) =

∫
. . .

∫
B

qnkF (dx1) . . . F (dxk) ,

where

yk =
k∑
i=1

xi, 1 ≤ k ≤ n− 1, n ≥ m, B ∈ β (Rk) and F (x) = P (ξ1 ≤ x) .

It is clear that Qnk is the conditional distribution of the vector (ξ1, . . . , ξk) given that
Sn = x.

Lemma 3.1. Let the distribution of the random variable ξ1belong to an attraction domain
of the stable distribution Ga (x) with characteristic index α ∈ (1, 2] and density gα (x) ,
and let the condition (3) be satisfied. Then

1) For each k, the conditional distribution Qnk weakly converges as n → ∞ to an
unconditional distribution of the vector (ξ1, . . . , ξk) , and the convergence is uniform with
respect to x : x− μ = O (A (n) /n) , A (n) = n1/αL (n) .

2) For any δ ∈ (0, 1) , there exists a constant M = M (δ) such that qnk ≤ M for all
x1, . . . , xk, k ≤ (1− δ)n, n ≥ m and x, x− μ = O (A (n) /n) .

Proof. Under the conditions of the proved lemma, a local limit theorem for the sum
Sn, n ≥ m, holds uniformly with respect to x ∈ R (see [6],[7]):

Pn (x) =
1

A (n)
gα

(
x− nμ
A (n)

)
+ o (1/A (n)) (4) .

From relation (4) and properties of the density gα (x) for the fixed y and k, we have

lim
n→∞

Pn−k (nx− y)
gn (nx)

= lim
n→∞

gα

(
n(x−μ)+kμ−y

A(n)

)
gn

(
n(x−μ)
A(n)

) = 1. (5)

By (4), statement 1) of Lemma 3.1 follows from the definition of the conditional
distribution of Qnk and from relation (5).

Statement 2) of Lemma 3.1 follows from relation (4) by the upper bound

sup
x∈R

A (n) pn (x) < c <∞
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and the lower bound inf
x|x−μ|≤ cA(n)

n

A (n) pn (nx) > 0, which follows from the boundedness

of the stable distribution.

Lemma 3.2. For any number δ ∈ (0, 1),

J1 = P
(
S1 < y; ∃i ∈ (nδ, n− 1] /Sn = x

)→ 0

as a → ∞ uniformly with respect to y ∈ R and x, x − μ = O
(
A(n)
n

)
. Moreover, J2 =

P
(
S1 < y; ∃i ∈ (k, nδ] /Sn = x

)→ 0 as k →∞ uniformly with respect to a and x, y ∈ R.
Proof. At first, we estimate J1. Assuming j = n−i and considering that the difference

Sn − Sn−i for each i is distributed as the sum Si, we have

J1 = P
(
Sn − Sn−i < y, ∃i ∈ (nδ, n− 1] /Sn = x

)
=

= P
(
Si > nx− y, ∃j ∈ [1, n (1− δ)) /Sn = x

)
.

By statement 2) of Lemma 3.1 and from the last equality, we get

J1 ≤MP (Sj > nx− y, ∃j ∈ [1, n (1− δ))) = MP (τ ′c ≤ n (1− δ)) , (6)

where
τ ′c = inf {i ≥ 1 : Si > c} , c = nx− y.

It is well known that [2]

τ ′c
c

p.n→ 1
μ

as c→∞, (a→∞) .

Considering that
c

n
→ μ as n→∞, (a→∞) ,

we have
τ ′c
c

p.n→ 1 as a→∞.
Therefore,

P (τ ′c ≤ n (1− δ))→ 0 as a→∞.
Then, it follows from (6) that J1 → 0 as a→∞.
We now prove that J2 → 0 as k →∞.
From statement 2) of Lemma 3.1, we have

J2 ≤MP (Si < y, ∃i ∈ (k, nδ]) ≤MP (Si < y, ∃i > k) .

The right-hand side of the last inequality is independent of a and, by the strong law
of large numbers, tends to zero as k →∞.

Proof of Theorem 3.1. Let

L′
a,k (n, x, u) = P

(
Si − if ′

a (m) ≥ u, 1 ≤ i ≤ k/Sn = x
)
,

La,k (n, x, u) = P
(
Si − iθ ≥ u, 1 ≤ i ≤ k/Sn = x

)
,

ψk (u) = P (Tk ≥ u) , Tk = inf
1≤i≤k

(Si − iθ)
It follows from statement 1) of Lemma 3.1 that, for each k,

La,k (n, x, u)→ ψk (u) as a→∞. (7)

It follows from the condition f ′
a (m)→ θ ∈ [0, μ] as a→∞ that

L′
a (n, x, u)− La (n, x, u)→ 0 (8)

and
L′
a,k (n, x, u)− La,k (n, x, u)→ 0 as a→∞.
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It is obvious that, for each fixed u,

ψk (u)→ ψ (u) as k →∞. (9)

We now prove that

Δk (a) = L′
a,k (n, x, u)− La,k (n, x, u)→ 0 (10)

as a→∞ and k →∞. For δ ∈ (0, 1) , we have

0 ≤ Δk (a) ≤ P
(
Si < u, ∃i ∈ (k, n) /Sn = x

) ≤ P
(
Si < u, ∃i ∈ (k, nδ] /Sn = x

)
+

+P
(
Si < u, ∃i ∈ (nδ, n] /Sn = x

)
= J2 + J1.

By Lemma 2, J1 → 0 as a→∞ and J2 → 0 as k →∞. Therefore, (9) holds.
Now, the statement of the theorem follows from (7),(9), and (10).
The statement of Corollary 3.1 of the theorem follows from equality (2) and relation

(8). The statement of Corollary 3.2 follows from the statement of Corollary 3.1 and from
work [2, Ch. 2, Theorem 2,7].
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