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VALERII V. BULDYGIN AND MARINA K. RUNOVSKA

ON THE CONVERGENCE OF SERIES OF AUTOREGRESSIVE
SEQUENCES IN BANACH SPACES

Necessary and sufficient conditions for the almost sure convergence of a series of
autoregressive sequences in separable Banach spaces are studied. As an application
of the obtained results, the condition for the admissible shift of a zero-mean Gaussian
Markov measure is considered.

1. Introduction

Consider the recurrence relation
(1) X0 = 0, Xk = αkXk−1 + Zk, k ≥ 1,
where (αk) is a nonrandom real sequence such that α1 = 1, and (Zk) is a sequence of
independent symmetric random elements of some separable Banach space X such that

P{Zk = 0} < 1, k ≥ 1.
We recall that a random element Z is called symmetric if Z and (−Z) are identically
distributed.

In particular, if Zk = βkθk, k ≥ 1, where (βk) is a nonrandom real sequence and (θk)
is a standard Gaussian sequence, i.e. (θk) is a sequence of independent N(0,1)-distributed
Gaussian random variables, then (Xk) is a zero-mean Gaussian Markov sequence [5].

For a given sequence (Xk), we now consider the random series

(2)
∞∑
k=1

Xk.

This paper deals with necessary and sufficient conditions for the convergence almost
surely (a.s.) of series (2).

It is worth noting that the necessary and some sufficient conditions for the convergence
a.s. of series (2) in the case of autoregressive sequences of random variables were obtained
in [2]. The method introduced in [2] is based on the theory of random series with
independent symmetric terms in Banach spaces. This allows one to consider the more
general case of sequences (Xk).

In the present paper, the special attention is devoted to the summation of autoregres-
sive sequences with weighted coefficients. The sufficient conditions obtained for such a
series were applied to the problem of absolute continuity and singularity of two Gaussian
Markov measures.

In order to find the necessary conditions for the convergence a.s. of series (2), we
consider the sequence of its partial sums

(3) Sn =
n∑
k=1

Xk, n ≥ 1,

as a series with independent symmetric terms in the separable Banach space of convergent
sequences. Such an approach allows one to use the theory of random series in separable
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Banach sequence spaces [3, 4]. By finding the sufficient conditions, we use the theory of
infinite-summability matrices [3, 4].

In particular, the general results immediately yield the necessary and sufficient con-
ditions for convergence a.s. of series

(4)
∞∑
k=1

ξk

for zero-mean Gaussian Markov sequences (ξk) described by the recurrence relation
(5) ξ0 = 0, ξk = αkξk−1 + βkθk, k ≥ 1.
Some of them were already considered in [2].

2. Preliminaries

Let X be the separable Banach space, let X∞ be the space of all sequences of elements
of X, and let c(X) be the space of all convergent sequences from X∞. The space c(X∞)
is a separable Banach space if it is endowed with the norm ‖x‖∞ = sup

k≥1
|xk|, x = (xk) ∈

c(X∞) [4].
The recurrence equation (1) implies that sequence (3) can be represented in the form

(6)

⎛⎜⎜⎜⎜⎜⎜⎝
S1

S2

...
Sn
...

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
A(1, 1)
A(2, 1)

...
A(n, 1)

...

⎞⎟⎟⎟⎟⎟⎟⎠Z1 +

⎛⎜⎜⎜⎜⎜⎜⎝
0

A(2, 2)
...

A(n, 2)
...

⎞⎟⎟⎟⎟⎟⎟⎠Z2 + ...+

⎛⎜⎜⎜⎜⎜⎜⎝
0
...
0

A(n, n)
...

⎞⎟⎟⎟⎟⎟⎟⎠Zn + . . . ,

where

A(n, k) =

⎧⎪⎪⎨⎪⎪⎩
1 +

∑n−k
l=1

(∏k+l
j=k+1 αj

)
, 1 ≤ k ≤ n− 1,

1, k = n,

0, k > n,

and

(7) Sn =
n∑
k=1

A(n, k)Zk, n ≥ 1.

It is convenient to rewrite series (6) as

(8)
−→
S =

∞∑
k=1

Zk
−→
Ak,

where

−→
S =

⎛⎜⎜⎜⎜⎜⎜⎝
S1

S2

...
Sn
...

⎞⎟⎟⎟⎟⎟⎟⎠ ,
−→
A k =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

A(k, k)
A(k + 1, k)

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, k ≥ 1.

It is worth noting that series (8) converges in the coordinate-wise sense. Thus, the
sequence of partial sums (Sn) is represented in the form of series (8) with independent
symmetric random terms in the space X∞. Therefore, the sequence (Sn) satisfies the
conditions of Theorem 2.1.1 [3]. This theorem states that if (Zk) is a sequence of inde-
pendent symmetric random elements of the separable Banach space X,

−→
S =

∑∞
k=1 Zk

−→
A k,

and if this series converges in the coordinate-wise sense, then, given that
−→
S ∈ c(X∞)
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a.s., one has Zk
−→
Ak ∈ c(X∞), k ≥ 1, and the series

∑∞
k=1 Zk

−→
A k converges a.s. in the

norm of the space c(X∞) a.s.
The theorem above gives a criterion for the convergence a.s. of series (2).

Lemma 2.1. The random series (2) converges a.s. if and only if
−→
Ak ∈ c(X∞), k ≥ 1,

and the random series (8) converges a.s. in the norm of the space c(X∞).

3. Necessary conditions

For k ≥ 1, let us consider the nonrandom series

(9) A(∞, k) = 1 +
∞∑
l=1

k+l∏
j=k+1

αj .

We note that A(∞, k) = lim
n→∞A(n, k), if lim

n→∞A(n, k) exists, i.e. series (9) converges.

The next result follows from Lemma 2.1 and Theorem 2.8.1 [4].

Theorem 3.1. If the random series (2) converges a.s., then the nonrandom series (9)
converges for any k ≥ 1, and the random series

(10)
∞∑
k=1

A(∞, k)Zk

converges a.s. Moreover, the equality

(11)
∞∑
k=1

Xk =
∞∑
k=1

A(∞, k)Zk a.s.

holds true.

Consider the case where (Zk) is a sequence of independent zero-mean Gaussian random
elements in a separable Hilbert space H . For given (Zk), the above result is specialized
as follows.

Corollary 3.1. Let (Zk) be a sequence of independent zero-mean Gaussian random
elements in a separable Hilbert space H. If the random series (2) converges a.s., then the
nonrandom series (9) converges for any k ≥ 1, and

(12)
∞∑
k=1

(A(∞, k))2 E ‖Zk‖2 <∞.

Moreover, equality (11) holds true.

Proof. Corollary 3.1 follows from Corollary 1.4.4 [3], since the random series (10) with
independent zero-mean Gaussian random elements in a separable Hilbert space converges
a.s. if and only if condition (12) holds true. �

Corollary 3.1 yields the necessary conditions for convergence a.s. of series (4) for a
zero-mean Gaussian Markov sequence (ξk).

Corollary 3.2. Suppose that (θk) is a standard Gaussian sequence, i.e. (ξk) is a zero-
mean Gaussian Markov sequence. If the random series (4) converges a.s., then the non-
random series (9) converges for any k ≥ 1, and

(13)
∞∑
k=1

(βkA(∞, k))2 <∞.

Moreover, the equality

(14)
∞∑
k=1

ξk =
∞∑
k=1

βkA(∞, k)θk a.s.

holds true.
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Introducing some more notation, we obtain the necessary conditions for the conver-
gence a.s. of the random series (4) for zero-mean Gaussian Markov sequences (ξk) in
“correlation” terms.

For a zero-mean Gaussian Markov sequence (ξk), we consider two sequences: the
sequence of variance, (σ2

k), and the sequence of correlation coefficients, (rk,k+1), where
σ2
k = E ξk

2, k ≥ 1, and rk,k+1 = (E ξkξk+1)/σkσk+1 if σkσk+1 > 0, and rk,k+1 = 0 if
σkσk+1 = 0, k ≥ 1. It is well known [5] that

E ξjξm = σjσm

m−1∏
i=j

ri,i+1

for any m ≥ 1 and 1 ≤ j < m. For k ≥ 1, we consider the nonrandom series

(15) B(k) = (1− r2k−1,k)
1/2(σk +

∞∑
l=k+1

σl

l−1∏
i=k

ri,i+1), k ≥ 1,

where r0,1 = 0.

Corollary 3.3. Suppose that (ξk) is a zero-mean Gaussian Markov sequence such that
σ2
k > 0, k ≥ 2. If the random series (4) converges a.s., then the nonrandom series (15)

converges for any k ≥ 1, and

(16)
∞∑
k=1

(B(k))2 <∞.

Moreover, if (ξk) is generated by the standard Gaussian sequence (θk) (recall (2)), then
the random series

(17)
∞∑
k=1

B(k)θk

converges a.s., and the equality

(18)
∞∑
k=1

ξk =
∞∑
k=1

B(k)θk a.s.

holds true.

Proof. Corollary 3.3 follows from Corollary 3.2, since

αk =
σk
σk−1

rk−1,k, k ≥ 2; β2
1 = σ2

1 , β2
k = σ2

k(1− r2k−1,k), k ≥ 2,

and
A(∞, k) = B(k), k ≥ 1. �

4. Sufficient conditions

This section deals with sufficient conditions for the convergence a.s. of series (2). The
method used in this section is based on the theory of infinite-summability matrices [3, 4].

Consider an infinite-summability real matrix Λ = (λn,k)∞n,k=1. This means that
lim
n→∞λn,k = 1 for all k ≥ 1. Consider also a real series

∑∞
k=1Xk in a separable Ba-

nach space X. To this series and to the matrix Λ, we relate the sequence of series∑∞
k=1 λn,kXk, n ≥ 1. Assume that all these series converge. We denote their sums by

Ξn, n ≥ 1. Then, if the sequence (Ξn) converges in the space X, the series
∑∞

k=1Xk is
called Λ-summable, and the limit lim

n→∞Ξn is called the Λ-sum of the series
∑∞

k=1Xk.
Let Λ be a summability matrix. If

V arn(Λ) = sup
n≥1

sup
m≥2

[m−1∑
k=1

(
|λn,k − λn,k+1|

)
+ |λn,m|

]
<∞,

then the matrix Λ is called the matrix of bounded variation.
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In order to obtain the sufficient conditions, we use one result which asserts the equiv-
alence of the summation by matrices of bounded variation (see [4], Theorem 2.8.2).
Theorem 2.8.2 [4] says that if the sequence (Xk) is a sequence of independent symmetric
random variables in a separable Banach space and the series

∑∞
k=1Xk is Λ′-summable

a.s. by some matrix of bounded variation Λ′, then it is Λ-summable a.s. by all the ma-
trices of bounded variation, and all Λ-sums are equal a.s. to each other. In particular,
this theorem says that if the series

∑∞
k=1Xk is convergent a.s., then it is Λ-summable

a.s. by all the matrices of bounded variation, and all Λ-sums are equal a.s. to
∑∞

k=1Xk.
This theorem provides the sufficient conditions for the convergence a.s. of series (2).

Theorem 4.1. Suppose that αk ≥ 0, k ≥ 2. If the nonrandom series (9) converges
for any k ≥ 1, and the random series (10) converges a.s., then the random series (2)
converges a.s., and the equality (11) holds true.

Proof. Assume that the series
∑∞

k=1 A(∞, k)θk converges a.s. Consider the matrix Λ =
(λn,k)∞n,k=1, where

(19) λn,k =

{
A(n,k)
A(∞,k) , 1 ≤ k ≤ n,

0, k > n.

Observe that all λn,k are well-defined, since the series A(∞, k) converges, and
A(∞, k) �= 0

for any k ≥ 1. Since limn→∞A(n, k) = A(∞, k) for any k ≥ 1, we have

lim
n→∞λn,k = lim

n→∞
A(n, k)
A(∞, k) = 1, k ≥ 1.

Hence, the matrix Λ is a summability matrix and, for Yk = A(n, k)Zk, k ≥ 1,
∞∑
k=1

λn,kYk =
n∑
k=1

A(n, k)
A(∞, k)A(∞, k)Zk =

n∑
k=1

A(n, k)Zk, n ≥ 1.

Thus, by (7) and (2),

(20)
∞∑
k=1

λn,kYk =
n∑
k=1

Xk, n ≥ 1.

Since αk ≥ 0, k ≥ 2, λn,k ≥ 0 for any k, n ≥ 1, and one can obtain

λn,k − λn,k+1 =
A(n, k)
A(∞, k) −

A(n, k + 1)
A(∞, k + 1)

=
(αk+2αk+3 . . . αn+1)A(∞, n+ 1)

(1 + αk+1A(∞, k + 1))A(∞, k + 1)
≥ 0

for any 1 ≤ k ≤ n− 1. Therefore,

V arn(Λ) = sup
n≥2

[ n−1∑
k=1

(
λn,k − λn,k+1

)
+ λn,n

]
= sup

n≥2
(λn,1) = sup

n≥2

A(n, 1)
A(∞, 1)

≤ 1.

Thus, the matrix Λ is a summability matrix of bounded variation.
Since the sequence (A(∞, k)Zk) is a sequence of independent symmetric random el-

ements and the series
∑∞

k=1 A(∞, k)Zk converges a.s., this sequence is, by Theorem
2.8.2 [4], Λ-summable a.s., and its Λ-sum is equal a.s. to

∑∞
k=1 A(∞, k)Zk.

Therefore, by (20), the limit

lim
n→∞

∞∑
k=1

λn,kYk = lim
n→∞

n∑
k=1

Xk =
∞∑
k=1

Xk

exists a.s., and equality (11) holds. �
Corollary 4.1. Suppose that αk ≥ 0, k ≥ 2, and (Zk) is a sequence of independent
zero-mean Gaussian random elements in a separable Hilbert space H. The random series
(2) converges a.s., if and only if the nonrandom series (9) converges for any k ≥ 1, and
condition (12) holds. Moreover, equality (11) holds true.
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For the zero-mean Gaussian Markov (ξk) sequence, the above results are specialized
as follows.

Corollary 4.2. Suppose that αk ≥ 0, k ≥ 2, and (θk) is a standard Gaussian sequence,
i.e. (ξk) is a zero-mean Gaussian Markov sequence. The random series (4) converges
a.s., if and only if the nonrandom series (9) converges for any k ≥ 1, and condition (13)
holds. Moreover, equality (14) holds true.

Corollary 4.3. Suppose that (ξk) is a zero-mean Gaussian Markov sequence such that
σ2
k > 0, k ≥ 2, and rk−1,k ≥ 0, k ≥ 2. The random series (4) converges a.s., if and

only if the nonrandom series (15) converges for any k ≥ 1, and the condition (16) holds.
Moreover, if (ξk) is generated by the standard Gaussian sequence (θk) (see (5)), then the
random series (17) converges a.s., and the equality (18) holds true.

In the next theorem, we consider the sequences (αk) with elements of alternating signs.

Theorem 4.2. Assume that the nonrandom series (9) converges for any k ≥ 1. Let ε
and M be two positive numbers such that
(21) 0 < ε ≤ |A(∞, k)| ≤M <∞
for any k ≥ 1, and

(22) H = sup
n≥1

n∑
k=1

n+1∏
j=k+2

|αj | <∞.

If the random series (10) converges a.s., then the random series (2) converges a.s., and
equality (11) holds true.

Proof. Consider the matrix Λ = (λn,k)∞n,k=1, which is defined at (19). By the proof of
Theorem 4.1 above, we have

λn,k − λn,k+1 =
(αk+2αk+3 . . . αn+1)A(∞, n+ 1)

A(∞, k)A(∞, k + 1)
,

for any n ≥ 2 and 1 ≤ k ≤ n− 1. Hence, by (21) and (22),

V arn(Λ) = sup
n≥2

[( n−1∑
k=1

|λn,k − λn,k+1|
)

+ |λn,n|
]

=

= sup
n≥2

[( n−1∑
k=1

|αk+2αk+3 . . . αn+1||A(∞, n+ 1)|
|A(∞, k)A(∞, k + 1)|

)
+

1
|A(∞, n)|

]
≤ MH

ε2
+

1
ε
<∞.

Much of the following repeats the proof of Theorem 4.1. �

Example 4.1. Suppose that 0 < q < 1 and αk = (−1)kqk, k ≥ 2. Then, for the
sequence (αk), all conditions of Theorem 4.2 hold.

5. Series of autoregressive sequences with weighted coefficients

For the autoregressive sequences (Xk) (recall (1)) and a real sequence (ck) such that
ck �= 0, k ≥ 1, consider the random series

(23)
∞∑
k=1

ckXk.

Denote Yk = ckXk, k ≥ 1. It is clear that (Yk) is an autoregressive sequence, and
Y0 = 0, Yk = α̃kYk−1 + ckZk, k ≥ 1,

where
α̃1 = 1, α̃k =

ck
ck−1

αk, k ≥ 2,
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and (Zk) is a sequence of independent symmetric random elements of the separable
Banach space X (recall (1)). Put

Ãc(n, k) =

⎧⎪⎪⎨⎪⎪⎩
ck +

∑n−k
l=1

(
ck+l

∏k+l
j=k+1 αj

)
, 1 ≤ k ≤ n− 1,

ck, k = n,

0, k > n,

and denote, for k ≥ 1,

(24) Ãc(∞, k) = lim
n→∞ Ãc(n, k) = ck +

∞∑
l=1

(
ck+l

k+l∏
j=k+1

αj

)
if this limit exists. The results of Sections 3 and 4 yield the necessary and sufficient
conditions for the convergence a.s. of series (23).

Theorem 5.1. If the random series (23) converges a.s., then the nonrandom series (24)
converges for any k ≥ 1, and the random series

(25)
∞∑
k=1

Ãc(∞, k)Zk

converges a.s. Moreover, the equality

(26)
∞∑
k=1

ckXk =
∞∑
k=1

Ãc(∞, k)Zk a.s.

holds true.

Theorem 5.2. Suppose that α̃k ≥ 0, k ≥ 2. The random series (23) converges a.s., if
and only if the nonrandom series (24) converges for any k ≥ 1, and the random series
(25) converges a.s. Moreover, equality (26) holds true.

Corollary 5.1. Let (αk) be a real sequence such that the sequence (|αk|) satisfies the
conditions of Theorem 4.1. Then there exists some real sequence (ck), where ck = ±1,
k ≥ 1, such that the random series (23) converges a.s.

Corollary 5.2. Let (Zk) be a sequence of independent zero-mean Gaussian random
elements in a separable Hilbert space H. If the random series (23) converges a.s., then
the nonrandom series (24) converges for any k ≥ 1, and

(27)
∞∑
k=1

(Ãc(∞, k))2 E ‖Zk‖2 <∞.

Moreover, equality (26) holds true.

Corollary 5.3. Suppose that α̃k ≥ 0, k ≥ 2, and (Zk) is a sequence of independent
zero-mean Gaussian random elements in a separable Hilbert space H. The random series
(23) converges a.s., if and only if the nonrandom series (24) converges for any k ≥ 1,
and condition (27) holds. Moreover, equality (26) holds true.

Theorems 5.1 and 5.2 provide the necessary and sufficient conditions of convergence
a.s. of series

(28)
∞∑
k=1

ckξk

for a zero-mean Gaussian Markov sequence (ξk).

Corollary 5.4. Suppose that (θk) is a standard Gaussian sequence, i.e., (ξk) is a zero-
mean Gaussian Markov sequence. If the random series (28) converges a.s., then the
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nonrandom series (24) converges for any k ≥ 1, and

(29)
∞∑
k=1

(βkÃc(∞, k))2 <∞.

Moreover, the equality

(30)
∞∑
k=1

ckξk =
∞∑
k=1

βkÃc(∞, k)θk a.s.

holds true.

Corollary 5.5. Let (ξk) be a zero-mean Gaussian Markov sequence such that σ2
k >

0, k ≥ 2. If the random series (28) converges a.s., then the nonrandom series

(31) B̃(k) = (1− r2k−1,k)
1/2(ckσk +

∞∑
l=k+1

clσl

l−1∏
i=k

ri,i+1),

converges for any k ≥ 1, and

(32)
∞∑
k=1

(B̃(k))2 <∞.

Moreover, if (ξk) is generated by the standard Gaussian sequence (θk) (recall (5)), then
the random series

(33)
∞∑
k=1

B̃(k)θk

converges a.s., and the equality

(34)
∞∑
k=1

ckξk =
∞∑
k=1

B̃(k)θk a.s.

holds true.

Corollary 5.6. Suppose that (θk) is a standard Gaussian sequence, i.e., (ξk) is a zero-
mean Gaussian Markov sequence. Suppose also that α̃k ≥ 0, k ≥ 2. The random series
(28) converges a.s., if and only if the nonrandom series (24) converges for any k ≥ 1,
and (29) holds. Moreover, equality (30) holds true.

Corollary 5.7. Let (ξk) be a zero-mean Gaussian Markov sequence such that σ2
k >

0, k ≥ 2, and ckck−1rk−1,k ≥ 0, k ≥ 2. The random series (28) converges a.s., if and
only if the nonrandom series (31) converges for any k ≥ 1, and (32) holds. Moreover, if
(ξk) is generated by the standard Gaussian sequence (θk) (recall (5)), then the random
series (33) converges a.s., and equality (34) holds true.

6. On the admissible shift of Gaussian Markov measures

As an application of the general results consider the problem of finding the conditions
providing the equivalence and the singularity of Gaussian Markov measures.

Let (ξk) be a zero-mean Gaussian Markov sequence (recall (5)), such that β2
k > 0, k ≥

1. Consider another Gaussian Markov sequence (ξ̂k), ξ̂k = ξk + sk, k ≥ 1, where (sk) is
nonrandom real sequence. Suppose also that

(35) lim
n→∞

∏k+n
j=k |αj |
βk+n

<∞, k ≥ 2, lim
k→∞

s2k
β2
k

= 0.

Note that conditions (35) in ”correlation” terms are of the following form:

lim
n→∞

|rk,k+n+1|√
1− r2k+n,k+n+1

<∞, k ≥ 2, lim
k→∞

s2k
σ2
k(1− r2k−1,k)

= 0.
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By P and P̂ , we denote the distributions of (ξk) and (ξ̂k) in (R∞, B(R∞)), respectively.
Recall [5] that the probabilistic measure P̂ is called absolutely continuous with respect

to another probabilistic measure P (P̂ � P ), if P (G) = 0 implies P̂ (G) = 0 for G ∈
B(R∞). If both P̂ � P and P � P̂ , then P and P̂ are called equivalent (P̂ ∼ P ). The
measures P and P̂ are called singular (P̂ ⊥ P ), if there exists G ∈ B(R∞), such that
both P (G) = 1 and P̂ (G) = 1.

The sequence (sk) is called the admissible shift of a zero-mean Gaussian measure P if
the distributions P and P̂ are equivalent.

The well-known Gaec–Feldmann alternative says that two Gaussian measures in a
locally convex space are equivalent or singular. Using the results of Section 5, the con-
ditions of equivalence for the given Gaussian Markov measures P and P̂ are found.

Proposition 6.1. Let (ξk) and (ξ̂k) be two Gaussian Markov sequences given above. Let
P and P̂ be the distributions of (ξk) and (ξ̂k) in (R∞, B(R∞)). If α̃k = ck

ck−1
αk ≥ 0, k ≥

2, where

ck =
sk − αksk−1

β2
k

− αk+1(sk+1 − αk+1sk)
β2
k+1

,

then P̂ ∼ P if and only if the condition

(36)
∞∑
n=1

(sn − αnsn−1)2

β2
n

<∞,

holds true. Otherwise, P̂ ⊥ P.

Proof. Note, that there exists the Radon–Nikodym density d �P
dP (x(n)) of a shifted Gaussian

Markov measure P̂ with respect to the zero-mean Gaussian Markov measure P if and
only if P̂ ∼ P .

Let Pn and P̂n be the distributions of finite Gaussian Markov sequences (ξnk ) and
(ξ̂nk ) in (Rn, B(Rn)). Since β2

k > 0, k ≥ 1, consider the finite Radon–Nikodym density of
the shifted Gaussian Markov measure P̂n with respect to a zero-mean Gaussian Markov
measure Pn which is of the following form [1]:

dP̂n
dPn

((xn)) = exp
( n∑
k=1

[sk − αksk−1

β2
k

− αk+1(sk+1 − αk+1sk)
β2
k+1

]
xk+

(37) +
n∑
k=1

[
− (sk+1 − αk+1sk)2

2β2
k+1

+
1
2

( s2k+1

β2
k+1

− s2k
β2
k

)])
, mod P ((xn) ∈ Rn).

Since the sequence
(
d�Pn

dPn

)
is a martingale, we can find the Radon–Nikodym density

d �P
dP (x(n)) making the passage to the limit in (37). Therefore, the Radon–Nikodym density
d �P
dP (x(n)) exists if and only if as n → ∞, all the series under the exponent sign in (37)
are convergent.

Consider the nonrandom series
∞∑
k=1

[
− (sk+1 − αk+1sk)2

2β2
k+1

+
1
2

( s2k+1

β2
k+1

− s2k
β2
k

)]
.

It is convergent by (35) and (36). Let us prove the convergence a.s. of the series

(38)
∞∑
k=1

[sk − αksk−1

β2
k

− αk+1(sk+1 − αk+1sk)
β2
k+1

]
ξk,
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using the results obtained in Section 5. Since α̃k = ck

ck−1
αk ≥ 0, k ≥ 2, then, by (24),

Ãc(∞, k) =
sk − αksk−1

β2
k

− αk+1(sk+1 − αk+1sk)
β2
k+1

+

+
∞∑
l=1

([sk+l − αk+lsk+l−1

β2
k+l

− αk+l+1(sk+l+1 − αk+l+1sk+l)
β2
k+l+1

] k+l∏
j=k+1

αj

)
.

The partial sum of this series is of the following form:

S̃n =
sk − αksk−1

β2
k

− (sk+n+1 − αk+n+1sk+n)
β2
k+n+1

k+n+1∏
j=k+1

αj .

Therefore, by (35) and (36), one has

lim
n→∞ S̃n =

sk − αksk−1

β2
k

− lim
n→∞

( (sk+n+1 − αk+n+1sk+n)
βk+n+1

·
∏k+n+1
j=k+1 αj

βk+n+1

)
=
sk − αksk−1

β2
k

for any k ≥ 2. Hence, the nonrandom series Ãc(∞, k) converges for any k ≥ 2. Moreover,
condition (29) holds true by (36). Therefore, according to Corollary 5.7, the random
series (38) converges a.s.

Thus, for the given Gaussian Markov measures P and P̂ , the corresponding Radon–
Nikodym density d �P

dP (x(n)) exists, i.e., P̂ ∼ P , if and only if condition (36) holds true.
Otherwise, P̂ ⊥ P . �

Note that (36) provides the condition of admissible shift for the given zero-mean
Gaussian Markov measure P .

Remark also that the necessary and sufficient conditions of admissible shift for a
zero-mean Gaussian Markov measure were obtained in [1] with the use of the theory of
absolute continuity and singularity of probabilistic measures [6]. In the considered case,
the condition of admissible shift (36) coincides with the corresponding result obtained
in [1].
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