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OMAR GLONTI AND ZAZA KHECHINASHVILI

GEOMETRIC GAUSSIAN MARTINGALES WITH DISORDER

We propose the scheme of a geometric Gaussian martingale with “disorder” as a
model of a stock price evolution and investigate the problem of finding a forecasting
estimation optimal in mean square sense within this scheme.

1. Introduction and model

We investigate a stochastic process in discrete time described by geometric Gaussian
martingales with “disorder” and consider it as a model of stock price evolution. At first,
we analyze this scheme and show that the kurtosis coefficient of a logarithmic return is
positive for any moment of time, as it is usually true for real financial time series. Then
we find a forecasting estimation of stock prices which is optimal in mean square sense.

Such a kind of models with disorder was considered in [1,2,6], where we study problems
of constructing the minimal relative entropy martingale measures.

On the probability space (Ω,F , (Fn)0≤n≤N , P ), we consider the following real-valued
stochastic process in discrete time as a model of stock price evolution:

(1) Sn = Sn−1 exp{I(θ > n)ΔM (1)
n + I(θ ≤ n)ΔM (2)

n }, S0 > 0,

where S0 > 0, M (1) = (M (1)
n ) and M (2) = (M (2)

n ), n = 1, 2, . . . , N , are the independent
Gaussian martingales with quadratic characteristics 〈M (1)〉n = E(M (1)

n )2 and 〈M (2)〉n =
E(M (2)

n )2, respectively, θ is the random variable which takes the values 1, 2, . . . , N with
known probabilities πi = P (θ = i), 1, 2, . . . , N and represents the random disorder
moment, M (1) and M (2) are jointly independent of θ, i.e. the vector (M (1),M (2)) is
independent of θ, and I(A) is an indicator of A ∈ F .

2. Coefficient of kurtosis

From (1), the logarithmic return of stock for our model, hn = ln Sn

Sn−1
, n = 1, 2, . . . , N,

is as follows:
hn = I(θ > n)ΔM (1)

n + I(θ ≤ n)ΔM (2)
n .

It is clear that
h2
n = I(θ > n)[ΔM (1)

n ]2 + I(θ ≤ n)[ΔM (2)
n ]2

and
h4
n = I(θ > n)[ΔM (1)

n ]4 + I(θ ≤ n)[ΔM (2)
n ]4.

We now find a representation of the coefficient of kurtosis (excess) of hn, n =
1, 2, . . . , N.

Note that, in our model, M (1) = (M (1)
n ,Fn) and M (2) = (M (2)

n ,Fn) are the in-
dependent Gaussian martingales with square characteristics 〈M (1)〉n = E(M (1)

n )2 and
〈M (2)〉n = E(M (2)

n )2, respectively, and are independent of the disorder random moment
θ.
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Therefore,

(2) Ehn = 0,

(3)

Eh2
n = E[I(θ > n)[ΔM (1)

n ]2 + I(θ ≤ n)[ΔM (2)
n ]2] =

E[E[I(θ > n)[ΔM (1)
n ]2 + I(θ ≤ n)[ΔM (2)

n ]2]/θ] =

E[I(θ > n)E[ΔM (1)
n ]2/θ] + E[I(θ ≤ n)E[ΔM (2)

n ]2/θ] =

Δ〈M (1)〉nP (θ > n) + Δ〈M (2)〉nP (θ ≤ n),

(4)
Eh4

n = E[ΔM (1)
n ]4P (θ > n) + E[ΔM (2)

n ]4P (θ ≤ n) =

3[Δ〈M (1)〉n]2P (θ > n) + 3[Δ〈M (2)〉n]2P (θ ≤ n).

The kurtosis coefficient of hn is

(5) Kn =
Eh4

n

(Eh2
n)2

− 3.

Substituting Eh2
n and Eh4

n from (3) and (4) in (5), we obtain

(6) Kn =
3[Δ〈M (1)〉n]2P (θ > n) + 3[Δ〈M (2)〉n]2P (θ ≤ n)
[[Δ〈M (1)〉n]P (θ > n) + [Δ〈M (2)〉n]P (θ ≤ n)]2

− 3.

Denote

(7)
Δ〈M (1)〉n
Δ〈M (2)〉n = an.

Then it follows from (6) that

(8)

Kn = 3{P (θ > n) + a2
nP (θ > n)− [P (θ ≤ n)]2−

2anP (θ > n)P (θ ≤ n)} − a2
n[P (θ ≤ n)][P (θ > n)+

anP (θ ≤ n)]−2 = 3{P (θ > n)P (θ ≤ n)+

a2
nP (θ ≤ n)P (θ > n)− 2aP (θ ≤ n)P (θ > n)}[P (θ > n)+

P (θ ≤ n)]−2 =
3{P (θ > n)P (θ ≤ n)(1− an)2

[P (θ > n) + anP (θ ≤ n)]2
.

If, for any n, an �= 1, then we have from (8) that Kn is positive for each n, n =
1, 2, . . . , N . For example, an �= 1 if 〈M (2)〉n = n and 〈M (2)〉n = an, where a is some
positive constant. In the case without disorder, we have 〈M (1)〉n = 〈M (2)〉n and the
coefficient of kurtosis Kn = 0 for any n, because an = 1 in this case.

It is known (see [4],[5]) that, for real financial time series, the empirical kurtosis
coefficient of a logarithmic return

K̂n =
1
n

∑n
k=1(hk − h̄n)4

( 1
n

∑n
k=1(hk − h̄n)2)2

− 3,

where h̄n = 1
n

∑n
k=1 hk is usually positive.

3. Optimal forecasting

We consider the problem of finding the optimal in mean square sense forecasting
estimation of a stochastic process S described by (1).

In sequel, we use the following trivial fact:

(9)
1 = I(θ ≤ (n−m) + 1) + I(θ = (n−m) + 2) + · · ·+ I(θ = n− 1)+

I(θ = n) + I(θ > n),
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n ≤ m, n = 1, 2, . . . , N .
From (1) and (9), we obtain

(10)

Sn = Sn−m exp[
∑n

k=(n−m)+1 hk] = Sn−m exp{[∑n
k=(n−m)+1 hk]×

[I(θ ≤ (n−m) + 1) + I(θ = (n−m) + 2) + · · ·+ I(θ = n− 1)+

I(θ = n) + I(θ ≥ n)} =

Sn−m exp{I(θ ≤ (n−m) + 1)
∑n

k=(n−m)+1 ΔM (2)
k +

I(θ = (n−m) + 2)[
∑n−1

k=(n−m)+1 ΔM (2)
k + ΔM (1)

n ] + · · ·+
I(θ = n− 1)[ΔM (2)

n−1 + ΔM (2)
n +

∑n−1
k=(n−m)+1 ΔM (1)

k ]+

I(θ = n)[ΔM (2)
n +

∑n−1
k=(n−m)+1 ΔM (1)

k ]+

I(θ > n)
∑n

k=(n−m)+1 ΔM (1)
k }.

Relation (10) yields

(11)

Sn = Sn−m{I(θ ≤ (n−m) + 1) exp[
∑n
k=(n−m)+1 ΔM (2)

k ]+

I(θ = (n−m) + 2) exp[
∑n−1

k=(n−m)+1 ΔM (2)
k + ΔM (1)

k ] + · · ·+
I(θ = n− 1) exp[ΔM (2)

n−1 + ΔM (2)
n +

∑n−2
k=(n−m)+1 ΔM (1)

k ]+

I(θ = n) exp{ΔM (2)
n +

∑n−1
k=(n−m)+1 ΔM (1)

k }+
I(θ > n)

∑n
k=(n−m)+1 ΔM (1)

k }.
From (11), the m-optimal forecasting optimal in mean square sense has the form

(12)

Ŝn = E(Sn/FSn−m) = Sn−m[P (θ ≤ (n−m) + 1)/FSn−m]×
exp{ 1

2

∑n
k=(n−m)+1 Δ〈M (2)

k 〉}+ P (θ = (n−m) + 2)/FSn−m×
exp{[12

∑n−1
k=(n−m)+1 Δ〈M (2)

k 〉+ Δ〈M (1)
n 〉]}+ · · ·+

P (θ = (n− 1)/FSn−m) exp{ 1
2 [Δ〈M (2)

n−1〉+ Δ〈M (2)
n 〉+∑n−2

k=(n−m)+1 Δ〈M (1)
k 〉]}+ P (θ = n) exp{ 1

2 [
∑n−1

k=(n−m)+1 Δ〈M (1)
k 〉+

Δ〈M (2)
n 〉]}+ P (θ > n/FSn−m) exp{ 1

2

∑n
k=(n−m)+1 Δ〈M (1)

k 〉}.
Here, we use the fact that M (1) and M (2) are independent Gaussian martingales and

are jointly independent of θ as well.
It is clear from (12) that, in order to solve the forecasting problem, it is necessary

to find the conditional probabilities P (θ ≤ (n − m) + 1/FSn−m), P (θ = (n − m) +
2/FSn−m), P (θ = n− 1/FSn−m), P (θ = m/FSn−m) and P (θ > n/FSn−m).

We denote P (θ = n/FSr ) = P rn , n = 0, 1, 2, . . . , N ; r = 0, 1, 2, . . . , N .
It is clear that, for each n, FSn = Fhn , where FSn = σ{S0, S1, . . . , Sn} and Fhn =

σ{h0, h1, . . . , hn}.
Using the Bayes formula

P (θ/h1, h2, . . . , hr) =
P (h1, h2, . . . , hn/r)π2∑N
i=1 P (h1, h2, . . . , hn/i)πi

,

where P (x1, x2, . . . , xn/r) = Ph1,h2,...,hn(x1, x2, . . . , xn/θ = r) is the conditional density
probability function of a random vector (h1, h2, . . . , hn), taking the condition {θ = r}
into account, and performing direct calculations, we obtain the following result.
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Lemma 1. If r < n, then

(13) P rn =
πrun
Lr

;

and if r ≥ n,

(14) P rn =
πnun−1

Lr
,

where

(15)
ur =

P
h
(1)
1

(h1)P
h
(1)
2

(h2)...P
h
(1)
k

(hk)

P
h
(2)
1

(h2)P
h
(2)
2

(h2)...P
h
(2)
k

(hk) ,

u0 = 1, hk = ln ΔSk

Sk−1
,

(16) h
(i)
l = ΔM (i)

l , i = 1, 2; l = 1, 2, . . . , N ;Lr =
r∑
i=1

πiui−1 + (1−Πr)ur.

Here, Πr = P (θ ≤ n) and

(17) P
h
(i)
l

=
1√

2πΔ〈M i〉l
exp{− x2

2Δ〈M i〉l }, l = 1, 2, . . . , k; i = 1, 2.

We can obtain this result also using the method developed in [3], because the problem
of finding P rn belongs to the general filtered probability–statistical experiment framework.

We now construct the optimal in mean square sense m-step forecasting estimation of
S : Ŝn(m) = E(Si/FSn−m).

Theorem 1. The optimal forecasting estimation of S has the form

(18)

Ŝn(m) = Sn−m[
∑N
k=n+1 P

n−m
k exp[ 12

∑n
k=(n−m)+1 Δ〈M (1)

k 〉]+
Pn−mn exp[ 12 [

∑n−1
k=(n−m)+1 Δ〈M (1)〉k + Δ〈M (2)〉n]]+

Pn−mn−1 exp[ 12 [
∑n−2

k=(n−m)+1 Δ〈M (1)〉k + Δ〈M (2)〉n−1+

Δ〈M (2)〉n] + · · ·+ Pn−m(n−m)+2 exp[ 12 [Δ〈M (1)〉n−m+1+∑n−1
k=1 Δ〈M (2)〉k]] +

∑n−m
k=1 Pn−mk exp[ 12

∑n
k=1 Δ〈M (2)〉k]],

where Pn−mk are determined from formulas (16),(17), and (18).
Proof. From (12), using notations (13) and results of Lemma 1, we obtain immedi-

ately (19).
Corollary. The one-step (m = 1) optimal estimation of S is

(19) Ŝn(1) = Sn−1[
N∑

k=n+1

Pn−1
k exp{1

2
Δ〈M (1)〉n}+

n∑
k=1

Pn−1
k exp{1

2
Δ〈M (2)〉n}].

If Δ〈M (1)〉 = a > 0 and Δ〈M (2)〉 = 1, then relation (20) yields

Ŝn(1) = Sn−1[exp{a
2
}

N∑
k=n+1

Pn−1
k + exp{1

2
}

n∑
k=1

Pn−1
k ].

Remark. The problem of finding the minimal entropy martingale measure within
our model (1) is investigated in [6].
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