

OMAR GLONTI AND ZAZA KHECHINASHVILI

GEOMETRIC GAUSSIAN MARTINGALES WITH DISORDER

We propose the scheme of a geometric Gaussian martingale with “disorder” as a model of a stock price evolution and investigate the problem of finding a forecasting estimation optimal in mean square sense within this scheme.

1. INTRODUCTION AND MODEL

We investigate a stochastic process in discrete time described by geometric Gaussian martingales with “disorder” and consider it as a model of stock price evolution. At first, we analyze this scheme and show that the kurtosis coefficient of a logarithmic return is positive for any moment of time, as it is usually true for real financial time series. Then we find a forecasting estimation of stock prices which is optimal in mean square sense.

Such a kind of models with disorder was considered in [1,2,6], where we study problems of constructing the minimal relative entropy martingale measures.

On the probability space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{0 \leq n \leq N}, P)$, we consider the following real-valued stochastic process in discrete time as a model of stock price evolution:

$$(1) \quad S_n = S_{n-1} \exp\{I(\theta > n) \Delta M_n^{(1)} + I(\theta \leq n) \Delta M_n^{(2)}\}, \quad S_0 > 0,$$

where $S_0 > 0$, $M^{(1)} = (M_n^{(1)})$ and $M^{(2)} = (M_n^{(2)})$, $n = 1, 2, \dots, N$, are the independent Gaussian martingales with quadratic characteristics $\langle M^{(1)} \rangle_n = E(M_n^{(1)})^2$ and $\langle M^{(2)} \rangle_n = E(M_n^{(2)})^2$, respectively, θ is the random variable which takes the values $1, 2, \dots, N$ with known probabilities $\pi_i = P(\theta = i)$, $1, 2, \dots, N$ and represents the random disorder moment, $M^{(1)}$ and $M^{(2)}$ are jointly independent of θ , i.e. the vector $(M^{(1)}, M^{(2)})$ is independent of θ , and $I(A)$ is an indicator of $A \in \mathcal{F}$.

2. COEFFICIENT OF KURTOSIS

From (1), the logarithmic return of stock for our model, $h_n = \ln \frac{S_n}{S_{n-1}}$, $n = 1, 2, \dots, N$, is as follows:

$$h_n = I(\theta > n) \Delta M_n^{(1)} + I(\theta \leq n) \Delta M_n^{(2)}.$$

It is clear that

$$h_n^2 = I(\theta > n) [\Delta M_n^{(1)}]^2 + I(\theta \leq n) [\Delta M_n^{(2)}]^2$$

and

$$h_n^4 = I(\theta > n) [\Delta M_n^{(1)}]^4 + I(\theta \leq n) [\Delta M_n^{(2)}]^4.$$

We now find a representation of the coefficient of kurtosis (excess) of h_n , $n = 1, 2, \dots, N$.

Note that, in our model, $M^{(1)} = (M_n^{(1)}, \mathcal{F}_n)$ and $M^{(2)} = (M_n^{(2)}, \mathcal{F}_n)$ are the independent Gaussian martingales with square characteristics $\langle M^{(1)} \rangle_n = E(M_n^{(1)})^2$ and $\langle M^{(2)} \rangle_n = E(M_n^{(2)})^2$, respectively, and are independent of the disorder random moment θ .

2000 *Mathematics Subject Classification.* Primary 60G35, 60G42 .

Key words and phrases. Geometric Gaussian martingale, disorder moment, optimal forecasting.

Therefore,

$$(2) \quad Eh_n = 0,$$

$$\begin{aligned} Eh_n^2 &= E[I(\theta > n)[\Delta M_n^{(1)}]^2 + I(\theta \leq n)[\Delta M_n^{(2)}]^2] = \\ (3) \quad &E[E[I(\theta > n)[\Delta M_n^{(1)}]^2 + I(\theta \leq n)[\Delta M_n^{(2)}]^2]/\theta] = \\ &E[I(\theta > n)E[\Delta M_n^{(1)}]^2/\theta] + E[I(\theta \leq n)E[\Delta M_n^{(2)}]^2/\theta] = \\ &\Delta\langle M^{(1)} \rangle_n P(\theta > n) + \Delta\langle M^{(2)} \rangle_n P(\theta \leq n), \\ (4) \quad Eh_n^4 &= E[\Delta M_n^{(1)}]^4 P(\theta > n) + E[\Delta M_n^{(2)}]^4 P(\theta \leq n) = \\ &3[\Delta\langle M^{(1)} \rangle_n]^2 P(\theta > n) + 3[\Delta\langle M^{(2)} \rangle_n]^2 P(\theta \leq n). \end{aligned}$$

The kurtosis coefficient of h_n is

$$(5) \quad K_n = \frac{Eh_n^4}{(Eh_n^2)^2} - 3.$$

Substituting Eh_n^2 and Eh_n^4 from (3) and (4) in (5), we obtain

$$(6) \quad K_n = \frac{3[\Delta\langle M^{(1)} \rangle_n]^2 P(\theta > n) + 3[\Delta\langle M^{(2)} \rangle_n]^2 P(\theta \leq n)}{[[\Delta\langle M^{(1)} \rangle_n]P(\theta > n) + [\Delta\langle M^{(2)} \rangle_n]P(\theta \leq n)]^2} - 3.$$

Denote

$$(7) \quad \frac{\Delta\langle M^{(1)} \rangle_n}{\Delta\langle M^{(2)} \rangle_n} = a_n.$$

Then it follows from (6) that

$$\begin{aligned} (8) \quad K_n &= 3\{P(\theta > n) + a_n^2 P(\theta > n) - [P(\theta \leq n)]^2 - \\ &2a_n P(\theta > n)P(\theta \leq n)\} - a_n^2 [P(\theta \leq n)][P(\theta > n) + \\ &a_n P(\theta \leq n)]^{-2} = 3\{P(\theta > n)P(\theta \leq n) + \\ &a_n^2 P(\theta \leq n)P(\theta > n) - 2a_n P(\theta \leq n)P(\theta > n)\}[P(\theta > n) + \\ &P(\theta \leq n)]^{-2} = \frac{3\{P(\theta > n)P(\theta \leq n)(1 - a_n)^2\}}{[P(\theta > n) + a_n P(\theta \leq n)]^2}. \end{aligned}$$

If, for any n , $a_n \neq 1$, then we have from (8) that K_n is positive for each n , $n = 1, 2, \dots, N$. For example, $a_n \neq 1$ if $\langle M^{(2)} \rangle_n = n$ and $\langle M^{(2)} \rangle_n = an$, where a is some positive constant. In the case without disorder, we have $\langle M^{(1)} \rangle_n = \langle M^{(2)} \rangle_n$ and the coefficient of kurtosis $K_n = 0$ for any n , because $a_n = 1$ in this case.

It is known (see [4],[5]) that, for real financial time series, the empirical kurtosis coefficient of a logarithmic return

$$\hat{K}_n = \frac{\frac{1}{n} \sum_{k=1}^n (h_k - \bar{h}_n)^4}{(\frac{1}{n} \sum_{k=1}^n (h_k - \bar{h}_n)^2)^2} - 3,$$

where $\bar{h}_n = \frac{1}{n} \sum_{k=1}^n h_k$ is usually positive.

3. OPTIMAL FORECASTING

We consider the problem of finding the optimal in mean square sense forecasting estimation of a stochastic process S described by (1).

In sequel, we use the following trivial fact:

$$(9) \quad \begin{aligned} 1 &= I(\theta \leq (n-m) + 1) + I(\theta = (n-m) + 2) + \dots + I(\theta = n-1) + \\ &I(\theta = n) + I(\theta > n), \end{aligned}$$

$n \leq m$, $n = 1, 2, \dots, N$.

From (1) and (9), we obtain

$$\begin{aligned}
 S_n &= S_{n-m} \exp\{\sum_{k=(n-m)+1}^n h_k\} = S_{n-m} \exp\{\sum_{k=(n-m)+1}^n h_k\} \times \\
 &\quad [I(\theta \leq (n-m)+1) + I(\theta = (n-m)+2) + \dots + I(\theta = n-1) + \\
 &\quad I(\theta = n) + I(\theta \geq n)\} = \\
 (10) \quad &S_{n-m} \exp\{I(\theta \leq (n-m)+1) \sum_{k=(n-m)+1}^n \Delta M_k^{(2)} + \\
 &I(\theta = (n-m)+2) [\sum_{k=(n-m)+1}^{n-1} \Delta M_k^{(2)} + \Delta M_n^{(1)}] + \dots + \\
 &I(\theta = n-1) [\Delta M_{n-1}^{(2)} + \Delta M_n^{(2)} + \sum_{k=(n-m)+1}^{n-1} \Delta M_k^{(1)}] + \\
 &I(\theta = n) [\Delta M_n^{(2)} + \sum_{k=(n-m)+1}^{n-1} \Delta M_k^{(1)}] + \\
 &I(\theta > n) \sum_{k=(n-m)+1}^n \Delta M_k^{(1)}\}.
 \end{aligned}$$

Relation (10) yields

$$\begin{aligned}
 S_n &= S_{n-m} \{I(\theta \leq (n-m)+1) \exp\{\sum_{k=(n-m)+1}^n \Delta M_k^{(2)}\} + \\
 &I(\theta = (n-m)+2) \exp\{\sum_{k=(n-m)+1}^{n-1} \Delta M_k^{(2)} + \Delta M_n^{(1)}\} + \dots + \\
 (11) \quad &I(\theta = n-1) \exp\{\Delta M_{n-1}^{(2)} + \Delta M_n^{(2)} + \sum_{k=(n-m)+1}^{n-2} \Delta M_k^{(1)}\} + \\
 &I(\theta = n) \exp\{\Delta M_n^{(2)} + \sum_{k=(n-m)+1}^{n-1} \Delta M_k^{(1)}\} + \\
 &I(\theta > n) \sum_{k=(n-m)+1}^n \Delta M_k^{(1)}\}.
 \end{aligned}$$

From (11), the m -optimal forecasting optimal in mean square sense has the form

$$\begin{aligned}
 \hat{S}_n &= E(S_n / \mathcal{F}_{n-m}^S) = S_{n-m} [P(\theta \leq (n-m)+1) / \mathcal{F}_{n-m}^S] \times \\
 &\exp\{\frac{1}{2} \sum_{k=(n-m)+1}^n \Delta \langle M_k^{(2)} \rangle\} + P(\theta = (n-m)+2) / \mathcal{F}_{n-m}^S \times \\
 &\exp\{[\frac{1}{2} \sum_{k=(n-m)+1}^{n-1} \Delta \langle M_k^{(2)} \rangle + \Delta \langle M_n^{(1)} \rangle]\} + \dots + \\
 (12) \quad &P(\theta = (n-1) / \mathcal{F}_{n-m}^S) \exp\{\frac{1}{2} [\Delta \langle M_{n-1}^{(2)} \rangle + \Delta \langle M_n^{(2)} \rangle] + \\
 &\sum_{k=(n-m)+1}^{n-2} \Delta \langle M_k^{(1)} \rangle\} + P(\theta = n) \exp\{\frac{1}{2} [\sum_{k=(n-m)+1}^{n-1} \Delta \langle M_k^{(1)} \rangle + \\
 &\Delta \langle M_n^{(2)} \rangle]\} + P(\theta > n / \mathcal{F}_{n-m}^S) \exp\{\frac{1}{2} \sum_{k=(n-m)+1}^n \Delta \langle M_k^{(1)} \rangle\}.
 \end{aligned}$$

Here, we use the fact that $M^{(1)}$ and $M^{(2)}$ are independent Gaussian martingales and are jointly independent of θ as well.

It is clear from (12) that, in order to solve the forecasting problem, it is necessary to find the conditional probabilities $P(\theta \leq (n-m)+1 / \mathcal{F}_{n-m}^S)$, $P(\theta = (n-m)+2 / \mathcal{F}_{n-m}^S)$, $P(\theta = n-1 / \mathcal{F}_{n-m}^S)$, $P(\theta = n / \mathcal{F}_{n-m}^S)$ and $P(\theta > n / \mathcal{F}_{n-m}^S)$.

We denote $P(\theta = n / \mathcal{F}_r^S) = P_n^r$, $n = 0, 1, 2, \dots, N$; $r = 0, 1, 2, \dots, N$.

It is clear that, for each n , $\mathcal{F}_n^S = \mathcal{F}_n^h$, where $\mathcal{F}_n^S = \sigma\{S_0, S_1, \dots, S_n\}$ and $\mathcal{F}_n^h = \sigma\{h_0, h_1, \dots, h_n\}$.

Using the Bayes formula

$$P(\theta / h_1, h_2, \dots, h_r) = \frac{P(h_1, h_2, \dots, h_n / r) \pi_2}{\sum_{i=1}^N P(h_1, h_2, \dots, h_n / i) \pi_i},$$

where $P(x_1, x_2, \dots, x_n / r) = P_{h_1, h_2, \dots, h_n}(x_1, x_2, \dots, x_n / \theta = r)$ is the conditional density probability function of a random vector (h_1, h_2, \dots, h_n) , taking the condition $\{\theta = r\}$ into account, and performing direct calculations, we obtain the following result.

Lemma 1. If $r < n$, then

$$(13) \quad P_n^r = \frac{\pi_r u_n}{L_r};$$

and if $r \geq n$,

$$(14) \quad P_n^r = \frac{\pi_n u_{n-1}}{L_r},$$

where

$$(15) \quad \begin{aligned} u_r &= \frac{P_{h_1^{(1)}}(h_1)P_{h_2^{(1)}}(h_2)\dots P_{h_k^{(1)}}(h_k)}{P_{h_1^{(2)}}(h_2)P_{h_2^{(2)}}(h_2)\dots P_{h_k^{(2)}}(h_k)}, \\ u_0 &= 1, \quad h_k = \ln \frac{\Delta S_k}{S_{k-1}}, \end{aligned}$$

$$(16) \quad h_l^{(i)} = \Delta M_l^{(i)}, \quad i = 1, 2; \quad l = 1, 2, \dots, N; \quad L_r = \sum_{i=1}^r \pi_i u_{i-1} + (1 - \Pi_r) u_r.$$

Here, $\Pi_r = P(\theta \leq n)$ and

$$(17) \quad P_{h_l^{(i)}} = \frac{1}{\sqrt{2\pi\Delta\langle M^i \rangle_l}} \exp\left\{-\frac{x^2}{2\Delta\langle M^i \rangle_l}\right\}, \quad l = 1, 2, \dots, k; \quad i = 1, 2.$$

We can obtain this result also using the method developed in [3], because the problem of finding P_n^r belongs to the general filtered probability–statistical experiment framework.

We now construct the optimal in mean square sense m -step forecasting estimation of S : $\hat{S}_n(m) = E(S_i / \mathcal{F}_{n-m}^S)$.

Theorem 1. The optimal forecasting estimation of S has the form

$$(18) \quad \begin{aligned} \hat{S}_n(m) &= S_{n-m} [\sum_{k=n+1}^N P_k^{n-m} \exp[\frac{1}{2} \sum_{k=(n-m)+1}^n \Delta\langle M_k^{(1)} \rangle] + \\ &P_n^{n-m} \exp[\frac{1}{2} [\sum_{k=(n-m)+1}^{n-1} \Delta\langle M^{(1)} \rangle_k + \Delta\langle M^{(2)} \rangle_n]] + \\ &P_{n-1}^{n-m} \exp[\frac{1}{2} [\sum_{k=(n-m)+1}^{n-2} \Delta\langle M^{(1)} \rangle_k + \Delta\langle M^{(2)} \rangle_{n-1}] + \\ &\Delta\langle M^{(2)} \rangle_n] + \dots + P_{(n-m)+2}^{n-m} \exp[\frac{1}{2} [\Delta\langle M^{(1)} \rangle_{n-m+1} + \\ &\sum_{k=1}^{n-1} \Delta\langle M^{(2)} \rangle_k]] + \sum_{k=1}^{n-m} P_k^{n-m} \exp[\frac{1}{2} \sum_{k=1}^n \Delta\langle M^{(2)} \rangle_k]], \end{aligned}$$

where P_k^{n-m} are determined from formulas (16), (17), and (18).

Proof. From (12), using notations (13) and results of Lemma 1, we obtain immediately (19).

Corollary. The one-step ($m = 1$) optimal estimation of S is

$$(19) \quad \hat{S}_n(1) = S_{n-1} [\sum_{k=n+1}^N P_k^{n-1} \exp\{\frac{1}{2} \Delta\langle M^{(1)} \rangle_n\} + \sum_{k=1}^n P_k^{n-1} \exp\{\frac{1}{2} \Delta\langle M^{(2)} \rangle_n\}].$$

If $\Delta\langle M^{(1)} \rangle = a > 0$ and $\Delta\langle M^{(2)} \rangle = 1$, then relation (20) yields

$$\hat{S}_n(1) = S_{n-1} [\exp\{\frac{a}{2}\} \sum_{k=n+1}^N P_k^{n-1} + \exp\{\frac{1}{2}\} \sum_{k=1}^n P_k^{n-1}].$$

Remark. The problem of finding the minimal entropy martingale measure within our model (1) is investigated in [6].

REFERENCES

1. O. Glonti, L. Jamburia, Z. Khechinashvili, *The minimal entropy martingale measure in trinomial scheme with “disorder”*, Bulletin of the Georgian Acad. of Sci. **170** (2004), no. 3, 452–453.
2. O. Glonti, L. Jamburia, Z. Khechinashvili, *Trinomial scheme with “disorder”. The minimal entropy martingale measure*, AMIM **9** (2004), no. 2, 14–29.
3. A.N. Shiryaev, *On statistical models and optimal methods in problems of quickest detection*, Teor. Veroyatnost. Primen., **53** (2008), no. 3, 417–436 (in Russian).
4. A.N. Shiryaev, *Essentials of Stochastic Finance. Facts, Models, Theory*, World Scientific, Singapore, 1999.
5. S. Taylor, *Modeling Financial Time Series*, Wiley, New York, 1986.
6. O. Glonti, Z. Khechinashvili, *Martingale measure for the geometric Gaussian martingale with “disorder”*, Proceedings of I. Vekua Institute of Applied Mathematics **58** (2008), 102–109.

I. JAVAKHISHVILI TBILISI STATE UNIVERSITY, UNIVERSITY STR., 2.
E-mail address: omglo@yahoo.com

I. JAVAKHISHVILI TBILISI STATE UNIVERSITY, UNIVERSITY STR., 2.
E-mail address: khechinashvili@gmail.com