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D. V. GUSAK (HUSAK)

ON SOME GENERALIZATIONS OF THE POLLACHEK-KHINCHINE
FORMULA

For the skip-free Poisson process £(t) (t > 0,£(0) = 0),
() =at+S(t), a<0, SE)= > &, & >0,£0) =

k<v(t)

where v(t) is a simple Poisson process with intensity A > 0, the moment generating
function (m.g.f.) of £ = supgc;coo £(f) is defined by the well-known Pollachek—
Khinchine formula under the condition m = E£(1) < 0 (see [1-3]).

For a homogeneous process £(t) with bounded variation, we establish prelimit and
limit generalizations of this formula, which define the m.g.f. of

ET(0s) = sup £(t), €7 = lim €7(0s) (P{6s >t} =e %, 5> 0).
0<t<6, s—0

These generalizations are essentially based on the condition P{r+(0) = v+ (0) =
0} = 0, where (71(0), vy (0)) is the initial ladder point of £(¢) (t > 0,£(0) = 0).

Some another relations for the m.g.f. of £7(0s) and ¢+ are established for the
general lower semicontinuous process £(¢) on the base of results in [3-5].

1. INTRODUCTION

Let £(t) be a lower continuous compound Poisson process with cumulant function
b(a) |
Eet® = (@) ¢ > 0: () = iaa + Mp(a) — 1),
a<0,A>0,p(a)=Ee®* F(z)=P{& <z}, 2 >0,F(x) =1— F(x).
Under the condition
m=E{(1) =a+ M\ <0, p1 = B¢, F(0) =0,

the moment generating function (m.g.f) of £* = supg<;. ., £(t) is defined by the classic
Pollachek—Khinchine formula

Be " = p+7 pr=P{t =0} =1—¢q., Fz) = / F(x)e **dx. (1)
1= q4F(2)/m 0
At first, we consider the process £(t) with a bounded variation
¥(a) = iaa +/ (% — 1)TI(da), / l[TT(dz) < 00, a <0, @)
—00 |z|<1

and denote its extremal values and ladder points as

£5(t) = sup(inf) &(t), € = sup(inf) £(t), 7 (—z) = inf{t > 0: £(t) < —a},

0<t'<t 0<t<oo
7T (z) = inf{t > 0: £(t) > 2}, v (2) =&(7T (2)) — 2, > 0.
P{T <oo}—1 1fm>OP{T <oo}<1 if m < 0.
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If ffoo II(dz) = 0, then a < 0. We suppose that, for the processes £(t) with cumulant
(2), the following condition is realized:

P{r(0) =0} =0. (3)

It should be pointed out that P {r"(0) =0} = 0 & P{r7(0) >0} = 1 and then, by
definition, v (0) = £(77(0)) > 0 with probability 1. This means

P{r*(0) =0,7%(0) =0} =0.
For such processes, we establish generalizations of the Pollachek—Khinchine formula
(1).
2. THE M.G.F. OF £1(0;) AND £1 FOR £(f) WITH A BOUNDED VARIATION

Let 65 be an exponentially distributed random variable with parameter s > 0 which
is independent of £(t). Then Laplace—Carson transforms of the characteristic function
(ch.f.) of £(t) and €% () can be written as

_ > —st i (t) _ s
p(s,a —s/ e **Fe dt = ——,
()=, P
wi(s,a) = s/ Eeio€ Me=stg = peiot™ (0:), (4)
0

Under condition (3), the joint m.g.f. of {77(0),7*(0)} is represented by the expression

ot (0)—srt ot
Fi(s,2) = Be ™ OO ) oo = Be™ ™ Ot 9,150 < g4 (s), (5)

f(s,2) =, P{E"(0) > 0} = q4.(5), p+(s) =1—g4(s) > 0.

Theorem 2.1. Let £(t) be a process with stationary independent increments and bounded
variation (see (2)). Then, under condition(3), the following prelimit generalization of
Pollachek—Khinchine formula is true (s > 0) which defines the m.g.f. of £+ (0):

o L p+(s)
Ee 09 —. o (s,i2) = 1 —q:(s)Ele > Ot (6,) > 0] (6)

From Spitzer’s formula [4, Theorem 2.2] after the limit passage (as z — o0), it follows
that

Z—00

p+(s) = lim @4 (s,iz) = exp {— /000 e St P{E(t) > 0} dt} .

If m = E£(1) < 0, then the m.g.f. of £ is defined by the limit generalization of the
Pollachek—Khinchine formula (s — 0)

Ee- " _ i B N _ P+ 7
R A N L v

pr=1-qy =P{T =0} —exp{—/oootlp{g(t) > O}dt} > 0.

Proof. Let 0, be the exponentially distributed random variable which is independent, of
s and £(t). By virtue of the second factorization formula (see (2.26) in [4]),

Blemr7 =20 (0 < oc] =

_ {1 _pa(sip)

Bz P+ (s,i2)

Accordingly to (2.29) in [4], the joint m.g.f. of {71 (0),~77(0)} is defined from (8) (u — o)
by the relation

},s>0,z>0,u>0. (8)

f+(57 Z) — Ee—Z’Y+(0)—ST+(O) HT+(0)<OO =
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- p1(s)
=Ble O ¢t o) > 0] =1 - 2,
P4 (s,iz)
E[e=*7" O|¢+(g,) > 0], relation (9) yields
(10)

9)

Since f4(s.2) = 44 ()i (), where gi(2)
p+(s) p+(s)

p(s,12) = 7= Fi(s,2) 1= qi()9s(2)

and formula (6) is proved.
If m < 0, then, after the limit passage as s — 0, relation (10) yields (7) with go(z) =
O

E[e=>7" O]t > 0].
3. THE M.G.F OF {7 (fs) AND £ FOR THE LOWER CONTINUOUS PROCESSES

Under condition (3), the lower continuous process £(t) = at + &1(¢) is defined by the
(11)

cumulant )
(@) = iaa —|—/ (e'*® — 1)TI(dx), / aIl(dx) < oo, a < 0.
0 0

If [[°TI(dz) = A < oo, then I(dz) = AdF(z),z > 0,
Y(a) = iaa + )\/Oo(ei‘“ — 1)dF(x) = iaa + Y1 (), (12)
0
/OO F(x)e " dx.

o0
II(x) = / (dy) = AF(z), = > 0,¢1(a) = In B4 = ja )
T 0

By Theorem 3.2 in [4], the Lunberg’s equation
k(r) = (—ir) = s (13)
has negative root rs = —p_(s) < 0 which defines the ch.f. of {7 (6s):
(s,a) = Eelot (0s) — Pf(s)' (p s) = 5 > 14
#-(5:0) (9 +ia P = 19

Accordingly to Corollary 5.2 ([4], §5.1) for the lower continuous processes, §s(z) is defined

by the relation
(15)

zﬁ(z) - P—(S)ﬁ(P— (5))’ ﬁ(z) _ /OO e *(x)dx.
0

gs(z) = =
(z = p—(s))I(p—(s))
The conditional m.g.f. of v7(0) is defined for m = F¢(1) = k/(0) < 0, p—(s) -0 by

the limit passage (s — 0)
e ot _ i)
go(z) = lim g(2) = Ele Ol¢t >0 = o) (16)
If A = I1(0) < oo, then II(2) = AF(z) = \ [;° e **F(a)dx,
g = @ Foy= [ F x)dr =
gd@jﬂm,Fm)A Fw)do = . a7

Taking these relations into account, Theorem 1 yields the following corollary
Corollary 3.1. If£(t) is the lower semicontinuous process with cumulant (11), then the

prelimit generalization of the Pollachek—Khinchine formula
_pils) _ LY, 18

1_q4@dﬁd—p4ﬂﬂw4ﬂfq4g gl (9
(= = p_(s))(p—(5))

pi(s,iz) =
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holds true. If A =TI1(0) < oo (with cumulant (12)), then (p+(s) =1 — q+(s))

AF(p_(s))
o

_ p1(s) _
2F(z) — p-(s)F(p-(5))
1-—- =
e O -()
If m = E£(1) < 0, then we obtain the following limit relations from (18) and (19) as
s —0:

P4 (s,i2) = ; q4(s) = (19)

1 ~
EBe " = Py 4 = = 1I(0), (20)
1— g I(2)/0)"  lal
I L (L (21)

1— q. F(2)/F(0) lal lal ©

Proof. After the corresponding substitution gs(z) (15) and go(z) (16)—(17) into (6) and
(7), we deduce relations (19)—(21). It should be mentioned that formula (21) coincides
with the Pollachek—Khinchine formula (1). O

4. THE M.G.F. OF £*(f) AND £ FOR ALMOST LOWER SEMICONTINUOUS STEPWISE
PROCESSES
An almost lower semicontinuous stepwise process is defined as
) =& + &), G20= > &E&), (22)
k‘Sulyg(t)

Fi(x) = P{¢, < x},2 > 0; Fy(z) = P{& <a} =" (b> 0,2 <0),
where processes &1,2(t) are independent, and 14 2(t) are simple independent Poisson
processes with rates Ay 2 > 0.

Y(a) =In Be™® = ¢ (a) + a(a),

Y1) =\ /Ooo(em”” — 1)dF(x) = ia\ /000 e F(z)d, (23)

0 ; iOé/\Q
ha(a) = /\2/ (e — 1)bebxdx = “h o Ao >0,b>0.

Following Lemma 3.4 (see §5.2 in [4]) for the process &(t) with culumant (22), the root
rs = —p_(s) = —bp_(s) < 0 of Eq. (13) defines the ch.f. of {7 (05):
b(p—(s) + i) _
L) (i (s) =
By Theorem 5.9 (see §5.2 in [4]),

/ TP (0) > g, € (0,) > 0}y =

— 00

S

o_(s,0) = Y

)\2/\1+)\2>.

1 ()~ - (), =\ _ 7
= ol + b ()=, () = ARG, (24)
)

= ¢1(iz). Then, after the integration by parts, relation (24) yields
Jils,2) = Ele™©,6%(8,) > 0] =
2Fi(2) = p-(s)Fi(p—(5))
z—p-(s)
A1

016 = 51+ b @B - ()] i) = [ e i)

s
Note that 1 — zF} (2

= - >_:)\ [p1(iz) + bg—(s)

B (25)
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From (25) under the condition m < 0 by the limit passage s — 0 (p_(s) — 0), we deduce

£1(0,2) = B, > 0 = Jpu(iz) + bF (), (26)

q+ = %[1 +bF(0)], Fi(0) = Eg, = ph, Fi(2) :/ e *Fy(x)dz.
0

Corollary 4.1. If£(t) is the almost semicontinuous process with cumulant (23), then
- 1
1+ bg_(5)F1(p_(5))

2Fi(2) = p-(s) Fi(p—(5))
z—p—(s)

Js(2) = Ble™*" D[t (4,) > 0] x (27)

X |@1(iz) + bg—(s) as s> 0;

and, for m <0, s — 0,

_ pilix) + bR ()

Go(z) = Bl @)t > ] 1+ b5, (0)
1

(28)

For the m.g.f. of €T, we have the following generalization of the Pollachek—Khinchine
formula:

A
Be—*" = Pr =2 1t 29
e = ) (29

1+ bﬁ1(0)

Proof. From (25) and (26), we get the representations of the conditional m.g.f. of yv*(0)
(27) and (28) which correspond to prelimit formula (6) and limit formula (7). O

For general processes with stationary independent increments, we denote

oo

0
K(s,x) = / II(x — y)dP_(s,y),x > 0,(z) = / II(dy),x > 0,

— 00 x

/

K(s,0) = / ¢ K (5, 2)d, K (0,0) = (k (5,0))_ -
0
Then, according to Theorem 2.5. in [4] for ¢ (s, @), we have

Theorem 4.1. If the process £(t) has the cumulant

P(a) =iaa — a202/2 + /00 (ei‘” —-1- iaxl‘m‘gl) II(dx), (30)
then
— 1 .
o480 = T e S T s k)
1

ot (i2) as m < 0; (31)

T 14 2(C. (0) + K (0,4z2))

_ (25)"10?P’ (5,0), o >0;
Culs) = { s 1p_(s)max{0,a}, o=0.

oo 0
2k'(0,iz) = /0 (1—e*)dM(z), M(z)= / I(x — y)dET™ (y).

If [p1<1 l2|TI(dz) = oo, then p_(s) = 0 and C(s) = 0.
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If £(t) is the lower semicontinuous process with the cumulant
V() =iaa — o?a?/2 + /000 (ei‘“ — 1 — o]y <p) (da) (32),
then k(s,iz) is defined by the relation

Ks,iz) = # [11(2) ~ T1(p-(s))].

In addition, P’ (s,0) = p_(s). Then, according to (31), the following assertion is proved:
Corollary 4.2. If the process £(t) has cumulant (32), then

145 Lzp_(s) ("—2 L)~ ﬁ(”(s))ﬂ . (33)

04 (s,iz) = Bem2¢ (0:) =

If m <0, then

P (i2) = lim 1 (s,i2) = Ee " = {1 + m| <%2,z +11(0) — f[(z))] - . (34)

If £(t) is the almost lower semicontinuous process with the cumulant
0

Y(a) = iaa + by /

— 00

(e"* —1) e"dx + /OOO (e*" —1)II(dz), a >0,  (35)
then, with regard for Theorem 5.8 (see (5.53) in [4]), relations (31) are true with values
Ci(s) = ap—(s) /s;

E(s,i2) = [(b = 2) () = b () TT (- ()] p— () / (0 (5) — =),

C. (0) = a (blm|)~", k¥ (0,iz) = (bjm]) ™" [bﬁ 0)— (b—2)TI (z)] ,m<0.  (36)

Particularly, if m <0, then k'(0,iz) = — [° (e=** — 1) (I(dz) + blI(z)dz) . Using nota-
tions a, = a(blm|)~t, I, (dz) = [H(dm) + bI(z)dx] (bjm|) ™" (z > 0) the m.g.f. of £ can
be rewritten in a compact form

1 > —ZzZT
T ki(2) = —asz +/0 (e7** — 1) IL,(dx). (37)

From results of §11[1], §3.1-83.2[4] and §23[6], the following propositions hold:

oy (iz) = Be™*¢

Theorem 4.2. Let £(t) be an upper continuous process with the cumulant

0
v =ioa— D5+ [ (1= Mycrion) () (39)

if o =0 and f |z|II(dz) < co. Then we suppose that

0 0
P(a) = iad —l—/ (e'** — 1) II(dz), where o’ = a +/ |z[TI(dz) > 0
oo —1

Then T(z) = 77 (x) (T(0) = 0) is a nondecreasing process with respect to x > 0 with
stationary independent increments which can be considered as a "inverted” function of
T =E£4(1) (t > 0).

If m >0, then —p1(s) = kr(—s) is the cumulant of T(x), and, by the formula (23.2)
(§23,[6]), it is represented as

—p4(s) = =748 +/ (€7 =1)dN (), 74 = 0; 74 = ;Ha/zoa ifo=0. (39)
0
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If m >0, then p/, (0) = 1/m = k;,(0) = 4 + fooo xdN(x) < oo, and the mean value
ET(x) exists: ET(x) =x/m, x > 0.

If m =0, then p4(s) ~ \/2s/k"(0) = \/2s/DE(1) as s — 0, ET(x) = oo.

If m < 0, then py(s) — py > 0, and T(x) = 77 (x) has a degenerate distribution,
because of P{T(z) < oo} = e P+()* < 1 for x> 0. Hence,

—pi(8) = —py —vis+ /000 (e7*" —1)dN(x), v+ =0,if 0> > 0 or a’ = co.  (40)
The conditional m.g.f. of T'(x) is defined by the relation
E [e_ST(”)|T(a:) < oo} = e"Fr(=9) kX (—s) = py — py(s),x > 0. (41)
Theorem 4.3. Let £(t) be an almost upper semicontinuous process with the cumulant
0 Ao

¥(a) = iaa +/ (e = 1) 1I(da) + ——, a < 0;¢, A1 > 0. (42)

oo c—

Then T'(z) = 77(0)+To(x) (To(x) = T(x)—77(0), T(0) = 7F(0) = 0) is a nondecreasing
random function with stationary independent increments.
If m >0, then —p1(s) = kn,(—s) is the cumulant for To(x)

—p1(s) = /OOO (e7** —1) dN(x). (43)

If m >0, then p/y (0) = 1/m = kf, (0) = [;° xdN(z) < 0o and ET(z) = z/m, z > 0.
If m =0, then p4(s) — 0, py(s) = /2s/DE(1) as s — 0, ETy(x) = oo.

If m <0, then p4(s) — py > 0, and To(x) has the degenerate distribution, because of
P{To(z) <o} =P{" >z} =qre """ <1,2>0.
Hence, the conditional m.g.f. of To(x) also has the exponential form (see (41)):
E[efsTo(x)|T0(x) < o0] = e®(Pr=r+ () 4 >0,
> (44)
ElTy(a)To(a) < ] = [ ydN(),
0
The similar assertions hold for the lower continuous processes £(t) with cumulant (32)
and for the almost lower semicontinuous processes £(t) with cumulant (35), for which
T(x)=7"(—z)=inf{t >0:&(t) < —z},z > 0.

For example (see Theorem 2.10 in [4,§ 2.5]), if W (t) is the Wiener process (EW (t) = 0,
DW (t) = 2), then T'(z) = 75 (£z) (x > 0) are the stable processes with the parameter
a = 1/2. The cumulant functions of T'(x) have representations

o0
kr(=s) = —ps(s) = —Vs = \/%_W/O (e — 1)y 2dy, (45)
which means
2 1 1 _3
v+ =0, N(y) = — —y e, H(dy) = s 2dy,y > 0.

The next example for the illustration of the homogeneity of 77 (z) with respect to
is connected with the process

§) =& +S(1), St)= D &, (o) = B =

k<v(t)

1
1—ia’
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&« (t) is a stable process with negative jumps and with the parameter of stability a.. = 1/2.
&(t) is the almost upper semicontinuous process with the cumulant

W(a) = Inei@s® = % —2al?, k(r) = ﬁ — 271
Accordingly to (44), the conditional m.g.f. of Ty(z) has the representation
Ele™* @) |Ty(x) < o] = ™) B [Ty (2)|Tp(z) < 0] = 2B (0) L+ (<o

(
_srt
kry(=5) = p+ = pa(s) = w(s) = m(0), w(s) = Ee™* Dl g) <o,
where 0 < p4(s) = p4+(s) < 1 is the root of Lundberg’s equation (13), which is defined
by the intersection of the curves (0 <r < 1)
T

y=1 — 5, y=2yr, m=FE{1) = —c0 <0,
-7
9 — V17
P+(5);’)P+ZP+ZT<1,

p+ is the root of the limit Lundberg’s equation £ —2y/r =0 (s =0,0 <7 < 1).
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