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ON SOME GENERALIZATIONS OF THE POLLACHEK–KHINCHINE
FORMULA

For the skip-free Poisson process ξ(t) (t ≥ 0, ξ(0) = 0),

ξ(t) = at + S(t), a < 0, S(t) =
�

k≤ν(t)

ξk, ξk > 0, ξ(0) = 0,

where ν(t) is a simple Poisson process with intensity λ > 0, the moment generating
function (m.g.f.) of ξ+ = sup0≤t<∞ ξ(t) is defined by the well-known Pollachek–

Khinchine formula under the condition m = Eξ(1) < 0 (see [1-3]).
For a homogeneous process ξ(t) with bounded variation, we establish prelimit and

limit generalizations of this formula, which define the m.g.f. of

ξ+(θs) = sup
0≤t≤θs

ξ(t), ξ+ = lim
s→0

ξ+(θs)
�
P{θs > t} = e−st, s > 0

�
.

These generalizations are essentially based on the condition P{τ+(0) = γ+(0) =
0} = 0, where (τ+(0), γ+(0)) is the initial ladder point of ξ(t) (t ≥ 0, ξ(0) = 0).

Some another relations for the m.g.f. of ξ+(θs) and ξ+ are established for the
general lower semicontinuous process ξ(t) on the base of results in [3-5].

1. Introduction

Let ξ(t) be a lower continuous compound Poisson process with cumulant function
ψ(α) :

Eeiαξ(t) = etψ(α), t ≥ 0; ψ(α) = iαa+ λ(ϕ(α) − 1),

a < 0, λ > 0, ϕ(α) = Eeiαξk , F (x) = P{ξk < x}, x ≥ 0, F (x) = 1− F (x).

Under the condition

m = Eξ(1) = a+ λμ1 < 0, μ1 = Eξk, F (0) = 0,

the moment generating function (m.g.f) of ξ+ = sup0≤t<∞ ξ(t) is defined by the classic
Pollachek–Khinchine formula

Ee−zξ
+

=
p+

1− q+F̃ (z)/μ1

, p+ = P{ξ+ = 0} = 1− q+, F̃ (z) =
∫ ∞

0

F (x)e−zxdx. (1)

At first, we consider the process ξ(t) with a bounded variation

ψ(α) = iαa+
∫ ∞

−∞
(eiαx − 1)Π(dx),

∫
|x|≤1

|x|Π(dx) <∞, a ≤ 0, (2)

and denote its extremal values and ladder points as

ξ±(t) = sup(inf)
0≤t′≤t

ξ(t′), ξ± = sup(inf)
0≤t<∞

ξ(t), τ−(−x) = inf{t > 0 : ξ(t) < −x},

τ+(x) = inf{t > 0 : ξ(t) > x}, γ+(x) = ξ(τ+(x)) − x, x ≥ 0.

P
{
τ+(x) <∞} = 1, if m ≥ 0, P

{
τ+(x) <∞} < 1, if m < 0.
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If
∫ 0

−∞ Π(dx) = 0, then a < 0. We suppose that, for the processes ξ(t) with cumulant
(2), the following condition is realized:

P{τ+(0) = 0} = 0. (3)

It should be pointed out that P {τ+(0) = 0} = 0 ⇔ P {τ+(0) > 0} = 1 and then, by
definition, γ+(0) = ξ(τ+(0)) > 0 with probability 1. This means

P
{
τ+(0) = 0, γ+(0) = 0

}
= 0.

For such processes, we establish generalizations of the Pollachek–Khinchine formula
(1).

2. The m.g.f. of ξ+(θs) and ξ+ for ξ(t) with a bounded variation

Let θs be an exponentially distributed random variable with parameter s > 0 which
is independent of ξ(t). Then Laplace–Carson transforms of the characteristic function
(ch.f.) of ξ(t) and ξ±(t) can be written as

ϕ(s, α) = s

∫ ∞

0

e−stEeiαξ(t)dt =
s

s− ψ(α)
,

ϕ±(s, α) = s

∫ ∞

0

Eeiαξ
±(t)e−stdt = Eeiαξ

±(θs). (4)

Under condition (3), the joint m.g.f. of {τ+(0), γ+(0)} is represented by the expression

f+(s, z) = Ee−zγ
+(0)−sτ+(0)1Iτ+(0)<∞ = Ee−zγ

+(0)1Iξ+(θs)>0 < q+(s), (5)

f+(s, z) →
z→0

P{ξ+(θs) > 0} = q+(s), p+(s) = 1− q+(s) > 0.

Theorem 2.1. Let ξ(t) be a process with stationary independent increments and bounded
variation (see (2)). Then, under condition(3), the following prelimit generalization of
Pollachek–Khinchine formula is true (s > 0) which defines the m.g.f. of ξ+(θs):

Ee−zξ
+(θs) =: ϕ+(s, iz) =

p+(s)
1− q+(s)E[e−zγ+(0)|ξ+(θs) > 0]

. (6)

From Spitzer’s formula [4, Theorem 2.2] after the limit passage (as z → ∞), it follows
that

p+(s) = lim
z→∞ϕ+(s, iz) = exp

{
−
∫ ∞

0

e−stt−1P {ξ(t) > 0} dt
}
.

If m = Eξ(1) < 0, then the m.g.f. of ξ+ is defined by the limit generalization of the
Pollachek–Khinchine formula (s→ 0)

Ee−zξ
+

= lim
s→0

Eϕ+(s, iz) =
p+

1− q+E[e−zγ+(0)|ξ+ > 0]
, (7)

p+ = 1− q+ = P{ξ+ = 0} = exp
{
−
∫ ∞

0

t−1P {ξ(t) > 0} dt
}
> 0.

Proof. Let θ′μ be the exponentially distributed random variable which is independent of
θs and ξ(t). By virtue of the second factorization formula (see (2.26) in [4]),

E[e−sτ
+(θ′μ)−zγ+(θ′μ), τ+(θ′μ) <∞] =

=
μ

μ− z
{

1− ϕ+(s, iμ)
ϕ+(s, iz)

}
, s > 0, z > 0, μ > 0. (8)

Accordingly to (2.29) in [4], the joint m.g.f. of {τ+(0), γ+(0)} is defined from (8) (μ→∞)
by the relation

f+(s, z) = Ee−zγ
+(0)−sτ+(0)1Iτ+(0)<∞ =
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= E[e−zγ
+(0), ξ+(θs) > 0] = 1− p+(s)

ϕ+(s, iz)
. (9)

Since f+(s, z) = q+(s)g̃s(z), where g̃s(z) = E[e−zγ
+(0)|ξ+(θs) > 0], relation (9) yields

ϕ+(s, iz) =
p+(s)

1− f+(s, z)
=

p+(s)
1− q+(s)g̃s(z)

, (10)

and formula (6) is proved.
If m < 0, then, after the limit passage as s→ 0, relation (10) yields (7) with g̃0(z) =

E[e−zγ
+(0)|ξ+ > 0]. �

3. The m.g.f of ξ+(θs) and ξ+ for the lower continuous processes

Under condition (3), the lower continuous process ξ(t) = at + ξ1(t) is defined by the
cumulant

ψ(α) = iαa+
∫ ∞

0

(eiαx − 1)Π(dx),
∫ 1

0

xΠ(dx) <∞, a < 0. (11)

If
∫∞
0 Π(dx) = λ <∞, then Π(dx) = λdF (x), x > 0,

ψ(α) = iαa+ λ

∫ ∞

0

(eiαx − 1)dF (x) = iαa+ ψ1(α), (12)

Π(x) =
∫ ∞

x

Π(dy) = λF (x), x > 0, ψ1(α) = lnEeiαξ1(1) = iαλ

∫ ∞

0

F (x)eiαxdx.

By Theorem 3.2 in [4], the Lunberg’s equation

k(r) = ψ(−ir) = s (13)

has negative root rs = −ρ−(s) < 0 which defines the ch.f. of ξ−(θs):

ϕ−(s, α) = Eeiαξ
−(θs) =

ρ−(s)
ρ−(s) + iα

(
p+(s) =

s

|a|ρ−(s)

)
. (14)

Accordingly to Corollary 5.2 ([4], § 5.1) for the lower continuous processes, g̃s(z) is defined
by the relation

g̃s(z) =
zΠ̃(z)− ρ−(s)Π̃(ρ−(s))

(z − ρ−(s))Π̃(ρ−(s))
, Π̃(z) =

∫ ∞

0

e−zxΠ(x)dx. (15)

The conditional m.g.f. of γ+(0) is defined for m = Eξ(1) = k′(0) < 0, ρ−(s) →
s→0

0 by

the limit passage (s→ 0)

g̃0(z) = lim
s→0

g̃s(z) = E[e−zγ
+(0)|ζ+ > 0] =

Π̃(z)

Π̃(0)
. (16)

If λ = Π(0) <∞, then Π̃(z) = λF̃ (z) = λ
∫∞
0 e−zxF (x)dx,

g̃0(z) =
F̃ (z)

F̃ (0)
, F̃ (0) =

∫ ∞

0

F (x)dx = μ1. (17)

Taking these relations into account, Theorem 1 yields the following corollary

Corollary 3.1. If ξ(t) is the lower semicontinuous process with cumulant (11), then the
prelimit generalization of the Pollachek–Khinchine formula

ϕ+(s, iz) =
p+(s)

1− q+(s)
zΠ̃(z)− ρ−(s)Π̃(ρ−(s))

(z − ρ−(s))Π̃(ρ−(s))

, q+(s) =
1
|a| Π̃(ρ−(s)) (18)
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holds true. If λ = Π(0) <∞ (with cumulant (12)), then (p+(s) = 1− q+(s))

ϕ+(s, iz) =
p+(s)

1− q+(s)
zF̃ (z)− ρ−(s)F̃ (ρ−(s))

(z − ρ−(s))F̃ (ρ−(s))

, q+(s) =
λF̃ (ρ−(s))

|a| . (19)

If m = Eξ(1) < 0, then we obtain the following limit relations from (18) and (19) as
s→ 0:

Ee−zξ
+

=
p+

1− q+Π̃(z)/Π̃(0)
, q+ =

1
|a| Π̃(0), (20)

Ee−zξ
+

=
p+

1− q+F̃ (z)/F̃ (0)
, q+ =

λ

|a| F̃ (0) =
λμ1

|a| . (21)

Proof. After the corresponding substitution g̃s(z) (15) and g̃0(z) (16)–(17) into (6) and
(7), we deduce relations (19)–(21). It should be mentioned that formula (21) coincides
with the Pollachek–Khinchine formula (1). �

4. The m.g.f. of ξ+(θs) and ξ+ for almost lower semicontinuous stepwise

processes

An almost lower semicontinuous stepwise process is defined as

ξ(t) = ξ1(t) + ξ2(t), ξ1,2(t) =
∑

k≤ν1,2(t)

ξ′k(ξ
′′
k ), (22)

F1(x) = P{ξ′k < x}, x > 0; F2(x) = P{ξ′′k < x} = ebx (b > 0, x < 0),
where processes ξ1,2(t) are independent, and ν1,2(t) are simple independent Poisson
processes with rates λ1,2 > 0.

ψ(α) = lnEeiαξ(t) = ψ1(α) + ψ2(α),

ψ1(α) = λ1

∫ ∞

0

(eiαx − 1)dF (x) = iαλ1

∫ ∞

0

eiαxF (x)dx,

ψ2(α) = λ2

∫ 0

−∞
(eiαx − 1)bebxdx = − iαλ2

b+ iα
, λ2 > 0, b > 0.

(23)

Following Lemma 3.4 (see §5.2 in [4]) for the process ξ(t) with culumant (22), the root
rs = −ρ−(s) = −bp−(s) < 0 of Eq. (13) defines the ch.f. of ξ−(θs):

ϕ−(s, α) =
b(p−(s) + iα)
ρ−(s) + iα

(
p+(s)p−(s) =

s

s+ λ
, λ = λ1 + λ2

)
.

By Theorem 5.9 (see §5.2 in [4]),∫ ∞

0

e−zyP{γ+(0) > y, ξ+(θs) > 0}dy =

=
1

s+ λ
[Π̃(z) + bq−(s)

Π̃(z)− Π̃(ρ−(s))
ρ−(s)− z ], Π̃(z) = λF̃ (z). (24)

Note that 1− zF̃1(z) = ϕ1(iz). Then, after the integration by parts, relation (24) yields

f+(s, z) = E[e−zγ
+(0), ξ+(θs) > 0] =

=
λ1

s+ λ
[ϕ1(iz) + bq−(s)

zF̃1(z)− ρ−(s)F̃1(ρ−(s))
z − ρ−(s)

], (25)

q+(s) =
λ1

s+ λ
[1 + bq−(s)F̃1(ρ−(s))], ϕ1(iz) =

∫ ∞

0

e−zxdF1(x);
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From (25) under the condition m < 0 by the limit passage s→ 0 (ρ−(s) → 0), we deduce

f+(0, z) = E[e−zγ
+(0), ξ+ > 0] =

λ1

λ
[ϕ1(iz) + bF̃1(z)], (26)

q+ =
λ1

λ
[1 + bF̃1(0)], F̃1(0) = Eξ′k = μ′

1, F̃1(z) =
∫ ∞

0

e−zxF 1(x)dx.

Corollary 4.1. If ξ(t) is the almost semicontinuous process with cumulant (23), then

g̃s(z) = E[e−zγ
+(0)|ξ+(θs) > 0] =

1

1 + bq−(s)F̃1(ρ−(s))
× (27)

×
[
ϕ1(iz) + bq−(s)

zF̃1(z)− ρ−(s)F̃1(ρ−(s))
z − ρ−(s)

]
as s > 0;

and, for m < 0, s→ 0,

g̃0(z) = E[e−zγ
+(0)|ξ+ > 0] =

ϕ1(iz) + bF̃1(z)

1 + bF̃1(0)
. (28)

For the m.g.f. of ξ+, we have the following generalization of the Pollachek–Khinchine
formula:

Ee−zξ
+

=
p+

1− q+ϕ1(iz) + bF̃1(z)

1 + bF̃1(0)

, q+ =
λ1

λ
(1 + bμ′

1). (29)

Proof. From (25) and (26), we get the representations of the conditional m.g.f. of γ+(0)
(27) and (28) which correspond to prelimit formula (6) and limit formula (7). �

For general processes with stationary independent increments, we denote

K(s, x) =
∫ 0

−∞
Π(x − y)dP−(s, y), x > 0,Π(x) =

∫ ∞

x

Π(dy), x ≥ 0,

k(s, α) =
∫ ∞

0

eiαxK(s, x)dx, k′ (0, α) = (k (s, α))
′

s=0 .

Then, according to Theorem 2.5. in [4] for ϕ+(s, α), we have

Theorem 4.1. If the process ξ(t) has the cumulant

ψ(α) = iαa− α2σ2/2 +
∫ ∞

−∞

(
eiαx − 1− iαxI|x|≤1

)
Π(dx), (30)

then

ϕ+(s, α) =
1

1− iα (C∗(s) + s−1k(s, α))
;

ϕ+ (iz) =
1

1 + z (C∗ (0) + k′ (0, iz))
as m < 0; (31)

C∗(s) =
{

(2s)−1σ2P ′
−(s, 0), σ > 0;

s−1p−(s)max{0, a}, σ = 0.

zk′(0, iz) =
∫ ∞

0

(1− e−zx)dM(x), M(x) =
∫ 0

−∞
Π(x− y)dEτ−(y).

If
∫
|x|≤1 |x|Π(dx) =∞, then p−(s) = 0 and C∗(s) = 0.
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If ξ(t) is the lower semicontinuous process with the cumulant

ψ(α) = iαa− σ2α2/2 +
∫ ∞

0

(
eiαx − 1− iαxI|x|≤1

)
Π(dx) (32),

then k(s, iz) is defined by the relation

k(s, iz) =
ρ−(s)

ρ−(s)− z
[
Π̃(z)− Π̃(ρ−(s))

]
.

In addition, P ′
−(s, 0) = ρ−(s). Then, according to (31), the following assertion is proved:

Corollary 4.2. If the process ξ(t) has cumulant (32), then

ϕ+(s, iz) = Ee−zξ
+(θs) =

[
1 + s−1zρ−(s)

(
σ2

2
+

Π̃(z)− Π̃(ρ−(s))
ρ−(s)− z

)]−1

. (33)

If m < 0, then

ϕ+(iz) = lim
s→0

ϕ+(s, iz) = Ee−zξ
+

=
[
1 + |m|−1

(
σ2

2
z + Π̃(0)− Π̃(z)

)]−1

. (34)

If ξ(t) is the almost lower semicontinuous process with the cumulant

ψ(α) = iαa+ bλ1

∫ 0

−∞

(
eiax − 1

)
ebxdx+

∫ ∞

0

(
eiαx − 1

)
Π(dx), a ≥ 0, (35)

then, with regard for Theorem 5.8 (see (5.53) in [4]), relations (31) are true with values

C∗ (s) = ap− (s) /s;

k (s, iz) =
[
(b− z) Π̃ (z)− bq− (s) Π̃ (ρ− (s))

]
p− (s) / (ρ− (s)− z) ,

C∗ (0) = a (b|m|)−1
, k′ (0, iz) = (b|m|)−1

[
bΠ̃ (0)− (b− z) Π̃ (z)

]
, m < 0. (36)

Particularly, if m < 0, then k′(0, iz) = − ∫∞
0 (e−zx − 1) (Π(dx) + bΠ(x)dx) . Using nota-

tions a∗ = a(b|m|)−1, Π∗(dx) = [Π(dx) + bΠ(x)dx] (b|m|)−1 (x > 0) the m.g.f. of ξ+ can
be rewritten in a compact form

ϕ+(iz) = Ee−zξ
+

=
1

1− k∗(z) , k∗(z) = −a∗z +
∫ ∞

0

(
e−zx − 1

)
Π∗(dx). (37)

From results of §11[1], §3.1-§3.2[4] and §23[6], the following propositions hold:

Theorem 4.2. Let ξ(t) be an upper continuous process with the cumulant

ψ(α) = iαa− σ2α2

2
+
∫ 0

−∞

(
eiαx − 1− 1I|x|≤1iαx

)
Π(dx), (38)

if σ = 0 and
∫ 0

−1 |x|Π(dx) <∞. Then we suppose that

ψ(α) = iαa′ +
∫ 0

−∞

(
eiαx − 1

)
Π(dx),where a′ = a+

∫ 0

−1

|x|Π(dx) > 0.

Then T (x) = τ+(x) (T (0) = 0) is a nondecreasing process with respect to x ≥ 0 with
stationary independent increments which can be considered as a ”inverted” function of
x = ξ+(t) (t ≥ 0).

If m ≥ 0, then −ρ+(s) = kT (−s) is the cumulant of T (x), and, by the formula (23.2)
(§23,[6]), it is represented as

−ρ+(s) = −γ+s+
∫ ∞

0

(
e−sx − 1

)
dN(x), γ+ ≥ 0; γ+ =

1
a′

1Ia′≥0, if σ = 0. (39)
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If m > 0, then ρ′+(0) = 1/m = k′T (0) = γ+ +
∫∞
0
xdN(x) < ∞, and the mean value

ET (x) exists: ET (x) = x/m, x ≥ 0.
If m = 0, then ρ+(s) ≈√

2s/k′′(0) =
√

2s/Dξ(1) as s→ 0, ET (x) =∞.
If m < 0, then ρ+(s) → ρ+ > 0, and T (x) = τ+(x) has a degenerate distribution,

because of P {T (x) <∞} = e−ρ+(s)x < 1 for x > 0. Hence,

−ρ+(s) = −ρ+ − γ+s+
∫ ∞

0

(
e−sx − 1

)
dN(x), γ+ = 0, if σ2 > 0 or a′ = ∞. (40)

The conditional m.g.f. of T (x) is defined by the relation

E
[
e−sT (x)|T (x) <∞

]
= exk

∗
T (−s), k∗T (−s) = ρ+ − ρ+(s), x ≥ 0. (41)

Theorem 4.3. Let ξ(t) be an almost upper semicontinuous process with the cumulant

ψ(α) = iαa+
∫ 0

−∞

(
eiαx − 1

)
Π(dx) +

λ1iα

c− iα , a < 0; c, λ1 > 0. (42)

Then T (x) = τ+(0)+T0(x) (T0(x) = T (x)−τ+(0), T (0) = τ+(0) = 0) is a nondecreasing
random function with stationary independent increments.

If m ≥ 0, then −ρ+(s) = kT0(−s) is the cumulant for T0(x)

−ρ+(s) =
∫ ∞

0

(
e−sx − 1

)
dN(x). (43)

If m > 0, then ρ′+(0) = 1/m = k′T0
(0) =

∫∞
0 xdN(x) <∞ and ET (x) = x/m, x ≥ 0.

If m = 0, then ρ+(s)→ 0, ρ+(s) ≈√
2s/Dξ(1) as s→ 0, ET0(x) = ∞.

If m < 0, then ρ+(s)→ ρ+ > 0, and T0(x) has the degenerate distribution, because of

P {T0(x) <∞} = P
{
ξ+ > x

}
= q+e

−ρ+x < 1, x ≥ 0.

Hence, the conditional m.g.f. of T0(x) also has the exponential form (see (41)):

E[e−sT0(x)|T0(x) <∞] = ex(ρ+−ρ+(s)), x ≥ 0,

E[T0(x)|T0(x) <∞] = x

∫ ∞

0

ydN(y).
(44)

The similar assertions hold for the lower continuous processes ξ(t) with cumulant (32)
and for the almost lower semicontinuous processes ξ(t) with cumulant (35), for which

T (x) = τ−(−x) = inf {t > 0 : ξ(t) < −x} , x ≥ 0.

For example (see Theorem 2.10 in [4,§ 2.5]), if W (t) is the Wiener process (EW (t) = 0,
DW (t) = 2), then T (x) = τ±(±x) (x ≥ 0) are the stable processes with the parameter
α∗ = 1/2. The cumulant functions of T (x) have representations

kT (−s) = −ρ±(s) = −√s =
1√
2π

∫ ∞

0

(
e−sy − 1

)
y−

3
2 dy, (45)

which means

γ± = 0, N(y) = −
√

2
π
y−

1
2 , Π(dy) =

1√
2π
y−

3
2 dy, y > 0.

The next example for the illustration of the homogeneity of τ+(x) with respect to x
is connected with the process

ξ(t) = ξ∗(t) + S(t), S(t) =
∑
k≤ν(t)

ξk, ϕ(α) = Eeiαξk =
1

1− iα ,
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ξ∗(t) is a stable process with negative jumps and with the parameter of stability α∗ = 1/2.
ξ(t) is the almost upper semicontinuous process with the cumulant

ψ(α) = ln eiαξ(1) =
iα

1− iα − 2|α| 12 , k(r) =
r

1− r
− 2

√
|r|.

Accordingly to (44), the conditional m.g.f. of T0(x) has the representation

E[e−sT0(x)|T0(x) <∞] = exk̂T0(−s), E [T0(x)|T0(x) <∞] = xEτ+(0)1Iτ+(0)<∞,

k̂T0(−s) = ρ+ − ρ+(s) = π(s)− π(0), π(s) = Ee−sτ
+(0)1Iτ+(0)<∞,

where 0 < ρ+(s) = p+(s) < 1 is the root of Lundberg’s equation (13), which is defined
by the intersection of the curves (0 ≤ r < 1)

y =
r

1− r − s, y = 2
√
r, m = Eξ(1) = −∞ < 0,

ρ+(s) −→
s→0

ρ+ = p+ =
9−√17

8
< 1,

ρ+ is the root of the limit Lundberg’s equation r
1−r − 2

√
r = 0 (s = 0, 0 ≤ r < 1).
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