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B. LAQUERRIERE AND N. PRIVAULT

DEVIATION INEQUALITIES FOR EXPONENTIAL
JUMP-DIFFUSION PROCESSES

In this note we obtain deviation inequalities for the law of exponential jump-diffusion
processes at a fixed time. Our method relies on convex concentration inequalities ob-
tained by forward/backward stochastic calculus. In the pure jump and pure diffusion
cases, it also improves on classical results obtained by direct application of Gaussian
and Poisson bounds.

1. INTRODUCTION

Deviation inequalities for random variables admitting a predictable representation have
been obtained by several authors. When (W;)cr . is a standard Brownian motion and
(n¢)ter, an adapted process, using the time change

1) ter(t)i= [ s

on Brownian motion yields the bound

0o (E2
(2) P(/o N dWy >$) < exp (—@> ) x>0,

provided

(3) »? .= H/ |77t|2dtH < oo.
0 00

On the other hand, if (Z;);er, is a point process with random intensity (X\;);er, and
(Ut)ter, is an adapted process, we have the inequality

(@) P (/OOO U, (dZ; — Mdt) > a:) < exp (-% log (1 + %c)) ,

x > 0, provided Uy < (8 a.s. for some constant 5 > 0 and

00
A= ‘ / |Ut|2AtdtH < 00,
0 9]

cf. [1], [5] when (Z;)icr, is a Poisson process, and [4] for the mixed point process-diffusion
case. Note that although (Z;)icr, becomes a standard Poisson process (N¢)icr, under

the time change
t
t— / Asds,
0

when (Uy)¢cr, is non-constant the inequality (4) can not be recovered from a Poisson
deviation bound in the same way as (2) is obtained from a Gaussian deviation bound.
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In this paper we consider linear stochastic differential equations of the form

(5) % = O'tth + Jt* (dZt — )\tdt)

-
where (W;);cr, is a standard Brownian motion, (Z;):cr, is a point process of (stochastic)
intensity A;. Here the processes (W;)icr, and (Z;)icr, may not be independent, but
they are adapted to a same filtration (F;)icr,, and (0¢)icr,, (Ji)ier, are sufficiently
integrable Fi-adapted processes.

Clearly the above deviation inequalities (2) and (4) require some boundedness on
the integrand processs (1;)icr, and (U)ier,, and for this reason they do not apply
directly to the solution (S¢)ier, of (5), since the processes (1t).ef0,7] = (0¢S5t)tejo, ) and
(Ut)teo,r) = (J£St)tefo,r) are not in L(€, L?([0,T7))). This is consistent with the fact
that when o is a deterministic function, St has a log-normal distribution which is not
compatible with a Gaussian tail.

In this paper we derive several deviation inequalities for exponential jump-diffusion
processes (S¢)icr, of the form (5). Our results rely on the following proposition, cf. [2],
Corollary 5.2, and Theorem 1.1 below.

Let (S/)ter, be the solution of

dsy N P « G x
o =0 (t)dWy + J*(t)(dNy — A (t)dt)
h

where (Wt)te]R+ is a standard Brownian motion, (Nt)t€R+ is a Poisson process of (de-
terministic) intensity A*(¢), which are assumed to be mutually independent, while o* ()
and J*(t) are deterministic functions with J*(¢) > 0, t € R..

Theorem 1.1. Assume that one of the following conditions is satisfied:
(1) =1 < Jpy < J*(t), dPdt-a.e. and

loe| < o*(t)], T2 < [T (O))PA* (1), dPdt — a.e.
(1) =1 < Jy <0 < J*(t), dPdt-a.e. and
loe|? + 2N < o () > + [T ()2 A* (1), dPdt — a.e.
(ii1) 0 < J; < J*(t), dPdt-a.e., JEN; < |J*(t)|?\*(t), dPdt-a.e., and
loe|? + 2N < o () > + [T ()2 A* (1), dPdt — a.e.
Then we have
(6) E[p(S:) [ So = 2] <E[¢(S)) | S5 =], x>0, teRy,
for all convex function ¢ such that ¢’ is convex.

Note that in the continuous case J = 0, Relation (6) can be recovered by the Doob
stopping time theorem and Jensen’s inequality applied to the time change (1) since
Wi := t/2 + log(S:-1(1)/S0) is a standard Brownian motion with respect to a time-

changed filtration (ﬁ)teR+, and letting X; := Soewf_t/Q, t € Ry, we have
E[¢(Sr)] = E[¢(Xrn)]

(E [Xfoﬁa*(s)wds

E [¢ ﬁf0T|as|2dsD}
E (B0 (X7 omopas) [Py 0]
= F [¢ (XfoT\U*(S)Pds)}
E[p(S7)]-
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However this time change argument does not apply to the jump-diffusion case, and in
addition in the pure jump case it cannot be used when (J;);er, is non-constant.

We refer to [3] for deviation inequalities for exponential stable processes when the
number of jumps is a.s. infinite.

2. DEVIATION BOUNDS
We begin with a result in the pure jump case, i.e. when oy = 0, dPdt-a.e., and let
g(u) =1+ ulogu — u, u > 0.
Let (S¢)ier, denote the solution of (5) with Sy = 1.
Theorem 2.1. Assume that o = 0, dPdt-a.e., and that
1< J; <K, dPdt — a.e.,
for some K >0, and let

T
Ar :/ 72| dt.
0
8

AT 2
> . —
Then for all x ( (1+K) 1> we have

P(log ST > x) < exp (-%g (% (1 " f;_;)))

o= e ()
where 3 =log(l + K).
Proof. Let J*(t) = K, t € Ry,

* Loy
M) =z [ Ml 0T,
and denote by Sf = e~ /K (1 + K)Ni | t € Ry, the solution of
d *
0 Bl = K@an; -3 @),
b

with S = 1, where (IN{);er. is a Poisson process with deterministic intensity (A*(¢))¢cr, -
Under the above hypotheses, Theorem 1.1—%) yields the inequality

(10) y*P(Sr>2y) < E[(S7)"]
= MR [((+ )]
efaAT/KeAT((lJrK)(’fl)/KQ’

for the convex function y — y® with convex derivative, o > 2, hence

(11) P(log ST > z) < exp (%((14—1()0‘—1)—04%—0@) .

The minimum in « > 0 in the above bound is obtained at

a*—llo <5<1+@>>
"3 \B T )

which is greater than 2 if and only if

(12) xZA—[g(%(l—i—K)z—l).
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Hence for all x satisfying (12) we have

P(log St > x) < exp(?@((HK) —1) - (”AFT»

(5 0-5)

and Relation (8) follows from the classical inequality

1
§ulog(1 +u) < g(1+u), u>0.

Note that an application of the classical Poisson bound (4) only yields
P(log St > x)

T T
= P (/ 10g(1 + th )dZt — / th Atdt 2 J))
0 0

T T T
= P (/ log(1 + J;-)d(Zy — Medt) >z + / Ji— Aedt — / log(1 4+ Jt)/\tdt>
0 0 0

T
P (/ 10g(1 + Jt—)d(Zt — )\tdt) Z J?)
0
< exp (—%bg(l—l—ﬁ%)), x>0,

provided

IN

T
Jy < K and / |log(1 + J)|*M\edt < Ap,  a.s.,
0

which is worse than (8) even in the deterministic case since 1 < K/ — oo as K — o0,
and /~\T S AT.

Theorem 2.1 admits a generalization to the case of a continuous component when the
jumps J; have constant sign.

Theorem 2.2. Assume that
1< J; <0, dPdt—a.e., or 0<J, <K, dPdt-—a.e.,
for some K >0, and let

T
Ar :/ o2 + J27 | _ dt.
0

AT ﬁ 9
> - —
Then for all x ( (1+ K)*—1) we have

(13) P(log ST > z) < exp ( ?(Tz (IB{ < f\{x)>>

T
1 z  Ar K T

w2 e R GG 0R)

where  =log(1 + K).

Proof. We repeat the proof of Theorem 2.1, replacing the use of Theorem 1.1—i) by

Theorem 1.1—4i) and Theorem 1.1—4i7), and by defining A*(¢) as

N (t) = o + J2A| s 0<t<T. O
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Letting K — 0 in (13) or (14) we obtain the following Gaussian deviation inequality
in the negative jump case with a continuous component.

Theorem 2.3. Assume that —1 < J; <0, dPdt-a.e., and let
T
22— / llowl? + J2N||_dt < 00, T >0.
0

Then we have

(z +%7/2)°

(15) P(log Sr > 2) < exp <— =

) : x> 3%%/2.

Proof. Although this result follows from Theorem 2.2 by taking K — 0, we show that it
can also be obtained from Theorem 1.1. Let

0" ()7 = ||loe]? + TN, 0<t<T,
t 1 +
and denote by S; = exp (/ o (s)dW, — 3 / |o* (s)|2ds>7 t € Ry, the solution of
0 0

dsf
S; = O'*(t)th,

(16)

with initial condition S§ = 1. By the Tchebychev inequality and Theorem 1.1—i7)
applied for K = 0, for all positive nondecreasing convex functions ¢ : R — R with
convex derivative we have

(17) o(y)P(Sr > y) < E[¢(S7)].
Applying this inequality to the convex function t +— y® for fixed @ > 2, we obtain
y'P(Sr 2y) < E[(S7)%]
= exp(a(a—1)%%/2),
hence
(18) P(St > ") < exp (—az + a(a — 1)57./2), x>0, a>2

The function
a— —azr+ala —1)2%/2

attains its minimum over « > 2 at
o =+ —  x>3%5%/2
T
which yields (15). O

In the pure diffusion case with J = 0 and (0¢);er, deterministic, the bound (15) can
be directly obtained from

T 1 (T
P(logSr >xz) = P|exp / O'tth—E/ o] ?dt | > e”
0 0
1 2 T
= Plexp WE%‘EZT >e

(z +X2/2)2
exp (—ﬁ : z > 0.

—~~
—_
=)

—
AN



72 B. LAQUERRIERE AND N. PRIVAULT

On the other hand, when J = 0 and (0y):er, is an adapted process, the bound (2) only
yields

T 1 T
IP(logST > J?) = P / Utth — 5/ |Ut|2dt >
0 0

IA

T
P / O'tth Z x
0

(20) < e o/EEh) x>0,

— )

which is worse than (15) and (19) by a factor exp(x/2+ ¥2./8). In this case the argument
of Theorem 2.3 can be based on (7) instead of using Theorem 1.1.
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