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M. K. ILIENKO

A NOTE ON THE KOLMOGOROV–MARCINKIEWICZ–ZYGMUND

TYPE STRONG LAW OF LARGE NUMBERS FOR ELEMENTS OF

AUTOREGRESSION SEQUENCES

In the paper we consider the Kolmogorov–Marcinkiewicz–Zygmund type strong law
of large numbers for sums whose terms are elements of regression sequences of random

variables. Some necessary and sufficient conditions providing SLLN are obtained in

terms of coefficients of the regression sequence. Several special cases of regression
sequences are considered as well.

1. Introduction

Consider a zero-mean linear regression sequence of random variables (ξk) = (ξk, k ≥
1) defined on a probability space (Ω,F,P) by the system of the following recurrence
equations:

(1) ξ1 = β1θ1, ξk = αkξk−1 + βkθk, k ≥ 2,

where (αk) and (βk) are nonrandom real sequences, and (θk) is a sequence of independent
symmetric random variables such that P{θk = 0} < 1 for any k ≥ 1. Let

Sn =

n∑
k=1

ξk, n ≥ 1.

In this paper we are mainly interested in necessary and sufficient conditions for the
convergence almost surely (a.s.) of the series

(2)

∞∑
n=1

Sn
n1+1/p

,

for p > 0.
To a certain extent the subject of our investigation is connected to results which

provide Kolmogorov-Marcinkiewicz-Zygmund type strong law of large numbers (SLLN).
The celebrated Kolmogorov-Marcinkiewicz-Zygmund type SLLN deals with sums whose
terms are independent random variables or independent random elements. Recall that
at first A.N. Kolmogorov [11] for p = 1, later J. Marcinkiewicz and A. Zygmund [12] for
0 < p < 2 proved that if (Xn) is a sequence of independent copies of random variable X
defined on a probability space (Ω,F ,P) and Sn =

∑n
k=1Xk, n ≥ 1, then lim

n→∞
Sn

n1/p = 0,

a.s., if and only if E|X|p <∞, where EX = 0 in case p ≥ 1. Further extensions of these
results to sums of independent Banach space valued random elements were made by E.
Mourier [13] and later by T.A. Azlarov and N.A. Volodin [2], and A. de Acosta [1].

In recent works by F. Hechner and B. Heinkel [8], and Deli Li, Yongcheng Qi and A.
Rosalsky [6], the Kolmogorov-Marcinkiewicz-Zygmund type SLLN is considered for sums
of independent Banach space valued random elements in a sense that authors obtain sets
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of necessary and sufficient conditions providing convergence of the series
∑∞
n=1

E‖Sn‖
n1+1/p

and convergence a.s. of the series
∑∞
n=1

‖Sn‖
n1+1/p (for more details, see [8, 6]).

Encouraged by the paper by Deli Li, Yongcheng Qi and A. Rosalsky [6] we intend
to obtain necessary and sufficient conditions providing almost sure convergence of the
series (2) for sums whose terms are elements of regression sequence (1). In particular,
special cases such as the sequence of independent random variables (i.e. αk = 0) and an
autoregression sequence (i.e. αk = const) are considered.

Techniques applied to prove main results differ completely from those developed in
cited works. We use results due to V. Buldygin and M. Runovska [5] on the almost sure
convergence of series whose terms are elements of regression sequences and the Kahane’s
contraction principle [10]. In order to make the text more self-contained we recall all
required statements in section 2.

2. Preliminaries

First of all let us remind the well-known Kahane’s contraction principle [10, 3] in order
to feel free using it throughout the paper.

Let X be a separable Banach space endowed with the norm ‖ · ‖, and (Xk) be a
sequence of independent symmetric X-valued random elements, Sn = X1 +X2 + ...+Xn,

n ≥ 1. Let also (ck) be a non-random sequence such that sup
k≥1
|ck| < ∞, and S̃n =

c1X1 + c2X2 + ...+ cnXn, n ≥ 1.

Proposition 2.1. [Kahane’s contraction principle]

If the sequence (Sn) converges a.s. in the norm of the space X, then the sequence (S̃n)
converges a.s. in the norm of the space X.

In the main part of the paper we will also need a criterion for the convergence a.s. of
the series whose terms are elements of linear second order regression sequence of random
variables. Namely, consider a zero-mean second order regression sequence of random
variables (ζk), i.e. the sequence which obeys the system of following recurrence equations:

ζ−1 = ζ0 = 0, ζk = b
(1)
k ζk−1 + b

(2)
k ζk−2 + β̃kθk, k ≥ 1,

where (β̃k) is a nonrandom real sequence, (b
(j)
k ; j = 1, 2, k ≥ 1) is a nonrandom real-

valued set, and (θk) is a sequence of independent symmetric random variables such that
P{θk = 0} < 1, k ≥ 1.

Let R∞ be the class of all sequences of positive integers increasing to infinity. The
following proposition gives necessary and sufficient conditions for the almost sure con-
vergence of the series

∑∞
k=1 ζk. For more details, see [9, 5] where this result is presented

for any linear m-regression.

Proposition 2.2. The series
∑∞
k=1 ζk converges a.s. if and only if the following three

conditions hold:

1) for any k ≥ 1 the nonrandom series
(∑∞

l=0 β̃ku
(k+1)
k+l

)
is convergent, where (u

(k+1)
n , n ≥

k − 1) is a nonrandom sequence which obeys the system of recurrence equations

u(k+1)
n = b(1)n u

(k+1)
n−1 + b(2)n u

(k+1)
n−2 , n ≥ k + 1, u

(k+1)
k−1 = 0, u

(k+1)
k = 1;

2) the series
∑∞
k=1 Ukθk converges a.s., with Uk =

∑∞
l=0 β̃ku

(k+1)
k+l , k ≥ 1;

3) for all the sequences (mj) from the class R∞

lim
j→∞

∣∣∣ mj+1∑
k=mj+1

(mj+1−k∑
l=0

u
(k+1)
k+l

)
β̃kθk

∣∣∣ = 0, a.s.
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Remark that the result of Proposition 2.2 was first proved in [5] under assumption

that b
(2)
k 6= 0 for any k ≥ 1. In [9] author succeeded to get rid of the mentioned

assumption. Moreover, it was shown that the series
∑∞
k=1 ζk converges a.s. if and only

if the assumptions 1) and 3) of Proposition 2.2 hold true, i.e. the assumption 2) follows
directly from assumption 3). Taking into account that the assumption 2) is of a more
simple form than the assumption 3) and in a view of the following statement below it is
convenient for us to have formulated Proposition 2.2 in that way.

Corollary 2.1. Let b
(j)
k ≥ 0, for all j = 1, 2; k ≥ 1. Then the series

∑∞
k=1 ζk converges

a.s. if and only if the first two assumptions of Proposition 2.2 hold true.

For Gaussian 2-Markov sequence of random variables, that is if (θk) in (1) is a sequence
of independent standard Gaussian random variables, Corollary 2.1 was proved in [4]. Its
proof in the general case does not present any difficulty when applying the Kahane’s
contraction principle. We omit this proof, since a similar idea will be presented in the
main part of the paper.

3. Main results

Let

a(n, k) =


0, 1 ≤ n < k;

1, n = k;

1 +
∑n−k
l=1

(∏k+l
j=k+1 αj

)
, n > k.

For k ≥ 1 consider the nonrandom series

(3)

∞∑
l=0

βk
a(k + l, k)

(k + l)1+1/p
,

and set

C(k) =

∞∑
l=0

βk
a(k + l, k)

(k + l)1+1/p
,

if the series (3) is convergent.
The following theorem gives necessary and sufficient conditions providing almost sure

convergence of the series (2).

Theorem 3.1. The series (2) converges a.s. if and only if the following three conditions
hold:
1) the series (3) converges for any k ≥ 1;
2) the series

∑∞
k=1 C(k)θk converges a.s.;

3) for all the sequences (mj) ∈ R∞ one has

lim
j→∞

∣∣∣ mj+1∑
k=mj+1

(mj+1−k∑
l=0

a(k + l, k)

(k + l)1+1/p

)
βkθk

∣∣∣ = 0, a.s.

Proof. For the sequence (ξk) consider the sequence of its partial sums (Sn), Sn =∑n
k=1 ξk, n ≥ 1, and the series

∞∑
n=1

cnSn,

where (cn) is some nonrandom sequence. Without loss of generality, we assume that
cn 6= 0, n ≥ 1.

Note that sequence of partial sums (Sn) obeys the system of following linear recurrence
equations:

S−1 = S0 = 0, Sk = (αk + 1)Sk−1 − αkSk−2 + βkθk, k ≥ 1.
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Therefore, the sequence (cnSn) obeys the system of following linear recurrence equa-
tions:

c−1S−1 = c0S0 = 0,

ckSk =
ck(αk + 1)

ck−1
ck−1Sk−1 −

ckαk
ck−2

ck−2Sk−2 + ckβkθk, k ≥ 1.

For k ≥ 1, set

ζk = ckSk, β̃k = ckβk,

and

b
(1)
k =

ck(αk + 1)

ck−1
, b

(2)
k = −ckαk

ck−2
.

Then the sequence (cnSn) is a second-order linear regression sequence:

ζ−1 = ζ0 = 0, ζk = b
(1)
k ζk−1 + b

(2)
k ζk−2 + β̃kθk, k ≥ 1.

Therefore the series
∑∞
n=1 cnSn converges a.s. if and only if the series

∑∞
n=1 ζn converges

a.s. Thus, in order to complete the proof one should apply Proposition 2.2 with

u
(k+1)
k+l =

ck+l
ck

a(k + l, k), l ≥ 0, k ≥ 1,

and

cn =
1

n1+1/p
, n ≥ 1.

Proof of Theorem 3.1 is complete. �

Let now proceed to some partial cases.

Corollary 3.1. Let −1 ≤ αk ≤ 0, k ≥ 2. The series (2) converges a.s. if and only if the
following two conditions hold:
1) the series (3) converges for any k ≥ 1;
2) the series

∑∞
k=1 C(k)θk converges a.s.

Proof. Let us reduce this case to the result of Corollary 2.1. Indeed, in our terms

b
(1)
k =

ck(αk + 1)

ck−1
, b

(2)
k = −ckαk

ck−2
, k ≥ 1.

Since ck = 1
k1+1/p > 0, k ≥ 1, and −1 ≤ αk ≤ 0, k ≥ 2, then both b

(1)
k ≥ 0 and b

(2)
k ≥ 0,

k ≥ 1.
Finally, by applying Corollary 2.1 the proof of Corollary 3.1 is complete. �

Independent case. Let us check whether the result of Theorem 3.1 distinguishes
the independent case.

Corollary 3.2. Let αk = 0 for any k ≥ 2, i.e. (ξk) is a sequence of independent
symmetric random variables: ξk = βkθk, k ≥ 1. Then the series (2) converges a.s. if and
only if the series

∞∑
n=1

βnθn
n1/p

converges a.s.

Proof. Assume that αk = 0 for any k ≥ 2. Then according to Theorem 3.1 the series (2)
converges a.s. if and only if the following three assumptions hold true:

1) the series
∑∞
l=0

βk

(k+l)1+1/p converges for any k ≥ 1;

2) the random series
∑∞
k=1

(∑∞
l=0

1
(k+l)1+1/p

)
βkθk converges a.s.;
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3) for all the sequences (mj) ∈ R∞ one has

lim
j→∞

∣∣∣ mj+1∑
k=mj+1

(mj+1−k∑
l=0

1

(k + l)1+1/p

)
βkθk

∣∣∣ = 0, a.s.

Since p > 0, the series
∑∞
l=0

βk

(k+l)1+1/p converges for any k ≥ 1, that is the assumption

1) holds true. Therefore we need to show that the assumptions 2) and 3) hold true if

and only if the series
∑∞
n=1

βnθn
n1/p converges a.s.

Indeed, since for any k ≥ 1

∞∑
l=1

1

(k + l)1+1/p
≤
∫ ∞
0

dx

(k + x)1+1/p
≤
∞∑
l=0

1

(k + l)1+1/p
,

then

(4)

∞∑
l=0

1

(k + l)1+1/p
∼

k→∞

p

k1/p
.

Set

qk = k1/p
∞∑
l=0

1

(k + l)1+1/p
, k ≥ 1.

Obviously, (4) implies that lim
k→∞

qk = p, i.e. the sequences
(
qk

)
and

(
q−1k

)
are

bounded.
Since

∞∑
k=1

( ∞∑
l=0

1

(k + l)1+1/p

)
βkθk =

∞∑
k=1

qk
βkθk
k1/p

,

and
∞∑
k=1

βkθk
k1/p

=

∞∑
k=1

q−1k

( ∞∑
l=0

1

(k + l)1+1/p

)
βkθk,

then according to Proposition 2.1 the random series
∑∞
k=1

(∑∞
l=0

1
(k+l)1+1/p

)
βkθk con-

verges a.s. if and only if the series
∑∞
k=1

βkθk
k1/p

converges a.s.
Finally, the assumption 3) follows from the almost sure convergence of the series∑∞
k=1

βkθk
k1/p

according to the Kahane’s contraction principle again, since

mj+1−k∑
l=0

1

(k + l)1+1/p
≤
∞∑
l=0

1

(k + l)1+1/p
∼

k→∞

1

k1/p
.

The proof of Corollary 3.2 is complete. �

Before summarizing the independent case results let us formulate a simple lemma
which refines Corollary 3.2.

Lemma 3.1. Let 0 < p < 2 and (Xn) be a sequence of independent copies of random
variable X with EX = 0. The series

∞∑
n=1

Xn

n1/p

converges a.s. if and only if E|X|p <∞.
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Proof. According to Kolmogorov’s three-series theorem we have to show that for some
c > 0 series

∞∑
n=1

P
{∣∣∣Xn

n1/p

∣∣∣ ≥ c} and

∞∑
n=1

E
(Xc

n)2

n2/p

converge if and only if E|X|p <∞, where Xc =

{
X, |X| ≤ c,
0, |X| > c.

Indeed, let c = 1 and F (x) be a distribution function of |X|. Then

∞∑
n=1

P
{∣∣∣Xn

n1/p

∣∣∣ ≥ c} =

∞∑
n=1

P
{∣∣∣Xn

∣∣∣ ≥ n1/p} =

∞∑
n=1

∫ ∞
n1/p

dF (x) =

=

∫ ∞
1

( bxpc∑
n=1

1
)
dF (x) =

∫ ∞
1

bxpcdF (x) ∼
∫ ∞
1

xpdF (x) = E|X|p,

where b·c indicates the floor function. Writing ∼ sign we mean that both integrals are
convergent or divergent simultaneously. By analogue,

∞∑
n=1

E
(Xc

n)2

n2/p
=

∞∑
n=1

E
X2

n2/p
I
{ |X|
n1/p
≤ 1
}

=

∞∑
n=1

∫ n1/p

0

x2

n2/p
dF (x) =

=

∫ ∞
0

x2
( ∞∑
n=dxpe

1

n2/p

)
dF (x) ∼

∫ ∞
0

x2 · dxpe1−2/pdF (x) ∼

∼
∫ ∞
0

x2(xp)1−2/pdF (x) =

∫ ∞
0

xpdF (x) = E|X|p,

where I stands for the indicator function and d·e for the ceiling function.
The proof of Lemma 3.1 is complete. �

Summarizing all results concerning the Kolmogorov-Marcinkiewicz-Zygmund type
SLLN for sums of independent random variables, one has the following chain of implica-
tions. If (ξn) is a sequence of independent copies of symmetric random variable ξ, and
Sn =

∑n
k=1 ξk, n ≥ 1, then for 0 < p < 2

∞∑
n=1

Sn
n1+1/p

converges a.s. ⇐⇒
∞∑
n=1

ξn
n1/p

converges a.s. ⇐⇒

⇐⇒ E|ξ|p <∞ ⇐⇒ lim
n→∞

Sn
n1/p

= 0, a.s.

and whenever 0 < p < 1

⇐⇒
∞∑
n=1

|Sn|
n1+1/p

<∞, a.s.

Here the penultimate implication sign is due to Kolmogorov-Marcinkiewicz-Zygmund
type SLLN and the last implication sign is due to Deli Li, Yongcheng Qi and A. Rosalsky
[6].

Autoregression. Now assume that αk = α = const, i.e. the sequence (1) is repre-
sented as follows

ξ1 = β1θ1, ξk = αξk−1 + βkθk, k ≥ 2,

where (βk) is a nonrandom real sequence, and (θk) is a sequence of independent symmetric
random variables such that P{θk = 0} < 1, for any k ≥ 1.

For such an autoregression sequence the result of Theorem 3.1 is as follows.
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Corollary 3.3. The series (2) converges a.s. if and only if one of the following two cases
holds true:
a) for −1 ≤ α < 1 and any p > 0 the series

∑∞
n=1

βnθn
n1/p converges a.s.;

b) for α = 1 and any 0 < p < 1 the series
∑∞
n=1

βnθn
n1/p−1 converges a.s.

Proof. Two cases should be considered in their own right.
a) For −1 ≤ α < 1 one has

a(n, k) =

{
0, 1 ≤ n < k;
1−αn−k+1

1−α , n ≥ k,

and the series (3), i.e. the series βk

1−α
∑∞
l=0

1−αl+1

(k+l)1+1/p , is convergent for any k ≥ 1, which

implies that values C(k), k ≥ 1, are well-defined. Taking into account (4) one has also

∞∑
l=0

1− αl+1

(k + l)1+1/p
∼

k→∞

p

k1/p
.

Therefore, the further proof literary repeats the steps of the proof of Corollary 3.2 when
applying the Kahane’s contraction principle.

b) Let α = 1 and 0 < p < 1. In this case

a(n, k) =

{
0, 1 ≤ n < k;

n− k + 1, n ≥ k,

and the series (3), i.e. the series βk
∑∞
l=0

l+1
(k+l)1+1/p , is convergent for any k ≥ 1, which

implies that values C(k), k ≥ 1 are well-defined. Moreover,

∞∑
l=0

l + 1

(k + l)1+1/p
∼

k→∞

p

1− p
· 1

k1/p−1
.

Also here the proof may be repeated from that one of Corollary 3.2. �

Finally, let us consider a specific situation, when the autoregression is generated by
i.i.d. sequence of random variables, that is we consider the following autoregression:

(5) ξ1 = η1, ξk = αξk−1 + ηk, k ≥ 2,

where (ηk) is a sequence of independent copies of symmetric random variable η. For such
an autoregression the result of Corollary 3.3 is specified as follows.

Corollary 3.4. For the sequence (5) the series (2) converges a.s. if and only if one of
the following two cases is satisfied:
a) for −1 ≤ α < 1 and p > 0 one has E|η|p <∞;

b) for α = 1 and 0 < p < 1 one has E|η|
p

1−p <∞.

Proof. Assertion of Corollary 3.4 immediately follows from Corollary 3.3 and 3.1. �

Example 3.1. Let in (5) η be a standard Gaussian random variable. Then Corollary
3.4 immediately implies that in order for the series (2) to converge a.s. it is necessary an
sufficient that −1 ≤ α ≤ 1.

Remark 3.1. The assumption of symmetry, imposed throughout the paper on the gener-
ating sequence (θn), is technically important and cannot be omitted as long as we apply
results by V. Buldygin and M. Runovska on the almost sure convergence of series whose
terms are elements of regression sequences of random variables. But one may try to use
the symmetrization principle for non-symmetric sequence (θn), where possible.
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