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NIKOLAY LYSENKO

MAXIMIZATION OF FUNCTIONALS DEPENDING ON THE

TERMINAL VALUE AND THE RUNNING MAXIMUM OF A

MARTINGALE: A MASS TRANSPORT APPROACH

It is known that the Azéma-Yor solution to the Skorokhod embedding problem max-
imizes the law of the running maximum of a uniformly integrable martingale with a

given terminal value distribution. Recently this optimality property has been gener-

alized to expectations of certain bivariate cost functions depending on the terminal
value and the running maximum.

In this paper we give an extension of this result to another class of functions. In

particular, we study a class of cost functions for which the corresponding optimal
embeddings are not Azéma-Yor. The suggested approach is quite straightforward

modulo basic facts of the Monge-Kantorovich mass transportation theory. Loosely

speaking, the joint distribution of the running maximum and the terminal value in
the Azéma-Yor embedding is concentrated on the graph of a monotone function, and

we show that this fact follows from the cyclical monotonicity criterion for solutions

to the Monge-Kantorovich problem.

1. Introduction

Let Wt be the canonical Wiener process and let µ be a centered probability measure
on R, i.e., a probability measure such that

∫
R x µ(dx) = 0 and

∫
R≥0

x µ(dx) < +∞.

Throughout µ will be treated as the law of the terminal value of a uniformly integrable
martingale started at 0.

One of the key concepts considered in this paper is the Skorokhod embedding (see
[8]). The following formulation can be found in [4].

Problem 1 (Skorokhod). For a given measure µ, find a uniformly integrable stopping
time τ (with respect to the filtration generated by the canonical Wiener process) such
that Wτ ∼ µ.

Several constructions for τ are known, and some of them possess different optimality
properties. Detailed surveys are presented in works of Ob lój [6] and Hobson [4]. It is
sufficient for our purposes to mention only the Azéma-Yor embedding [1], because it
plays a significant role in the setup of the paper.

Hobson and Klimmek [5] have considered maximization of expected values of cost
functions depending on the terminal value and the running maximum. They have shown
that the Azéma-Yor embedding solves this problem within the class of all uniformly
integrable martingales for a broad class of functions. Such functions F (w, s) are assumed
to be continuous and differentiable with respect to the running maximum Fs. In addition,
Fs/(s − w) is assumed to be nondecreasing in w. Actually, paper [5] contains a lot of
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other interesting results, but the aforementioned fact motivates our study of optimality
of the Azéma-Yor solution for bivariate cost functions.

For additional information about the Azéma-Yor embedding, one can consult Sec-
tion 3.1 of [5] and the cited comprehensive surveys [6] and [4]. However, the only property
of the Azéma-Yor embedding used in this paper is as follows.

Theorem 1 (Azéma and Yor; [1]). Consider the class of uniformly integrable martingales
with a given distribution µ at the terminal moment T . For each positive l, the probability
that the running maximum of a process from this class is greater than or equal to l does
not exceed µ([β−1

µ (l); +∞)), where β−1
µ is the inverse barycenter function of µ, i.e., the

function inverse to the function βµ(k) = Eµ[x|x ≥ k]. Moreover, these values are attained
for the Azéma-Yor embedding for all l ≥ 0 simultaneously.

The paper of Hobson and Klimmek uses the results obtained by Rogers [7]. These
results are applied in our paper as well. The following necessary and sufficient condition
for a measure on R×R to be the joint distribution of the terminal value and the running
maximum of a uniformly integrable martingale is of particular importance.

Theorem 2 (Rogers; based on Corollary 2.4 of [7]). A measure π on R × R is the
joint distribution of the final value and the running maximum of a uniformly integrable
martingale starting at 0 if and only if the following assumptions (1.1)-(1.4) are satisfied:

(1.1)

∫
R×R
|x| π(dx, dy) < +∞,

(1.2)

∫
R×R

x π(dx, dy) = 0,

(1.3) suppπ ⊂M := (R× R≥0) ∩ {(x, y) : y − x ≥ 0},

(1.4) Eπ[x | y ≥ s] ≥ s, ∀s ≥ 0.

The original formulation of Rogers contains one more assumption, namely, that

Eπ[x | y ≥ s]

is nondecreasing with respect to s. This assumption, however, can be omitted, because
it follows immediately from (1.3) and (1.4). Indeed, let us assume the existence of s1

and s2 such that s1 < s2, but Eπ[x | y ≥ s1] > Eπ[x | y ≥ s2]. Note that

Eπ[x | y ≥ s1] = λEπ[x | s1 ≤ y < s2] + (1− λ)Eπ[x | y ≥ s2]

for some 0 < λ ≤ 1. Hence Eπ[x | s1 ≤ y < s2] ≥ Eπ[x | y ≥ s1] > Eπ[x | y ≥ s2] ≥ s2,
which is prohibited by (1.3).

An application of the Monge-Kantorovich theory can be considered as the third key
component of our approach. From the rigorous point of view, the considered problem
is not covered by the optimal transport theory, but, fortunately, a reduction to the
mass transportation problem is possible after some preparations. The idea to treat the
maximization problem for the expectation of a bivariate function as a transportation
problem with some restrictions has appeared in discussions with Alexander Kolesnikov.
More information about the optimal transportation theory can be found in [9] and [2],
and constrained transportation problems are studied, for instance, in [10].

In order to formulate the main problem of this article, it is convenient to introduce
some auxiliary notions.
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Definition 1. Given a centered probability measure µ and a positive number T , the set
of µ-admissible (or simply admissible) processes is defined to be the set of all uniformly
integrable martingales starting at 0 at t = 0 that are distributed according to µ at the
terminal time t = T .

Definition 2. A bivariate function F : R × R → R is called serrated if, for every
w0 ∈ R, the univariate function F (w0, s) is increasing for s∈ (−∞; aw0

) and decreasing
for s ∈ (aw0

; +∞), where aw0
∈ R ∪ {−∞,+∞} (the value plus or minus infinity means

that F (w0, s) is decreasing or increasing, respectively). The set RF = {(w0, aw0) : w0 ∈
R} ⊂ R× (R ∪ {−∞,+∞}) is called the ridge of F .

Recall another useful definition that comes from applications of the optimal trans-
portation theory.

Definition 3. A bivariate function F : R × R → R is called supermodular if it has the
following property:

(1.5) ∀w1, w2, s1, s2 ∈ R
{
w1 < w2

s1 < s2
⇒ F (w1, s1) + F (w2, s2) ≥ F (w1, s2) + F (w2, s1).

If the rightmost inequality in (1.5) is strict, the function is called strictly supermodular.

Remark 1. A strictly supermodular serrated function has a nondecreasing ridge.

Assume that we are given a continuous strictly supermodular serrated function F (w, s),
a centered probability measure µ, and a positive number T . The problem studied in
Section 2 is this: find a µ-admissible process Mt maximizing the expected value of
F (MT , ST ), where ST = max0≤t≤T Mt, among of all µ-admissible processes. Although
this case is narrow, it enables one to see the core idea clearly. However, the suggested
proof is not the simplest one.

If F (w, s) is a strictly supermodular function and G(w, s) is a (not necessary strictly)
supermodular function, then their sum H(w, s) = F (w, s) +G(w, s) is again strictly su-
permodular. This obvious fact leads to the idea how a conclusion might be drawn in
some cases of discontinuous functions. Such cases are considered in Subsection 3.1, and
a construction analogous to the aforementioned result of [5] is represented in Subsection
3.2.

We emphasize that in Section 3 neither differentiability nor even continuity of F is
required. Furthermore, examples of proper discontinuous strictly supermodular serrated
functions are discussed in Subsection 3.1. Thus, the results obtained in our article are
not covered by [5].

Finally, let us note that the problem under consideration has a natural interpretation
in terms of model-independent finance. Suppose that an exotic derivative with payout
function F (MT , ST ) is going to be underwritten at the moment t = 0, where Mt is the
price process of the underlying asset, and again ST = max0≤t≤T Mt. The problem is to
determine the no-arbitrage price of the derivative.

What data is available? The idea to retrieve a market prognosis from the current
quotations of liquid European call options goes back to Breeden and Litzenberger [3].
Their construction enables one to reconstruct the measure µ under the assumption of
the presence of the continuum of liquid calls with the same maturity T . Another piece
of information is that the underlying asset price process must be a uniformly integrable
martingale started at some fixed price. If someone has a model for the underlying asset
price, it must be calibrated to this µ in order to get the exact value. Nevertheless, in
model-independent finance all the models that are consistent with available information
are treated as realistic, regardless their peculiarities. Thereby the following question
arises: what are the upper and the lower bounds for the derivative price? In other
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words, the seller is interested not in a unique price, but in a range of no-arbitrage prices.
It is easy to see that this financial problem agrees with the former probabilistic problem.

The author thanks Alexander Kolesnikov and Alexander Gushchin for their interest
and stimulating discussions.

2. The basic approach: the result for continuous strictly supermodular
functions

The lemma below can be considered as an analogue of variational theorems on c-
cyclical monotonicity of solutions to the Monge-Kantorovich problem. This is the reason
why the approach of this paper is called a mass transport approach.

Lemma 1. Let F (w, s) be a strictly supermodular continuous function. Assume we
are given a centered probability measure µ and a positive T . Then every µ-admissible
process maximizing expectation of F (MT , ST ) has a nondecreasing joint distribution of
the terminal value and the running maximum π. The latter means that there are no
intervals I1, I2 ⊂ R1 and J1, J2 ⊂ R2 (subscripts below R indicate coordinate axis) with
the properties

(2.1) sup I1 ≤ inf I2, inf J1 ≥ sup J2,

(2.2) π(I1 × J1) > 0, π(I2 × J2) > 0.

Proof. Assume that the joint distribution of the terminal value and the running maximum
of an admissible process π is not nondecreasing. Let us construct a competitor π on R×R,
which is the joint distribution generated by an admissible process giving a better value
to the cost functional.

Since π is not nondecreasing, there are intervals I1, I2, J1 and J2 for which (2.1) and
(2.2) are true.

For the sake of technical purposes, it is appropriate to trim them. The set I1× J1 lies
inside a compact set, so there is a point (x1, y1) ∈ I1×J1 such that every ε-neighborhood
(ε > 0) of this point has a non-zero π-mass. There exists a point (x2, y2) ∈ I2 × J2 with
the same property. Consider a compact set C containing both I1 × J1 and I2 × J2 and
then choose δ small enough to ensure that for all (a1, b1), (a2, b2) ∈ C we have

(2.3) (|(a1, b1)− (a2, b2)| < δ)⇒ (|F (a1, b1)− F (a2, b2)| < Q),

where Q = 1
4 (F (x1, y2) +F (x2, y1)−F (x1, y1)−F (x2, y2)). This can be done because of

the uniform continuity property. Now let U1 = (x1− δ
2 ;x1 + δ

2 ) and V1 = (y1− δ
2 ; y1 + δ

2 ).
If y2 6= 0, let U2 and V2 be intervals such that diamU2 = diamV2 < min(δ, 2y2) and
(x2, y2) is the center of the square U2× V2. Else (i.e. if y2 = 0) let U2 = (x2− δ

2 ;x2 + δ
2 )

and V2 = [0; δ2 ) (it does not matter that V2 is not open). The last conditions are helpful
when proving that (1.3) remains valid. We recall that the aim is to trim initial intervals,
so if U1 × V1 ⊂ I1 × J1 and U2 × V2 ⊂ I2 × J2 are not satisfied, δ must be chosen little
enough to satisfy these conditions.

Now all the preparations are done, and it is possible to construct π iteratively.
Denote min(π(U1 × V1), π(U2 × V2)) as m. Then we construct π1 as a measure on

R× R defined in the following way:

(1) it coincides with π on subsets of (R× R) \ (U1 × V1),

(2) for each S ⊂ U1 × V1 one has π1(S) = π(U1×V1)−m
π(U1×V1) π(S),

(3) it is extended additively to other measurable subsets.

Note that π1 is not a probability measure, because its mass equals 1 −m. One can
treat π1 as the result of subtraction of the measure σ1 from π.
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Let σ2 be a measure of mass m with support contained inside of U2 × V1 such that,
for each neighborhood U ⊂ U2, σ2(U × V1) is proportional to π(U × V2) and, for each
neighborhood V ⊂ V1, σ2(U2 × V ) is proportional to π(U1 × V ) (note that σ2 is not
uniquely defined). Let us define π2 as follows:

(1) π2 coincides with π1 on subsets of (R× R) \ (U2 × V1),
(2) for each S ⊂ U2 × V1 π2(S) = π(S) + σ2(S),
(3) it is extended additively to other measurable subsets.

Here the first step is done. The second (and the final) step is to reassign the mass m
from U2 × V2 to U1 × V2 such that the projection on the first coordinate equals µ. In
order to do this we define π3 in the following way:

(1) π3 coincides with π2 on subsets of (R× R) \ (U2 × V2),

(2) for each S ⊂ U2 × V2 one has π3(S) = π(U1×V1)−m
π(U1×V1) π(S),

(3) it is extended additively to other measurable subsets.

The measure π3 can be interpreted as the result of subtraction of the measure σ3.
Let σ4 be a measure of mass m supported inside of U1 × V2 such that for each neigh-

borhood U ⊂ U1, σ4(U × V2) is proportional to π(U × V1) and for each neighborhood
V ⊂ V2, σ4(U1 × V ) is proportional to π(U2 × V ) (again σ4 is not uniquely defined).
Finally, define π4 as a measure with the properties

(1) π4 coincides with π3 on subsets of (R× R) \ (U1 × V2),
(2) for each S ⊂ U1 × V2 one has π4(S) = π(S) + σ4(S),
(3) π4 is extended additively to other measurable subsets

It remains to prove that π = π4 is the desired competitor.
First we observe that Pr1 π4 = µ, because Pr1 σ1 = Pr1 σ4 and Pr1 σ2 = Pr1 σ3. This

fact implies that (1.1) and (1.2) are satisfied.
Assumption (1.3) is satisfied too, because (x2, y2) ∈M = (R×R≥0)∩{(x, y) : y−x ≥

0}, and this provides that U1 × V2 and U2 × V1 are subsets of the required set M ; it can
be clearly seen from the construction.

Further, (1.4) holds true, because ∀s ∈ R≥0 the three statements are true:

(2.4) Pπ[x ∈ U1 | y ≥ s] ≥ Pπ4
[x ∈ U1 | y ≥ s],

(2.5) Pπ[x ∈ U2 | y ≥ s] ≤ Pπ4
[x ∈ U2 | y ≥ s],

(2.6) Pπ[x /∈ U1 andx /∈ U2 | y ≥ s] = Pπ4
[x /∈ U1 andx /∈ U2 | y ≥ s].

Putting (2.4)-(2.6) together yields the desired result that ∀s ∈ R≥0

(2.7) Eπ4 [x | y ≥ s] ≥ Eπ[x | y ≥ s] ≥ s.

Thus, π4 is the joint distribution of the terminal value and the running maximum
of a uniformly integrable martingale starting from 0 and, moreover, this process is µ-
admissible, because the law of the terminal value is µ.

Finally, we have to prove that the process corresponding to π4 is better. To this end
we prove the following inequality:

(2.8)

∫
F (w, s) (σ2 + σ4)(dw, ds)−

∫
F (w, s) (σ1 + σ3)(dw, ds) > 0.

The desired result follows from the following line of computations:∫
F (w, s)(σ2 + σ4)(dw, ds)−

∫
F (w, s)(σ1 + σ3)(dw, ds)

=

∫ (
F (x1, y2) + (F (w, s)− F (x1, y2)

)
σ2(dw, ds)
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+

∫ (
F (x2, y1) + (F (w, s)− F (x2, y1)

)
σ4(dw, ds)

−
∫ (

F (x2, y2) + (F (w, s)− F (x2, y2)
)
σ3(dw, ds)

−
∫ (

F (x1, y1) + (F (w, s)− F (x1, y1)
)
σ1(dw, ds)

=

∫
F (x1, y2)σ2(dw, ds) +

∫
(F (w, s)− F (x1, y2))σ2(dw, ds)

+

∫
F (x2, y1)σ4(dw, ds) +

∫
(F (w, s)− F (x2, y1))σ4(dw, ds)

−
∫
F (x2, y2)σ3(dw, ds)−

∫
(F (w, s)− F (x2, y2))σ3(dw, ds)

−
∫
F (x1, y1)σ1(dw, ds)−

∫
(F (w, s)− F (x1, y1))σ1(dw, ds)

= (F (x1, y2) + F (x2, y1)− F (x2, y2)− F (x1, y1))m

+

∫ (
F (w, s)− F (x1, y2)

)
σ2(dw, ds) +

∫ (
F (w, s)− F (x2, y1)

)
σ4(dw, ds)

−
∫ (

F (w, s)− F (x2, y2)
)
σ3(dw, ds)−

∫ (
F (w, s)− F (x1, y1)

)
σ1(dw, ds)

>
(
F (x1, y2) + F (x2, y1)− F (x2, y2)− F (x1, y1)

)
m

−
(∫

Qσ2(dw, ds) +

∫
Qσ3(dw, ds) +

∫
Qσ4(dw, ds) +

∫
Qσ1(dw, ds)

)
= 0.

This completes the proof. �

With the help of Lemma 1 we establish several results on optimal admissible processes.
We start with two extremal types of strictly supermodular serrated functions and get a
generalizing statement at the end of this section.

Theorem 3. Let F (w, s) be a continuous strictly supermodular serrated function and let
its ridge RF be the set {(w,+∞) : w ∈ R}. Then the functional E[F (w, s)] considered
on the set of all µ-admissible processes is maximized by the Azéma-Yor embedding.

Proof. By Lemma 1, the joint distribution generated by an optimal process must have a
nondecreasing support. A µ-admissible process can not generate a distribution with non-
decreasing support which has a non-zero mass higher than the graph of the barycenter
function βµ. It follows from the Azéma-Yor embedding optimality property for nonde-
creasing functions depending only on the running maximum (see Theorem 1). Thereby
all the mass is placed not higher than the barycenter function graph. Since for every w0

the univariate functions F (w0, s) is assumed to be increasing, the Azéma-Yor embedding
is the optimal admissible process.

In case of non-atomic µ this can be seen from the following line of computations, where
U stands for the joint distribution of an arbitrary µ-admissible process, Uw stands for
the conditional distribution given fixed w, and AY stands for the joint distribution of
the Azéma-Yor embedding:

EU [F (MT , ST )] =

∫ (∫
F (w, s)Uw(ds)

)
µ(dw)

≤
∫
F (w, βµ(w))µ(dw) = EAY [F (MT , ST )].

The inequality is an equality if U is equivalent to AY .
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If µ has atoms,
∫
F (w, βµ(w))µ(dw) must be replaced by its analogue, where instead

of discontinuous βµ(w) there is a continuous line with vertical intervals and masses of
atoms are properly distributed along these intervals. �

Remark 2. An example of a function satisfying assumptions of Theorem 3 is F (w, s) =
(arctanw + 2)s.

Proposition 1. Let F (w, s) be a measurable serrated function such that its ridge RF is
the set {(w,−∞) : w ∈ R}. Then the functional E[F (w, s)] considered on the set of all
µ-admissible processes is maximized by a the pure jump process, i.e., a process which is
constant on the time interval [0;T/2), jumps to a value of a random variable with law µ
at the t = T/2, and equals another constant on the time interval [T/2;T ].

Proof. The described process generates the joint distribution with support contained in
the boundary of M (see (1.3) for the definition of M). Since (1.3) prohibits placing a
non-zero mass lower than this boundary and since for every w0 the univariate functions
F (w0, s) is assumed to be decreasing, this is an optimal admissible process.

Again, this can be seen from the following line of computations, where U stands for
the joint distribution of an arbitrary µ-admissible process, Uw stands for the conditional
distribution given fixed w, and PJ stands for the joint distribution of the pure jump
process:

EU [F (MT , ST )] =

∫ (∫
F (w, s)Uw(ds)

)
µ(dw)

≤
∫
F (w,max(0, w))µ(dw) = EPJ [F (MT , ST )].

The inequality is an equality if U is equivalent to PJ . �

Remark 3. An example of a function satisfying assumptions of Proposition 1 is F (w, s) =
−|w|s.

Remark 4. In Proposition 1, the µ-admissibility can be replaced by a less restrictive
condition, since the martingale property is not used. However, the optimal process (to
be precise, at least one of optimal processes) is still a martingale.

We will see that, roughly speaking, a general optimal process has the joint distribution
of the final value and the running maximum in an ”intermediate position” between the
two discussed extremal distributions. For the sake of clarity below it is assumed that
µ has no atoms (the proof of Theorem 3 contains a precept how to generalize a further
reasoning to the atomic case).

Lemma 2. Every nondecreasing function f taking values in the intersection of M with
the closed subgraph of the barycenter function of µ induces a measure that is the joint
distribution of the terminal value and the running maximum of a µ-admissible process.

Proof. Consider the measure f#µ. The properties (1.1) and (1.2) are immediate. The
hypothesis of the lemma ensures that (1.3) is satisfied. Finally, (1.4) follows from the
inequality

(2.9) Ef#µ[x|y ≥ s] ≥ EAY [x|y ≥ s] ≥ s,

where the subscript AY refers to the distribution generated by the Azéma-Yor embedding
(note that EAY [x|y ≥ s] = s in any standard situation). �

Theorem 4. Let F (w, s) be a continuous strictly supermodular serrated function. Then
among all µ-admissible processes the functional E[F (w, s)] is maximized by the process
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with the property that the corresponding joint distribution of the final value and the
running maximum is g#µ, where g is defined by

(2.10) g(w) = min(βµ(w),max(aw, 0, w)),

βµ is the same as in Theorem 1, and aw is the same as in Definition 2.

Proof. The described process exists and is µ-admissible, because the maximum of two
monotone functions is a monotone function and the minimum of two monotone functions
is again a monotone function, so g is covered by Lemma 2. Explicit description of this
process can be found in the proof of Theorem 2.2 of [7].

The process is optimal due to the following reasoning. Lemma 1 implies that the op-
timal joint distribution of the terminal value and the running maximum of an admissible
process must have monotone support. A joint distribution with a monotone support
cannot place non-zero mass beyond the closed subgraph of the barycenter function of
µ, since this is prohibited by Theorem 1. Also condition (1.3) shows that every joint
distribution of the terminal value and the running maximum of an admissible process
cannot place non-zero mass beyond M . Combining this together, we obtain that for each
fixed w within the region where all mass must be placed the best possible point is the
point that belongs to the graph of g. Thus, the process described in the formulation is
optimal.

As before, the last statement can be seen from the following line of computations,
where U stands for the joint distribution of an arbitrary µ-admissible process and Uw
stands for the conditional distribution given fixed w:

EU [F (MT , ST )] =

∫ (∫
F (w, s)Uw(ds)

)
µ(dw)

≤
∫
F (w, g(w))µ(dw) = Eg#µ[F (MT , ST )].

The inequality is an equality if U is equivalent to g#µ. �

Remark 5. The following function satisfies the assumptions of Theorem 4:

F (w, s) = (arctanw + 2)s− 4 Ind{(w,s) : s≥R(w)}(s−R(w)),

where R is an increasing function. The ridge of F (w, s) is the graph of s = R(w).

Remark 6. In the above theorems, when speaking about the maximization of the func-
tional E[F (MT , ST )], we mean that there are no processes that allow achieving higher
values. If a µ-admissible process U is such that one of the theorems asserts that it is
optimal for the corresponding F , but EU [F (MT , ST )] = −∞, then, of course, all other
µ-admissible processes are also optimal for the same problem.

3. Generalizations

3.1. Introducing discontinuity. We have already mentioned that the above approach
to the proofs of Theorems 3 and 4 is not the simplest one. Instead of it one can apply
directly the optimal transportation theory. The standard assumption ensuring the ex-
istence of a solution to the Monge-Kantorovich problem is the lower semicontinuity of
the cost function. In addition, the solutions to the Monge-Kantorovich problem admit
the so-called cyclical monotonicity property, which can be established under assumptions
that are at least not stronger than the assumption of lower semicontinuity (see [2] for
references to recent results in this direction).

Let us give some basic definitions.
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Problem 2. Suppose that c : R× R→ R ∪ {∞} is a measurable function (often called
a cost function). Suppose also that µ and ν are Borel measures on R and Π(µ, ν) is
the set of all Borel measures π on R × R such that Pr1 π = µ and Pr2 π = ν. The
Monge-Kantorovich problem is this:

(3.1)

∫
R×R

c(x, y)π(dx, dy)→ min
π∈Π(µ,ν)

.

Actually, above definition is not general. It is possible to consider X × Y for measure
spaces X and Y instead of R × R or to introduce more than two axes (also known as
marginals).

Definition 4. Suppose that c : R × R → R ∪ {∞} is a measurable function. A subset
Γ ⊂ R×R is called c-cyclically monotone if for every non-empty sequence of its elements
(x1, y1), ..., (xn, yn) it is true that

(3.2) c(x1, y1) + c(x2, y2) + ...+ c(xn, yn) ≤ c(x1, yn) + c(x2, y1) + ...+ c(xn, yn−1).

Below we present the approach mentioned in the Introduction.

Theorem 5. In the formulations of Theorems 3 and 4, the continuity can be replaced
by the upper semicontinuity.

Proof. Suppose that the joint distribution π of the final value and the running maximum
of a µ-admissible process is given. Set ν = Pr2 π. Let π be a solution to the Monge-
Kantorovich problem with marginals µ and ν and the cost function −F (w, s). Here the
sign is reversed, because the initial problem is a maximization problem, but the Monge-
Kantorovich problem is a minimization problem. A solution to the described Monge-
Kantorovich problem exists, because the cost function −F is lower semicontinuous.

It can be easily verified that the c-cyclical monotonicity (i.e. −F (w, s)-cyclical mono-
tonicity) implies that π is concentrated on the graph of a monotone function T (this is
a standard observation coming from the optimal transportation theory):

(3.3) π
(
{(x, T (x)) : x ∈ R}

)
= 1.

Let us show that π is the joint distribution of an admissible process. Conditions (1.1)
and (1.2) are satisfied automatically. Further, suppπ ⊂ R×R≥0, because supp ν ⊂ R≥0,
meanwhile suppπ ⊂ {(x, y) : y − x ≥ 0} due to the following reasoning. For the initial
joint distribution π it is true that

(3.4) ∀k > 0 ν([0; k]) = π(R× [0; k]) = π((−∞; k]× [0; k]) ≤ µ((−∞; k]).

Combining (3.4) with (3.3) yields that (1.3) is checked. Finally, (1.4) holds true, because
∀k > 0 ν([k; +∞)) ≤ νAY ([k; +∞)), where subscript AY refers to the joint distribution
generated by the Azéma-Yor embedding, so Eπ[x|y ≥ s] ≥ EAY [x|y ≥ s] ≥ s.

The construction ensures that the process that generates π is not worse than the initial
process. Since its joint distribution is supported on the graph of a monotone function,
the further proof can follow the arguments of Theorems 3 and 4. �

However, as far as the author knows, in the Monge-Kantorovich theory there is no
analogous result for upper semicontinuity instead of lower semicontinuity. Fortunately,
the approach of Section 2 is applicable to some lower semicontinuous functions.

Proposition 2. Assume that F (w, s) is a continuous supermodular serrated function and
Ga,b(w, s) = Ind{(w,s) : w≥a, s≥b}, where (a, b) is in the ridge of F (w, s). Then Theorems
3 and 4 hold true for (F + Ga,b)(w, s), which is a lower semicontinuous supermodular
serrated function with the same ridge.
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Proof. Note that (F+Ga,b)(w, s) possesses declared properties due to its construction. It
is sufficient to prove only a generalization of Lemma 1, because the remaining reasoning
from the theorems is still applicable.

Consider four measures σ1, σ2, σ3 and σ4 which are employed in the proof of Lemma 1
and have equal masses m. The desired result follows from the inequality

(3.5)

∫
Ga,b(w, s)(σ2 + σ4 − σ1 − σ3)(dw, ds) ≥ 0.

The above inequality can be proved by a simple analysis of possible configurations of
supports of this four measures relatively to {(w, s) : w ≥ a, s ≥ b}. This analysis is
based on applications of the equalities Pr1 σ1 = Pr1 σ4, Pr2 σ1 = Pr2 σ4, Pr1 σ2 = Pr1 σ3,
and Pr2 σ3 = Pr2 σ4. It is just a plain geometry and arithmetic. �

Remark 7. Of course, the previous proposition is true not only for Ind{(w,s) : w≥a, s≥b},
but also remains valid for Ind{(w,s) : w≤a, s≤b}, −Ind{(w,s) : w>a, s<b}, −Ind{(w,s) : w<a, s>b},
and positive linear combinations of such functions.

3.2. Towards the result of Hobson and Klimmek. Everywhere above the second
marginal of the joint distribution was fixed. This is consistent with the spirit of the
Monge-Kantorovich theory, but the price for this is a quite restrictive requirement of
supermodularity. If F (w, s) is continuously differentiable with respect to s, its super-
modularity is equivalent to the assumption that all the univariate functions Fs(w, s0)
with arbitrarily fixed s0 are increasing. In [5] a weaker assumption was suggested: why
not suppose that only Fs(w, s0)/(s0−w) is monotonic? Actually, the reader can observe
that in the proof of Lemma 1 in (2.7) condition (1.4) is satisfied in a non-optimal manner
and for some s the inequality Eπ[x | y ≥ s] ≥ s is strict, which means that an additional
mass may be lifted up. This is refined in the current subsection.

To make the idea clear, do the following. Consider the function F (w, s) with a contin-
uous partial derivative Fs(w, s). Moreover, we assume that for each s0 > 0 the function
Fs(w, s0)/(s0 − w) is increasing for w < s0. Suppose that π is the joint distribution of
a martingale with terminal value law µ and that there are points (w1, s1) and (w2, s2),
with w1 < w2 and s1 > s2, such that π has atoms with masses at least m at these points.
Remove the mass (s2 − w2)/(s2 − w1)m from (w1, s1) to (w1, s2) and remove the mass
m from (w2, s2) to the point (w2, s1) and the vertical open interval between (w2, s2) and
(w2, s1) in such a way that for every q, s2 < q ≤ s1, the mass lifted not lower than q is
((q−w1)(s2−w2))/((q−w2)(s2−w1))m. It can be seen clearly that the coefficients were
chosen in order to provide that (1.4) remains true. Because the properties (1.1)-(1.3)
here are trivial, the new measure is a joint distribution as well. Moreover, this measure
is a better competitor, since the gain from the reassignment is
(3.6)

∆ :=

∫ (w2,s1)

(w2,s2)

Fs(w2, ξ)
(ξ − w1)(s2 − w2)

(ξ − w2)(s2 − w1)
mdξ −

∫ (w1,s1)

(w1,s2)

Fs(w1, ξ)
(s2 − w2)

(s2 − w1)
mdξ.

The assumptions about F (w, s) imply that the latter is positive.
The proof of the following statement is omitted because up to some inessential tech-

nicalities it is reduced to the proof of an appropriate analogue of Lemma 1 and follows
the same line.

Theorem 6. The results of Theorems 3 and 4 hold true under the following assumptions
imposed on F instead of strict supermodularity: F (w, s) is continuous, there exists a
continuous partial derivative Fs(w, s), and, in addition, for each s0 > 0 the function
Fs(w, s0)/(s0 − w) is increasing for w < s0.

Remark 8. The case of nondecreasing Fs(w, s0)/(s0 − w) for every s0 > 0 and w < s0

is considered in [5], but it is not covered here.
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