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ANDREY PILIPENKO AND VLADISLAV KHOMENKO

ON A LIMIT BEHAVIOR OF A RANDOM WALK WITH
MODIFICATIONS UPON EACH VISIT TO ZERO

We consider the limit behavior of a one-dimensional random walk with unit jumps
whose transition probabilities are modified every time the walk hits zero. The in-
variance principle is proved in the scheme of series where the size of modifications
depends on the number of series. For the natural scaling of time and space arguments
the limit process is (i) a Brownian motion if modifications are “small”, (ii) a linear
motion with a random slope if modifications are “large”, and (iii) the limit process
satisfies an SDE with a local time of unknown process in a drift if modifications are
“moderate”.

1. INTRODUCTION AND MAIN RESULTS

Consider a random walk { X}, k& > 0} on Z with unit jumps that is constructed in the
following way. It behaves as a symmetric random walk until the first visit to 0. After
that the probability of the jump to the right becomes equal to p; := 1/2 4+ A, and to
the left ¢; := 1/2 — A, where A > 0 is a fixed number. When {X}} secondly visits 0 its
transition probabilities to the right and to the left become equal to ps := 1/2 4+ 2A and
g2 := 1/2 — 2A, respectively, etc. (if 1/2+iA > 1 we set p; :=1).

Let us give the formal definition.

Definition 1.1. A random sequence {Xj, k > 0} with values in Z is called a random
walk with modifications (RWM) upon visits to 0 if

VE > 1 Vig, i1, ... ik, lije1 — ;] =1
) ) ) ) 1
P(Xpp1 =ip+1 | Xo =0, X1 =i1,..., X =ip) = (§+VkA)/\17
) ) ) ) 1
P(Xpp1=1p — 1| Xo =0, X1 =i1,..., X =ip) = (§*VkA)\/07

where v, = [{j €0,k : X; =0} = Z?:o Iy x,=0; is the number of visits to 0.
The number A > 0 is called the size of modifications.

Set Fi, := 0(Xo, X1,...,Xk). The previous definition is equivalent to

P(Xpp1=Xi+1| Fr)

1
(5 + I/kA) A ].,

P(Xip41=Xp — 1| Fr)

1

Remark 1.1. The usual random walk with unit jumps and fixed transition probabilities
p and (1 — p) is non-recurrent if p # 1/2. So, 1/2 4+ v A < 1 with positive probability,
where vo, := [{k >0 : X, =0}
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The aim of the paper is to study the limit behavior of the sequence of series {X ,gn)}
where the size of modifications in the n-th series A,, — 0 as n — oo.
It is well-known that if A =0, i.e., if {X}} is a symmetric random walk with the unit

jumps, then the sequence of processes {X\[/%]} converges in distribution to a Brownian

motion in the space D([0,00)). So, it is natural to expect that if A, — 0 fast enough,
(n)

X
then the limit of { \}"E]} will be a Brownian motion too.
On the other hand, if {Y;} is a random walk with p; ;+1 = p,pii—1 = 1 — p, then by

the law of large numbers we have a.s. convergence

Yin
(1) lim "0 — (1 2p)t

n—oo N

for fixed t > 0 (and even uniformly on compact sets). Hence, if A,, — 0 “slowly”, there
(n)

is a possibility that some scaling of X[nt]

random slope.
The main result of the paper is the following theorem.

converges to non-zero linear process with a

Theorem 1.1. Let A, = -5, where ¢ > 0,a > 0. Assume that Xén) =0 for alln, and
X,in) is extended to all t > 0 by linearity

XM= X (x — x U - ).

[t] [t+1] [
o Ifa>1, then

(2) \}% = W(t), n = oo,
where W is a Brownian motion.
o I[f0O<a<l, then

(3) nt_ = 2\/ent, n — oo,

ni-2

where 1 is a non-negative random variable with the distribution function
(4) Plp<az)=1-e%, 2>0.
e Ifa=1, then
X,
Vn
where X, satisfies the SDE

= Xo(t), n — oo,

(5) Xoo(t) = 2c/0t 1% _(s)ds+W(t),t >0,

% )= 11%14_2% fot]liXoo(s)|<ed5 is the local time of Xoo at 0.
o e— -

Here = denotes the weak convergence in the space C([0,00)).

Remark 1.2. The case X(()n) = x, can be treated with the natural modifications.
Remark 1.3. Equation (5) has a unique weak solution due to Girsanov’s theorem.

Remark 1.4. The fact that the case a = 1 is the critical one can be guessed by the
following non-rigorous observations. In some sense the sequence {X lgn)} visits to 0 more
rarely than the symmetric random walk with the unit jump (it may not return at all).
The number of visits to 0 by the symmetric random walk has a rate v/n. So, if & > 1,
then

1 1 1 1 1
max [(z + veAy) — 2| = (5 + ) — | =, = — =0(n2"%), n — .
k=0,n 2 2 2 2
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If all transition probabilities where constant, i.e.,
m 1 1_ m 1 1,
(6) pg,(i+1:§+Kn2 av p7i(i71:§_Kn2 a’ ZGZ»
then it is not difficult to show (2). In some sense transition probabilities of RWM differ
from 1/2 even less than above.

On the other hand, if @ < 1 and if transition probabilities are given in (6), then
EXan)/\/ﬁ — 00 as n — 0. So n? is not a natural normalizing factor. We will show
that the total number of returns to 0 has a rate n®/2 and the instant of the last return to
0 of the process X,(ﬁ) converges to 0 as n — oco. Therefore the natural choice for scaling
is

n( steps ) X Voo ( number of modifications ) x n~“( size of each modification ) =<

n - noz/2
=———=n
na
Since transition probabilities do not change after small amount of time (after the last
return to 0), the limit process should be linear (compare with (1)).

1—a/2
s

Remark 1.5. RWM is not a Markov chain because transition probabilities depend on
number of visits to 0. The process X, from (5) is not a Markov process too. However
the pairs {(Xy, ),k > 0}, {(Xoo(t),1%_ (t)),t > 0} satisfy the Markov property.

Remark 1.6. For any a we have lim;_, w = a a.s. Let X, be a solution of (5).

Since the local time is a non-decreasing non-negative function, it can be easily verified
that if a = 1, then
Jim Xoo(t) = +o0 as., P(Io vt >ty 1% (1) =1% (to)) =1,
—00 oo oo
and x
t
lim 700( )
t—o0
It can be seen from the proof that the distribution of lim;_, lg(oc (t) coincides with

the distribution of y/cn, where the distribution function of 7 is given in (4).

— i 0 .
= tli>rgo lXoo (t) >0 a.s.

Remark 1.7. If the transition probabilities were perturbed only at 0 and would not be
changed in time, say p; ;41 = 1/2 for ¢ # 0, po,1 = p, po,—1 = 1 — p, then the weak limit
of {)\(/”E’} may be the skew Brownian motion, i.e., a solution of the SDE

dX R (t) = (2p — 1)dISopen (1) + AW (1),

see [5] for this particular case, and [6, 9, 10, 11, 12, 15] for further generalizations.
RWM also resembles the multi-excited random walk (but does not equal) that is
defined in the following way:
P(XEE = XE" + 1] X%, X7%,.., Xi7) =
1

1 -P(Xg5, =X — 1| X§%, X{*, ..., X5") = 5 + €nj,

ifj=1{0<i<k, X=X} and {e,;} are some (may be random) variables.

Under various assumptions on {e,;} and scaling, limits of multi-excited random walk
may be a linear process, or more intricate processes, for example the limits may be a
solution of the following stochastic equation

XS () = p(is " (1) dt + dW (1)

or

X (4) = X (s) — in X(s)+ W(t),
(1) o max, % (5) 6521[51;] (5) (t)

see [2, 7, 13, 16] and references therein.
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2. AUXILIARY LEMMAS

Let X =X ,CA be an RWM, where the modification equals A > 0. For simplicity
assume that Xo =0.
Set vy =vE =[{i =0,k : X; =0}, voo =v2=[{i >0 : X; =0}|.

Lemma 2.1. For any k > 1 we have

™ P (v3 > k) = iﬂ(l —2iA), k< (208)71,
0, k> (2A)71L.

Proof. 1t is well known that if { Sy} is a random walk with unit jumps, p; ;41 = 1—p; ;-1 =
pothen P(Ak >1 S, =0 So=0)=1—|p—q| =1—|2p—1].
So, if 1 + kA <1, then

P(z/oozk:—i—l|uoozk):1—<2(;+kA)—1):1—2kA.

This implies (7). O
Lemma 2.2. We have convergence in distribution

VAV =5, A= 0+,
where n is a random variable with its distribution function given in (4).

Proof. By the mean value theorem we have

1 y?

where € (0,4). Let z > 0 be fixed. Then for some (another) § € (0,4) and A < (1622)~!

we have "
InP(L > =)= Z In(1 — 2¢A) =
\/E 1<i< %=
(8) - 2iA — 0 i2A2,
1<i< 2 1<i< 2

Consider the first item in (8)

£ a5 (] )
SISk

Consider the second item

3
0< i2A2<() A2 -0, A= 0+.

Lemma 2.2 is proved. O

Let Ty be the moment of kth return to 0, i.e., 73 = 0 (recall that Xy = 0), T =
inf{j > T,—1 : X; =0}, k> 2. We set by the definition that infimum over the empty
set is equal to infinity.

Define To, :=sup{k > 1 : X} =0} =sup{Ty : Ty # co}.

Denote by 7 = Ti+1 — T the time between successive returns to 0 (co — 00 := 00).
Lemma 2.3.

PP

ET, = Z (%A — 2k:A> P(T}, < 00).
k=1
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Proof. Let {Sk} be a random walk with unit jumps, p;i+1 = p, Pii—1 = q¢ = 1 — p,
So =0, 7¢ =inf{k >1 : S =0} be the moment of the first return to 0.

It follows from the definition of the RWM that the conditional distribution of 73 given
{T}, < 0o} coincides with the distribution of 7g if p = pr = (3 + kA) A 1.

Recall that the moment generating function of 7g equals, see [3],

Es™gcoo =1 — /1 — 4pgs?.

Therefore

8pgs 4pq 4pq
9)  BErslscoo = (1= /1 —4pgs?)|sm1 = ———=]s=1 = = .
©) s ( J 2\/1—4pq52‘ VI=4pg |p—dl
We have

[25]

Too = Z 7—k]]frk<ooI|-Tk<c>o~

k=1
The proof of Lemma 2.3 follows from (9).

3. THE PROOF OF (3)
Let {X{™} be an RWM,

XM =0, A, = nia ac(0,1), T =sup{k >1 : x{™ =o0}.

It follows from Lemma 2.3 that

T ) (23] 1
(10) E—— < (2n) ; A=
(5] o
n)~ ! no_ 0 ) 'n® tin n n — 0.
(2n) ;Ck (14 0(1))(2¢) 1 ({%D—m, —

It follows from the definition of {X ,E")} that

B (X 1A ) = X7+ (00, —af) = X{ + @V An) AL

(n)
Vk,n

where ulin) ={0<i<k : Xl-(n) = 0}, pgn) =1- ngn) = (5 +iA,) AL
We have
k-1 k-1 k-1

) x =S - xM) =3 (xW - B (X FA)) - Dl At
1=0 1=0 1=0

Let us estimate the second summand on the right hand side of (11) for k = [nt]

(n) [nt]—1 (n) [nt]—1 (n)
([nt]T§:>>< - M) > ( M)s > < m)s
n< ne ne

=T i=0

[nt]—1 (n) (n)

2150 2cvso
) <CV Al)[nt}(w /\1).
’LZO nOt na

It follows from the last inequality, Lemma 2.2, and (10) that
St e nm) Al

3

= 2\/ent, n — oo
n

in D([0, 00)) with the topology of the uniform convergence on compact sets.
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The sequence M( R Zf 01 (X1(+)1 E (X(nl \]-')) , k > 1 is a martingale differ-

ence. It follows from the Doob inequality that

Wik
Ve > 0: P<max |1 |
Kk

Tt 0T

[nt]

> g) <n* 2 2E(M)? =

[nt]

no=? —2ZE (x5 -B(x) |]-'i))2 _
[nt]

-2 _QZE( 1+1 l-()—l—(chi(n)An)/\ ) <Adntn® 272 =

4n®Ye=2 50, n — co.

This yields (3).

4. THE PROOF OF (2) AND (5)
We need the following result on the absolute continuity of the limit.

Lemma 4.1. Let {X,,n > 1} and {Y,,n > 1} be sequences of random elements given
on the same probability space and taking values in a complete separable metric space E.
Assume that

P
e Y, = Yy,n— oo
e for each n > 1 we have the absolute continuity of the distributions

Px, < Py,;

o the sequence {pn(Yn),n > 1} converges in probability to a random variable p,

where p, = ZIPD’;" is the Radon-Nikodym density;
e Ep=1.
Then the sequence of distributions { Px, } converges weakly as n — oo to the probability
measure E(p | Yy = y) Py, (dy).

Similar result was proved by Gikhman and Skorokhod, see [4]. Since their formulation
differs slightly from our, for the save of clarity we give a proof.

Proof. Since {p,(Y,),n > 1} are non-negative random variables and Ep,, (Y,,) = 1,n > 1,
the uniform integrability of {p, (Y;,),n > 1} follows from Ep = 1, where p = hm pn(Yn)

see, for example, [14, Chapter II §6].
Hence, the sequence {f(Y;)pn(Yn),n > 1} is uniformly integrable too, and we have
tim [ fdPy, = lm Ef(X,) = lm Ef(V)pa(¥,) = Bf (Yo)p =
n— oo

n— oo

B (O B %) = [ F)BG Yo = )P (dy).
Lemma 4.1 is proved. O

Let n be fixed, p be the distribution of {X&, X£,..., X2} in R**! where { X2} is
an RWM, X& = 0.
Denote by v the distribution of a symmetric RW {So, S1,...,S,} with unit jumps,
So=0, S, =& + -+ &, where {&} are i.i.d., P(§ = £1) = 1/2. Then p < v and
n—1
d,U/ kl;[() (puk]]ik+1:ik+1 + quk]]-iqul:ik—l)

E(i()ailu"win): 9-n )
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where v, = [{0<j <k :i; =0}, pi=1—¢ = (5 +iA) AL
So
n—1
kl;IO (pykllfk+1:1 + q’/k]lfk+1:— )

du B B
(12) 5(50,51, ceySp) = 5= =

n—1

I (1+ ((206A) A1)&k),

where v, = [{0< j <k : S, =0}
Let M > 0 be a fixed number and A € (0,(2M)~2). Denote by {X,iw’A} a RW

with modifications upon visits to 0, where modifications stop changing after [M/v/Al-th
hitting O:

M,A M,A M,A M,A M,A 1 M,A
P(Xk+1 :Xk; +1|X0 aXl 7~-'7Xk ):§+(Vk /\[M/\/Z])Aa
1
M,A M,A MA MA M,A M,A
P(Xk+1 =X, —1X7, X .61 )25_(% /\[M/\/Z])A,

where V%’A ={0<j<k : XJM’A = 0}

We will assume that Xéw’A =0.

Observe that restriction of the distributions IWAL/I.A”S[M/\/A—H]AP{X%A"’nggn} and
]lu,ﬁ"g[M/\/ATL]AP{X,i”'A",ogkgn} are equal.

Similarly, let X, be a solution of (5), 7ay = inf{t > 0 :I%_(t) > M}, and X s be
a solution of

(13) X oo ni(t) = 2\/5/0 ((VelS_ ,,(s)) A M) ds + (1), £ > 0
Set 7ay = inf{t >0 : 1% (t) > M}.
Then 1

L >1Pix ) efo, 1)y = by >1Px o (1).tef0,7)}-
In view of Lemma 2.2, to prove the Theorem it is sufficient to verify the weak conver-
gence

X M.An
{ % [0, TN} = {W(t),t < [0,T]}
ifa>1
and
M2,
{ ’\% € [0,T)} = {Xoon(t),t €[0,T]}
ifa=1
Consider the case T = 1 and prove the weak convergence in C([0,1]). The case

C([0,T]), and hence C(]0,00)), can be considered similarly.
Let S = Zle &, where {} are iid., P(§ = +1) = 1/2, and S; = Sy + (t —

() (Spe+1) — Spay)-

It is possible, see [1], to select copies {S,(Cn)} of {Si} and a Wiener process W such
that
S(Ttl)

14 lim sup |2 — W ()| =0, lim sup
(14) "_>O°t€[0,1]| n ) "—*Octe[o,l]| vn
where v = [{0<i<k : SP=0}|.

Let us apply Lemma 4.1.

Set E =C([0,1]), X,, = {

Ying)

1% ()] =0 as.,

M,Ap
Xnt

v

(n)
te 0,1}, Vo = {25t e [0,1]}
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Recall that A € (0,(2M)~2). Similarly to (12) we get the formula for the Radon-
Nikodym density

dP x dPn,l/QXM,An ST(L") n—1
“(Y,) = I (1420 A M/VBD A )
dPYn ( ) dPn71/25(7}) \/ﬁ ) e + / €k+1

where &£} := S,in) - S,(i)l.
Let us prove the following convergence in probability

lim In ( I (120 A [M/m])cn—agg+l)> -

n—00

07 a>1
{f; 2/ (el (£)) A M) dW (t) — [ 2¢ ((Veldy (£) A M) dt, o= 1.
Consider only the case a = 1, the case a > 1 is similar and simpler.
We have

Tiln (1 +2(vp A [M/W])cn—1§£+l> _

|
—

n n—1

20 A [M/Ven=en &y — 5 > Q20 A M/Ven )en )7+
k=0

1
2
0

e
Il

fzek( A Ve Ten e ) =

Tiz(‘[y’“A > §k+1 Z2( CV’“AM)Qi+

k=0

,ng< A (MY en )en~ gm) +o(1),

where 0| < C = const, C is independent of k and n. It will be seen from the proof
below that o(1) — 0 as n — oo in probability.
The third summand converges to 0 for all w. Indeed

nf (20 A [M/Vc?l])cn—lazﬂ)s] < Zl (2<[M/x/cT-1])cn—1)3 =
k=0 k=0

3
n (2([M/v cn*l])cn%) — 0, n — oo.
It follows from (14) that the limit of the second term is fol 2¢ (Ve () A M)2 dt.
Consider the first item. Let € > 0 be fixed. Select § > 0 and N > 1 such that
(n)

¥n>N P | sup (|S["thw<t>|+\”§‘t] Wl ze| <e
te(0,1] \/ﬁ \/ﬁ

[T;Lt] l/ns] 0 0
P sup — >e| <e P sup () =Ly (s)>e )] <e.
(s t€[0,1],]s— t\<5| vnooon | ) (S}te[o’l]’lsth w(t) = Ly (s)] )

Set m = [}] 4 1. For simplicity assume that n/m is integer. Then

« Vevy S ! 20
> (Y nar) St [ (et ) a0 (o) <

k=0

I, =
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m—1(j+1 —1 n
ST (g Y )
ANM— —F——A"M +
Jn Jn Jn

j=0  k=jn/m

m—1 . G+1)n/m—-1 . .
() (75 Sy - wid) )|+

k=jn/m

1 (C\V;Z/m — (el ( '))/\M) (W(jT “)_ (7.77'1))

=0 %% +
m—1 /7-7:11 ((ﬁloﬂ,(i)) AM — (\/El%,(t)) /\M> AW (t)| = I;z,m +I;1,m Ig’m g
j:0 7.77, +

It follows from (14) and Lebesgue dominated convergence theorem that

n—r00 Jn Jn

m—1(G+1)n/m—1 ﬁy" Cyn/ 2
)2 = 3 _ jn/m _
lim E(1]"" _nlgr;onEZ > ( AM /\M) -
k=jn/m

m— i+l . 2

Z L7 (v nat - sy nn) ar

=0 E
The last expression also equals I*.
It follows from (14) that Jim. I3 = lim I3"™ = 0 a.s. for each fixed m. Since the
n—roo
second moments of I;°™ T g " are uniformly bounded we have convergence
Vm >1 lim E|I"™| = lim E|I;"™| = 0.
n—oo n—roo

So for any m > 1

limsup E

n— oo

Z_: ( ) 5\;;% /01 (Velly () A M) dW (t)| <

1/2

+1

ZE/ (ﬂw'>>AM—<mev<t>>AM)2dt

m

Letting m — co we get
lim E|I,| = 0.
n—oo
To apply Lemma 4.1 it remains to prove that

Eexp{/olwa(mgv(t) A M) dW(t) — /0120 (Veldy (t) /\M)th} 1

The last equality follows from the Novikov theorem because the 1ntegrand5 are bounded,

see [8, Theorem 6.1, Chapter VI]. Hence, the sequence of processes { > 2t € [0,1]} >4
converges in distribution to a process, whose distribution has a density

exp {/1 2/ (vl () A M) dW (1) — /01 2 (vl () A M) dt}

0
with respect to the Wiener measure.
By the Girsanov theorem, this process is a weak solution to the SDE (13).
The Theorem is proved.
Acknowledgement. The authors thank anonymous referees for careful reading, help-
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