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ANDREY PILIPENKO AND VLADISLAV KHOMENKO

ON A LIMIT BEHAVIOR OF A RANDOM WALK WITH

MODIFICATIONS UPON EACH VISIT TO ZERO

We consider the limit behavior of a one-dimensional random walk with unit jumps

whose transition probabilities are modified every time the walk hits zero. The in-
variance principle is proved in the scheme of series where the size of modifications

depends on the number of series. For the natural scaling of time and space arguments

the limit process is (i) a Brownian motion if modifications are “small”, (ii) a linear
motion with a random slope if modifications are “large”, and (iii) the limit process

satisfies an SDE with a local time of unknown process in a drift if modifications are

“moderate”.

1. Introduction and Main Results

Consider a random walk {Xk, k ≥ 0} on Z with unit jumps that is constructed in the
following way. It behaves as a symmetric random walk until the first visit to 0. After
that the probability of the jump to the right becomes equal to p1 := 1/2 + ∆, and to
the left q1 := 1/2−∆, where ∆ > 0 is a fixed number. When {Xk} secondly visits 0 its
transition probabilities to the right and to the left become equal to p2 := 1/2 + 2∆ and
q2 := 1/2− 2∆, respectively, etc. (if 1/2 + i∆ > 1 we set pi := 1).

Let us give the formal definition.

Definition 1.1. A random sequence {Xk, k ≥ 0} with values in Z is called a random
walk with modifications (RWM) upon visits to 0 if

∀k ≥ 1 ∀i0, i1, . . . , ik, |ij+1 − ij | = 1

P(Xk+1 = ik + 1 | X0 = i0, X1 = i1, . . . , Xk = ik) = (
1

2
+ νk∆) ∧ 1,

P(Xk+1 = ik − 1 | X0 = i0, X1 = i1, . . . , Xk = ik) = (
1

2
− νk∆) ∨ 0,

where νk = |{j ∈ 0, k : Xj = 0}| =
∑k
j=0 1I{Xj=0} is the number of visits to 0.

The number ∆ > 0 is called the size of modifications.

Set Fk := σ(X0, X1, . . . , Xk). The previous definition is equivalent to

P (Xk+1 = Xk + 1 | Fk) = (
1

2
+ νk∆) ∧ 1,

P (Xk+1 = Xk − 1 | Fk) = (
1

2
− νk∆) ∨ 0.

Remark 1.1. The usual random walk with unit jumps and fixed transition probabilities
p and (1 − p) is non-recurrent if p 6= 1/2. So, 1/2 + ν∞∆ < 1 with positive probability,
where ν∞ := |{k ≥ 0 : Xk = 0}|.
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The aim of the paper is to study the limit behavior of the sequence of series {X(n)
k }

where the size of modifications in the n-th series ∆n → 0 as n→∞.
It is well-known that if ∆ = 0, i.e., if {Xk} is a symmetric random walk with the unit

jumps, then the sequence of processes {X[n·]√
n
} converges in distribution to a Brownian

motion in the space D([0,∞)). So, it is natural to expect that if ∆n → 0 fast enough,

then the limit of {
X

(n)

[n·]√
n
} will be a Brownian motion too.

On the other hand, if {Yk} is a random walk with pi,i+1 = p, pi,i−1 = 1 − p, then by
the law of large numbers we have a.s. convergence

(1) lim
n→∞

Y[nt]

n
= (1− 2p)t

for fixed t ≥ 0 (and even uniformly on compact sets). Hence, if ∆n → 0 “slowly”, there

is a possibility that some scaling of X
(n)
[nt] converges to non-zero linear process with a

random slope.
The main result of the paper is the following theorem.

Theorem 1.1. Let ∆n = c
nα , where c > 0, α > 0. Assume that X

(n)
0 = 0 for all n, and

X
(n)
k is extended to all t ≥ 0 by linearity

X
(n)
t := X

(n)
[t] + (X

(n)
[t+1] −X

(n)
[t] )(t− [t]).

• If α > 1, then

(2)
X

(n)
nt√
n
⇒W (t), n→∞,

where W is a Brownian motion.
• If 0 < α < 1, then

(3)
X

(n)
nt

n1−α2
⇒ 2
√
cηt, n→∞,

where η is a non-negative random variable with the distribution function

(4) P(η ≤ x) = 1− e−x
2

, x ≥ 0.

• If α = 1, then

X
(n)
nt√
n
⇒ X∞(t), n→∞,

where X∞ satisfies the SDE

(5) X∞(t) = 2c

∫ t

0

l0X∞(s)ds+W (t), t ≥ 0,

l0X∞(t) = lim
ε→0+

1
2ε

∫ t
0

1I|X∞(s)|≤εds is the local time of X∞ at 0.

Here ⇒ denotes the weak convergence in the space C([0,∞)).

Remark 1.2. The case X
(n)
0 = xn can be treated with the natural modifications.

Remark 1.3. Equation (5) has a unique weak solution due to Girsanov’s theorem.

Remark 1.4. The fact that the case α = 1 is the critical one can be guessed by the

following non-rigorous observations. In some sense the sequence {X(n)
k } visits to 0 more

rarely than the symmetric random walk with the unit jump (it may not return at all).
The number of visits to 0 by the symmetric random walk has a rate

√
n. So, if α > 1,

then

max
k=0,n

|(1

2
+ νk∆n)− 1

2
| = |(1

2
+ νn∆n)− 1

2
| = νn∆n =

cνn
nα

= O(n
1
2−α), n→∞.
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If all transition probabilities where constant, i.e.,

(6) pX
(n)

i,i+1 =
1

2
+Kn

1
2−α, pX

(n)

i,i−1 =
1

2
−Kn 1

2−α, i ∈ Z,

then it is not difficult to show (2). In some sense transition probabilities of RWM differ
from 1/2 even less than above.

On the other hand, if α < 1 and if transition probabilities are given in (6), then

EX
(n)
n /
√
n → ∞ as n → ∞. So n

1
2 is not a natural normalizing factor. We will show

that the total number of returns to 0 has a rate nα/2 and the instant of the last return to
0 of the process X

(n)
nt converges to 0 as n→∞. Therefore the natural choice for scaling

is

n( steps )× ν∞( number of modifications )× n−α( size of each modification ) �

� n · nα/2

nα
= n1−α/2,

Since transition probabilities do not change after small amount of time (after the last
return to 0), the limit process should be linear (compare with (1)).

Remark 1.5. RWM is not a Markov chain because transition probabilities depend on
number of visits to 0. The process X∞ from (5) is not a Markov process too. However
the pairs {(Xk, νk), k ≥ 0}, {(X∞(t), l0X∞(t)), t ≥ 0} satisfy the Markov property.

Remark 1.6. For any a we have limt→∞
at+W (t)

t = a a.s. Let X∞ be a solution of (5).
Since the local time is a non-decreasing non-negative function, it can be easily verified
that if α = 1, then

lim
t→∞

X∞(t) = +∞ a.s., P(∃t0 ∀t ≥ t0 : l0X∞(t) = l0X∞(t0)) = 1,

and

lim
t→∞

X∞(t)

t
= lim
t→∞

l0X∞(t) > 0 a.s.

It can be seen from the proof that the distribution of limt→∞ l0X∞(t) coincides with

the distribution of
√
cη, where the distribution function of η is given in (4).

Remark 1.7. If the transition probabilities were perturbed only at 0 and would not be
changed in time, say pi,i±1 = 1/2 for i 6= 0, p0,1 = p, p0,−1 = 1− p, then the weak limit

of {Xnt√
n
} may be the skew Brownian motion, i.e., a solution of the SDE

dXskew(t) = (2p− 1)dl0Xskew(t) + dW (t),

see [5] for this particular case, and [6, 9, 10, 11, 12, 15] for further generalizations.
RWM also resembles the multi-excited random walk (but does not equal) that is

defined in the following way:

P(Xex
k+1 = Xex

k + 1 | Xex
0 , Xex

1 , . . . , Xex
k ) =

1− P(Xex
k+1 = Xex

k − 1 | Xex
0 , Xex

1 , . . . , Xex
k ) =

1

2
+ εnj ,

if j = |{0 ≤ i ≤ k, Xex
i = Xex

k }| and {εnj} are some (may be random) variables.
Under various assumptions on {εnj} and scaling, limits of multi-excited random walk

may be a linear process, or more intricate processes, for example the limits may be a
solution of the following stochastic equation

dXex
∞ (t) = ϕ(l

Xex∞ (t)
Xex∞

(t))dt+ dW (t)

or
Xex
∞ (t) = α max

s∈[0,t]
Xex
∞ (s)− β min

s∈[0,t]
Xex
∞ (s) +W (t),

see [2, 7, 13, 16] and references therein.
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2. Auxiliary lemmas

Let Xk = X∆
k be an RWM, where the modification equals ∆ > 0. For simplicity

assume that X0 = 0.
Set νk = ν∆

k = |{i = 0, k : Xi = 0}|, ν∞ = ν∆
∞ = |{i ≥ 0 : Xi = 0}|.

Lemma 2.1. For any k ≥ 1 we have

(7) P
(
ν∆
∞ > k

)
=


k

Π
i=1

(1− 2i∆), k ≤ (2∆)−1,

0, k > (2∆)−1.

Proof. It is well known that if {Sk} is a random walk with unit jumps, pi,i+1 = 1−pi,i−1 =
p, then P(∃k ≥ 1 Sk = 0 | S0 = 0) = 1− |p− q| = 1− |2p− 1|.

So, if 1
2 + k∆ ≤ 1, then

P(ν∞ ≥ k + 1 | ν∞ ≥ k) = 1−
(

2(
1

2
+ k∆)− 1

)
= 1− 2k∆.

This implies (7). �

Lemma 2.2. We have convergence in distribution
√

∆ν∆
∞ ⇒ η, ∆→ 0+,

where η is a random variable with its distribution function given in (4).

Proof. By the mean value theorem we have

∀y ∈ (0,
1

2
) ln(1− y) = −y − θ y

2

2
,

where θ ∈ (0, 4). Let x ≥ 0 be fixed. Then for some (another) θ ∈ (0, 4) and ∆ ≤ (16x2)−1

we have
ln P(ν∆

∞ >
x√
∆

) =
∑

1≤i≤ x√
∆

ln(1− 2i∆) =

(8) −
∑

1≤i≤ x√
∆

2i∆− θ
∑

1≤i≤ x√
∆

i2∆2.

Consider the first item in (8)∑
1≤i≤ x√

∆

2i∆ =

[
x√
∆

]([
x√
∆

]
+ 1

)
∆→ x2, ∆→ 0 + .

Consider the second item

0 ≤
∑

1≤i≤ x√
∆

i2∆2 ≤
(

x√
∆

)3

∆2 → 0, ∆→ 0 + .

Lemma 2.2 is proved. �

Let Tk be the moment of kth return to 0, i.e., T1 = 0 (recall that X0 = 0), Tk =
inf{j > Tk−1 : Xj = 0}, k ≥ 2. We set by the definition that infimum over the empty
set is equal to infinity.

Define T∞ := sup{k ≥ 1 : Xk = 0} = sup{Tk : Tk 6=∞}.
Denote by τk = Tk+1 − Tk the time between successive returns to 0 (∞−∞ :=∞).

Lemma 2.3.

ET∞ =

[ 1
2∆ ]∑
k=1

(
1

2k∆
− 2k∆

)
P(Tk <∞).
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Proof. Let {Sk} be a random walk with unit jumps, pi,i+1 = p, pi,i−1 = q = 1 − p,
S0 = 0, τS = inf{k ≥ 1 : Sk = 0} be the moment of the first return to 0.

It follows from the definition of the RWM that the conditional distribution of τk given
{Tk <∞} coincides with the distribution of τS if p = pk = ( 1

2 + k∆) ∧ 1.
Recall that the moment generating function of τS equals, see [3],

EsτS1IτS<∞ = 1−
√

1− 4pqs2.

Therefore

(9) EτS1IτS<∞ = (1−
√

1− 4pqs2)′|s=1 =
8pqs

2
√

1− 4pqs2
|s=1 =

4pq√
1− 4pq

=
4pq

|p− q|
.

We have

T∞ =

[ 1
2∆ ]∑
k=1

τk1Iτk<∞1ITk<∞.

The proof of Lemma 2.3 follows from (9).
�

3. The proof of (3)

Let {X(n)
k } be an RWM,

X
(n)
k = 0, ∆n =

c

nα
, α ∈ (0, 1), T (n)

∞ = sup{k ≥ 1 : X
(n)
k = 0}.

It follows from Lemma 2.3 that

(10) E
T

(n)
∞

n
≤ (2n)−1

[ 1
2∆n

]∑
k=1

1

k∆n
=

(2n)−1

[n
α

2c ]∑
k=1

nα

ck
= (1 + o(1))(2c)−1nα−1 ln

([
nα

2c

])
→ 0, n→∞.

It follows from the definition of {X(n)
k } that

E
(
X

(n)
k+1 | Fk

)
= X

(n)
k + (p

(n)

ν
(n)
k

− q(n)

ν
(n)
k

) = X
(n)
k + (2ν

(n)
k ∆n) ∧ 1,

where ν
(n)
k = |{0 ≤ i ≤ k : X

(n)
i = 0}|, p(n)

i = 1− q(n)
i = ( 1

2 + i∆n) ∧ 1.
We have

(11) X
(n)
k =

k−1∑
i=0

(X
(n)
i+1 −X

(n)
i ) =

k−1∑
i=0

(
X

(n)
i+1 − E

(
X

(n)
i+1 | Fi

))
+

k−1∑
i=0

(2cν
(n)
i n−α) ∧ 1.

Let us estimate the second summand on the right hand side of (11) for k = [nt]

([nt]− T (n)
∞ )

(
2cν

(n)
∞

nα
∧ 1

)
=

[nt]−1∑
i=T

(n)
∞

(
2cν

(n)
∞

nα
∧ 1

)
≤

[nt]−1∑
i=0

(
2cν

(n)
i

nα
∧ 1

)
≤

[nt]−1∑
i=0

(
2cν

(n)
∞

nα
∧ 1

)
= [nt]

(
2cν

(n)
∞

nα
∧ 1

)
.

It follows from the last inequality, Lemma 2.2, and (10) that∑[nt]−1
i=0 (2cν

(n)
i n−α) ∧ 1

n1−α2
⇒ 2
√
cηt, n→∞

in D([0,∞)) with the topology of the uniform convergence on compact sets.
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The sequence M
(n)
k :=

∑k−1
i=0

(
X

(n)
i+1 − E

(
X

(n)
i+1 | Fi

))
, k ≥ 1 is a martingale differ-

ence. It follows from the Doob inequality that

∀ε > 0 : P

(
max

k=1,[nt]

|M (n)
k |

n1−α2
≥ ε

)
≤ nα−2ε−2E(M

(n)
[nt])

2 =

nα−2ε−2

[nt]∑
i=0

E
(
X

(n)
i+1 − E

(
X

(n)
i+1 | Fi

))2

=

nα−2ε−2

[nt]∑
i=0

E
(
X

(n)
i+1 −X

(n)
i + (2cν

(n)
i ∆n) ∧ 1

)2

≤ 4nt nα−2ε−2 =

4nα−1tε−2 → 0, n→∞.

This yields (3).

4. The proof of (2) and (5)

We need the following result on the absolute continuity of the limit.

Lemma 4.1. Let {Xn, n ≥ 1} and {Yn, n ≥ 1} be sequences of random elements given
on the same probability space and taking values in a complete separable metric space E.

Assume that

• Yn
P→ Y0, n→∞;

• for each n ≥ 1 we have the absolute continuity of the distributions

PXn � PYn ;

• the sequence {ρn(Yn), n ≥ 1} converges in probability to a random variable p,

where ρn =
dPXn
dPYn

is the Radon-Nikodym density;

• Ep = 1.

Then the sequence of distributions {PXn} converges weakly as n→∞ to the probability
measure E(p |Y0 = y)PY0

(dy).

Similar result was proved by Gikhman and Skorokhod, see [4]. Since their formulation
differs slightly from our, for the save of clarity we give a proof.

Proof. Since {ρn(Yn), n ≥ 1} are non-negative random variables and Eρn(Yn) = 1, n ≥ 1,
the uniform integrability of {ρn(Yn), n ≥ 1} follows from Ep = 1, where p = lim

n→∞
ρn(Yn),

see, for example, [14, Chapter II §6].
Hence, the sequence {f(Yn)ρn(Yn), n ≥ 1} is uniformly integrable too, and we have

lim
n→∞

∫
E

fdPXn = lim
n→∞

Ef(Xn) = lim
n→∞

Ef(Yn)ρn(Yn) = Ef(Y0)p =

E (f(Y0) E(p |Y0)) =

∫
E

f(y)E(p |Y0 = y)PY0(dy).

Lemma 4.1 is proved. �

Let n be fixed, µ be the distribution of {X∆
0 , X

∆
1 , . . . , X

∆
n } in Rn+1, where {X∆

k } is
an RWM, X∆

0 = 0.
Denote by ν the distribution of a symmetric RW {S0, S1, . . . , Sn} with unit jumps,

S0 = 0, Sn = ξ1 + · · ·+ ξn, where {ξk} are i.i.d., P(ξk = ±1) = 1/2. Then µ� ν and

dµ

dν
(i0, i1, . . . , in) =

n−1

Π
k=0

(
pνk1Iik+1=ik+1 + qνk1Iik+1=ik−1

)
2−n

,



ON A LIMIT BEHAVIOR OF A RANDOM WALK . . . 77

where νk = |{0 ≤ j ≤ k : ij = 0}|, pi = 1− qi = ( 1
2 + i∆) ∧ 1.

So

(12)
dµ

dν
(S0, S1, . . . , Sn) =

n−1

Π
k=0

(
pνk1Iξk+1=1 + qνk1Iξk+1=−1

)
2−n

=

n−1

Π
k=0

(1 + ((2νk∆) ∧ 1)ξk),

where νk = |{0 ≤ j ≤ k : Sj = 0}|.
Let M > 0 be a fixed number and ∆ ∈ (0, (2M)−2). Denote by {XM,∆

k } a RW

with modifications upon visits to 0, where modifications stop changing after [M/
√

∆]-th
hitting 0:

P(XM,∆
k+1 = XM,∆

k + 1|XM,∆
0 , XM,∆

1 , . . . , XM,∆
k ) =

1

2
+ (νM,∆

k ∧ [M/
√

∆])∆,

P(XM,∆
k+1 = XM,∆

k − 1|XM,∆
0 , XM,∆

1 , . . . , XM,∆
k ) =

1

2
− (νM,∆

k ∧ [M/
√

∆])∆,

where νM,∆
k = |{0 ≤ j ≤ k : XM,∆

j = 0}|.
We will assume that XM,∆

0 = 0.
Observe that restriction of the distributions 1IνM,∆nn ≤[M/

√
∆n]−1P{XM,∆nk ,0≤k≤n} and

1Iν∆n
n ≤[M/

√
∆n]−1P{XM,∆nk ,0≤k≤n} are equal.

Similarly, let X∞ be a solution of (5), τM = inf{t ≥ 0 : l0X∞(t) ≥M}, and X∞,M be
a solution of

(13) X∞,M (t) = 2
√
c

∫ t

0

(
(
√
cl0X∞,M (s)) ∧M

)
ds+W (t), t ≥ 0.

Set τ̃M = inf{t ≥ 0 : l0X∞,M (t) ≥M}.
Then

1Iτ̃M≥TP{X∞,M (t),t∈[0,T ]} = 1IτM≥TP{X∞(t),t∈[0,T ]}.

In view of Lemma 2.2, to prove the Theorem it is sufficient to verify the weak conver-
gence

{X
M,∆n

nt√
n

, t ∈ [0, T ]} ⇒ {W (t), t ∈ [0, T ]}

if α > 1
and

{X
M,∆n

nt√
n

, t ∈ [0, T ]} ⇒ {X∞,M (t), t ∈ [0, T ]}

if α = 1.
Consider the case T = 1 and prove the weak convergence in C([0, 1]). The case

C([0, T ]), and hence C([0,∞)), can be considered similarly.

Let Sk =
∑k
i=1 ξi, where {ξk} are i.i.d., P(ξk = ±1) = 1/2, and St = S[t] + (t −

[t])(S[t+1] − S[t]).

It is possible, see [1], to select copies {S(n)
k } of {Sk} and a Wiener process W such

that

(14) lim
n→∞

sup
t∈[0,1]

|S
(n)
nt√
n
−W (t)| = 0, lim

n→∞
sup
t∈[0,1]

|
νn[nt]√
n
− l0W (t)| = 0 a.s.,

where νnk = |{0 ≤ i ≤ k : Sni = 0}|.
Let us apply Lemma 4.1.

Set E = C([0, 1]), Xn = {X
M,∆n
nt√
n

, t ∈ [0, 1]}, Yn = {S
(n)
nt√
n
, t ∈ [0, 1]}.
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Recall that ∆ ∈ (0, (2M)−2). Similarly to (12) we get the formula for the Radon-
Nikodym density

dPXn
dPYn

(Yn) =
dPn−1/2XM,∆nn·

dP
n−1/2S

(n)
n·

(
S

(n)
n·√
n

) =
n−1

Π
k=0

(
1 + 2(νnk ∧ [M/

√
∆n])∆nξ

n
k+1

)
,

where ξnk := S
(n)
k − S(n)

k−1.
Let us prove the following convergence in probability

lim
n→∞

ln

(
n−1

Π
k=0

(
1 + 2(νnk ∧ [M/

√
cn−α])cn−αξnk+1

))
={

0, α > 1,∫ 1

0
2
√
c
(
(
√
cl0W (t)) ∧M

)
dW (t)−

∫ 1

0
2c
(
(
√
cl0W (t)) ∧M

)2
dt, α = 1.

Consider only the case α = 1, the case α > 1 is similar and simpler.
We have

n−1∑
k=0

ln
(

1 + 2(νnk ∧ [M/
√
cn−1])cn−1ξnk+1

)
=

n−1∑
k=0

2(νnk ∧ [M/
√
cn−1])cn−1ξnk+1 −

1

2

n−1∑
k=0

(2(νnk ∧ [M/
√
cn−1])cn−1ξnk+1)2+

1

3

n−1∑
k=0

θk

(
2(νnk ∧ [M/

√
cn−1])cn−1ξnk+1

)3

=

n−1∑
k=0

2

(√
cνnk√
n
∧M

) √
c√
n
ξnk+1 −

n−1∑
k=0

2c

(√
cνnk√
n
∧M

)2
1

n
+

1

3

n−1∑
k=0

θk

(
2(νnk ∧ [M/

√
cn−1])cn−1ξnk+1

)3

+ o(1),

where |θk| ≤ C = const, C is independent of k and n. It will be seen from the proof
below that o(1)→ 0 as n→∞ in probability.

The third summand converges to 0 for all ω. Indeed

n−1∑
k=0

∣∣∣∣(2(νnk ∧ [M/
√
cn−1])cn−1ξnk+1

)3
∣∣∣∣ ≤ n−1∑

k=0

(
2([M/

√
cn−1])cn−1

)3

=

n
(

2([M/
√
cn−1])cn−1

)3

→ 0, n→∞.

It follows from (14) that the limit of the second term is
∫ 1

0
2c
(√
cl0W (t) ∧M

)2
dt.

Consider the first item. Let ε > 0 be fixed. Select δ > 0 and N ≥ 1 such that

∀n ≥ N P

 sup
t∈[0,1]

(
|
S

(n)
[nt]√
n
−W (t)|+ |

νn[nt]√
n
− l0W (t)|

)
≥ ε

 ≤ ε;
P

(
sup

s,t∈[0,1],|s−t|≤δ
|
νn[nt]√
n
−
νn[ns]√
n
| ≥ ε

)
≤ ε; P

(
sup

s,t∈[0,1],|s−t|≤δ
|l0W (t)− l0W (s)| ≥ ε

)
≤ ε.

Set m = [ 1
δ ] + 1. For simplicity assume that n/m is integer. Then

In :=

∣∣∣∣∣
n−1∑
k=0

(√
cνnk√
n
∧M

)
ξnk+1√
n
−
∫ 1

0

(
(
√
cl0W (t)) ∧M

)
dW (t)

∣∣∣∣∣ ≤
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m−1∑
j=0

(j+1)n/m−1∑
k=jn/m

(√
cνnk√
n
∧M −

√
cνnjn/m√
n

∧M

)
ξnk+1√
n

∣∣∣∣∣∣+∣∣∣∣∣∣
m−1∑
j=0

(√
cνnjn/m√
n

∧M

)( (j+1)n/m−1∑
k=jn/m

ξnk+1√
n

)
−
(
W (

j + 1

m
)−W (

j

m
)
)∣∣∣∣∣∣+∣∣∣∣∣∣

m−1∑
j=0

(√cνnjn/m√
n

∧M − (
√
cl0W (

j

m
)) ∧M

)(
W (

j + 1

m
)−W (

j

m
)
)∣∣∣∣∣∣+∣∣∣∣∣∣

m−1∑
j=0

∫ j+1
m

j
m

(
(
√
cl0W (

j

m
)) ∧M − (

√
cl0W (t)) ∧M

)
dW (t)

∣∣∣∣∣∣ = In,m1 + In,m2 + In,m3 + Im4 .

It follows from (14) and Lebesgue dominated convergence theorem that

lim
n→∞

E(In,m1 )2 = lim
n→∞

1

n
E

m−1∑
j=0

(j+1)n/m−1∑
k=jn/m

(√
cνnk√
n
∧M −

√
cνnjn/m√
n

∧M

)2

=

m−1∑
j=0

E

∫ j+1
m

j
m

(
(
√
cl0W (

j

m
)) ∧M − (

√
cl0W (t)) ∧M

)2

dt.

The last expression also equals Im4 .
It follows from (14) that lim

n→∞
In,m2 = lim

n→∞
In,m3 = 0 a.s. for each fixed m. Since the

second moments of In,m2 , In,m3 are uniformly bounded we have convergence

∀m ≥ 1 lim
n→∞

E|In,m2 | = lim
n→∞

E|In,m3 | = 0.

So for any m ≥ 1

lim sup
n→∞

E

∣∣∣∣∣
n−1∑
k=0

(√
cνnk√
n
∧M

)
ξnk+1√
n
−
∫ 1

0

(√
cl0W (t) ∧M

)
dW (t)

∣∣∣∣∣ ≤
2

m−1∑
j=0

E

∫ j+1
m

j
m

(
(
√
cl0W (

j

m
)) ∧M − (

√
cl0W (t)) ∧M

)2

dt

1/2

.

Letting m→∞ we get

lim
n→∞

E|In| = 0.

To apply Lemma 4.1 it remains to prove that

E exp

{∫ 1

0

2
√
c
(√
cl0W (t) ∧M

)
dW (t)−

∫ 1

0

2c
(√
cl0W (t) ∧M

)2
dt

}
= 1.

The last equality follows from the Novikov theorem because the integrands are bounded,

see [8, Theorem 6.1, Chapter VI]. Hence, the sequence of processes {X
M,∆n
nt√
n

, t ∈ [0, 1]}n≥1

converges in distribution to a process, whose distribution has a density

exp

{∫ 1

0

2
√
c
(√
cl0W (t) ∧M

)
dW (t)−

∫ 1

0

2c
(√
cl0W (t) ∧M

)2
dt

}
with respect to the Wiener measure.

By the Girsanov theorem, this process is a weak solution to the SDE (13).
The Theorem is proved.
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