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M. SABUROV AND N. A. YUSOF

p−MAJORIZING QUADRATIC STOCHASTIC OPERATORS

In this paper, we introduce a new class of the so-called p−majorizing quadratic

stochastic operators which is the generalization of the class of quadratic doubly sto-
chastic operators. We provide a criterion for the regularity of p−majorizing quadratic

stochastic operators acting on 2D simplex. Some relevant examples are also provided.

1. Introduction

The dynamics of nonlinear stochastic operators acting on the finite dimensional sim-
plex remains to be difficult and complex. The main problem is to study the asymptotic
behavior of nonlinear stochastic operators associated with stochastic hyper-matrices. The
simplest nonlinear stochastic operator is a quadratic stochastic operator (in short QSO)
associated with a cubic stochastic matrix. The dynamics of QSO is sufficiently rich and
quite complicated (see [3, 10, 11]). The QSO has an incredible application in popula-
tion genetics (see [8]). Namely, it describes a distribution of the next generation in the
population system if the distribution of the current generation was given. The QSO is a
primary source for investigations of evolution of population genetics. In the paper [1], a
mathematical model of a transmission of human ABO blood groups was described as the
QSO on 7-dimensional simplex and based on some numerical investigations, the future
ABO blood group distribution of Malaysian people was predicted. A self-contained ex-
position of the recent achievements and open problems in the theory of QSO was given
in the paper [3].

The classical Perron–Frobenius theorem states that a trajectory of a linear stochastic
operator associated with a positive square stochastic matrix always converges to a unique
fixed point. In general, an analogy of the Perron–Frobenius theorem does not hold for a
quadratic stochastic operator associated with a positive cubic stochastic matrix. Namely,
its trajectories may converge to different fixed points depending on initial points or may
not converge at all. Therefore, unlike linear stochastic operators, the structure of a set of
all fixed points of QSO might be as complex as possible (see [17, 18]). It is of independent
interest to consider the Perron–Frobenius problem in the nonlinear setting.

In the paper [12], the new class of the so-called p−majorizing QSO was introduced and
the regularity problem under some constraints was studied. In general, the p−majorizing
QSO may not be regular (see [19]). In this paper, we would like to provide a criterion
for the regularity of the p−majorizing QSO. The dynamics of any QSO on 1D simplex is
more or less clear (see [8]). However, there are many QSO on 2D simplex which remain
to be investigated (see [10]). Therefore, we study the dynamics of p−majorizing QSO
on 2D simplex. A more complete study on the dynamics of p−majorizing QSO on the
higher dimensional simplex will be explored in another paper.
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A vector majorization is a preorder of dispersion for vectors with the same length
and same sum of components. The vector majorization can be viewed as a preorder of
distance from a uniform vector. A preorder of distance from any fixed non-uniform vector
of positive components, so-called p−majorization, is a generalization of usual vector
majorization. Several equivalent definitions of p−majorization and related concepts are
discussed in the paper [6]. Let us provide some necessary notions and notations related
to p−majorization. Throughout this paper, we write vectors in the row forms.

Let p = (p1, p2, p3) ∈ R3. We write p ≥ 0 (resp. p > 0) whenever pi ≥ 0 (resp. pi > 0)

for all i = 1, 2, 3. Let ‖x‖1 =
3∑
i=1

|xi| for any x ∈ R3 and S2 =
{
x ∈ R3 : x ≥ 0, ‖x‖1 = 1

}
be a standard simplex. An element of the simplex S2 is called a stochastic vector. We
write P ≥ 0 (resp. P > 0) for a matrix P whenever pij ≥ 0 (resp. pij > 0) for all i, j.

Definition 1.1. Let x,y and p > 0 be stochastic vectors. We say that x is p−majorized
by y with respect to p (written x ≺p y) if one has

3∑
i=1

|xi − tpi| ≤
3∑
i=1

|yi − tpi|, ∀ t ∈ R.(1)

Note that if p = c = ( 1
3 ,

1
3 ,

1
3 ) then the p−majorization with respect to p is nothing

but usual majorization (see [6, 9]). In this case, we shall use usual notation ≺ for usual
majorization.

A matrix is said to be stochastic (resp. doubly stochastic) if its rows (resp. its rows
and columns) are stochastic vectors. We denote the set of all stochastic (resp. doubly
stochastic) matrices by SM (resp. DSM). Let us introduce the following set of stochastic
matrices for a positive stochastic vector p > 0

SM[p] = {P ∈ SM : pP = p}.(2)

The set SM[p] of all stochastic matrices having a common fixed distribution p > 0 is a
convex compact subset of the set of all stochastic matrices SM. It is worth mentioning
that if p = c = ( 1

3 ,
1
3 ,

1
3 ) then SM[c] is nothing but a set of all doubly stochastic matrices,

i.e., SM[c] = DSM. The following result was proven in [6, 9].

Theorem 1.1 ([6, 9]). The following statements are equivalent:

(i) One has x ≺p y;
(ii) There is a stochastic matrix P ∈ SM[p] such that x = yP;

(iii) One has
3∑
i=1

piϕ
(
xi

pi

)
≤

3∑
i=1

piϕ
(
yi
pi

)
for all convex continuous functions ϕ :

[0,+∞)→ R.

We shall interchangeably use (i) and (ii) throughout this paper.
Let us recall the notion of strong ergodicity of a sequence of stochastic matrices (see

[20]). Let {Pn}∞n=1 ⊂ SM be a sequence of stochastic matrices. Let P[r,s] ≡ PrPr+1 · · ·Ps
be a finite forward product and P[r,∞] ≡ PrPr+1 · · ·PnPn+1 · · · be an infinity forward
product of stochastic matrices. A sequence {Pn}∞n=1 of stochastic matrices is said to

be strongly ergodic if
(
P[r,s]

)
ij
→ p

[r]
j as s → ∞ for every i, j, r. A stochastic matrix

with identical rows is called stable. Thus, the sequence {Pn}∞n=1 of stochastic matrices is
strongly ergodic if and only if the infinity forward product P[r,∞] tends to a single stable
matrix.

A stochastic matrix P is called scrambling if for any i, j there is k such that pikpjk > 0.
In other words, a stochastic matrix P is scrambling if and only if any two rows are not
orthogonal. We denote the set of all scrambling stochastic matrices by SSM. The set of
all scrambling stochastic matrices SSM is convex.
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Let Ω({Pn}) =

{
P ∈ SM : lim

k→∞
Pnk

= P
}

be an omega limiting set of a sequence

{Pn}∞n=1 of stochastic matrices. We need the following result throughout this paper.

Theorem 1.2 ([7]). If Ω({Pn}) ⊂ SSM
⋂
SM[p] then a sequence {Pn}∞n=1 of matrices is

strongly ergodic.

2. p−Majorizing Quadratic Stochastic Operator

Let Q = (qijk)3i,j,k=1 be a cubic stochastic matrix, i.e.,

3∑
k=1

qijk = 1, qijk = qjik, qijk ≥ 0, 1 ≤ i, j, k ≤ 3.

We define a quadratic stochastic operator (in short QSO) Q : S2 → S2 associated with
a cubic stochastic matrix Q = (qijk)3i,j,k=1 as follows

(Q(x))k = x21q11k + x22q22k + x23q33k + 2x1x2q12k + 2x1x3q13k + 2x2x3q23k,(3)

for all 1 ≤ k ≤ 3. Here, we are using the same notation for the cubic stochastic matrix
as well as for the associated QSO in order to show some correlation.

We define the following stochastic vectors and square stochastic matrices associated
with the cubic stochastic matrix Q = (qijk)3i,j,k=1

qij• = (qij1, qij2, qij3), 1 ≤ i, j ≤ 3,(4)

Qi = (qijk)3j,k=1, 1 ≤ i ≤ 3,(5)

Qx = Q1x1 + Q2x2 + Q3x3, ∀ x ∈ S2.(6)

Remark 2.1. It is worth mentioning that Qei = Qi for any vertex ei = (δi1, δi2, δi3) of
the simplex S2 where δij is Kronecker’s symbol.

It is easy to check that the QSO has the following vector and matrix forms

Q(x) = x21q11• + x22q22• + x23q33• + 2x1x2q12• + 2x1x3q13• + 2x2x3q23•,

Q(x) = xQx = x1 · xQ1 + x2 · xQ2 + x3 · xQ3

where x ∈ S2 and Qx = Q1x1 + Q2x2 + Q3x3 is a square stochastic matrix.
Since qij• = qji• for all 1 ≤ i, j ≤ 3, we have the following relation

Qx = Q1x1 + Q2x2 + Q3x3 =

 xQ1

xQ2

xQ3

(7)

where xQ1,xQ2,xQ3 are respectively the first, the second, the third row vectors of Qx.

Definition 2.1. The QSO Q : S2 → S2 given by (3) is said to be p−majorizing with
respect to a stochastic vector p > 0 if one has Q1,Q2,Q3 ∈ SM[p], i.e., the square
stochastic matrices Q1,Q2,Q3 have a common fixed point p > 0.

Definition 2.2. The QSO Q : S2 → S2 given by (3) is said to be scrambling (resp.
positive) if one has Q1,Q2,Q3 ∈ SSM, (resp. Q1,Q2,Q3 > 0) i.e., the square stochastic
matrices Q1,Q2,Q3 are scrambling (resp. positive).

Remark 2.2. It is worth mentioning that the QSO Q : S2 → S2 given by (3) is c−majori-
zing with respect to c = ( 1

3 ,
1
3 ,

1
3 ) if and only if the square matrices Q1,Q2,Q3 are doubly

stochastic and Q1 + Q2 + Q3 = E where E = (1)3j,k=1 is a square matrix having entries

only 1. In this case, the QSO is called doubly stochastic (see [2, 4]). The dynamics of
such kind of operators were studied in the papers [5, 13, 14, 15, 16] and the results of
this paper generalize all results of the papers [5, 13, 14, 15, 16].
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3. Some Examples

In this section, we provide some examples for p−majorizing QSO on 2D simplex.

Example 3.1. Let p ∈ S2 and p > 0. Without loss of generality, we may assume that
0 < p3 ≤ p2 ≤ p1 < 1. Let s = p2 + p3 and t = p3

p2
. It is clear that 0 < s, t ≤ 1. Let us

define the following set

Sp =
{
x ∈ S2 : 0 < x3 < st, 0 ∨ (s− t) < x2 < s,

0 ∨ [p1(1 + t)− t] < x1 < 1 ∧ [p1(1 + t)]} ,

where a ∨ b = max{a, b} and a ∧ b = min{a, b}. The set Sp ⊂ S2 is nonempty.
For any vector q1 ∈ Sp, we define the following vectors

q3 =
p2 + p3
p3

p− p2
p3

q1, q2 = (1− p3
p2

)q1 +
p3
p2

q3.

It is easy to see that q3,q2 ∈ S2. By means of stochastic vectors q1,q2,q3,p, we
define the following square stochastic matrices

Q1 =

 p
p
p

 , Q2 =

 p
q2

q1

 , Q3 =

 p
q1

q3


where p is the first, the second, and the third row vectors of Q1 and so on. Due to the
construction of stochastic vectors q1,q2,q3, the square stochastic matrices Q1,Q2,Q3

have a common fixed point p, i.e, Q1,Q2,Q3 ∈ SM[p]. Consequently, by means of the
square stochastic matrices Q1,Q2,Q3, we define QSO Qq1,q2,q3 : S2 → S2 as follows

Qq1,q2,q3(x) = x21p + x22q2 + x23q3 + 2x1x2p + 2x1x3p + 2x2x3q1.

This operator is the p−majorizing QSO.

Example 3.2. Let p ∈ S2 and p > 0. Without loss of generality, we may assume that
0 < p3 ≤ p2 ≤ p1 < 1. Let e = e1 + e2 + e3 = (1, 1, 1). We first choose any stochastic
vector r3 ∈ S2. Since p3 ≤ p2 ≤ p1, we have that

0 ≤ p3(e− r3) = p3e− p3r3 ≤ p− p3r3 ≤ p < e.

Therefore, r = 1
1−p3 p − p3

1−p3 r3 ∈ S2 is a stochastic vector. We define the following

stochastic vectors and matrices

r1 =
p3
p1

r3 + (1− p3
p1

)r, r2 =
p3
p2

r3 + (1− p3
p2

)r,

Q1 =

 r1
r
r

 , Q2 =

 r
r2
r

 , Q3 =

 r
r
r3

 ,

where r1, r, and r are respectively the first, the second, the third row vectors of Q1 and
so on. Due to the construction of stochastic vectors r1, r2, r3, r, the square stochastic
matrices Q1,Q2,Q3 have a common fixed point p, i.e, Q1,Q2,Q3 ∈ SM[p]. Consequently,
by means of the square stochastic matrices Q1,Q2,Q3, we define an operator Qr1,r2,r3,r :
S2 → S2 as follows

Qr1,r2,r3,r(x) = x21r1 + x22r2 + x23r3 + 2(x1x2 + x1x3 + x2x3)r

This operator is the p−majorizing QSO.

These examples show that there are a plenty of p−majorizing QSO. The reader may
refer to the paper [19] for some other examples.
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4. Regularity of p−Majorizing Quadratic Stochastic Operators

Let Q = (qijk)3i,j,k=1 be a cubic stochastic matrix and

Qi = (qijk)3j,k=1, 1 ≤ i ≤ 3, Qx = Q1x1 + Q2x2 + Q3x3, ∀ x ∈ S2.

Proposition 4.1. The following statements hold true

(i) One has that Qλx+(1−λ)y = λQx + (1− λ)Qy for any λ ∈ [0, 1] and x,y ∈ S2;

(ii) One has that xQy = yQx for any x,y ∈ S2.

Proof. It is clear that

Qλx+(1−λ)y = Q1(λx1 + (1− λ)y1) + Q2(λx2 + (1− λ)y2) + Q3(λx3 + (1− λ)y3)

= λ (Q1x1 + Q2x2 + Q3x3) + (1− λ) (Q1y1 + Q2y2 + Q3y3)

= λQx + (1− λ)Qy.

Moreover, due to formula (7), we have that

xQy = x

 yQ1

yQ2

yQ3

 = x1 · yQ1 + x2 · yQ2 + x3 · yQ3

= y (Q1x1 + Q2x2 + Q3x3) = yQx

This completes the proof. �

LetQ : S2 → S2 be the QSO associated with a cubic stochastic matrixQ = (qijk)3i,j,k=1.

For any x(0) ∈ S2, we define the trajectory {x(n)} of the QSO starting from x(0) as follows

x(n) = Q(x(n−1)) = x(n−1)Qx(n−1) , ∀ n ∈ N.
Recall that a mapping ϕ : S2 → R is called a Lyapunov functional if

{
ϕ
(
x(n)

)}
is a

decreasing sequence for any x(0) ∈ S2. Let int S2 = {x ∈ S2 : x > 0} and ∂S2 = {x ∈
S2 : x1x2x3 = 0}.

Proposition 4.2. Let Q : S2 → S2 be the p−majorizing QSO with respect to a stochastic
vector p > 0. Then the following statements hold true.

(i) One has that Q(int S2) ⊂ int S2;
(ii) ϕp(x) = |x1 − p1|+ |x2 − p2|+ |x3 − p3| is a Lyapunov functional;

Proof. Let Q : S2 → S2 be the p−majorizing QSO with respect to a stochastic vector
p > 0. This means that Q1,Q2,Q3 ∈ SM[p].

(i) We then have

Qp = Q1p1 + Q2p2 + Q3p3 =

 pQ1

pQ2

pQ3

 =

 p
p
p

 > 0.

Since p > 0, we get that Q1 + Q2 + Q3 > 0. Moreover, we obtain that Qx > 0 for
any x > 0. This means that, for any x ∈ S2 with x > 0, the stochastic matrix Qx is
positive. Consequently, we have that Q(x) = xQx > 0 for any x > 0. This means that
Q(int S2) ⊂ int S2.

(ii) It is clear that

pQx = xQp = x

 p
p
p

 = p.

Therefore, the stochastic matrix Qx has a fixed point p, i.e., Qx ∈ SM[p] for any x ∈ S2.
Since x(n+1) = x(n)Qx(n) , due to Theorem 1.1, (i) and (ii), we get that

|x(n+1)
1 − tp1|+ |x(n+1)

2 − tp2|+ |x(n+1)
3 − tp3| ≤ |x(n)1 − tp1|+ |x(n)2 − tp2|+ |x(n)3 − tp3|
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for any t ∈ R. If we let t = 1 then we obtain that ϕp(x(n+1)) ≤ ϕp(x(n)) for any n ∈ N.
This means that ϕp(x) is the Lyapunov functional. This completes the proof. �

Let ei = (δi1, δi2, δi3) and e
(n+1)
i = e

(n)
i Q

e
(n)
i

, where δij is Kronecker’s delta symbol.

Theorem 4.1. Let Q : S2 → S2 be the p−majorizing QSO with respect to a stochastic
vector p > 0. Then the following conditions are mutually equivalent:

(i) One has e
(k)
1 , e

(k)
2 , e

(k)
3 ∈ int S2 for some k ∈ N;

(ii) One has Q(k)
(
S2
)
⊂ int S2 for some k ∈ N;

(iii) One has Q(k) (int S2) ⊂ int S2 for some k ∈ N;
(iv) The trajectory {x(n)} starting from any initial point x(0) ∈ S2 converges to the

unique fixed point p.

Proof. Let Q : S2 → S2 be the p−majorizing QSO with respect to a stochastic vector
p > 0. This means that Q1,Q2,Q3 ∈ SM[p]. We will prove the following implications
(i)⇒ (ii)⇔ (iii)⇒ (iv)⇒ (i).

(i) ⇒ (ii). Let e
(k)
1 , e

(k)
2 , e

(k)
3 ∈ int S2 for some k ∈ N, where e1, e2, e3 are vertices of

the simplex S2. Since Qλx+(1−λ)y = λQx + (1−λ)Qy for any λ ∈ [0, 1] and x,y ∈ S2, we
have

x(1) = x(0)Qx(0) = x
(0)
1 e1Qx(0) + x

(0)
2 e2Qx(0) + x

(0)
3 e3Qx(0)

=
(
x
(0)
1

)2
e1Qe1 + x

(0)
1 x

(0)
2 e1Qe2 + x

(0)
1 x

(0)
3 e1Qe3 + x

(0)
1 x

(0)
2 e2Qe1 +

(
x
(0)
2

)2
e2Qe2

+ x
(0)
2 x

(0)
3 e2Qe3

+ x
(0)
1 x

(0)
3 e3Qe1

+ x
(0)
2 x

(0)
3 e3Qe2

+
(
x
(0)
3

)2
e3Qe3

.

Let e
(00)
ij = eiQej for any i 6= j for which e

(00)
ij = e

(00)
ji for all i, j. We then obtain that

x(1) =
(
x
(0)
1

)2
e
(1)
1 +

(
x
(0)
2

)2
e
(1)
2 +

(
x
(0)
3

)2
e
(1)
3 + x

(0)
1 x

(0)
2 e

(00)
12 + x

(0)
1 x

(0)
2 e

(00)
21

+ x
(0)
1 x

(0)
3 e

(00)
13 + x

(0)
1 x

(0)
3 e

(00)
31 + x

(0)
2 x

(0)
3 e

(00)
23 + x

(0)
2 x

(0)
3 e

(00)
32 .

Similarly, we may get that

x(2) = x(1)Qx(1) =
(
x
(0)
1

)2
e
(1)
1 Qx(1) +

(
x
(0)
2

)2
e
(1)
2 Qx(1) +

(
x
(0)
3

)2
e
(1)
3 Qx(1) + · · ·

=
(
x
(0)
1

)4
e
(1)
1 Q

e
(1)
1

+
(
x
(0)
1

)2 (
x
(0)
2

)2
e
(1)
1 Q

e
(1)
2

+
(
x
(0)
1

)2 (
x
(0)
3

)2
e
(1)
1 Q

e
(1)
3

+ · · ·

+
(
x
(0)
1

)2 (
x
(0)
2

)2
e
(1)
2 Q

e
(1)
1

+
(
x
(0)
2

)4
e
(1)
2 Q

e
(1)
2

+
(
x
(0)
2

)2 (
x
(0)
3

)2
e
(1)
2 Q

e
(1)
3

+ · · ·

+
(
x
(0)
1

)2 (
x
(0)
3

)2
e
(1)
3 Q

e
(1)
1

+
(
x
(0)
2

)2 (
x
(0)
3

)2
e
(1)
3 Q

e
(1)
2

+
(
x
(0)
3

)4
e
(1)
3 Q

e
(1)
3

+ · · · .

Therefore, we have that

x(2) =
(
x
(0)
1

)4
e
(2)
1 +

(
x
(0)
2

)4
e
(2)
2 +

(
x
(0)
3

)4
e
(2)
3 + · · · .(8)

Analogously, we can show for any n ∈ N that

x(n) =
(
x
(0)
1

)2n
e
(n)
1 +

(
x
(0)
2

)2n
e
(n)
2 +

(
x
(0)
3

)2n
e
(n)
3 + · · · .(9)

Hence, due to the formula (9), if one has e
(k)
1 , e

(k)
2 , e

(k)
3 ∈ int S2 for some k ∈ N then

so does x(k) ∈ int S2 for any x(0) ∈ S2. This means that Q(k)
(
S2
)
⊂ int S2.
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(ii)⇔ (iii). Since int S2 ⊂ S2, Q is continuous and S2 is compact (so does Q(k)
(
S2
)
),

we get that

Q(k) (int S2) ⊂ Q(k) (S2) = Q(k)
(
S2
)

= Q(k)
(
int S2

)
⊂ Q(k) (int S2).

Therefore, one has Q(k)
(
S2
)
⊂ int S2 if and only if Q(k) (int S2) ⊂ int S2.

(iii) ⇒ (iv). Let Q(k) (int S2) ⊂ int S2 (or equivalently Q(k)
(
S2
)
⊂ int S2) for some

k ∈ N. Then one has Q(n)
(
S2
)
⊂ int S2 for any n ≥ k. On the other hand, we have the

following inclusion

· · · ⊂ Q(n)
(
S2
)
⊂ · · · ⊂ Q(3)

(
S2
)
⊂ Q(2)

(
S2
)
⊂ Q

(
S2
)
⊂ S2.

Hence, the nested closed (compact) sets

· · · ⊂ Q(k+2)
(
S2
)
⊂ Q(k+1)

(
S2
)
⊂ Q(k)

(
S2
)
⊂ int S2

are separated from the boundary ∂S2 of the simplex. Therefore, there exists α > 0 such

that x
(n)
1 , x

(n)
2 , x

(n)
3 > α for any n ≥ k. Consequently, we have ω

(
x(n)

)
⊂ int S2.

As we showed in the proof of Proposition 4.2, (i) that Qx > 0 for any x > 0. Particu-
larly, Qx∗ > 0 for any x∗ ∈ ω

(
x(n)

)
. Therefore, p is the unique fixed point of Qx for any

x ∈ S2. In its own turn, this means that p is also the unique fixed point of QSO in the in-
terior of the simplex. Thus, we have that Qx∗ ∈ SSM

⋂
SM[p] for any x∗ ∈ ω

(
x(n)

)
. On

the other hand, since Qx = Q1x1 + Q2x2 + Q3x3, we get that ω ({Qx(n)}) =
{
Qω(x(n))

}
.

Consequently, we obtain that ω ({Qx(n)}) ⊂ SSM
⋂

SM[p]. Due to Theorem 1.2, the
sequence {Qx(n)} is strongly ergodic. This means that the sequence

{
Q[0,n]

}
, where

Q[0,n] := Qx(0)Qx(1) · · ·Qx(n) converges to a stable matrix Q∗ with identical rows q.
On the other hand, we know that

x(n+1) = x(n)Qx(n) = x(0)Qx(0)Qx(1) · · ·Qx(n) = x(0)Q[0,n].

Therefore, x(n) converges to q which must be a fixed point. Since p is the unique fixed
point, we get that q = p. Thus, the trajectory {x(n)} starting from any point x(0) ∈ S2
converges to the unique fixed point p.

(iv)⇒ (i). Let the trajectory {x(n)} starting from any initial point x(0) ∈ S2 converge

to the unique fixed point p. If we choose x(0) = ei, where i = 1, 2, 3 then e
(n)
i converges

to p. Since p > 0, there is ki (depending on i) such that e
(ki)
i > 0. We know that

Q(int S2) ⊂ int S2. Therefore, e
(k)
i > 0 for all i = 1, 2, 3 where k = max{k1, k2, k3}, i.e.,

e
(k)
i ∈ int S2 for all i = 1, 2, 3. This completes the proof. �

Remark 4.1. Let L(x) = xP be a linear stochastic operator associated with a square
stochastic matrix P. We say that L is p−majorizing with respect to a stochastic vector
p > 0 if pP = p. The classical result in the Markov chain theory states that the trajectory
of the p−majorizing linear stochastic operator starting from any initial point converges

to the fixed point p > 0 if and only if there exists k ∈ N such that e
(k)
1 , e

(k)
2 , e

(k)
3 ∈ int S2.

Theorem 4.1 is a generalization of this result in the nonlinear setting.

Corollary 4.1 ([12]). Let Q : S2 → S2 be a scrambling (positive) p−majorizing QSO
with respect to a stochastic vector p > 0. Then its trajectory {x(n)} starting from any
initial point x(0) ∈ S2 converges to the unique fixed point p.
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