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P—MAJORIZING QUADRATIC STOCHASTIC OPERATORS

In this paper, we introduce a new class of the so-called p—majorizing quadratic
stochastic operators which is the generalization of the class of quadratic doubly sto-
chastic operators. We provide a criterion for the regularity of p—majorizing quadratic
stochastic operators acting on 2D simplex. Some relevant examples are also provided.

1. INTRODUCTION

The dynamics of nonlinear stochastic operators acting on the finite dimensional sim-
plex remains to be difficult and complex. The main problem is to study the asymptotic
behavior of nonlinear stochastic operators associated with stochastic hyper-matrices. The
simplest nonlinear stochastic operator is a quadratic stochastic operator (in short QSO)
associated with a cubic stochastic matrix. The dynamics of QSO is sufficiently rich and
quite complicated (see [3, 10, 11]). The QSO has an incredible application in popula-
tion genetics (see [8]). Namely, it describes a distribution of the next generation in the
population system if the distribution of the current generation was given. The QSO is a
primary source for investigations of evolution of population genetics. In the paper [1], a
mathematical model of a transmission of human ABO blood groups was described as the
QSO on 7-dimensional simplex and based on some numerical investigations, the future
ABO blood group distribution of Malaysian people was predicted. A self-contained ex-
position of the recent achievements and open problems in the theory of QSO was given
in the paper [3].

The classical Perron—Frobenius theorem states that a trajectory of a linear stochastic
operator associated with a positive square stochastic matrix always converges to a unique
fixed point. In general, an analogy of the Perron-Frobenius theorem does not hold for a
quadratic stochastic operator associated with a positive cubic stochastic matrix. Namely,
its trajectories may converge to different fixed points depending on initial points or may
not converge at all. Therefore, unlike linear stochastic operators, the structure of a set of
all fixed points of QSO might be as complex as possible (see [17, 18]). It is of independent
interest to consider the Perron—Frobenius problem in the nonlinear setting.

In the paper [12], the new class of the so-called p—majorizing QSO was introduced and
the regularity problem under some constraints was studied. In general, the p—majorizing
QSO may not be regular (see [19]). In this paper, we would like to provide a criterion
for the regularity of the p—majorizing QSO. The dynamics of any QSO on 1D simplex is
more or less clear (see [8]). However, there are many QSO on 2D simplex which remain
to be investigated (see [10]). Therefore, we study the dynamics of p—majorizing QSO
on 2D simplex. A more complete study on the dynamics of p—majorizing QSO on the
higher dimensional simplex will be explored in another paper.
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A vector majorization is a preorder of dispersion for vectors with the same length
and same sum of components. The vector majorization can be viewed as a preorder of
distance from a uniform vector. A preorder of distance from any fixed non-uniform vector
of positive components, so-called p—majorization, is a generalization of usual vector
majorization. Several equivalent definitions of p—majorization and related concepts are
discussed in the paper [6]. Let us provide some necessary notions and notations related
to p—majorization. Throughout this paper, we write vectors in the row forms.

Let p = (p1, p2, p3) € R®. We write p > 0 (resp. p > 0) whenever p; > 0 (resp. p; > 0)

3
foralli =1,2,3. Let [|x|; = 3 |z;[ forany x € R¥and §? = {x e R® : x > 0, [|x[[y = 1}
i=1
be a standard simplex. An element of the simplex S? is called a stochastic vector. We
write P > 0 (resp. P > 0) for a matrix P whenever p;; > 0 (resp. p;; > 0) for all 4, j.

Definition 1.1. Let x,y and p > 0 be stochastic vectors. We say that x is p—majorized
by y with respect to p (written x <p y) if one has

3 3
1) Z|wi—tpi|§2|yi—tpi|, VteR.
=1 i=1

majorization.

A matrix is said to be stochastic (resp. doubly stochastic) if its rows (resp. its rows
and columns) are stochastic vectors. We denote the set of all stochastic (resp. doubly
stochastic) matrices by SM (resp. DSM). Let us introduce the following set of stochastic
matrices for a positive stochastic vector p > 0

(2) SM[p] = {P € SM : pP = p}.

The set SM[p] of all stochastic matrices having a common fixed distribution p > 0 is a
convex compact subset of the set of all stochastic matrices SM. It is worth mentioning
thatifp=c= (%, %, %) then SM[c] is nothing but a set of all doubly stochastic matrices,
i.e., SM[c] = DSM. The following result was proven in [6, 9].

Theorem 1.1 ([6, 9]). The following statements are equivalent:

(1) One has x <p y;
(#3) There is a stochastic matriz P € SM[p] such that x = yP;

3 3
(73i) Ome has Y pip (f}—) < > pip (%) for all convex continuous functions ¢ :
i=1 ' i=1 ’
[0, 4+00) — R.

We shall interchangeably use (i) and (i¢) throughout this paper.

Let us recall the notion of strong ergodicity of a sequence of stochastic matrices (see
[20]). Let {P,}22, C SM be a sequence of stochastic matrices. Let Pl = PP, --- P,
be a finite forward product and P>l = P.P.y1---P,Ppy1--- be an infinity forward
product of stochastic matrices. A sequence {P,}52; of stochastic matrices is said to
be strongly ergodic if (]P’["’s])ij — pg-r] as § — oo for every i,j,r. A stochastic matrix
with identical rows is called stable. Thus, the sequence {P,,}72; of stochastic matrices is
strongly ergodic if and only if the infinity forward product P> tends to a single stable
matrix.

A stochastic matrix P is called scrambling if for any i, j there is k such that p;rp;r > 0.
In other words, a stochastic matrix PP is scrambling if and only if any two rows are not
orthogonal. We denote the set of all scrambling stochastic matrices by SSM. The set of
all scrambling stochastic matrices SSM is convex.
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Let Q({P,}) = {IP’ € SM: klim P,, = ]P’} be an omega limiting set of a sequence
—00
{P,}52; of stochastic matrices. We need the following result throughout this paper.

Theorem 1.2 ([7]). If Q({P,}) C SSM(SM[p] then a sequence {P,,}22, of matrices is
strongly ergodic.

2. p—MAJORIZING QUADRATIC STOCHASTIC OPERATOR

Let Q@ = (gijk)}j =1 De a cubic stochastic matrix, i.e.,

3
S ik =1 Gk =Gies  qigr =0, 1<4,5 k<3,
k=1
We define a quadratic stochastic operator (in short QSO) Q : S? — S? associated with
a cubic stochastic matrix Q = (qijk)§,j7k:1 as follows

(3) (Qx)), = Tiquik + T3qook + T3q33k + 221 22q10k + 22123q13k + 2T0T3G23k

for all 1 < k < 3. Here, we are using the same notation for the cubic stochastic matrix
as well as for the associated QSO in order to show some correlation.

We define the following stochastic vectors and square stochastic matrices associated
with the cubic stochastic matrix Q = (qz'jk)ij,k:l

(4) Qije = (@ij1,%j2,j3)s 1<4,5 <3,
(5) Qi = (gir)]pe1s 1<i<3,
(6) Qx = Qiz1 + Qoxy + Qsu3, vV xeS?.

Remark 2.1. Tt is worth mentioning that Qe, = Q; for any vertex e; = (d;1, d;2,9;3) of
the simplex S? where §;; is Kronecker’s symbol.

It is easy to check that the QSO has the following vector and matrix forms

Qx) = fU%Qu- + 1’5%2. + $§Q33. + 27172q12¢ + 27173136 + 27273023,
Q(x) = xQx =1 -xQ1 + 2 -xQs + 23 - xQ3

where x € S? and Qx = Q121 + Q229 + Q323 is a square stochastic matrix.
Since q;je = qjie for all 1 < 4,7 < 3, we have the following relation

xQ
(7) Qx = Quz1 + Qaz2 + Q323 = xQ2
xQs3

where xQ1,xQq, xQ3 are respectively the first, the second, the third row vectors of Qx.

Definition 2.1. The QSO Q : S? — S? given by (3) is said to be p—majorizing with
respect to a stochastic vector p > 0 if one has Q,Q2,Q3 € SM[p], i.e., the square
stochastic matrices Q1, Q2, Q3 have a common fixed point p > 0.

Definition 2.2. The QSO Q : S? — S? given by (3) is said to be scrambling (resp.
positive) if one has Q1, Q2, Q3 € SSM, (resp. Q1,Q2,Q3 > 0) i.e., the square stochastic
matrices Q1,Qq, Q3 are scrambling (resp. positive).

Remark 2.2. Tt is worth mentioning that the QSO Q : §? — S? given by (3) is c—majori-

zing with respect to ¢ = (%, %, %) if and only if the square matrices Q, Q2, Q3 are doubly

stochastic and Qq + Qg + Q3 = E where E = (1)?,1@:1 is a square matrix having entries
only 1. In this case, the QSO is called doubly stochastic (see [2, 4]). The dynamics of
such kind of operators were studied in the papers [5, 13, 14, 15, 16] and the results of

this paper generalize all results of the papers [5, 13, 14, 15, 16].
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3. SOME EXAMPLES
In this section, we provide some examples for p—majorizing QSO on 2D simplex.

Example 3.1. Let p € S? and p > 0. Without loss of generality, we may assume that
0<ps <py<p; <1. Let s=py+p3 andt:g—z. It is clear that 0 < s,t < 1. Let us
define the following set

Sp:{x€S2: O0<zz<st, OV(s—t)<zg<s,
OVpr(1+t) —t] <z <1A[p1(1+1)]},

where a V b = max{a,b} and a A b = min{a, b}. The set Sp C S? is nonempty.
For any vector q; € Sp, we define the following vectors

D2 + 3 D2 D3 D3
q3=——"Pp— —qi, a@=(1-")a+—aqs
b3 p3 b2 D2
It is easy to see that qs,qs € S?. By means of stochastic vectors qi,qz,qs,p, we

define the following square stochastic matrices

p p p
Q=1p |, Q= a2 |, Q3= | a1
P q1 a3

where p is the first, the second, and the third row vectors of Q; and so on. Due to the

construction of stochastic vectors qi,qsz,qs, the square stochastic matrices Q1,Qs, Q3

have a common fixed point p, i.e, Q1,Q2,Q3 € SM[p]. Consequently, by means of the

square stochastic matrices Q1, Q2, Q3, we define QSO Qq; qs.qs : S* — S? as follows
Qau.qz,qs (X) = 21P + 23q2 + 23q3 + 221 29P + 221 73P + 27273,

This operator is the p—majorizing QSO.

Example 3.2. Let p € S? and p > 0. Without loss of generality, we may assume that

0<p3s<py<p; <1l Lete=e +es+e3=(11,1). We first choose any stochastic
vector r3 € S?. Since ps < pa < p1, we have that

0<ps(e—r3) =pse—psr3 <p—psrg<p<e.

Therefore, r = 1_1p3p — %I‘g € S? is a stochastic vector. We define the following
stochastic vectors and matrices
r; = Zﬁ1‘3+(17‘@)r, ro = p—3r3+(17p—3)r,
P Y41 P2 P2
ry r r
Q= r |, Q= | r2 |, Q= r |,
r r rs

where ry,r, and r are respectively the first, the second, the third row vectors of Q; and
so on. Due to the construction of stochastic vectors ry,rs,r3,r, the square stochastic
matrices Q1, Q2, Q3 have a common fixed point p, i.e, Q1, Q2, Q3 € SM[p]. Consequently,
by means of the square stochastic matrices Q1, Q2, Q3, we define an operator Oy, ry.ro,r :
S? — S? as follows

er,rQ,r3,r(X) = CL’%I‘l + xgrQ + 1’%1'3 -+ 2(1’1.’E2 + 123 + l’Q.’Eg)I‘
This operator is the p—majorizing QSO.

These examples show that there are a plenty of p—majorizing QSO. The reader may
refer to the paper [19] for some other examples.
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4. REGULARITY OF p—MAJORIZING QUADRATIC STOCHASTIC OPERATORS
Let Q = (qijk)?j x—1 be a cubic stochastic matrix and

Qi = (gi8)5=1, 1 <03, Qx = Qi1 + Qoz2 + Qaz3, Vx €S
Proposition 4.1. The following statements hold true

(i) One has that Qaxr1—n)y = AQx + (1 = A)Qy for any A € [0,1] and x,y € S?;
(ii) One has that xQy = yQx for any x,y € S.

Proof. 1t is clear that

Quxt1-ny = Qx4+ (1= Ny1) +Qa(Az2 + (1 = N)y2) + Qz(Azs + (1 — N)ys)
A(Qury + Qaze + Qa3) + (1 — A) (Quyr + Qay2 + Q3ys3)
AQx + (1= A)Qy.

Moreover, due to formula (7), we have that

yQ1
xQy=x| yQ2 | =21 yQi + 22 -yQ2 + 73 -yQ3
yQs3
=y (Quz1 + Qoxa + Qsz3) = yQx
This completes the proof. O

Let Q : S? — S? be the QSO associated with a cubic stochastic matrix Q = (qﬁk)ij,k:l'
For any x(9) € S2, we define the trajectory {x(™} of the QSO starting from x(*) as follows
X(n) — Q(X(n_l)) = )((n_l)(@x(n,l)7 V n e N
Recall that a mapping ¢ : S — R is called a Lyapunov functional if {90 (x("))} is a
decreasing sequence for any x(©) € S2. Let intS? = {x € S*: x > 0} and 9S* = {x €

Sz L X1X2T3 = 0}
Proposition 4.2. Let Q : S — S? be the p—majorizing QSO with respect to a stochastic
vector p > 0. Then the following statements hold true.
(i) One has that Q(intS?) C int S?;
(1) @p(x) = |z1 —p1] + |22 — p2| + |23 — p3| is a Lyapunov functional;
Proof. Let Q : S2 — S? be the p—majorizing QSO with respect to a stochastic vector

p > 0. This means that Qq,Q2, Q3 € SM[p].
(1) We then have

pPQ1 p
Qp =Qup1 +Qop2 +Q3p3=| pQ2 | =| p | >0.
pQs p

Since p > 0, we get that Q; + Q2 + Q3 > 0. Moreover, we obtain that Q, > 0 for
any x > 0. This means that, for any x € S? with x > 0, the stochastic matrix Qx is
positive. Consequently, we have that Q(x) = xQx > 0 for any x > 0. This means that
Q(int S?) C int S2.

(73) Tt is clear that

P
pr:XQp:X p = Pp-
| &

Therefore, the stochastic matrix Qx has a fixed point p, i.e., Qx € SM[p] for any x € S2.
Since x(" Y = x("Q, (n), due to Theorem 1.1, (i) and (ii), we get that

Y —tpy |+ ST —tpo] + 2T — tpa] < |2 — tp1 |+ 28 — tpo] + [ — tps
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for any ¢t € R. If we let ¢ = 1 then we obtain that ¢, (x("+1)) < ¢, (x(™) for any n € N.
This means that ¢p(x) is the Lyapunov functional. This completes the proof. O

Let e; = (81, di2,0i3) and egnﬂ) = egn)(@egn), where ¢;; is Kronecker’s delta symbol.

Theorem 4.1. Let Q : S? — S? be the p—majorizing QSO with respect to a stochastic
vector p > 0. Then the following conditions are mutually equivalent:
(k) (k) _(K)

(i) One has e’ ey’ ey’ € intS? for some k € N;
(#3) One has Q(k) (S?) c intS? for some k € N;
(iii) One has Q) (intS2?) C intS? for some k € N;
(iv) The trajectory {x™} starting from any initial point x(0) € S? converges to the

unique fized point p.

Proof. Let Q : S2 — S? be the p—majorizing QSO with respect to a stochastic vector
p > 0. This means that Q1,Q2, Q3 € SM[p]. We will prove the following implications
(1) = (i) & (1) = () = (i).

(i) = (ii). Let e(lk),eék), eg ) € intS? for some k € N, where eq, e3, e3 are vertices of
the simplex S2. Since Qs+ (1-2)y = AQx + (1 =A)Qy for any A € [0,1] and x,y € S?, we
have

xV = xOQ, 0 = 3350)01@,((0) + ng)EQ(@x(o) + 7/'5(),0)93(@;((0)
= (xgo)) €1Qe, +x(0) (O)el(@e2 Jrz(o) (o)elQed +:c(0) (O)eg(@e1 + <z2 ) €2Qe,
a0 20es0e, + 200esQe, + 2050, + (o) 050

(00) — (OO) for all ¢, j. We then obtain that

2
CH (zgtn) eV (x(20>) <1>+( (0>> el 4+ (V000 4 1(0)(0(00)

2050600 | 40,0 00) | (0),0) (00) | (0),(0)(00)

Let eE = €;Qe, for any i # j for which e;;

Similarly, we may get that
X2 = x(MQ_,) = <x§°>)2e§1>@x(1> +( <o>) eDQ. ) + (x§,°))2e§,1>@x(1> 4o
_ (ﬂcgo))4e§1)(@egl> n <$50)> (xgo)) egl)@e;” i (xgo)>2<x§o))2e§1)(@egl) ...
) () e () W () () g

2 2 2 2 4
" (xgo)) (wéo)) eggl)(@egm I <x50)> (xéo)) egl)@eg) I ($:(30)) 93 Qeg” NI

Therefore, we have that

4 4 4
(8) <2 — (xgo)) 9(12) T (xgo)> e(22) i (m§0)> eéz) +
Analogously, we can show for any n € N that
0 n 0 n 0 n
(9) x(M = (xg )) eg ) + (xé )) eg ) (:c:(), )) e:(), ) + .-

Hence, due to the formula (9), if one has eg ), eék), e:(,,k) € intS? for some k € N then
so does x%) € int S? for any x(?) € S2. This means that Q%) (SQ) C int S2.
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(i1) < (iii). Since int S* C S, Q is continuous and S? is compact (so does Q) (s?)),
we get that

Q%) (int S2) ¢ QW (§2) = Q) (%) = Q) (mt 82) C O (intS?).

Therefore, one has Q) (S?) C intS? if and only if Q%) (int S?) C int S2.

(i1i) = (iv). Let Q) (intS?) C intS? (or equivalently Q%) (S?) C intS?) for some
k € N. Then one has Q™ (SQ) C intS? for any n > k. On the other hand, we have the
following inclusion

.c o (SQ) c...cQ® (§2> co® (SQ) cQ (82) cS2.
Hence, the nested closed (compact) sets
e C Q(k+2) (SQ) c Q(k+1) (SQ) c Q(k) (82) c intSQ

are separated from the boundary 0S? of the simplex. Therefore, there exists a > 0 such
that ac(ln)7 xé"), :an) > « for any n > k. Consequently, we have w (X(”)) C intS2.

As we showed in the proof of Proposition 4.2, (i) that Qx > 0 for any x > 0. Particu-
larly, Qx+ > 0 for any x* € w (x(”)). Therefore, p is the unique fixed point of Qy for any
x € S2. In its own turn, this means that p is also the unique fixed point of QSO in the in-
terior of the simplex. Thus, we have that Qx- € SSM[SM[p] for any x* € w (x(")). On
the other hand, since Qx = Q1 + Q222 + Q3x3, we get that w ({Qym }) = {Qw(xm)}.
Consequently, we obtain that w ({Qxm }) € SSM(SM[p]. Due to Theorem 1.2, the
sequence {Q,m } is strongly ergodic. This means that the sequence {Q[O’”]}, where
QM := Q0 Q) - - Quny converges to a stable matrix Q* with identical rows q.

On the other hand, we know that

X(n+1) = X(H)Qx(") = X(O)Qx(o) Qx(l) e @x(”) = X(O)Q[Qn]'

Therefore, x(™ converges to q which must be a fixed point. Since p is the unique fixed
point, we get that q = p. Thus, the trajectory {X(”)} starting from any point x(© € S?
converges to the unique fixed point p.

(iv) = (i). Let the trajectory {x(™} starting from any initial point x(?) € S? converge
(n)
K3
to p. Since p > 0, there is k; (depending on ) such that ez(-ki) > 0. We know that
Q(int S?) C int S?. Therefore, egk) > 0 for all ¢ = 1,2,3 where k = max{ky, ko, k3}, i.e.,

el(-k) € intS? for all i = 1,2,3. This completes the proof. O

to the unique fixed point p. If we choose x(©) = e;, where i = 1,2,3 then e}’ converges

Remark 4.1. Let L(x) = xP be a linear stochastic operator associated with a square
stochastic matrix P. We say that £ is p—majorizing with respect to a stochastic vector
p > 0if pP = p. The classical result in the Markov chain theory states that the trajectory
of the p—majorizing linear stochastic operator starting from any initial point converges
to the fixed point p > 0 if and only if there exists k € N such that egk), eék), eék) € int S2.
Theorem 4.1 is a generalization of this result in the nonlinear setting.

Corollary 4.1 ([12]). Let Q : S?* — S? be a scrambling (positive) p—magjorizing QSO
with respect to a stochastic vector p > 0. Then its trajectory {x™} starting from any
initial point x©) € S? converges to the unique fized point p.
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