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A. O. PASHKO AND O. I. VASYLYK

SIMULATION OF FRACTIONAL BROWNIAN MOTION BASING ON
ITS SPECTRAL REPRESENTATION

We construct the model of a fractional Brownian motion (fBm) with parameter o €
(0,2), which approximates such process with given reliability 1 — 4, 0 < § < 1, and
accuracy € > 0 in the space C([0,T]) basing on a spectral representation of the fBm.

1. INTRODUCTION

Simulation of stochastic processes and fields is widely used in many areas of natural
and social sciences. There exists a vast literature on the subject, in particular [8,9,11,15,
17,19]. And, naturally, a fractional Brownian motion (fBm) is of special interest because
of its applications in physics and financial mathematics. One can find good study of
simulation methods for fractional Brownian motion in [1] and [3].

A fractional Brownian motion can be represented in various forms. In the papers [4]
and [5] one can find series representations, which can be used for simulation. In particular,
series representations of the fBm are used in [6,7,10,13,14,16-19]. In some of these papers
there were considered problems of reliability and accuracy of simulation in different
functional spaces [6,7,13,14].

Sometimes, it is more convenient and efficient from the implementation point of view to
use models of fractional Brownian motion, which are based on its spectral representation,
as in [2,12,20,22].

In [12], we presented a method for simulation of fractional Brownian motion with given
reliability and accuracy in the space C([0,7]), which was based on a spectral represen-
tation of the fBm. Now we continue this study and, in this paper, we construct a model
of a fractional Brownian motion with parameter a € (0,2), which approximates such
process with given reliability 1 — 4, 0 < 6 < 1, and accuracy € > 0 in the space C([0,T])
in the case of uniform partition of the simulation interval [0, A]. In Section 2, we define
the model basing on the spectral representation of the fBm. Section 3 contains neces-
sary preliminary results, the main theorem with conditions for simulation of a fractional
Brownian motion in the space C([0,T1]), and the corollary for the space C([0,1]). In the
last section of the paper we show an example of simulation in the space C([0,1]) in the
case of uniform partition of the simulation interval [0, A] for some values of the process
parameter «.

2. A MODEL OF FRACTIONAL BROWNIAN MOTION

Let (2, %, P) be a standard probability space and T be a parametric space (T' = [0, T]
or T = [0, ]).

Definition 2.1. A random process {W,(t),t € T} is called fractional Brownian motion
with parameter o € (0,2), if it is a Gaussian process with zero mean EW,, () = 0 and
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correlation function

R(t,s) = S (It|" +|s|* — [t — 5|*),

N | =

such that W,(0) = 0.

A fractional Brownian motion with parameter a € (0,2) can be represented in the
form of the following stochastic integral [21]:

walt) = ([T e - [T aw). ee o

where £(A),n()) are independent real valued standard Wiener processes with

EE(N) = En(\) =0, E(d(N) = E(dn(\)* = da,

R

Let us take an interval [0, A], A > 0, and represent the process W, = {W,(¢),t €
[0,77} in the form

Wa(t) = Wal(t, [0, €]) + Wal(t, [e, A]) + Wa(t, [A, o0]),

where 0 < € < A and

Wt o) = ([0 gy — [0 4y ).

Let 0 = Ao < A1 < ... < Ay = A be a partition of the interval [0, A], such that A\ =e.

Definition 2.2. We shall define a model of the process W, in the following way:

M-1
A cos(Ait) — 1
Su(t,A) = — T (M) — EO))—
) = 7 (X ) — €0
M—1
sin(\;t
-3 0w - ) ) -
=1 )‘1 2
A (Ml cos(\t) — 1 = sin(\it) )
= 7= ain_ « }/2 ) te[O7T]7
where {X;,Y;},i=1,2,..., M — 1, are independent Gaussian random variables with

EX;=EY; =0, FEX?=EY?= X1\

Definition 2.3. The model Sy = {Sn (¢, A),t € [0,T]} approximates the process W, =
{W,(t),t € [0,T]} with a given reliability 1 — 4§, 0 < § < 1, and accuracy € > 0 in the
space C([0,T)) if

P{ sup |Wu(t) — Sm(t,A)| > 5} <.

te[0,T)
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3. SIMULATION OF THE FBM IN THE SPACE C([0,T]) IN THE CASE OF UNIFORM
PARTITION OF THE INTERVAL [0, A]

In order to get our main results, we shall use the following theorem, which gives us
conditions for simulation of the fBm with given reliability and accuracy in the space
C([0,T]). This theorem was proved in the paper [12] (Theorem 3.1).

Theorem 3.1. The model Sy; approximates the process W, with a given reliability 1—46,
0 <6 <1, and accuracy € > 0 in the space C([0,T]) if

1) res
Byo er”
9 — <
(2) K = 2v(exp{1/2} — 1)’
=202\ (-t (K\E Y
€= Y H
3 2exp 4 — — ) +1] <4,
3) o{ -S| (2%(1 25 () )
where numbers b and v are such that 0 < b <v < 2, B =min{yy, £},
A TQ/\Z—a 2
= sup (E(Xn(t,A)%)2 = = 52
Yo teb[l(l)%]( (Xn(t,A))7) VT\ 2—a +01A0‘+
472 a+ 1)) X2 (e = A)*\ 2
@ +3<”(2)>2X*“> |
i=1 i
K - AVB[TEre 2,
ﬁ 9 _ o (Oé _ QV)A(X—QV
g Mol
5) 4+ 94—2pp2(u—v) <2M — Z (Nig1 — )\i)miiour
i=1
1
N CESAN SR Al
B L gy\3-(2u—a) ’
=1 i

a a+1
. -1
ALG(Q, 5 )0(0, ],

MeNand 0= X <A <...< Ay = A is a partition of the interval [0, A].

In the next theorem we present conditions for simulation of the fBm in the case of
uniform partition of the interval [0, A].

Theorem 3.2. Let \g = 0, \; = %, i =1,...,M. In this case, the model Spr(t,\)
approzimates the process Wy in the space C([0,T)) with a given accuracy € > 0 and
reliability 1 — 4§, 0 < 6 < 1, if

(6) Yo <€

B0 < eT”

@ K = 2 (exp{l/2) — 1)’

2
b
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. x* K*
where numbers b and v are such that 0 <b <v < §, = min{1g, 5},

f— i T72 A 270‘4» 2 +
oo = m\2—a\ M aAe
AT? 1 a+1\%) /AT V?
9 —|1+=) (1 —_— —
® e () G )
AV3 | T2-2v /A% 92—2v
K* i — | = T h oo T
VT | 2—a \ M (a — 2v)Ao—2v
AN (4(M = 1)
10 24—2;LT2(M—I/) o a4 = 1)
(10) + M 2u — « +
1
2 3
1 1 1
o (e 14 :
3 2 2—(2u—a)
a a+1
—— ) N(0;1
p (2, 5 ) (0; 1]
Proof. In the case of uniform partition of the interval [0, A], that is, if A\; = 3\1/}, 1=
0, M, and, hence, A A = X411 — \; = %,izO,...7M—1,We can estimate the constants

70 and K in the assertion of the Theorem 3.1 in the following way.

A (TN 2
Yo = +

i\ 2—a al®

NG
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3 — )\a—i-l
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Let us estimate the sum Y. -z in the expression above:
4 K2
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—_




SIMULATION OF FRACTIONAL BROWNIAN MOTION

Thus, for the v9 we get the following estimate:

o AT (AN 2
o= E\e e\ ahe

CE( ) ) )

Now we shall consider the constant K:

K A\/g T272u>\?—a 227211 N
VS 2—« (a0 — 2v)Ao—2v
4 Mo
+ 2t 2mp2n—v) <2M — Z (Nig1 — Ng)2H g
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=R IC M
B AV3 | T2 A 2-a N 92-2v N
T | 2—a \M (a0 — 2v)Ao—2v
_ o (A =1) (AN
94—2u2(p—v) il
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For the sum 231 M%a) we get the next estimate:
i=

M-1 M-—1 M-1 *}
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1 1 1
Z 33— (2p—a) =1+ « 33— (2p—a) <1+ Z / ud—2u—a) du =

=1 i= v

=2 i

1 1 1
- - -1 — — <
b / EETETR 2(2u0é)<(M—1)2(2“”‘) 1)‘1+
1



Thus, for the K we have:
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Now, if for the obtained constants 75 and K* the conditions (6)—(8) of Theorem 3.2
hold, then the conditions (1)—(3) of Theorem 3.1 hold correspondingly, and the model
S (t,A) approximates the process W, in the space C([0,T]) with a given accuracy € > 0
and reliability 1 — 4§, 0 < 6§ < 1. O

K

+

Corollary 3.1. In case of T =1 from Theorem 3.2 follows, that the model Sy; approx-
imates the process Wy, in the space C([0,1]) with a given accuracy € > 0 and reliability
1-6,0<d<1,if

(11) Y <e,
B £
12 o ,
(12) ke = (ep{1/2) — 1)
b 2
Sy (LS SN E

13 2exp{— = = Y +1] <o,
19) 2607 S\ 23— by \ 55
where numbers b and v are such that 0 <b <v < §, f = min{4g, [2{—:},

V— i 1 A e + 2 +

Yo = Vr\2—a \ M al

4 1 a+1\%\ /A2

(4 y 3<”a><“( 2 ))(W )

g AV 1 (A 2 Lo

VT |2—a\M (o — 2v)A—2v
AN (4(M - 1)
1 24=2m (= - =
(%) i <M> < di—a
1
L Lo+ 2 - 1 ’
3 2 2 —(2u— a) ’

a a+1
- — 1.
MG(Q, 5 )0(0, ]

In order to get better results, it is necessary to optimize model parameters. In the
next corollary, we intend to reach the minimal value of 4;.

Corollary 3.2. It is easy to see that 4§ will be minimal, if

2—«

A =M=,
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where

Co= (:m Py 1>2>)1/2 - (1+<2—2a>3m>)/

wa-3(1) (5

In this case we get that

o A% D(a)
(70)2 - ?Mo‘(z;a) )
where ,
2—-% _ 1/2
D(a) = 2 (1+(2—a)B(a)) ’
a2 —a)
and
f(* _ A\/g (Ca)Qfa 227211M(27a)1/
T | 2—-a (Ca)o=2 (o — 2v)
1/2
+ (Ca)2u7a2472,uGA4(a)Ma(lf,u)} ;
where

auio = | G5 () (=g

4. NUMERICAL RESULTS

Basing on the results of the Corollary 3.2, we have estimated parameters A and M in
the case of uniform partition of the interval [0, A], reliability 1—§ = 0.95, accuracy € = 0.1
and technical model parameters v = 0.499a, b = 0.8v. Some of the results obtained are
presented in Table 1. For comparison, in Table 2 we show numerical values of the model
parameters calculated basing on our results published in paper [12]. The trajectories of
models of the fBm for some values of the parameter a are shown on Figures 1—4.

TABLE 1. Model pa- TABLE 2. Model pa-
rameters for some val- rameters basing on the
ues of « results of paper [12]
Q A M Q A M
1.0 | 25130 | 2 x 10° 1.0 | 25000 | 3.3 x 10°
1.1 | 8988 | 2 x 10° 1.1 | 23500 | 5.4 x 10°
1.3 | 1960 | 9 x 10° 1.3 | 2100 | 3.3 x 10'°
1.5 | 703 |9x 10 1.5 | 595 | 7.0 x 102
CONCLUSIONS

We have presented a model of a fractional Brownian motion with parameter « € (0, 2),
which approximates such process with given reliability 1 — 4, 0 < § < 1, and accuracy
e > 0 in the space C([0,T]). The model is based on a spectral representation of the fBm.
In the case of uniform partition of the simulation interval [0, A], the results obtained
are better and more convenient for practical use, than in our previous paper on this
subject [12].



80

10.

11.

12.

13.

14.

A. O. PASHKO AND O. I. VASYLYK

0986

FIGURE 1. Models for FIGURE 2. Models for
fBm with o = 0.6 fBm with o = 0.8

FIGURE 3. Models for FIGURE 4. Models for
fBm with o = 1.1 fBm with o = 1.3
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