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A. O. PASHKO AND O. I. VASYLYK

SIMULATION OF FRACTIONAL BROWNIAN MOTION BASING ON

ITS SPECTRAL REPRESENTATION

We construct the model of a fractional Brownian motion (fBm) with parameter α ∈
(0, 2), which approximates such process with given reliability 1 − δ, 0 < δ < 1, and

accuracy ε > 0 in the space C([0, T ]) basing on a spectral representation of the fBm.

1. Introduction

Simulation of stochastic processes and fields is widely used in many areas of natural
and social sciences. There exists a vast literature on the subject, in particular [8,9,11,15,
17,19]. And, naturally, a fractional Brownian motion (fBm) is of special interest because
of its applications in physics and financial mathematics. One can find good study of
simulation methods for fractional Brownian motion in [1] and [3].

A fractional Brownian motion can be represented in various forms. In the papers [4]
and [5] one can find series representations, which can be used for simulation. In particular,
series representations of the fBm are used in [6,7,10,13,14,16–19]. In some of these papers
there were considered problems of reliability and accuracy of simulation in different
functional spaces [6, 7, 13,14].

Sometimes, it is more convenient and efficient from the implementation point of view to
use models of fractional Brownian motion, which are based on its spectral representation,
as in [2, 12,20,22].

In [12], we presented a method for simulation of fractional Brownian motion with given
reliability and accuracy in the space C([0, T ]), which was based on a spectral represen-
tation of the fBm. Now we continue this study and, in this paper, we construct a model
of a fractional Brownian motion with parameter α ∈ (0, 2), which approximates such
process with given reliability 1− δ, 0 < δ < 1, and accuracy ε > 0 in the space C([0, T ])
in the case of uniform partition of the simulation interval [0,Λ]. In Section 2, we define
the model basing on the spectral representation of the fBm. Section 3 contains neces-
sary preliminary results, the main theorem with conditions for simulation of a fractional
Brownian motion in the space C([0, T ]), and the corollary for the space C([0, 1]). In the
last section of the paper we show an example of simulation in the space C([0, 1]) in the
case of uniform partition of the simulation interval [0,Λ] for some values of the process
parameter α.

2. A model of fractional Brownian motion

Let (Ω,Σ, P ) be a standard probability space and T be a parametric space (T = [0, T ]
or T = [0,∞]).

Definition 2.1. A random process {Wα(t), t ∈ T} is called fractional Brownian motion
with parameter α ∈ (0, 2), if it is a Gaussian process with zero mean EWα(t) = 0 and
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correlation function

R(t, s) =
1

2

(
|t|α + |s|α − |t− s|α

)
,

such that Wα(0) = 0.

A fractional Brownian motion with parameter α ∈ (0, 2) can be represented in the
form of the following stochastic integral [21]:

Wα(t) =
A√
π

(∫ ∞
0

cos(λt)− 1

λ
α+1
2

dξ(λ)−
∫ ∞

0

sin(λt)

λ
α+1
2

dη(λ)

)
, t ∈ [0, T ],

where ξ(λ), η(λ) are independent real valued standard Wiener processes with

Eξ(λ) = Eη(λ) = 0, E
(
dξ(λ)

)2
= E

(
dη(λ)

)2
= dλ,

A2 =

{
2

π

∫ ∞
0

1− cos(λ)

λα+1
dλ

}−1

=

{
− 2

π
Γ(−α) cos

(
απ

2

)}−1

.

Let us take an interval [0,Λ], Λ > 0, and represent the process Wα = {Wα(t), t ∈
[0, T ]} in the form

Wα(t) = Wα(t, [0, ε]) +Wα(t, [ε,Λ]) +Wα(t, [Λ,∞]),

where 0 < ε < Λ and

Wα(t, [a, b]) =
A√
π

(∫ b

a

cos(λt)− 1

λ
α+1
2

dξ(λ)−
∫ b

a

sin(λt)

λ
α+1
2

dη(λ)

)
.

Let 0 = λ0 < λ1 < ... < λM = Λ be a partition of the interval [0,Λ], such that λ1 = ε.

Definition 2.2. We shall define a model of the process Wα in the following way:

SM (t,Λ) =
A√
π

(M−1∑
i=1

cos(λit)− 1

λ
α+1
2

i

(ξ(λi+1)− ξ(λi))−

−
M−1∑
i=1

sin(λit)

λ
α+1
2

i

(η(λi+1)− η(λi))

)
=

=
A√
π

(M−1∑
i=1

cos(λit)− 1

λ
α+1
2

i

Xi −
M−1∑
i=1

sin(λit)

λ
α+1
2

i

Yi

)
, t ∈ [0, T ],

where {Xi, Yi}, i = 1, 2, . . . ,M − 1, are independent Gaussian random variables with

EXi = EYi = 0, EX2
i = EY 2

i = λi+1 − λi.

Definition 2.3. The model SM = {SM (t,Λ), t ∈ [0, T ]} approximates the process Wα =
{Wα(t), t ∈ [0, T ]} with a given reliability 1 − δ, 0 < δ < 1, and accuracy ε > 0 in the
space C([0, T ]) if

P

{
sup
t∈[0,T ]

|Wα(t)− SM (t,Λ)| > ε

}
≤ δ.
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3. Simulation of the fBm in the space C([0, T ]) in the case of uniform
partition of the interval [0,Λ]

In order to get our main results, we shall use the following theorem, which gives us
conditions for simulation of the fBm with given reliability and accuracy in the space
C([0, T ]). This theorem was proved in the paper [12] (Theorem 3.1).

Theorem 3.1. The model SM approximates the process Wα with a given reliability 1−δ,
0 < δ < 1, and accuracy ε > 0 in the space C([0, T ]) if

(1) γ0 < ε,

(2)
βγ0

K
≤ εT ν

2ν(exp{1/2} − 1)ν
,

(3) 2 exp

{
− (ε− γ0)2

2γ2
0

}(
(ε− γ0)T b

2bγ0(1− b/ν)

(
εK

βγ0

) b
ν

+ 1

) 2
b

< δ,

where numbers b and ν are such that 0 < b < ν < α
2 , β = min{γ0,

K
2ν },

γ0 = sup
t∈[0,T ]

(E(XM (t,Λ))2)1/2 =
A√
π

(
T 2λ2−α

1

2− α
+

2

αΛα
+

+
4T 2

3

(
1 +

(
α+ 1

2

)2
)
M−1∑
i=1

(λi+1 − λi)3

λα+1
i

)1/2

,(4)

K =
A
√

3√
π

[
T 2−2νλ2−α

1

2− α
+

22−2ν

(α− 2ν)Λα−2ν
+

+ 24−2µT 2(µ−ν)

(
4

2µ− α

M−1∑
i=1

(λi+1 − λi)2µ−α+(5)

+

(
α+ 1

2

)2 M−1∑
i=1

(λi+1 − λi)3

3λ
3−(2µ−α)
i

)] 1
2

,

µ ∈
(
α

2
;
α+ 1

2

)
∩ (0; 1],

M ∈ N and 0 = λ0 < λ1 < ... < λM = Λ is a partition of the interval [0,Λ].

In the next theorem we present conditions for simulation of the fBm in the case of
uniform partition of the interval [0,Λ].

Theorem 3.2. Let λ0 = 0, λi = iΛ
M , i = 1, . . . ,M. In this case, the model SM (t,Λ)

approximates the process Wα in the space C([0, T ]) with a given accuracy ε > 0 and
reliability 1− δ, 0 < δ < 1, if

(6) γ∗0 < ε,

(7)
βγ0

K∗
≤ εT ν

2ν(exp{1/2} − 1)ν
,

(8) 2 exp

{
− (ε− γ∗0)2

2(γ∗0 )2

}(
(ε− γ∗0 )T b

2bγ∗0(1− b/ν)

(
εK∗

βγ∗0

) b
ν

+ 1

) 2
b

< δ,
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where numbers b and ν are such that 0 < b < ν < α
2 , β = min{γ∗0 , K

∗

2ν },

γ∗0 =
A√
π

(
T 2

2− α

(
Λ

M

)2−α

+
2

αΛα
+

+
4T 2

3

(
1 +

1

α

)(
1 +

(
α+ 1

2

)2
)(

Λ

M

)2−α)1/2

,(9)

K∗ =
A
√

3√
π

[
T 2−2ν

2− α

(
Λ

M

)2−α

+
22−2ν

(α− 2ν)Λα−2ν
+

+ 24−2µT 2(µ−ν)

(
Λ

M

)2µ−α(
4(M − 1)

2µ− α
+(10)

+
1

3

(
α+ 1

2

)2(
1 +

1

2− (2µ− α)

))] 1
2

,

µ ∈
(
α

2
;
α+ 1

2

)
∩ (0; 1].

Proof. In the case of uniform partition of the interval [0,Λ], that is, if λi = iΛ
M , i =

0,M, and, hence, M λ = λi+1−λi = Λ
M , i = 0, . . . ,M − 1, we can estimate the constants

γ0 and K in the assertion of the Theorem 3.1 in the following way.

γ0 =
A√
π

(
T 2λ2−α

1

2− α
+

2

αΛα
+

+
4T 2

3

(
1 +

(
α+ 1

2

)2
)
M−1∑
i=1

(λi+1 − λi)3

λα+1
i

)1/2

=

=
A√
π

(
T 2

2− α

(
Λ

M

)2−α

+
2

αΛα
+

+
4T 2

3

(
1 +

(
α+ 1

2

)2
)
M−1∑
i=1

(
Λ
M

)3(
iΛ
M

)α+1

)1/2

=

=
A√
π

(
T 2

2− α

(
Λ

M

)2−α

+
2

αΛα
+

+
4T 2

3

(
1 +

(
α+ 1

2

)2
)(

Λ

M

)2−α M−1∑
i=1

1

iα+1

)1/2

.

Let us estimate the sum
M−1∑
i=1

1
iα+1 in the expression above:

M−1∑
i=1

1

iα+1
= 1 +

M−1∑
i=2

1

iα+1
≤ 1 +

M−1∑
i=2

i∫
i−1

1

uα+1
du =

= 1 +

M−1∫
1

1

uα+1
du = 1− 1

α(M − 1)α
+

1

α
≤ 1 +

1

α
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Thus, for the γ0 we get the following estimate:

γ0 ≤ A√
π

(
T 2

2− α

(
Λ

M

)2−α

+
2

αΛα
+

+
4T 2

3

(
1 +

1

α

)(
1 +

(
α+ 1

2

)2
)(

Λ

M

)2−α)1/2

=: γ∗0 .

Now we shall consider the constant K:

K =
A
√

3√
π

[
T 2−2νλ2−α

1

2− α
+

22−2ν

(α− 2ν)Λα−2ν
+

+ 24−2µT 2(µ−ν)

(
4

2µ− α

M−1∑
i=1

(λi+1 − λi)2µ−α+

+

(
α+ 1

2

)2 M−1∑
i=1

(λi+1 − λi)3

3λ
3−(2µ−α)
i

)] 1
2

=

=
A
√

3√
π

[
T 2−2ν

2− α

(
Λ

M

)2−α

+
22−2ν

(α− 2ν)Λα−2ν
+

+ 24−2µT 2(µ−ν)

(
4

2µ− α

M−1∑
i=1

(
Λ

M

)2µ−α

+

+

(
α+ 1

2

)2 M−1∑
i=1

(
Λ
M

)3
3
(
iΛ
M

)3−(2µ−α)

)] 1
2

=

=
A
√

3√
π

[
T 2−2ν

2− α

(
Λ

M

)2−α

+
22−2ν

(α− 2ν)Λα−2ν
+

+ 24−2µT 2(µ−ν)

(
4(M − 1)

2µ− α

(
Λ

M

)2µ−α

+

+
1

3

(
α+ 1

2

)2(
Λ

M

)2µ−α M−1∑
i=1

1

i3−(2µ−α)

)] 1
2

For the sum
M−1∑
i=1

1
i3−(2µ−α) we get the next estimate:

M−1∑
i=1

1

i3−(2µ−α)
= 1 +

M−1∑
i=2

1

i3−(2µ−α)
≤ 1 +

M−1∑
i=2

i∫
i−1

1

u3−(2µ−α)
du =

1 +

M−1∫
1

1

u3−(2µ−α)
du = 1− 1

2− (2µ− α)

(
1

(M − 1)2−(2µ−α)
− 1

)
≤ 1 +

1

2− (2µ− α)
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Thus, for the K we have:

K ≤ A
√

3√
π

[
T 2−2ν

2− α

(
Λ

M

)2−α

+
22−2ν

(α− 2ν)Λα−2ν
+

+ 24−2µT 2(µ−ν)

(
Λ

M

)2µ−α(
4(M − 1)

2µ− α
+

+
1

3

(
α+ 1

2

)2(
1 +

1

2− (2µ− α)

))] 1
2

=: K∗

Now, if for the obtained constants γ∗0 and K∗ the conditions (6)–(8) of Theorem 3.2
hold, then the conditions (1)–(3) of Theorem 3.1 hold correspondingly, and the model
SM (t,Λ) approximates the process Wα in the space C([0, T ]) with a given accuracy ε > 0
and reliability 1− δ, 0 < δ < 1. 2

Corollary 3.1. In case of T = 1 from Theorem 3.2 follows, that the model SM approx-
imates the process Wα in the space C([0, 1]) with a given accuracy ε > 0 and reliability
1− δ, 0 < δ < 1, if

(11) γ̂∗0 < ε,

(12)
βγ̂∗0

K̂∗
≤ ε

2ν(exp{1/2} − 1)ν
,

(13) 2 exp

{
− (ε− γ̂∗0 )2

2(γ̂∗0)2

} ε− γ̂∗0
2bγ̂∗0 (1− b/ν)

(
εK̂∗

βγ̂∗0

) b
ν

+ 1


2
b

< δ,

where numbers b and ν are such that 0 < b < ν < α
2 , β = min{γ̂∗0 , K̂

∗

2ν },

γ̂∗0 =
A√
π

(
1

2− α

(
Λ

M

)2−α

+
2

αΛα
+

+
4

3

(
1 +

1

α

)(
1 +

(
α+ 1

2

)2
)(

Λ

M

)2−α)1/2

,(14)

K̂∗ =
A
√

3√
π

[
1

2− α

(
Λ

M

)2−α

+
22−2ν

(α− 2ν)Λα−2ν
+

+ 24−2µ

(
Λ

M

)2µ−α(
4(M − 1)

2µ− α
+(15)

+
1

3

(
α+ 1

2

)2(
1 +

1

2− (2µ− α)

))] 1
2

,

µ ∈
(
α

2
;
α+ 1

2

)
∩ (0; 1].

In order to get better results, it is necessary to optimize model parameters. In the
next corollary, we intend to reach the minimal value of γ̂∗0 .

Corollary 3.2. It is easy to see that γ̂∗0 will be minimal, if

Λ = M
2−α
2 Cα,
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where

Cα =

(
6α

3α+ (2− α)(α+ 1)(4 + (α+ 1)2)

)1/2

=

(
2

1 + (2− α)B(α)

)1/2

,

B(α) =
4

3

(
1 +

1

α

)(
1 +

(
α+ 1

2

)2
)
.

In this case we get that

(γ̂∗0)2 =
A2

π

D(α)

M
α(2−α)

2

,

where

D(α) =
22−α2 (1 + (2− α)B(α))1/2

α(2− α)
,

and

K̂∗ =
A
√

3√
π

[
(Cα)2−α

2− α
+

22−2νM (2−α)ν

(Cα)α−2ν(α− 2ν)

+ (Cα)2µ−α24−2µGM (α)Mα(1−µ)
]1/2

,

where

GM (α) =

[
4(M − 1)

2µ− α
+

1

3

(
α+ 1

2

)2(
1 +

1

2− (2µ− α)

)]
.

4. Numerical results

Basing on the results of the Corollary 3.2, we have estimated parameters Λ and M in
the case of uniform partition of the interval [0,Λ], reliability 1−δ = 0.95, accuracy ε = 0.1
and technical model parameters ν = 0.499α, b = 0.8ν. Some of the results obtained are
presented in Table 1. For comparison, in Table 2 we show numerical values of the model
parameters calculated basing on our results published in paper [12]. The trajectories of
models of the fBm for some values of the parameter α are shown on Figures 1–4.

Table 1. Model pa-
rameters for some val-
ues of α

α Λ M

1.0 25130 2× 109

1.1 8988 2× 109

1.3 1960 9× 109

1.5 703 9× 1011

Table 2. Model pa-
rameters basing on the
results of paper [12]

α Λ M

1.0 25000 3.3× 109

1.1 23500 5.4× 109

1.3 2100 3.3× 1010

1.5 595 7.0× 1012

Conclusions

We have presented a model of a fractional Brownian motion with parameter α ∈ (0, 2),
which approximates such process with given reliability 1 − δ, 0 < δ < 1, and accuracy
ε > 0 in the space C([0, T ]). The model is based on a spectral representation of the fBm.
In the case of uniform partition of the simulation interval [0,Λ], the results obtained
are better and more convenient for practical use, than in our previous paper on this
subject [12].
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Figure 1. Models for
fBm with α = 0.6

Figure 2. Models for
fBm with α = 0.8

Figure 3. Models for
fBm with α = 1.1

Figure 4. Models for
fBm with α = 1.3
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