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B.L.S. PRAKASA RAO

BERRY-ESSEEN TYPE BOUND FOR FRACTIONAL
ORNSTEIN-UHLENBECK TYPE PROCESS DRIVEN BY
SUB-FRACTIONAL BROWNIAN MOTION

‘We obtain a Berry-Esseen type bound for the distribution of the maximum likelihood
estimator of the drift parameter for fractional Ornstein-Uhlenbeck type process driven
by sub-fractional Brownian motion.

1. INTRODUCTION

Statistical inference for fractional diffusion processes satisfying stochastic differential
equations driven by a fractional Brownian motion (fBm) has been studied earlier and
a comprehensive survey of various methods is given in Prakasa Rao [17]. There has
been a recent interest to study similar problems for stochastic processes driven by a
sub-fractional Brownian motion. Bojdecki et al. [2] introduced a centered Gaussian
process (1 = {¢H(t),t > 0} called sub-fractional Brownian motion (sub-fBm) with the
covariance function

1
Cr(s,t) = s*H 4217 5l + 1) 4 |s — ¢2H]

where 0 < H < 1. The increments of this process are not stationary and are more
weakly correlated on non-overlapping intervals than those of a fBm. Tudor [25] intro-
duced a Wiener integral with respect to a sub-fBm. Tudor [22, 23, 24, 25] discussed
some properties related to sub-fBm and its corresponding stochastic calculus. By using
a fundamental martingale associated to sub-fBm, a Girsanov type theorem is obtained
in Tudor[25]. Diedhiou et al. [3] investigated parametric estimation for a stochastic dif-
ferential equation (SDE) driven by a sub-fBm. Mendy [13] studied parameter estimation
for the sub-fractional Ornstein-Uhlenbeck process defined by the stochastic differential
equation
dX;, = 0Xdt +d¢" (t),t >0

where H > % This is an analogue of the Ornstein-Uhlenbeck process, that is, a con-
tinuous time first order autoregressive process X = {X;, ¢ > 0} which is the solution
of a one-dimensional homogeneous linear stochastic differential equation driven by a
sub-fBm ¢ = {¢/!,t > 0} with Hurst parameter H. Mendy [13] proved that the least
squares estimator estimator A is strongly consistent as T — co. Kuang and Xie [10]
studied properties of maximum likelihood estimator for sub-fBm through approximation
by a random walk. Kuang and Liu [9] discussed about the L2-consistency and strong
consistency of the maximum likelihood estimators for the sub-fBm with drift based on
discrete observations. Yan et al. [26] obtained the Ito’s formula for sub-fractional Brow-
nian motion with Hurst index H > 3. Shen and Yan [21] studied estimation for the
drift of sub-fractional Brownian motion and constructed a class of biased estimators of
James-Stein type which dominate the maximum likelihood estimator under the quadratic
risk. El Machkouri et al. [5] investigated the asymptotic properties of the least squares
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estimator for non-ergodic Ornstein-Uhlenbeck process driven by Gaussian processes, in
particular, sub-fractional Brownian motion. In a recent paper, we have investigated op-
timal estimation of a signal perturbed by a sub-fractional Brownian motion in Prakasa
Rao [19]. Some maximal and integral inequalities for a sub-fBm were derived in Prakasa
Rao [18]. Parametric estimation for linear stochastic differential equations driven by a
sub-fractional Brownian motion is studied in Prakasa Rao [20]. We now obtain a Berry-
Esseen type bound for the distribution of the maximum likelihood estimator for the drift
parameter of a fractional Ornstein-Uhlenbeck type process driven by a sub-fractional
Brownian motion.

2. PRELIMINARIES

Let (2, F, (F:), P) be a stochastic basis satisfying the usual conditions and the pro-
cesses discussed in the following are (F;)-adapted. Further the natural filtration of a
process is understood as the P-completion of the filtration generated by this process.

Let ¢ = {¢/1,t > 0} be a normalized sub-fractional Brownian motion (sub-fBm) with
Hurst parameter H € (0, 1), that is, a Gaussian process with continuous sample paths
such that (& =0, E(¢/') = 0 and

1
(2.1) B¢y =2 4 20 — Sl + )25 s —t|*H],t > 0,5 > 0.

Bojdecki et al. [2] noted that the process
1
V2
where {W#(t), —0o < t < 0o} is a fBm, is a centered Gaussian process with the same
covariance function as that of a sub-fBm. This proves the existence of a sub-fBm. Let

Dy (s,t) denote the covariance function of a standard fractional Brownian motion with
Hurst index H. Note that

WH(t) + WH(=t)],t >0,

1
5(\tl2H + s — [t = s*H).
Bojdecki et al. [2] proved the following result concerning properties of a sub-fBm.
Theorem 2.1. Let ¢ = {¢H(t),t > 0} be a sub-fBm defined on a filtered probability
space (0, F, (Fi,t > 0), P). Then the following properties hold.

(i) The process (H is self-similar, that is, for every a > 0,

(¢ (at), t > 0} = {a”¢T(1),t > 0}

in the sense that the processes, on both the sides of the equality sign, have the same finite
dimensional distributions.

(ii) The process ¢ is not Markov and it is not a semi-martingale.

(iii) For all s,t > 0, the covariance function Cy(s,t) of the process (! is positive for
all s > 0,t > 0. Furthermore

DH(S,t) =

CH(S,t) > DH(S,t) Zf H < %

and
1
CH(S,t) < DH(Sﬂf) ’Lf H > 5
(iv) Let By =2 —22H=1. For all s > 0,t > 0,

Br(t—s)* < E[CH(t) - () < (t—s)*, if H> %
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and

1

(t=8)*" < B[CT(6) = CT () < Bult =)™, if H< 3
and the constants in the above inequalities are sharp.

(v) The process CH has continuous sample paths almost surely and, for each 0 < € < H

and T > 0, there exists a random variable K. v such that
|§H(t) — CH(S)\ < K.rlt— s|H*€,O <s,t<T.

Let f:[0,7] — R be a measurable function and o > 0, and o and n be real. Define
the Erdeyli-Kober-type fractional integral

o8N T jo(1—a—n)—1
(2 06 = T | sy s € 071,

and the function

™ _H-1 _1
23) nn(ts) = ST )T ()
211 r s H/t 2 2 \H-%
= ————52" < — s “2dx [ s).
F(H_ %) o ( ) (Ovt)( )

The following theorem is due to Dzhaparidze and Van Zanten [4] (cf. Tudor [25]).
Theorem 2.2. The following representation holds, in distribution, for a sub-fBm (H:
¢
(2.4) fécH/vmuﬁmw;ogth
0

where
I'(2H + 1) sin(nH)

™

(2.5) =
and {Wy,t > 0} is the standard Brownian motion.

Tudor [25] has defined integration of a non-random function f(¢) with respect to a
sub-fBm ¢ on an interval [0,7] and obtained a representation of this integral as a
Wiener integral for a suitable transformed function ¢¢(t) depending on H and 7. For
details, see Theorem 3.2 in Tudor [25].

Tudor [23] (cf. Tudor [25], p. 467) obtained the prediction formula for a sub-fBm.
Forany 0 < H < 1,and 0 < a < t,

(2.6) El¢fIcE 0<s<al=¢ + / ' Y, (u)d¢!
0
where

sin(n(H — . t (52 _ g2)H-3% .
(2.7) Yo t(u) = Mu(az — u2)5_H/ %ZH_Edz.

T 22 — 2
Let
6 t
(28) MtH:dH/ 5§7HdW€:/ kH(t75)dC9H
0 0
where
oH—3
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and
V(ts) = s G L
H(t, I'(3-H)
¢
(H - ;/ (% = s%)2 a5 da] g, (s)

It can be shown that the process MH = {MH,0 <t < T} is a Gaussian martingale (cf.
Tudor [25], Diedhiou et al. [3]) and is called the sub-fractional fundamental martingale.
The filtration generated by this martingale is the same as the filtration {F;,¢t > 0}
generated by the sub-fBm (¥ and the quadratic variation < M >, of the martingale

. . d3 — —
M*™ over the interval [0, s] is equal to w = ;H=s?72H = \p¢272H

measurable function f : [0,7] — R with fOT f?(s)s'72Hds < oo, define the probability
measure Q¢ by

del
dp 7

(say). For any

= o[ seaml =3 [ Pea< > o)

t 2 t
= (| s =G [P

where P is the underlying probability measure. Let

1 H—

(2.11) (Y f)(s) = mjo,z

(ST

_uf(s)

[ ][9]

where, for a > 0,

—o(a+n) s yo(l+n)=1f04
gs / f()dt,se[O,T].
0

2.12 I =
( ) ( O,o‘,nf)(s) F(Oé) (to- _ 80)17‘1
Then the following Girsanov type theorem holds for the sub-fBm process (Tudor [25]).

Theorem 2.3. The process

C{I—/O (W f)(s)ds,0 <t <T

is a sub-fom with respect to the probability measure Q. In particular, choosing the func-
tion f = a € R, it follows that the process {¢} —at,0 <t < T} is a sub-fBm under the
probability measure Q¢ with f =a € R.

Let Y = {Y;,t > 0} be a stochastic process defined on the filtered probability space
(Q,F,(F,t > 0), P) and suppose the process Y satisfies the stochastic differential equa-~
tion
(2.13) dYy = C(t)dt +d¢f ,t >0
where the process {C(t),t > 0}, adapted to the filtration {F;,¢t > 0}, such that the
process

d t
(2.14) Ry(t) = —H/ kg (t,s)C(s)ds,t >0
dwy;™ Jo
is well-defined and the derivative is understood in the sense of absolute continuity with

respect to the measure generated by the function wy . Differentiation with respect to wf?

is understood in the sense:

dwll = g (2 — 2H)t' 72 qt
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and
dft) _ df(t) dwf

dwfl — dt / dt
Suppose the process {Rp(t),0 < t < T}, defined over the interval [0, 7] belongs to the
space L2([0, T], dwf?). Define

(2.15) A () = expf /0 Ru()dM 7 —% /0 (Rt (5)]2dw!™}

with E[Ag(T)] = 1 and the distribution of the process {Y;,0 < ¢ < T'} with respect to the
measure PY = Apy(t) P coincides with the distribution of the process {¢/1,0 <t < T||
with respect to the measure P.

We call the process AH as the likelihood process or the Radon-Nikodym derivative < d -
of the measure PY with respect to the measure P.

Tudor [25] derived the following Girsanov type formula.

Theorem 2.4. Suppose the assumptions of Theorem 2.2 hold. Define

T T
(2.16) Ap(T) = exp{/o Ry (t)ydM} — %/0 R, (t)dw!'}.

Suppose that E(Ap(T)) = 1. Then the measure P* = A (T)P is a probability measure
and the probability measure of the process Y under P* is the same as that of the process
V' defined by

t
(2.17) Vt:/dgf,ogth.
0

3. MAIN RESULTS

Let us consider the stochastic differential equation
(3.1) dX(t) =0 X(t)dt +d¢H, X (0) =0,t >0

where § € © C R, = {¢f,t > 0} is a sub-fractional Brownian motion with known
Hurst parameter H. In other words X = {X(t),t > 0} is a stochastic process satisfying
the stochastic integral equation

(3.2) X(t) = Q/OtX(s)ds—f—/Ot d¢H t > 0.

We call such a process as fractional Ornstein-Uhelenbeck type process driven by sub-
fractional Brownian motion. Diedhiou et al. [3] and Mendy [13] investigated parametric
estimation for such a stochastic differential equation driven by a sub-fBm. We will
now obtain a Berry-Esseen type bound for the distribution of the maximum likelihood
estimator for the drift parameter for such processes.

Let
(3.3) C,t)=0X(),t>0

and assume that the sample paths of the process {C(6,t),t > 0} are smooth enough so
that the process

(34) RH9 d H/kHtS d8t>0

is well-defined where wfl and kp(t,s) are as defined in Section 2. Suppose the sample
paths of the process { R ¢(t),0 < t < T} belong almost surely to L?([0, T}, dw{?). Define

t
(3.5) ztz/ knt (1, $)dX o, £ > 0.
0
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Then the process Z = {Z;,t > 0} is an (F;)-semimartingale with the decomposition
t
(3.6) Z = / Ruo(s)dw! + MH £ >0
0

where M is the fundamental martingale defined by the equation (2.8) and the process
X admits the representation

(3.7) X, = /0 Kyt 5)dz,

where the function

Kg(t,s) = Z—ZSH_%nH(t,S).

Let P] be the measure induced by the process {X;,0 < t < T} when 6 is the true
parameter. Following Theorem 2.4, we get that the Radon-Nikodym derivative of P
with respect to P is given by

dP}

T T
1
(3.8) W = eXP[/O R o(s)dZs — 5/0 qu,g(s)dwf].

Maximum likelihood estimation
We now consider the problem of estimation of the parameter 6 based on the observation
of the process X = {X;,0 <t < T} and study its asymptotic properties as T" — occ.

Strong consistency:

Let Ly () denote the Radon-Nikodym derivative Z?’;. The maximum likelihood esti-
0
mator (MLE) is defined by the relation
(3.9) Ly (07) = sup Lp(6).

0€O

We assume that there exists a measurable maximum likelihood estimator. Sufficient
conditions can be given for the existence of such an estimator (cf. Lemma 3.1.2, Prakasa
Rao [15]). Note that

d t
T /O Fat (1, 5) X (s)ds

= 0J(t).(say)

(3.10) Ruo(t) = 0

Then

T T
(3.11) log L7 (6) :9/0 J(t)dZ; — %92/0 J2(t)dw!

and the likelihood equation is given by

(3.12) /OT J(t)dZ; — e/OT J2(t)dwf = 0.
Hence the MLE 6 of 6 is given by
- foz J(1dz(t)
Jo J2(t)dwf
Let 6y be the true parameter. Using the fact that
(3.14) dZ; = 00 J(t))dw! + dMF,

(3.13)
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it can be shown that

ary g . o [T o H
(3.15) ——= = exp|(0 — 0p) J(t)dM;" — =(0 — b)) J=(t)dw;'].
dp,, 0 2 0
Following this representation of the Radon-Nikodym derivative, we obtain that
T
. J(t)dMH
(3.16) O — 0 = ft;(#
Jo S2()dwi

We now discuss the problem of estimation of the parameter # on the basis of the
observation of the process X or equivalently the process Z on the interval [0, T].

Theorem 3.1. The mazimum likelihood estimator O is strongly consistent, that is,

(3.17) 0r — 0y a.s [Ps,] as T — oo
provided
T
(3.18) / J2(t)dwf — 0o a.s [Py,] as T — oco.
0

Proof. This theorem follows by observing that the process
T
(3.19) 7 E/ J(t)dME t >0
0
is a local continuous martingale with the quadratic variation process

T
(3.20) <7 >T=/ J2(t)dw!
0

and applying the Strong law of large numbers (cf. Liptser [11]; Liptser and Shiryayev [12];
Prakasa Rao [16], p. 61) under the condition (3.18) stated above. O

Remark: For the case of sub-fractional Ornstein-Uhlenbeck process investigated here
and in Mendy [13], it can be checked that the condition stated in equation (3.18) holds
and hence the maximum likelihood estimator f7 is strongly consistent as T — oo.

Limiting distribution:
We now discuss the limiting distribution of the MLE 67 as T — oo.

Theorem 3.2. Suppose there exists a norming function Iy, t > 0 such that
T
(3.21) I2 < qp >= I%/ J2(t)dwf — n* in probability as T — oo
0
where It — 0 as T — oo and n is a random variable such that P(n > 0) = 1. Then

(3.22) (Iryr, I3 < yp >) — (nZ,n*) in law as T — oo

where the random variable Z has the standard normal distribution and the random vari-
ables Z and n are independent.

Proof. This theorem follows as a consequence of the central limit theorem for martingales

(cf. Theorem 1.49 ; Remark 1.47 , Prakasa Rao [16], p. 65). O
Observe that
1.5 Iryr
3.23 I:' (07 — 0p) = —
( ) T ( T 0) I% <7 >

Applying the Theorem 3.2, we obtain the following result.
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Theorem 3.3. Suppose the conditions stated in the Theorem 3.2 hold. Then
N Z
(3.24) I (07 — 60) — o in law as t — oo

where the random variable Z has the standard normal distribution and the random vari-
ables Z and n are independent.

Remarks: If the random variable 7 is a constant with probability one, then the limiting
distribution of the maximum likelihood estimator is normal with mean 0 and variance
n~2. Otherwise it is a mixture of the normal distributions with mean zero and variance
n~2 with the mixing distribution as that of 7.

4. BERRY-ESSEEN TYPE BOUND

Let 0y be the true parameter. In addition to the conditions stated in Section 3,
suppose that the random variable 7 is a positive constant with probability one under
Py,-measure. Theorem 3.3 implies that

(4.1) Ifl(éT —6p) = N(0,77%) inlaw as T — oo

under Pp,-measure where N (0, 02) denoted the Gaussian distribution with mean zero and
variance o2. We would now like to obtain the rate of convergence in this limit leading to
a Berry-Esseen type bound.

Suppose there exists non-random positive functions d; and ey decreasing to zero as
T — oo such that

(4.2) Spted — 00 as T — 00

and

(4.3) sup Pl(|67 <y >7 —1| > er) = O(e?)
€

where the process {vyr,T > 0} is as defined by equation (3.19). Note that the process
{yr,T > 0} is a locally square integrable continuous martingale. From the results on
the representation of locally square integrable continuous martingales (cf. Ikeda and
Watanabe [8], Chapter II, Theorem 7.2), it follows that there exists a standard Wiener
process {B(t),t > 0} adapted to (F;) such that v, = B(< v >7),t > 0. In particular

(4.4) o8 = B(< v >1 67) as. [Py,
for all T > 0.

We use the following lemmas in the sequel.

Lemma 4.1. Let (Q, F, P) be a probability space and f and g be F-measurable functions.
Then, for any € > 0,

(4.5) stz1p|P(w : ch((:)i <z)— P(x)]
<sup|P(w: f(w) <y) = P(2)| + P(w:[g(w) 1| > ¢) +¢

Y

where ®(x) is the distribution function of the standard Gaussian distribution.
Proof. See Michael and Pfanzagl [14]. O

Lemma 4.2. Let {B(t),t > 0} be a standard Wiener process and V' be a nonnegative
random variable. Then, for every x € R and € > 0,

(4.6) |P(B(V) < z) — ®(z)| < (26)/2 + P(|V — 1| > ¢).
Proof. See Hall and Heyde [7], p.85. O
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Let us fix 8 € ©. It is clear from the earlier remarks that
(4.7) yr =<7 >r 17" (0r - 0)
under Py-measure. Then it follows, from the Lemmas 4.1 and 4.2, that

(4.8) Pylop? 171 (0r — 0) < 2] — ®(a)|

= 1Pol " 0r" < 0] - @)
-1/2
Vr/0
= |P9[<7>7;/5_1 <] — @(x)]
T

< sup \Pg[’yT&;/z <] — o(z)|

+Py[|or <y >7 -1 >er| +er
=sup |P(B(<y>1 or) <y)— ®(y)| + Pylldor <y >r —1| > er] +er
y

< (25T)1/2 + 2P9[|5T < >T *1| > 5T} +er.

It is clear that the bound obtained above is of the order O(elT/ %) under the condition (4.3)
and it is uniform in # € ©. Hence we have the following result giving a Berry-Esseen type
bound for the distribution of the MLE.

Theorem 4.3. Under the conditions (4.2) and (4.3),

(4.9) 21618 sup |P9[671/2I;1(9AT —0) <z]— d(x)]

< (2er)V? + 2Py[|67 < v >1 —1| > ex] + er = O(eX?).

As a consequence of this result, we have the following theorem giving the rate of
convergence of the MLE 6.

Theorem 4.4. Suppose the conditions (4.2) and (4.3) hold. Then there exists a constant
¢ > 0 such that for every d > 0,

(4.10)  sup Py[I; "0y — 6] > d] < cel® + 2P|57 < v >1 —1| > ex] = O(e?).

0co

Proof. Observe that

(4.11) sup Py[I7 |07 — 6] > d]
0co

< sup | Py[5y 15 (br = 0) > o] = 2(1 — @(ds; 7))
€

+2(1 — B(do; %))
< (2e7)Y% + qup Py[|or <y > —1]| > er] +er

+2d 65 % (2m) /2 exp[— 5 2 1d?)

by Theorem 4.3 and the inequality

(4.12) 1-9(z) < exp[—lxz]

V21
for all > 0 (cf. Feller [6], p.175). Since

6pled — 00 as T — o0
by the condition (4.2), it follows that

(4.13) sup Py[I7' 07 — 6] > d] < ceyf 12 —|—2supP9H(5T<R>T —1| > er]
€O
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for some constant ¢ > 0 and the last term is of the order O(elT/ %) by the condition (4.3).
This proves Theorem 4.4. O
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