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BERRY-ESSEEN TYPE BOUND FOR FRACTIONAL

ORNSTEIN-UHLENBECK TYPE PROCESS DRIVEN BY

SUB-FRACTIONAL BROWNIAN MOTION

We obtain a Berry-Esseen type bound for the distribution of the maximum likelihood

estimator of the drift parameter for fractional Ornstein-Uhlenbeck type process driven

by sub-fractional Brownian motion.

1. Introduction

Statistical inference for fractional diffusion processes satisfying stochastic differential
equations driven by a fractional Brownian motion (fBm) has been studied earlier and
a comprehensive survey of various methods is given in Prakasa Rao [17]. There has
been a recent interest to study similar problems for stochastic processes driven by a
sub-fractional Brownian motion. Bojdecki et al. [2] introduced a centered Gaussian
process ζH = {ζH(t), t ≥ 0} called sub-fractional Brownian motion (sub-fBm) with the
covariance function

CH(s, t) = s2H + t2H − 1

2
[(s+ t)2H + |s− t|2H ]

where 0 < H < 1. The increments of this process are not stationary and are more
weakly correlated on non-overlapping intervals than those of a fBm. Tudor [25] intro-
duced a Wiener integral with respect to a sub-fBm. Tudor [22, 23, 24, 25] discussed
some properties related to sub-fBm and its corresponding stochastic calculus. By using
a fundamental martingale associated to sub-fBm, a Girsanov type theorem is obtained
in Tudor[25]. Diedhiou et al. [3] investigated parametric estimation for a stochastic dif-
ferential equation (SDE) driven by a sub-fBm. Mendy [13] studied parameter estimation
for the sub-fractional Ornstein-Uhlenbeck process defined by the stochastic differential
equation

dXt = θXtdt+ dζH(t), t ≥ 0

where H > 1
2 . This is an analogue of the Ornstein-Uhlenbeck process, that is, a con-

tinuous time first order autoregressive process X = {Xt, t ≥ 0} which is the solution
of a one-dimensional homogeneous linear stochastic differential equation driven by a
sub-fBm ζH = {ζHt , t ≥ 0} with Hurst parameter H. Mendy [13] proved that the least

squares estimator estimator θ̃T is strongly consistent as T → ∞. Kuang and Xie [10]
studied properties of maximum likelihood estimator for sub-fBm through approximation
by a random walk. Kuang and Liu [9] discussed about the L2-consistency and strong
consistency of the maximum likelihood estimators for the sub-fBm with drift based on
discrete observations. Yan et al. [26] obtained the Ito’s formula for sub-fractional Brow-
nian motion with Hurst index H > 1

2 . Shen and Yan [21] studied estimation for the
drift of sub-fractional Brownian motion and constructed a class of biased estimators of
James-Stein type which dominate the maximum likelihood estimator under the quadratic
risk. El Machkouri et al. [5] investigated the asymptotic properties of the least squares
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estimator for non-ergodic Ornstein-Uhlenbeck process driven by Gaussian processes, in
particular, sub-fractional Brownian motion. In a recent paper, we have investigated op-
timal estimation of a signal perturbed by a sub-fractional Brownian motion in Prakasa
Rao [19]. Some maximal and integral inequalities for a sub-fBm were derived in Prakasa
Rao [18]. Parametric estimation for linear stochastic differential equations driven by a
sub-fractional Brownian motion is studied in Prakasa Rao [20]. We now obtain a Berry-
Esseen type bound for the distribution of the maximum likelihood estimator for the drift
parameter of a fractional Ornstein-Uhlenbeck type process driven by a sub-fractional
Brownian motion.

2. Preliminaries

Let (Ω,F , (Ft), P ) be a stochastic basis satisfying the usual conditions and the pro-
cesses discussed in the following are (Ft)-adapted. Further the natural filtration of a
process is understood as the P -completion of the filtration generated by this process.

Let ζH = {ζHt , t ≥ 0} be a normalized sub-fractional Brownian motion (sub-fBm) with
Hurst parameter H ∈ (0, 1), that is, a Gaussian process with continuous sample paths
such that ζH0 = 0, E(ζHt ) = 0 and

(2.1) E(ζHs ζ
H
t ) = t2H + s2H − 1

2
[(s+ t)2H + |s− t|2H ], t ≥ 0, s ≥ 0.

Bojdecki et al. [2] noted that the process

1√
2

[WH(t) +WH(−t)], t ≥ 0,

where {WH(t),−∞ < t < ∞} is a fBm, is a centered Gaussian process with the same
covariance function as that of a sub-fBm. This proves the existence of a sub-fBm. Let
DH(s, t) denote the covariance function of a standard fractional Brownian motion with
Hurst index H. Note that

DH(s, t) =
1

2
(|t|2H + |s|2H − |t− s|2H).

Bojdecki et al. [2] proved the following result concerning properties of a sub-fBm.

Theorem 2.1. Let ζH = {ζH(t), t ≥ 0} be a sub-fBm defined on a filtered probability
space (Ω,F , (Ft, t ≥ 0), P ). Then the following properties hold.

(i) The process ζH is self-similar, that is, for every a > 0,

{ζH(at), t ≥ 0} ∆
= {aHζH(t), t ≥ 0}

in the sense that the processes, on both the sides of the equality sign, have the same finite
dimensional distributions.

(ii) The process ζH is not Markov and it is not a semi-martingale.
(iii) For all s, t ≥ 0, the covariance function CH(s, t) of the process ζH is positive for

all s > 0, t > 0. Furthermore

CH(s, t) > DH(s, t) if H <
1

2
and

CH(s, t) < DH(s, t) if H >
1

2
.

(iv) Let βH = 2− 22H−1. For all s ≥ 0, t ≥ 0,

βH(t− s)2H ≤ E[ζH(t)− ζH(s)]2 ≤ (t− s)2H , if H >
1

2
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and

(t− s)2H ≤ E[ζH(t)− ζH(s)]2 ≤ βH(t− s)2H , if H <
1

2
and the constants in the above inequalities are sharp.

(v) The process ζH has continuous sample paths almost surely and, for each 0 < ε < H
and T > 0, there exists a random variable Kε,T such that

|ζH(t)− ζH(s)| ≤ Kε,T |t− s|H−ε, 0 ≤ s, t ≤ T.

Let f : [0, T ] → R be a measurable function and α > 0, and σ and η be real. Define
the Erdeyli-Kober-type fractional integral

(2.2) (IαT,σ,ηf)(s) =
σsαη

Γ(α)

∫ T

s

tσ(1−α−η)−1f(t)

(tσ − sσ)1−α dt, s ∈ [0, T ],

and the function

nH(t, s) =

√
π

2H−
1
2

I
H− 1

2

T,2, 3−2H
4

(uH−
1
2 )I[0,t)(s)(2.3)

=
21−H√π
Γ(H − 1

2 )
s

3
2−H

∫ t

0

(x2 − s2)H−
3
2 dx I(0,t)(s).

The following theorem is due to Dzhaparidze and Van Zanten [4] (cf. Tudor [25]).

Theorem 2.2. The following representation holds, in distribution, for a sub-fBm ζH :

(2.4) ζHt
∆
= cH

∫ t

0

nH(t, s)dWs, 0 ≤ t ≤ T

where

(2.5) c2H =
Γ(2H + 1) sin(πH)

π

and {Wt, t ≥ 0} is the standard Brownian motion.

Tudor [25] has defined integration of a non-random function f(t) with respect to a
sub-fBm ζH on an interval [0, T ] and obtained a representation of this integral as a
Wiener integral for a suitable transformed function φf (t) depending on H and T. For
details, see Theorem 3.2 in Tudor [25].

Tudor [23] (cf. Tudor [25], p. 467) obtained the prediction formula for a sub-fBm.
For any 0 < H < 1, and 0 < a < t,

(2.6) E[ζHt |ζHs , 0 ≤ s ≤ a] = ζHa +

∫ a

0

ψa,t(u)dζHu

where

(2.7) ψa,t(u) =
2 sin(π(H − 1

2 ))

π
u(a2 − u2)

1
2−H

∫ t

a

(z2 − a2)H−
1
2

z2 − u2
zH−

1
2 dz.

Let

(2.8) MH
t = dH

∫ t

0

s
1
2−HdWs =

∫ t

0

kH(t, s)dζHs

where

(2.9) dH =
2H−

1
2

cHΓ( 3
2 −H)

√
π
,

(2.10) kH(t, s) = dHs
1
2−HψH(t, s),
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and

ψH(t, s) =
sH−

1
2

Γ( 3
2 −H)

[tH−
3
2 (t2 − s2)

1
2−H −

(H − 3

2
)

∫ t

s

(x2 − s2)
1
2−HxH−

3
2 dx]I(0,t)(s).

It can be shown that the process MH = {MH
t , 0 ≤ t ≤ T} is a Gaussian martingale (cf.

Tudor [25], Diedhiou et al. [3]) and is called the sub-fractional fundamental martingale.
The filtration generated by this martingale is the same as the filtration {Ft, t ≥ 0}
generated by the sub-fBm ζH and the quadratic variation < MH >s of the martingale

MH over the interval [0, s] is equal to wHs =
d2H

2−2H s
2−2H = λHs

2−2H (say). For any

measurable function f : [0, T ] → R with
∫ T

0
f2(s)s1−2Hds < ∞, define the probability

measure Qf by

dQf
dP
|Ft = exp(

∫ t

0

f(s)dMH
s −

1

2

∫ t

0

f2(s)d < MH > (s))

= exp(

∫ t

0

f(s)dMH
s −

d2
H

2

∫ t

0

f2(s)s1−2Hds)

where P is the underlying probability measure. Let

(2.11) (ψHf)(s) =
1

Γ( 3
2 −H)

I
H− 1

2

0,2, 12−H
f(s)

where, for α > 0,

(2.12) (Iα0,σ,ηf)(s) =
σs−σ(α+η)

Γ(α)

∫ s

0

tσ(1+η)−1f(t)

(tσ − sσ)1−α dt, s ∈ [0, T ].

Then the following Girsanov type theorem holds for the sub-fBm process (Tudor [25]).

Theorem 2.3. The process

ζHt −
∫ t

0

(ψHf)(s)ds, 0 ≤ t ≤ T

is a sub-fbm with respect to the probability measure Qf . In particular, choosing the func-
tion f ≡ a ∈ R, it follows that the process {ζHt − at, 0 ≤ t ≤ T} is a sub-fBm under the
probability measure Qf with f ≡ a ∈ R.

Let Y = {Yt, t ≥ 0} be a stochastic process defined on the filtered probability space
(Ω,F , (Ft, t ≥ 0), P ) and suppose the process Y satisfies the stochastic differential equa-
tion

(2.13) dYt = C(t)dt+ dζHt , t ≥ 0

where the process {C(t), t ≥ 0}, adapted to the filtration {Ft, t ≥ 0}, such that the
process

(2.14) RH(t) =
d

dwHt

∫ t

0

kH(t, s)C(s)ds, t ≥ 0

is well-defined and the derivative is understood in the sense of absolute continuity with
respect to the measure generated by the function wH . Differentiation with respect to wHt
is understood in the sense:

dwHt = λH(2− 2H)t1−2Hdt
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and
df(t)

dwHt
=
df(t)

dt
/
dwHt
dt

.

Suppose the process {RH(t), 0 ≤ t ≤ T}, defined over the interval [0, T ] belongs to the
space L2([0, T ], dwHt ). Define

(2.15) ΛH(t) = exp{
∫ t

0

RH(s)dMH
s −

1

2

∫ t

0

[RH(s)]2dwHs }

with E[ΛH(T )] = 1 and the distribution of the process {Yt, 0 ≤ t ≤ T} with respect to the
measure PY = ΛH(t) P coincides with the distribution of the process {ζHt , 0 ≤ t ≤ T‖
with respect to the measure P.

We call the process ΛH as the likelihood process or the Radon-Nikodym derivative dPY

dP

of the measure PY with respect to the measure P.
Tudor [25] derived the following Girsanov type formula.

Theorem 2.4. Suppose the assumptions of Theorem 2.2 hold. Define

(2.16) ΛH(T ) = exp{
∫ T

0

RH(t)dMH
t −

1

2

∫ T

0

R2
H(t)dwHt }.

Suppose that E(ΛH(T )) = 1. Then the measure P ∗ = ΛH(T )P is a probability measure
and the probability measure of the process Y under P ∗ is the same as that of the process
V defined by

(2.17) Vt =

∫ t

0

dζHs , 0 ≤ t ≤ T.

3. Main Results

Let us consider the stochastic differential equation

(3.1) dX(t) = θ X(t)dt+ dζHt , X(0) = 0, t ≥ 0

where θ ∈ Θ ⊂ R, ζH = {ζHt , t ≥ 0} is a sub-fractional Brownian motion with known
Hurst parameter H. In other words X = {X(t), t ≥ 0} is a stochastic process satisfying
the stochastic integral equation

(3.2) X(t) = θ

∫ t

0

X(s)ds+

∫ t

0

dζHs , t ≥ 0.

We call such a process as fractional Ornstein-Uhelenbeck type process driven by sub-
fractional Brownian motion. Diedhiou et al. [3] and Mendy [13] investigated parametric
estimation for such a stochastic differential equation driven by a sub-fBm. We will
now obtain a Berry-Esseen type bound for the distribution of the maximum likelihood
estimator for the drift parameter for such processes.

Let

(3.3) C(θ, t) = θ X(t), t ≥ 0

and assume that the sample paths of the process {C(θ, t), t ≥ 0} are smooth enough so
that the process

(3.4) RH,θ(t) = θ
d

dwHt

∫ t

0

kH(t, s)X(s)ds, t ≥ 0

is well-defined where wHt and kH(t, s) are as defined in Section 2. Suppose the sample
paths of the process {RH,θ(t), 0 ≤ t ≤ T} belong almost surely to L2([0, T ], dwHt ). Define

(3.5) Zt =

∫ t

0

kH(t, s)dXs, t ≥ 0.
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Then the process Z = {Zt, t ≥ 0} is an (Ft)-semimartingale with the decomposition

(3.6) Zt =

∫ t

0

RH,θ(s)dw
H
s +MH

t , t ≥ 0

where MH is the fundamental martingale defined by the equation (2.8) and the process
X admits the representation

(3.7) Xt =

∫ t

0

KH(t, s)dZs

where the function

KH(t, s) =
cH
dH

sH−
1
2nH(t, s).

Let PTθ be the measure induced by the process {Xt, 0 ≤ t ≤ T} when θ is the true
parameter. Following Theorem 2.4, we get that the Radon-Nikodym derivative of PTθ
with respect to PT0 is given by

(3.8)
dPTθ
dPT0

= exp[

∫ T

0

RH,θ(s)dZs −
1

2

∫ T

0

R2
H,θ(s)dw

H
s ].

Maximum likelihood estimation
We now consider the problem of estimation of the parameter θ based on the observation

of the process X = {Xt, 0 ≤ t ≤ T} and study its asymptotic properties as T →∞.

Strong consistency:

Let LT (θ) denote the Radon-Nikodym derivative
dPTθ
dPT0

. The maximum likelihood esti-

mator (MLE) is defined by the relation

(3.9) LT (θ̂T ) = sup
θ∈Θ

LT (θ).

We assume that there exists a measurable maximum likelihood estimator. Sufficient
conditions can be given for the existence of such an estimator (cf. Lemma 3.1.2, Prakasa
Rao [15]). Note that

RH,θ(t) = θ
d

dwHt

∫ t

0

kH(t, s)X(s)ds(3.10)

= θJ(t).(say)

Then

(3.11) logLT (θ) = θ

∫ T

0

J(t)dZt −
1

2
θ2

∫ T

0

J2(t)dwHt

and the likelihood equation is given by

(3.12)

∫ T

0

J(t)dZt − θ
∫ T

0

J2(t)dwHt = 0.

Hence the MLE θ̂T of θ is given by

(3.13) θ̂T =

∫ T
0
J(t)dZ(t)∫ T

0
J2(t)dwHt

.

Let θ0 be the true parameter. Using the fact that

(3.14) dZt = θ0J(t))dwHt + dMH
t ,
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it can be shown that

(3.15)
dPTθ
dPTθ0

= exp[(θ − θ0)

∫ T

0

J(t)dMH
t −

1

2
(θ − θ0)2

∫ T

0

J2(t)dwHt ].

Following this representation of the Radon-Nikodym derivative, we obtain that

(3.16) θ̂T − θ0 =

∫ T
0
J(t)dMH

t∫ T
0
J2(t)dwHt

.

We now discuss the problem of estimation of the parameter θ on the basis of the
observation of the process X or equivalently the process Z on the interval [0, T ].

Theorem 3.1. The maximum likelihood estimator θ̂T is strongly consistent, that is,

(3.17) θ̂T → θ0 a.s [Pθ0 ] as T →∞

provided

(3.18)

∫ T

0

J2(t)dwHt →∞ a.s [Pθ0 ] as T →∞.

Proof. This theorem follows by observing that the process

(3.19) γT ≡
∫ T

0

J(t)dMH
t , t ≥ 0

is a local continuous martingale with the quadratic variation process

(3.20) < γ >T=

∫ T

0

J2(t)dwHt

and applying the Strong law of large numbers (cf. Liptser [11]; Liptser and Shiryayev [12];
Prakasa Rao [16], p. 61) under the condition (3.18) stated above. �

Remark: For the case of sub-fractional Ornstein-Uhlenbeck process investigated here
and in Mendy [13], it can be checked that the condition stated in equation (3.18) holds

and hence the maximum likelihood estimator θ̂T is strongly consistent as T →∞.

Limiting distribution:

We now discuss the limiting distribution of the MLE θ̂T as T →∞.

Theorem 3.2. Suppose there exists a norming function It, t ≥ 0 such that

(3.21) I2
T < γT >= I2

T

∫ T

0

J2(t)dwHt → η2 in probability as T →∞

where IT → 0 as T →∞ and η is a random variable such that P (η > 0) = 1. Then

(3.22) (IT γT , I
2
T < γT >)→ (ηZ, η2) in law as T →∞

where the random variable Z has the standard normal distribution and the random vari-
ables Z and η are independent.

Proof. This theorem follows as a consequence of the central limit theorem for martingales
(cf. Theorem 1.49 ; Remark 1.47 , Prakasa Rao [16], p. 65). �

Observe that

(3.23) I−1
T (θ̂T − θ0) =

IT γT
I2
T < γT >

Applying the Theorem 3.2, we obtain the following result.
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Theorem 3.3. Suppose the conditions stated in the Theorem 3.2 hold. Then

(3.24) I−1
T (θ̂T − θ0)→ Z

η
in law as t→∞

where the random variable Z has the standard normal distribution and the random vari-
ables Z and η are independent.

Remarks: If the random variable η is a constant with probability one, then the limiting
distribution of the maximum likelihood estimator is normal with mean 0 and variance
η−2. Otherwise it is a mixture of the normal distributions with mean zero and variance
η−2 with the mixing distribution as that of η.

4. Berry-Esseen Type Bound

Let θ0 be the true parameter. In addition to the conditions stated in Section 3,
suppose that the random variable η is a positive constant with probability one under
Pθ0-measure. Theorem 3.3 implies that

(4.1) I−1
T (θ̂T − θ0)→ N(0, η−2) in law as T →∞

under Pθ0 -measure where N(0, σ2) denoted the Gaussian distribution with mean zero and
variance σ2. We would now like to obtain the rate of convergence in this limit leading to
a Berry-Esseen type bound.

Suppose there exists non-random positive functions δT and εT decreasing to zero as
T →∞ such that

(4.2) δ−1
T ε2T →∞ as T →∞

and

(4.3) sup
θ∈Θ

PTθ (|δT < γ >T −1| ≥ εT ) = O(ε
1/2
T )

where the process {γT , T ≥ 0} is as defined by equation (3.19). Note that the process
{γT , T ≥ 0} is a locally square integrable continuous martingale. From the results on
the representation of locally square integrable continuous martingales (cf. Ikeda and
Watanabe [8], Chapter II, Theorem 7.2), it follows that there exists a standard Wiener
process {B(t), t ≥ 0} adapted to (Ft) such that γt = B(< γ >T ), t ≥ 0. In particular

(4.4) γT δ
1/2
T = B(< γ >T δT ) a.s. [Pθ0 ]

for all T ≥ 0.
We use the following lemmas in the sequel.

Lemma 4.1. Let (Ω,F , P ) be a probability space and f and g be F-measurable functions.
Then, for any ε > 0,

sup
x
|P (ω :

f(ω)

g(ω)
≤ x)− Φ(x)|(4.5)

≤ sup
y
|P (ω : f(ω) ≤ y)− Φ(x)|+ P (ω : |g(ω)− 1| > ε) + ε

where Φ(x) is the distribution function of the standard Gaussian distribution.

Proof. See Michael and Pfanzagl [14]. �

Lemma 4.2. Let {B(t), t ≥ 0} be a standard Wiener process and V be a nonnegative
random variable. Then, for every x ∈ R and ε > 0,

(4.6) |P (B(V ) ≤ x)− Φ(x)| ≤ (2ε)1/2 + P (|V − 1| > ε).

Proof. See Hall and Heyde [7], p.85. �
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Let us fix θ ∈ Θ. It is clear from the earlier remarks that

(4.7) γT =< γ >T I
−1
T (θ̂T − θ)

under Pθ-measure. Then it follows, from the Lemmas 4.1 and 4.2, that

Pθ[δ
−1/2
T I−1

T (θ̂T − θ) ≤ x]− Φ(x)|(4.8)

= |Pθ[
γT

< γ >T
δ
−1/2
T ≤ x]− Φ(x)|

= |Pθ[
γT /δ

−1/2
T

< γ >T /δ
−1
T

≤ x]− Φ(x)|

≤ sup
x
|Pθ[γT δ1/2

T ≤ x]− Φ(x)|

+Pθ[|δT < γ >T −1| ≥ εT ] + εT

= sup
y
|P (B(< γ >T δT ) ≤ y)− Φ(y)|+ Pθ[|δT < γ >T −1| ≥ εT ] + εT

≤ (2εT )1/2 + 2Pθ[|δT < γ >T −1| ≥ εT ] + εT .

It is clear that the bound obtained above is of the order O(ε
1/2
T ) under the condition (4.3)

and it is uniform in θ ∈ Θ. Hence we have the following result giving a Berry-Esseen type
bound for the distribution of the MLE.

Theorem 4.3. Under the conditions (4.2) and (4.3),

sup
θ∈Θ

sup
x∈R
|Pθ[δ−1/2

T I−1
T (θ̂T − θ) ≤ x]− Φ(x)|(4.9)

≤ (2εT )1/2 + 2Pθ[|δT < γ >T −1| ≥ εT ] + εT = O(ε
1/2
T ).

As a consequence of this result, we have the following theorem giving the rate of

convergence of the MLE θ̂T .

Theorem 4.4. Suppose the conditions (4.2) and (4.3) hold. Then there exists a constant
c > 0 such that for every d > 0,

(4.10) sup
θ∈Θ

Pθ[I
−1
T |θ̂T − θ| ≥ d] ≤ cε1/2

T + 2Pθ[|δT < γ >T −1| ≥ εT ] = O(ε
1/2
T ).

Proof. Observe that

sup
θ∈Θ

Pθ[I
−1
T |θ̂T − θ| ≥ d](4.11)

≤ sup
θ∈Θ
|Pθ[δ−1/2

T I−1
T (θ̂T − θ) ≥ dδ−1/2

T ]− 2(1− Φ(dδ
−1/2
T ))|

+2(1− Φ(dδ
−1/2
T ))

≤ (2εT )1/2 + 2 sup
θ∈Θ

Pθ[|δT < γ >T −1| ≥ εT ] + εT

+2d−1δ
1/2
T (2π)−1/2 exp[−1

2
δ−1
T d2]

by Theorem 4.3 and the inequality

(4.12) 1− Φ(x) <
1

x
√

2π
exp[−1

2
x2]

for all x > 0 (cf. Feller [6], p.175). Since

δ−1
T ε2

T →∞ as T →∞
by the condition (4.2), it follows that

(4.13) sup
θ∈Θ

Pθ[I
−1
T |θ̂T − θ| ≥ d] ≤ cε1/2

T + 2 sup
θ∈Θ

Pθ[|δT < R >T −1| ≥ εT ]
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for some constant c > 0 and the last term is of the order O(ε
1/2
T ) by the condition (4.3).

This proves Theorem 4.4. �
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