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B. RASHYTOV

POWER MOMENTS OF FIRST PASSAGE TIMES FOR SOME

OSCILLATING PERTURBED RANDOM WALKS

Let (ξ1, η1), (ξ2, η2), . . . be a sequence of i.i.d. random vectors taking values in R2,

and let S0 := 0 and Sn := ξ1 + . . .+ . . . ξn for n ∈ N. The sequence (Sn−1 + ηn)n∈N
is then called perturbed random walk. For real x, denote by τ(x) the first time the

perturbed random walk exits the interval (−∞, x]. We consider a rather intricate

case in which Sn drifts to the left, yet the perturbed random walk oscillates because
of occasional big jumps to the right of the perturbating sequence (ηn)n∈N. Under

these assumptions we provide necessary and sufficient conditions for the finiteness of

power moments of τ(x), thereby solving an open problem posed by Alsmeyer, Iksanov
and Meiners in [2].

1. Introduction and main result

Let (ξk, ηk)k∈N be a sequence of i.i.d. two-dimensional random vectors with generic
copy (ξ, η). No condition is imposed on the dependence structure between ξ and η. Let
(Sn)n∈N0 be the zero-delayed ordinary random walk with increments ξn for n ∈ N, that
is, S0 := 0 and Sn := ξ1 + . . .+ ξn for n ∈ N. Then define its perturbed variant (Tn)n∈N,
that we call perturbed random walk (PRW), by

(1) Tn := Sn−1 + ηn, n ∈ N.

Numerous applications of the PRW can be found in [2] and [4].
For x ∈ R, define the first passage time into (x,∞)

τ(x) := inf{n ∈ N : Tn > x}.

The purpose of the present paper is to give necessary and sufficient conditions for the
finiteness of E(τ(x))p <∞ for p > 0 under the assumptions

(2) lim
n→∞

Sn = −∞ a.s. and

∫
(1,∞)

y

E(ξ− ∧ y)
dP{η ≤ y} =∞.

Although Sn drifts to −∞, the PRW oscillates (see Theorem 2.1 in [2]) because of
occasional extremely big jumps of the perturbating sequence (ηk)k∈N. Thus, we solve
(partially) a problem which remained open in the article [2].

Put m± := Eξ± := Emax(±ξ, 0) and, if m+ ∧ m− <∞, m := Eξ = m+ − m−. Note that
m ∈ [−∞, 0) by the first condition in (2).

Theorem 1.1. Let p > 0 and x ∈ R. Suppose that limt→∞ tP{η > t} = s ∈ [0,∞],
m ∈ [−∞, 0) and that at least one parameter s or m is finite. When s = 0, assume also
that the second condition in (2) holds. Then
(a) E(τ(x))p =∞ if s < −mp;

(b) E(τ(x))p <∞ if s > −mp (so that m > −∞) and Eξrp+1
− <∞ for some r > s/(s+mp)

(where s/(s+ mp) = 1 for s =∞).
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The finiteness of the moments of τ(x) is determined by the distribution tail of η
and the behavior in mean of the random walk (Sn)n∈N0

. When m > −∞, a heuristic
argument suggests replacing at the first step Sn with nm and then use Lemma 2.1 given
below. In this way one anticipates a result that may be expected in the general situation
treated in Theorem 1.1. At the second step one has to find out what is the price to pay
for the replacement of Sn with nm. Our assumption Eξrp+1

− < ∞ takes care of such a
replacement. However, we do not know whether this condition is indeed necessary, nor
what happens if s > −mp and Eξq− =∞ for q > 1 sufficiently close to 1.

After giving several auxiliary results in Section 2 we prove Theorem 1.1 in Section 3.

2. Auxiliary results

The problem of finiteness of E(τ(x))p < ∞ which is relatively simple when the
distribution of ξ is degenerate at some −c for c > 0 is solved in Lemma 2.1. In-
deed, it will be shown in the proof of Theorem 1.1 that the convergence of the series∑
n≥1 n

p−1P{max1≤k≤n(−c(k − 1) + ηk) ≤ x} is equivalent to E(τ(x))p < ∞, where

τ(x) = inf{n ∈ N : −c(n − 1) + ηn > x} for x ∈ R. Thus, to prove Theorem 1.1 in
full generality we have to be able to cope with complications stemming from the genuine
randomness of ξ and a possible dependence of ξ and η.

Lemma 2.1. Let p > 0, c > 0 and x ∈ R. Suppose that limt→∞ tP{η > t} = s ∈ [0,∞],
and that Eη+ = ∞ when s = 0. Then the series

∑
n≥1 n

p−1P{max1≤k≤n(−c(k − 1) +

ηk) ≤ x} converges or diverges depending on whether s > cp or s < cp.

For the proof, see p. 34 in [2].

Lemma 2.2. Let σ be a stopping time for (ξk, ηk)k∈N of finite mean. Suppose that
limt→∞ tP{η > t} = s ∈ [0,∞]. Then

(3) lim
t→∞

tP{ max
1≤i≤σ

(Si−1 + ηi) > t} = sEσ,

where the right-hand side is equal to 0 if s = 0 and ∞ if s =∞.

See the proof of Lemma 5.1 in [1].

3. Proof of Theorem 1.1

Proof of (a). Assuming that s < −mp we intend to prove that E(τ(x))p = ∞ for all
x ∈ R which is equivalent to∑

n≥1

np−1P{ max
1≤k≤n

(Sk−1 + ηk) ≤ x} =∞

because

E(τ(x))p =

∫
[0,∞)

ypdP{τ(x) ≤ y} = p

∫ ∞
0

yp−1P{τ(x) > y}dy

≥ p
∑
n≥2

min((n− 1)p−1, np−1)P{τ(x) > n}

= p
∑
n≥2

min((n− 1)p−1, np−1)P{ max
1≤k≤n

(Sk−1 + ηk) ≤ x}

and

E(τ(x))p = p

∫ ∞
0

yp−1P{τ(x) > y}dy

≤ p
(

1 +
∑
n≥1

max((n+ 1)p−1, np−1)P{ max
1≤k≤n

(Sk−1 + ηk) ≤ x}
)
.
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For c > 0, set

κ0(c) := 0, κn(c) := inf{j > κn−1(c) : Sj < Sκn−1(c) − c}, n ∈ N,

and κ(c) := κ1(c). Define

(ξ∗n, η
∗
n) :=

(
Sκn(c) − Sκn−1(c), max

κn−1(c)+1≤i≤κn(c)
(Si−1 − Sκn−1(c) + ηi)

)
, n ∈ N

and observe that the just introduced random vectors are independent copies of

(Sκ(c), max
1≤i≤κ(c)

(Si−1 + ηi)).

Furthermore,

(4) max
1≤i≤κn(c)

(Si−1 + ηi) = max
1≤j≤n

(S∗j−1 + η∗j ) ≤ max
1≤j≤n

(−c(j − 1) + η∗j ),

where S∗0 := 0, and S∗n := ξ∗1 + . . .+ ξ∗n = Sκn(c) for n ∈ N.
Hence using the inequalities κn(c) ≥ n a.s. for n ∈ N and then (4) we obtain∑
n≥1

np−1P{ max
1≤i≤n

(Si−1 + ηi) ≤ x} ≥
∑
n≥1

np−1P{ max
1≤i≤κn(c)

(Si−1 + ηi) ≤ x}

≥
∑
n≥1

np−1P{ max
1≤j≤n

(−c(j − 1) + η∗j ) ≤ x}.

Since limn→∞ Sn = −∞ a.s., we conclude that Eκ(c) < ∞. Therefore, an appeal to
Lemma 2.2 yields

lim
t→∞

tP{η∗1 > t} = lim
t→∞

tP{ max
1≤i≤κ(c)

(Si−1 + ηi) > t} = sEκ(c) <∞.

By Lemma 2.1 the last series diverges if we can find c such that sEκ(c) < cp. This
holds for any c > 0 if s = 0. If s ∈ (0,∞), then this holds for large enough c because
limc→∞ c−1Eκ(c) = (−m)−1 if m > −∞ and = 0 if m = −∞ by the elementary renewal
theorem. This completes the proof of part (a).
Proof of (b). Suppose now that s ∈ (−mp,∞) (so that necessarily m is finite) and

that Eξrp+1
− < ∞ for some r > s/(s + mp). Pick δ1 ∈ (0, s) and δ2 > 0 such that

r > (s− δ1)/(s− δ1 + (m− δ2)p). To ease the notation we shall write µ for −m + δ2 and
ν for s− δ1. In particular, the last inequality reads

(5) r > ν/(ν − µp).

Set

N := sup{n ∈ N0 : Sn + µn ≤ 0}.

Since limn→∞(Sn + µn) = limn→∞((Sn − mn) + δ2n) = +∞ a.s. we infer N < ∞ a.s.

Furthermore, Eξrp+1
− <∞ entails ENrp <∞ by Theorem 1 in [3]. Noting that

max
0≤i≤n−1

(Si + ηi+1) ≥ max
N+1≤i≤n−1

(Si + ηi+1) ≥ max
[n1/r]≤i≤n−1

(−µi+ ηi+1)
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on the event {N ≤ [n1/r]− 1} (observe that r > 1) we obtain∑
n≥1

np−1P{ max
0≤i≤n−1

(Si + ηi+1) ≤ x}

=
∑
n≥1

np−1P{ max
0≤i≤n−1

(Si + ηi+1) ≤ x,N ≤ [n1/r]− 1}

+
∑
n≥1

np−1P{ max
0≤i≤n−1

(Si + ηi+1) ≤ x,N > [n1/r]− 1}

≤
∑
n≥1

np−1P{ max
[n1/r]≤i≤n−1

(−µi+ ηi+1) ≤ x}

+
∑
n≥1

np−1P{N > [n1/r]− 1}.

The last series converges in view of

∞ > ENrp =

∫
[0,∞)

ypdP{Nr ≤ y} = p

∫ ∞
0

yp−1P{Nr > y}dy

= p

∫ ∞
0

yp−1P{N > y1/r}dy ≥ p
∑
n≥1

np−1P{N > n1/r}.

Denote by F (x) := P{η ≤ x} the distribution function of η. Fix x ∈ R. The assump-
tion limt→∞ t(1− F (t)) = s ∈ (0,∞) implies that

(6) µi(1− F (x+ µi)) ≥ ν
and thereupon

F (x+ µi) ≤ 1− ν/(µi) ≤ C(1− i−1)ν/µ

for all i large enough, say i ≥ n0, and an appropriate constant C > 1 when ν/µ ∈ (0, 1)
and C = 1 when ν/µ ≥ 1. Hence,∑

n≥n0

np−1P{ max
[n1/r]≤i≤n−1

(−µi+ ηi+1) ≤ x} =
∑
n≥n0

np−1
n−1∏

i=[n1/r]

F (x+ µi)

≤ C
∑
n≥n0

np−1
n−1∏

i=[n1/r]

(1− i−1)ν/µ

= C
∑
n≥n0

np−1
( [n1/r]− 1

n− 1

)ν/µ
.

Since np−1
(

[n1/r]−1
n−1

)ν/µ
∼ n−((1−1/r)ν/µ)+p−1 as n → ∞, and the exponent −((1 −

1/r)ν/µ) + p − 1 is smaller than −1 in view of (5) the last series converges. The proof
of part (b) in the case s <∞ is complete.

If limt→∞ t(1− F (t)) =∞ we first set µ = −m + δ2 for any δ2 > 0 and then choose ν
in (6) large enough to ensure (1− 1/r)ν/µ > p. The proof of Theorem 1.1 is complete.
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Faculty of Computer Science and Cybernetics, Taras Shevchenko National University of

Kyiv, 01601, Kyiv, Ukraine

E-mail address: rashitov b@ukr.net


