Theory of Stochastic Processes
Vol. 23 (39), no. 1, 2018, pp. 93-97

B. RASHYTOV

POWER MOMENTS OF FIRST PASSAGE TIMES FOR SOME
OSCILLATING PERTURBED RANDOM WALKS

Let (€1,m1), (€2,7m2), ... be a sequence of i.i.d. random vectors taking values in R?,
and let Sop :=0and Sy :=& +...+...& for n € N. The sequence (Sp—1 + Mn)nen
is then called perturbed random walk. For real z, denote by 7(x) the first time the
perturbed random walk exits the interval (—oco,z]. We consider a rather intricate
case in which S, drifts to the left, yet the perturbed random walk oscillates because
of occasional big jumps to the right of the perturbating sequence (nn)nen. Under
these assumptions we provide necessary and sufficient conditions for the finiteness of
power moments of 7(x), thereby solving an open problem posed by Alsmeyer, Iksanov
and Meiners in [2].

1. INTRODUCTION AND MAIN RESULT

Let (&k, Mk )ken be a sequence of i.i.d. two-dimensional random vectors with generic
copy (&,m). No condition is imposed on the dependence structure between ¢ and 1. Let
(Sn)nen, be the zero-delayed ordinary random walk with increments &, for n € N, that
is, Sp:=0and S, :=& +...+&, for n € N. Then define its perturbed variant (7,)nen,
that we call perturbed random walk (PRW), by

(1) T, :=5,-1+m, neN

Numerous applications of the PRW can be found in [2] and [4].
For x € R, define the first passage time into (z, 00)

7(z) :=inf{n e N: T,, > z}.

The purpose of the present paper is to give necessary and sufficient conditions for the
finiteness of E(7(x))? < oo for p > 0 under the assumptions

(2) lim S, = —c0 a.s. and / Ld?{n <y} =oo.
(

n—oo 1,00) E’(f_ A y)
Although S, drifts to —oo, the PRW oscillates (see Theorem 2.1 in [2]) because of
occasional extremely big jumps of the perturbating sequence (nx)ren. Thus, we solve
(partially) a problem which remained open in the article [2].
Put m* := E¢y := Emax(££,0) and, if nt Am™ < 0o, m := E¢ = m* —m~. Note that
m € [—00,0) by the first condition in (2).

Theorem 1.1. Let p > 0 and © € R. Suppose that lim;_,, tP{n > t} = s € [0, 00,
m € [—00,0) and that at least one parameter s or m is finite. When s = 0, assume also
that the second condition in (2) holds. Then

(a) E(r(2))? = 00 if s < —mp;

(b) B(7(x))? < 0o if s > —mp (s0 thatm > —o0) and BE™P! < oo for some r > s/(s+mp)
(where s/(s+mp) =1 for s =00).
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The finiteness of the moments of 7(x) is determined by the distribution tail of 7
and the behavior in mean of the random walk (S,,)nen,- When m > —oo, a heuristic
argument suggests replacing at the first step S,, with nm and then use Lemma 2.1 given
below. In this way one anticipates a result that may be expected in the general situation
treated in Theorem 1.1. At the second step one has to find out what is the price to pay
for the replacement of S, with nm. Our assumption E£"™ 1 < o takes care of such a
replacement. However, we do not know whether this condition is indeed necessary, nor
what happens if s > —mp and E£? = oo for ¢ > 1 sufficiently close to 1.

After giving several auxiliary results in Section 2 we prove Theorem 1.1 in Section 3.

2. AUXILIARY RESULTS

The problem of finiteness of E(7(x))? < oo which is relatively simple when the
distribution of £ is degenerate at some —c for ¢ > 0 is solved in Lemma 2.1. In-
deed, it will be shown in the proof of Theorem 1.1 that the convergence of the series
3oy P P{maxi<p<n(—c(k — 1) + nx) < z} is equivalent to E(7(z))? < oo, where
7(z) = inf{n € N: —¢(n — 1) +n, > x} for € R. Thus, to prove Theorem 1.1 in
full generality we have to be able to cope with complications stemming from the genuine
randomness of ¢ and a possible dependence of ¢ and 7.

Lemma 2.1. Let p > 0, ¢ > 0 and € R. Suppose that lim;_, o tP{n >t} = s € [0, 00,
and that En™ = oo when s = 0. Then the series Y., <, n? "P{maxj<g<n(—c(k — 1) +
nk) < x} converges or diverges depending on whether s > cp or s < cp.

For the proof, see p. 34 in [2].

Lemma 2.2. Let o be a stopping time for ({k,nmr)ren of finite mean. Suppose that
limy_yo0 tP{n >t} = s € [0,00]. Then

(3) lim tP{ max (S;—1 +n;) >t} = sEo,

t—o0 1<i<o

where the right-hand side is equal to 0 if s =0 and oo if s = oco.
See the proof of Lemma 5.1 in [1].

3. PROOF OF THEOREM 1.1

PROOF OF (a). Assuming that s < —mp we intend to prove that E(7(z))? = oo for all
z € R which is equivalent to

p—1 < -
2P (S ) < ) = o

n>1
because
Be@y = [ vaer@ i =p [ R > v
0, 0o 0
> pY_ min((n— 1P, 0P YP{r(z) > n}
n>2
= pY min((n—1)""", n?"HP{ max (Sg-1 +m) < o}
n>2 - -
and

E(r@)y = p / TP r(a) > y)dy

p(1-+ D max((n+ 1P~ n?~B{ max (Sios + i) < o).

n>1

IN
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For ¢ > 0, set
ko(c) : =0, kn(c) :=inf{j > kp_1(c):5; < Su, ,(c)—c}, neN,
and k(c) := k1(c). Define

(5717 Wn) = (Snn(c) - Sn,L,I(c)v nn,l(c)rflagignn(c) (Si—l - Snnfl(c) + 771‘)), neN

and observe that the just introduced random vectors are independent copies of

(Sn(c)a max (Si,1 -|—777,))

1<i<k(c)
Furthermore,
. ) = * *) < —c(7 — *
(4) e (Si—1+mi) max. (Sj_1+m;) < gjagxn( c(j—1)+mn;),

where Sg := 0, and S}, :==&7 +... + &, = S, () for n € N.
Hence using the inequalities x,(c) > n a.s. for n € N and then (4) we obtain

p—1 . . p—1 . .
Zn P{lrg%xn(&,l +n) <a} > Zn P{ max (Si—1+m) <z}

n>1 n>1 1<i<kn(c)
> p—1 —c(j — ) <z}
> > n TP max (—e(j —1) + ;) < o}
n>1
Since lim, o S, = —oo a.s., we conclude that Ex(c) < oo. Therefore, an appeal to

Lemma 2.2 yields

flggo tP{ny >t} = tli)rgo tIP’{lSI?Sa’zc(C)(Si_l + ;) >t} = sEk(c) < 0.

By Lemma 2.1 the last series diverges if we can find ¢ such that sEx(c) < ¢p. This
holds for any ¢ > 0 if s = 0. If s € (0,00), then this holds for large enough ¢ because
lim, 0o ¢ 'Ek(c) = (—m)7 ! if m > —o0o and = 0 if m = —oo by the elementary renewal
theorem. This completes the proof of part (a).

PrOOF OF (b). Suppose now that s € (—mp,00) (so that necessarily m is finite) and
that B¢t < oo for some r > s/(s +mp). Pick &, € (0,s) and d, > 0 such that
r>(s—01)/(s— 1 + (m— d2)p). To ease the notation we shall write p for —m + d2 and
v for s — §;. In particular, the last inequality reads

() r>v/(v— pp).
Set
N :=sup{n € Ny : S,, + un < 0}.

Since limy, o0 (Sp + pn) = lim, 00 ((S, — mn) + d2n) = 400 a.s. we infer N < co a.s.
Furthermore, BT < 0o entails EN™ < oo by Theorem 1 in [3]. Noting that

. . > ) ) > o _
o Jmax | (Si +nig1) > N (Si +miy1) > Wﬁfg}én_l (—pi +nig1)
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on the event {N < [n'/"] — 1} (observe that r > 1) we obtain

p—1 ) ) <
Z n P{Oglglgaf_l (Si +miy1) <z}

n>1
_ p—1 . ) 1/r
= Zn P{O<rln<ai<_l (Si+1ni+1) <z,N <[n/"] -1}
n>1 ==
p—1 ) . < 1/rm _
+ ;n P{ogr?gafq (S;i +nix1) <z,N >[n/"] -1}

< nP=1ip max — i+ m; <
< DR e (Cpit ) < 2}

+ ) PPN > [n!/7] - 1}
n>1

The last series converges in view of

oo>EN”’:/

yPdP{N" < y} =p/ yPTIP{NT > y}dy
[0, 00) 0

= p/ YIP{N > ¢y > p > T IP{N >0l
0

n>1
Denote by F(z) := P{n < z} the distribution function of n. Fix € R. The assump-
tion limy_, t(1 — F(t)) = s € (0,00) implies that
(6) pill = Flo+ pi)) > v
and thereupon
F(z+pi) <1—v/(ui) <C(1—i~")"/*

for all ¢ large enough, say ¢ > ng, and an appropriate constant C' > 1 when v/u € (0,1)
and C' =1 when v/u > 1. Hence,

n—1
p-lp —pi 4+ 1mig1) < = p-1 F j
S max  (pitmen) <o) = 3wt [ Pl

r1<i<n-—1

n>no n>mno i=[nl/7]
n—1
< C Z nP~1 H (1— i by/m
n>ng i=[nl/7]
_ Ur] —1y\v/u
= Cznp 1([nnj1 ) -

n>ngo

[nl/r]il V/M

— ~ n(A=1/Mv/W+p=1 a5 5 — 00, and the exponent —((1 —

Since nP~! (

1/r)v/p) +p — 1 is smaller than —1 in view of (5) the last series converges. The proof
of part (b) in the case s < oo is complete.

If limy o0 t(1 — F(t)) = 0o we first set yu = —m + 02 for any do > 0 and then choose v
in (6) large enough to ensure (1 — 1/r)v/u > p. The proof of Theorem 1.1 is complete.
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