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TRANSPORTATION COSTS FOR OPTIMAL AND TRIANGULAR

TRANSFORMATIONS OF GAUSSIAN MEASURES

We study connections between transportation costs (with the quadratic Kantorovich

distance) for Monge optimal mappings and increasing triangular mappings between

Gaussian measures. We show that the second cost cannot be estimated by the first
cost with a dimension-free coefficient, but under certain restrictions a comparison is

possible.

Many results of the theory of extremal problems, measure theory and nonlinear analy-
sis are closely connected with the problem of transforming one given measure into another
by means of mappings from some special classes. Widely used classes of this type consist
of monotone mappings (gradients of convex functions) and triangular mappings. Gradi-
ents of convex functions arise as optimal transformations in the Monge transportation
problem. The goal of this paper is to compare transportation costs for optimal and
triangular transformations of Gaussian measures.

A mapping T = (T1, . . . , Tn) : Rn → Rn is called triangular if T1 is a function of x1,
T2 is a function of (x1, x2), T3 is a function of (x1, x2, x3) and so on: Ti is a function
of (x1, x2, . . . , xi). A triangular mapping T is called increasing if every component Ti is
increasing with respect to the variable xi; we do not require monotonicity with respect
to other variables. A measurable increasing triangular mapping is sometimes called
canonical; the existence and uniqueness theorems are known for such (finite-dimensional)
mappings under broad assumptions (see [3], [4], [8], [9]). The term “triangular mapping”
is explained by the fact that for such differentiable mappings the Jacobi matrix has a
triangular form. An obvious advantage of triangular mappings is their constructiveness,
the possibility to obtain explicit (although cumbersome) formulas. Another advantage of
the class of triangular mappings is that it is closed under compositions, unlike the class
of optimal mappings.

Another important class of mappings is provided by the Monge–Kantorovich optimal
transportation problem (see [1], [7], [14], [22], [28], [29]). Let X be a measurable space
with two measures γ and µ defined on it, and let c(x, y) be a nonnegative measurable
function on X ×X (it is called a cost function). The Kantorovich problem for the cost
function c is to minimize the transportation cost

K(ν) =

∫
X×X

c(x1, x2) ν(dx1dx2)

over all measures ν on X × X with marginals γ and µ. If X is a metric space with a
metric d, the quadratic Kantorovich–Rubinstein distance (see [3], [5]) between γ and µ
is defined using the functional K(ν) with the cost function c(x, y) = d(x, y)2:

W2(γ, µ) = inf

[∫
X×X

d(x1, x2)2ν(dx1dx2)

]1/2
,
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where the infimum is taken over all measures ν on X×X with marginals γ and µ on the
first and second factors, respectively.

In many particular cases there exists a mapping T : X → X, called an optimal map-
ping, such that µ = γ ◦ T−1 and

W2(γ, µ)2 =

∫
X

d(x, T (x))2 γ(dx).

This mapping is said to be a solution of the Monge problem of minimization of the
integral ∫

X

d(x, T (x))2 γ(dx)

(called the transportation cost for T ) in the class of Borel mappings taking γ to µ
(actually, the classical Monge problem, as well as the Kantorovich problem [17], deals
with the distance cost function d(x, y), not with its square, but the squared distance leads
to much more regular solutions). Under broad assumptions such mappings are unique.
In particular, for any two absolutely continuous probability measures ρ1dx and ρ2dx
on the space X = Rn there is an optimal transportation T of ρ1dx into ρ2dx which is
ρ1dx-unique and has the form T = ∇Ψ, where Ψ is a convex function satisfying the
Monge–Ampére equation

ρ2(∇Ψ) detD2Ψ = ρ1.

Suppose that the measure µ is absolutely continuous with respect to the measure γ.
The entropy Entγ(µ) is defined by

Entγ(µ) = Entγ(ρ) =

∫
X

ρ log ρ dγ,

where ρ = dµ/dγ is the Radon–Nikodym density of µ with respect to γ.
It was shown by Talagrand [27] that for the standard Gaussian measure γ on Rn and

any probability measure µ � γ with finite entropy Entγ(µ) there exists an increasing
triangular mapping T such that µ = γ ◦ T−1 and∫

Rn

|T (x)− x|2 γ(dx) ≤ 2 Entγ(µ).

The same inequality holds for the optimal mapping (see [6], [19], [20]), so it is natural to
compare the values of the Monge transportation costs for these two classes of mappings.
We do this for Gaussian measures µ. Let us mention the papers [25], [26] concerned with
the quadratic Kantorovich distance in the class of Gaussian measures (see also [21], [23],
[24] on the Riemmannian geometry of Gaussian distributions).

We investigate how great can the difference be between the quantity∫
Rn

|T (x)− x|2 γ(dx)

for the canonical triangular mapping T and the quantity∫
Rn

|T0(x)− x|2 γ(dx)

for the optimal mapping T0.
It turns out that these quantities are comparable only if the corresponding measures

and mappings satisfy quite narrow restrictions. In particular, even for linear images of
the standard Gaussian measure the best possible constant K in the estimate

(1)

∫
Rn

|T (x)− x|2 γ(dx) ≤ K
∫
Rn

|T0(x)− x|2 γ(dx)
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is increasing to infinity when the dimension n increases. However, a dimension-free
estimate holds if the eigenvalues of the covariance matrix of the image measure belong
to [1/2, 3/2].

We employ the following fact about centered Gaussian measures.

Lemma 1. Let γ and µ be two centered nondegenerate Gaussian measures on Rn. Then
the optimal mapping T0 that transforms γ into µ is linear and the canonical triangular
mapping T of γ into µ is also linear.

Proof. First we prove that T0 is linear. It is known (see [28]) that it is unique γ-almost
everywhere and has the form T0 = ∇Ψ for some convex function Ψ: Rn → R. Hence
it suffices to construct a linear operator with a symmetric matrix which transforms γ
into µ (this operator will be the gradient of a quadratic form).

The measures γ and µ are defined by their Fourier transforms ϕγ and ϕµ, respec-
tively (see [2]), given by

ϕγ(x) = exp

(
− (Mx, x)

2

)
, ϕµ(x) = exp

(
− (Nx, x)

2

)
,

where the symmetric and positive definite matrices M and N are the covariance matrices
of the measures γ and µ, respectively. Given two symmetric positive definite matrices
M and N , one can find a positive symmetric matrix A such that N = AMA (which is
called the Riccati matrix equation): the solution is

A = M−1/2
(
M1/2NM1/2

)1/2
M−1/2.

Indeed, substituting A into the required equality we obtain

AMA =

(
M−1/2

(
M1/2NM1/2

)1/2
M−1/2

)
×

×
(
M1/2M1/2

)(
M−1/2

(
M1/2NM1/2

)1/2
M−1/2

)
= M−1/2

(
M1/2NM1/2

)1/2(
M1/2NM1/2

)1/2
M−1/2

= M−1/2M1/2NM1/2M−1/2 = N.

Due to the symmetry of the matrix A the corresponding linear mapping is the gradient of
the quadratic form 2−1(Ax, x). On the other hand, γ is transformed into µ by the linear
operator with the matrix A. It follows from the uniqueness of the gradient defining the
optimal map that this linear operator is optimal.

Let us now construct a linear triangular mapping T . There exists a lower triangular
matrix D such that N = DMDT . Indeed, we can apply the Cholesky decomposition for
the positive symmetric matrices M and N (see [16]):

M = BBT and N = CCT ,

where B and C are lower triangular matrices with positive elements on the diagonal.
The required matrix is D = CB−1. The class of positive lower triangular matrices is a
group, so the matrix D is lower triangular. It is shown in the following equality that the
linear operator T defined by the matrix D transforms the measure γ into the measure µ:

DMDT =
(
CB−1

)(
BBT

)(
CB−1

)T
= CB−1BBT

(
B−1

)T
CT = CCT = N.

The mapping T is triangular, hence it is the unique canonical triangular mapping trans-
forming γ into µ. �

We now obtain some preliminary estimate for the coefficient K in (1).
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Theorem 1. Let γ be the standard Gaussian measure on Rn and let M be a positive
definite matrix with eigenvalues µi such that its determinant is equal to 1. Then there is
an orthonormal basis in Rn such that the centered Gaussian measure µ with the covari-
ance M in this new basis has the following property: for the optimal linear mapping T0
that transforms γ into µ (which is

√
M in this basis) and for the canonical triangular

transformation T of γ to µ (with respect to the new basis) one has

(2) K ≥ 1 + 2

∑n
i=1(λi − 1)∑n
i=1(λi − 1)2

,

where the numbers λi are all eigenvalues of the matrix A of the mapping T0 in the
standard basis, i.e., λi =

√
µi.

Proof. The optimal mapping T0 is linear by Lemma 1. The corresponding matrix is
A =

√
M . Of course, it is diagonal in some basis, but it can fail to be triangular in the

standard basis. It follows that

(3)

n∑
i,j=1

a2ij = trM.

Let us consider the matrix M . We shall construct a sequence of orthogonal operators
transforming it to a form where all principal minors are equal to 1. There exists an
orthogonal matrix U which reduces the matrix M to the diagonal form

U−1


µ1 0 . . . 0
0 µ2 0
...

. . .

0 0 µn

U = M, U−1 = UT .

Without loss of generality we can assume that all diagonal elements µi are different
from 1 for i = 1, . . . , n and the product of any subset of these elements is different from 1
except for the product µ1µ2 . . . µn. Otherwise we apply the orthogonal transformations
described below to the corresponding subspaces.

Inductively we consider the rotations of the pairs of coordinate vectors reducing the
diagonal matrix to the form with unit principal minors. Without loss of generality
we assume that µ1 > 1 > µn (which can always be obtained by the permutation of
coordinate vectors taking for µ1 and µn the maximal and the minimal values among
all µi, respectively). The rotation in the (x1, xn)-plane by the angle ϕ leads to


cosϕ 0 . . . 0 sinϕ

0 1 0 0
...

. . .
...

0 0 1 0
− sinϕ 0 . . . 0 cosϕ




µ1 0 . . . 0 0
0 µ2 0 0
...

. . .
...

0 0 µn−1 0
0 0 . . . 0 µn

×

×


cosϕ 0 . . . 0 − sinϕ

0 1 0 0
...

. . .
...

0 0 1 0
sinϕ 0 . . . 0 cosϕ

 .
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After multiplication we have
µ1 cos2 ϕ+ µn sin2 ϕ 0 . . . 0 (µn − µ1) sinϕ cosϕ

0 µ2 0 0
...

. . .
...

0 0 µn−1 0
(µn − µ1) sinϕ cosϕ 0 . . . 0 µ1 sin2 ϕ+ µn cos2 ϕ

 .

For the equality µ1 cos2 ϕ+ µn sin2 ϕ = 1 we see that it is sufficient to take

tgϕ =

√
µ1 − 1

1− µn
.

Let now the first i − 1 principal minors of the covariance matrix be equal to 1. By a
suitable permutation of coordinate vectors we obtain µi > 1 > µ1 . . . µi−1µn or µi < 1 <
µ1 . . . µi−1µn. Rotating in the (xi, xn) plain we have (µ̃ is the element in the lower right
angle of the matrix calculated after all previous rotations)

1 0 0 0
. . .

...
...

0 1 0 0
0 . . . 0 cosϕ sinϕ
0 . . . 0 − sinϕ cosϕ




m11 . . . m1,i−1 0 m1n

...
. . .

...
...

...
m1,i−1 . . . mi−1,i−1 0 mi−1,n

0 . . . 0 µi 0
m1n . . . mi−1,n 0 µ̃

×

×


1 0 0 0

. . .
...

...
0 1 0 0
0 . . . 0 cosϕ − sinϕ
0 . . . 0 sinϕ cosϕ

 ,

which can be written as
m11 . . . m1,i−1 m1n sinϕ m1n cosϕ

...
. . .

...
...

...
m1,i−1 . . . mi−1,i−1 mi−1,n sinϕ mi−1,n cosϕ

m1n sinϕ . . . mi−1,n sinϕ µi cos2 ϕ+ µ̃ sin2 ϕ (µ̃− µi) sinϕ cosϕ
m1n cosϕ . . . mi−1,n cosϕ (µ̃− µi) sinϕ cosϕ µi sin2 ϕ+ µ̃ cos2 ϕ

 .

The variables xi+1, . . . , xn−1 that are not employed in rotations are omitted in this
formula.

We need ϕ such that the following determinant is equal to 1:

D =

∣∣∣∣∣∣∣∣∣
m11 . . . m1,i−1 m1n sinϕ

...
. . .

...
...

m1,i−1 . . . mi−1,i−1 mi−1,n sinϕ
m1n sinϕ . . . mi−1,n sinϕ µi cos2 ϕ+ µ̃ sin2 ϕ

∣∣∣∣∣∣∣∣∣ .
Under the inductive hypothesis, the principal minor Mi−1 of order (i − 1) × (i − 1) is
equal to 1. The minor corresponding to the subspace (x1, . . . , xi−1, xn) is invariant under
all considered rotations, therefore, the following equality holds:∣∣∣∣∣∣∣∣∣

m11 . . . m1,i−1 m1n

...
. . .

...
...

m1,i−1 . . . mi−1,i−1 mi−1,n
m1n . . . mi−1,n µ̃

∣∣∣∣∣∣∣∣∣ = µ1 · · ·µi−1µn.
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We expand the obtained determinant along the last row:

µ1 · · ·µi−1µn = µ̃Mi−1 +

i−1∑
k=1

mknMi−1,k = µ̃+

i−1∑
k=1

mknMi−1,k,

where Mi−1,k are the adjugate minors of order (i − 1) × (i − 1) with the corresponding
signs. We expand the determinant D along the last row as well:

D = (µi cos2 ϕ+ µ̃ sin2 ϕ)Mi−1 +

i−1∑
k=1

(mkn sinϕ)(Mi−1,k sinϕ)

= µi cos2 ϕ+
(
µ̃+

i−1∑
k=1

mknMi−1,k

)
sin2 ϕ = µi cos2 ϕ+ µ1 · · ·µi−1µn sin2 ϕ.

Similarly to the very first rotation we take

tgϕ =

√
µi − 1

1− µ1 · · ·µi−1µn
.

Eventually we obtain the matrix M with unit principal minors and an orthogonal basis
in which this matrix has this form.

By Lemma 1 the canonical triangular transformation of the standard Gaussian mea-
sure γ into the measure µ (with respect to the obtained orthogonal basis) is a linear
operator T defined by a lower triangular matrix B in the obtained orthogonal basis, B
has positive elements on the diagonal and

(4) M = BBT and trM =

n∑
i,j=1

b2ij .

We prove that all diagonal elements of B are equal to 1. Let us express them through
the principal minors of M . The matrix B has the form

B =


b11 0 . . . 0
b12 b22 . . . 0
. . . . . . . . . . . .
b1n b2n . . . bnn

 .

We denote its principal (i× i)-minor by Bi. According to (4), the principle minor Mi of
the matrix M is equal to the determinant of the following matrix product:

b11 0 . . . 0
b12 b22 . . . 0
. . . . . . . . . . . .
b1i b2i . . . bii




b11 b12 . . . b1i
0 b22 . . . b2i
. . . . . . . . . . . .
0 0 . . . bii

 ,

hence Mi = B2
i . Since B is lower triangular, Bi is equal to the product of its diagonal

elements, so the following equalities hold:

M1 = b211, M2 = b211b
2
22, . . . , Mn = |M | = b211 · · · b2nn.

Hence the diagonal elements of the matrix B are represented as follows:

b11 =
√
M1, b22 =

√
M2√
M1

, . . . , bnn =

√
Mn√
Mn−1

.

All Mi are equal to 1, therefore,

b11 = b22 = · · · = bnn = 1.
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Thus, we have a basis in which both linear operators T0 and T are represented by the
matrices A and B, respectively, and B has unit diagonal elements. Estimate (1) takes
the form

(5)

∫
Rn

|Bx− x|2 γ(dx) ≤ K
∫
Rn

|Ax− x|2 γ(dx).

Let us calculate the value of the transportation cost for an arbitrary linear operator
represented by a matrix C in some orthogonal basis of the space Rn:∫

Rn

|Cx− x|2 γ(dx) = tr(CTC)− 2 trC + n =

n∑
i,j=1

c2ij − 2

n∑
i=1

cii + n.

Given (3) and (4), let us calculate the values of the transportation cost for the mappings
T and T0: ∫

Rn

|Ax− x|2 γ(dx) = trM − 2 trA+ n,∫
Rn

|Bx− x|2 γ(dx) = trM − 2 trB + n = trM − n.

It is worth noting that the first formula with A =
√
M is a particular case of a more

general formula for the quadratic Kantorovich–Rubinstein distance between two arbitrary
Gaussian measures on Rn (see [15] and [12]). It will be important below that this formula
and the first equality in the second formula hold for arbitrary linear operators taking γ
to µ, but the optimal mapping has the maximal trace among such operators.

Substituting the obtained values into (5), we arrive at the following estimate for the
constant K:

(6) K ≥ trM − 2 trB + n

trM − 2 trA+ n
=

trM − n
trM − 2 trA+ n

= 1 + 2
trA− n

trM − 2 trA+ n
.

Since the trace of a matrix is invariant under orthogonal changes of variables, we cal-
culate the traces in the orthogonal basis in which A has a diagonal form with eigenval-
ues λ1, . . . , λn on the diagonal. Then

trA =

n∑
i=1

λi, trM = tr(A2) =

n∑
i=1

λ2i .

Substituting into (6) we have

K ≥ 1 + 2

∑n
i=1 λi − n∑n

i=1 λ
2
i − 2

∑n
i=1 λi + n

= 1 + 2

∑n
i=1(λi − 1)∑n
i=1(λi − 1)2

,

as announced. �

Let now µ be the centered Gaussian measure with a nondegenerate covariance ma-
trix M . One can obtain this measure from the centered Gaussian measure µ1 with a
covariance matrix M1 such that detM1 = 1. It is sufficient to multiply all the elements
of M by |M |−1/n and take the resulting matrix for M1. Then µ1 is transformed into µ
by the homothety with the ratio α = (detM)1/(2n). We now use Theorem 1 and the
orthogonal basis constructed there. The linear optimal mapping transforming γ into µ1

is given by the symmetric matrix A1 with unit determinant defined by A2
1 = M1. The

matrix A obtained by multiplying all the elements of A1 by α is also symmetric and
satisfies the equality A2 = M , so A is the matrix of the optimal mapping of γ into µ (the
proof of this statement replicates the corresponding part of Lemma 1). The canonical
triangular mapping of γ into µ1 is given by a lower triangular matrix B1 in the con-
structed orthogonal basis. Then we multiply all the elements of B1 by α and obtain
the matrix of the canonical triangular mapping that transforms γ into µ. The trace of
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this matrix is equal to nα. The traces of the matrices A and M are represented by the
eigenvalues λ1, . . . , λn of the matrix A1 as follows:

trA = α

n∑
i=1

λi, trM = α2
n∑
i=1

λ2i .

We substitute these expressions into (6) for the coefficient K:

(7) K ≥ 1 + 2
trA− trB

trM − 2 trA+ n
= 1 + 2

∑n
i=1 αλi − nα∑n

i=1(αλi)2 − 2
∑n
i=1 αλi + n

= 1 + 2
α
∑n
i=1(λi − 1)∑n

i=1(αλi − 1)2
.

In the next theorem we investigate the possible values of the expression in (7) and find
a lower bound for the coefficient K. We also show that K is increasing to infinity when n
increases. Thus, this theorem implies that in the general case the triangular mapping
and the Monge optimal mapping are not comparable for the considered cost function.
Before proving this result, let us observe that if ‖M‖ ≥ 4, then for an arbitrary linear
operator L transforming the standard Gaussian measure γ on Rn to the measure with
covariance M we have∫

Rn

|Lx− x|2 γ(dx) ≤ (5n+ 4)

∫
Rn

|T0x− x|2 γ(dx),

where T0 =
√
M is the optimal mapping. Indeed, we know that the left-hand side equals

trM − 2 trL + n and LTL = M , so ‖L‖2 = ‖M‖. Then 2| trL| ≤ 2n‖M‖1/2 and the
left-hand side does not exceed trM+2n‖M‖1/2+n, which is estimated by the right-hand
side, since M1/2 − I ≥ 2−1M1/2 and ‖M‖1/2 ≤ trM/2.

On the other hand, let γ be the same standard Gaussian measure on Rn and let µ
be the centered Gaussian measure whose covariance matrix M has eigenvalues µ1, . . . µn.
Then the entropy equals∫

ρ log ρ dγ =

∫
log ρ dµ = 2−1

n∑
i=1

(µi − 1− logµi),

where ρ = dµ/dγ. Indeed, we can assume that M is diagonal, then

log ρ =

n∑
i=1

(−2−1 logµi + 2−1x2i (1− 1/µi),

where the integral of x2i with respect to µ equals µi. If |µi − 1| ≤ 1/2, then∫
ρ log ρ dγ ≤ 2

n∑
i=1

(µi − 1)2 ≤ 25

2

n∑
i=1

(µ
1/2
i − 1)2,

since (µi − 1)2 ≤ 25(µ
1/2
i − 1)2/4. On the right we have the cost of the optimal trans-

portation T0 = M1/2. Hence by the Talagrand inequality we obtain

(8)

∫
|Tx− x|2 γ(dx) ≤ 25

∫
|T0x− x|2 γ(dx) if ‖M − I‖ ≤ 1/2.

As we shall now see the bound on the norm of M is important.

Theorem 2. Let γ be the standard Gaussian measure on Rn. Suppose that K is a
constant such that the inequality∫

Rn

|T (x)− x|2 γ(dx) ≤ K
∫
Rn

|T0(x)− x|2 γ(dx)
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holds for every nondegenerate centered Gaussian measure µ on Rn for which T is the
canonical triangular mapping and T0 is the optimal mapping transforming γ into µ. Then

K ≥ n+
√
n2 − n.

Moreover, even if we consider only measures µ with the determninant of the covariance
matrix equal to 1, the coefficient K cannot be smaller than

√
n.

Proof. The last assertion follows directly from Theorem 1 by taking the matrix M such
that λi =

√
µi = 1 + n−1/2 for i = 1, . . . , n − 1 and λn =

√
µn = (1 + n−1/2)1−n. Note

that (1 + n−1/2)n =
(

(1 + n−1/2)n
1/2
)n1/2

= (e+ o(1))n
1/2

. Hence

n∑
i=1

(λi − 1) = (n− 1)n−1/2 − 1 + o(1),

n∑
i=1

(λi − 1)2 = (n− 1)n−1 + 1 + o(1),

so the ratio is n1/2 + o(1).
Let us show that in the general case the ratio can be even larger. We already know

that the mappings T0 and T are linear and their matrices A (which is positive definite)
and B satisfy the conditions

A2 = BBT = M,

where M is the covariance matrix of the measure µ. Let A1 be the matrix with unit
determinant obtained from the matrix A by dividing all its elements by the number α =
(detM)1/(2n). Then A1 is symmetric. Let λ1, . . . , λn be the eigenvalues of the matrix A1.
We maximize the quantity

(9) Fλ1,...,λn(α) =
α
∑n
i=1(λi − 1)∑n

i=1(αλi − 1)2

as the function of α with fixed λk, k = 1, . . . , n.
First we note that the case where all λi are equal is not meaningful, since if the

product of all numbers λi is equal to 1 (it is the determinant of A1), then λi = 1 for
all i = 1, . . . , n. Then the function (8) is undefined when α = 1, which is explained by
the fact that the measure γ is transformed into itself by the linear mapping with the
matrix A, so the optimal mapping is identical and the transportation cost equals 0. This
case is trivial.

Let us assume that there are at least two different λi, so the function Fλ1,...,λn
(α) is

defined and differentiable for all α > 0. Note that its limits as α → 0 and α → ∞ are
equal to 0, hence it is bounded on (0,+∞) and has an extremum on this interval. The
derivative has the form

(10) F ′λ1,...,λn
(α) =

(∑n
i=1(αλi − 1)2 − α

∑n
i=1 2λi(αλi − 1)

)∑n
i=1(λi − 1)(∑n

i=1(αλi − 1)2
)2 = 0.

Not all numbers λi are equal, hence

n∑
i=1

(λi − 1) =

n∑
i=1

λi − n > 0,

since we have

1

n

n∑
i=1

λi ≥
( n∏
i=1

λi

)1/n
= 1,

where the equality is only possible when all numbers λi are equal.
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Let us return to equation (9). After simplifications we obtain
n∑
i=1

(αλi − 1)2 − α
n∑
i=1

2λi(αλi − 1) =

n∑
i=1

(α2λ2i − 2αλi + 1− 2α2λ2i + 2αλi)

=

n∑
i=1

(1− α2λ2i ) = n− α2
n∑
i=1

λ2i = 0,

hence the expected extremum point is

α0 =

√
n√∑n
i=1 λ

2
i

.

The derivative F ′λ1,...,λn
(α) is positive if 0 < α < α0 and is negative if α > α0, therefore,

the maximum of Fλ1,...,λn
(α) over α > 0 with fixed λ1, . . . , λn is achieved when α = α0:

Fλ1,...,λn(α0) =

∑n
i=1(λi − 1)

α0

∑n
i=1 λ

2
i − 2

∑n
i=1 λi + n/α0

=

∑n
i=1(λi − 1)√

n
∑n
i=1 λ

2
i − 2

∑n
i=1 λi +

√
n
∑n
i=1 λ

2
i

=

∑n
i=1(λi − 1)

2
(√

n
∑n
i=1 λ

2
i −

∑n
i=1 λi

) .
Then estimate (7) takes the form

(11) K ≥ 1 + 2 ·
∑n
i=1 λi − n

2
(√

n
∑n
i=1 λ

2
i −

∑n
i=1 λi

) =

√
n
∑n
i=1 λ

2
i − n√

n
∑n
i=1 λ

2
i −

∑n
i=1 λi

.

We now consider the following special case. Let λ1 = · · · = λn−1 = λ, λn = λ1−n. Then
the right-hand side in (10) takes has the form√

n
∑n
i=1 λ

2
i − n√

n
∑n
i=1 λ

2
i −

∑n
i=1 λi

=

√
n(n− 1)λ2 + nλ2−2n − n√

n(n− 1)λ2 + nλ2−2n − (n− 1)λ− λ1−n

=

√
n(n− 1) + nλ−2n − nλ−1√

n(n− 1) + nλ−2n − (n− 1)− λ−n
.

Letting λ→∞, we obtain the limit√
n(n− 1)√

n(n− 1)− (n− 1)
=

√
n

√
n−
√
n− 1

= n+
√
n2 − n.

Inequality (10) holds for all λ, hence

K ≥ n+
√
n2 − n,

which completes the proof. �

Thus, for the linear images of the measure γ the coefficient K in the inequality∫
Rn

|T (x)− x|2 γ(dx) ≤ K
∫
Rn

|T0(x)− x|2 γ(dx)

has a lower bound n +
√
n2 − n, so it increases to infinity when n tends to infinity. In

addition, in the class of image measures with unit determinant of covariance matrices
the coefficient cannot be made smaller than n1/2.

This means that in the Monge problem for the linear images of Gaussian measures on
infinite-dimensional spaces with the cost function defined by the Euclidean distance the
value of the transportation cost for the triangular mapping cannot be estimated by the
minimal value with any constant (about infinite-dimensional Monge problems, see [7],
[10], [11], [13], [19]). However, some positive result holds. Let γ be the measure on the
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space R∞ of all sequences that is the countable power of the standard Gaussian measure
on the real line. Its Cameron–Martin space is the classical Hilbert space H = l2. For
Gaussian measures µ equivalent to γ it is natural to consider the Monge and Kantorovich
problems corresponding to the cost function |x − y|2H =

∑∞
i=1(xi − yi)2. It is known

(see [7]) that for µ equivalent to γ the cost is finite and there is a measurable linear
optimal operator T0 taling γ to µ and minimizing the value∫

|T0x− x|2H γ(dx).

A typical example of µ equivalent to γ is this: µ = γ ◦ A−1, where A = I + B and B is
the measurable linear operator with values H generated by a Hilbert–Schmidt operator
B0 : H → H with the Hilbert–Schmidt norm less than 1. The operator B is defined
by Bx =

∑∞
i=1 xiB0ei, where the series converges γ-almost everywhere (this converges

follows from the assumption that B0 is Hilbert–Schmidt). From the considered finite-
dimensional case and the known method of constructing triangular transformations in
infinite dimensions (see [9]) we obtain the following assertion.

Corollary 1. Suppose that the Hilbert–Schmidt norm of B0 does not exceed 1/2. Then
the measure µ = γ ◦ (I + B)−1 is equivalent to γ and has finite entropy, there is a
measurable linear triangular mapping T taking γ to µ and for the optimal operator T0
there holds estimate (8) along with Talagrand’s estimates of the integrals of |T0x − x|2H
and |Tx− x|2H by 2Entγ(µ).

Note that if |µi−1| < q, where q < 1, then (8) holds with another constant depending
on q.

This work has been supported by the Russian Science Foundation Grant 17-11-01058
at Lomonosov Moscow State University.
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21. M. Lovrić, M. Min-Oo, E.A. Ruh, Multivariate normal distributions parametrized as a Rie-

mannian symmetric space, J. Multivariate Anal. 74 (2000),no. 1, 36–48.

22. R.J. McCann, Existence and uniqueness of monotone measure-preserving maps, Duke Math.
J. 80 (1995), 309–323.

23. K. Modin, Geometry of matrix decompositions seen through optimal transport and information

geometry, J. Geom. Mech. 9 (2017), no. 3, 335–390.
24. L.T. Skovgaard, A Riemannian geometry of the multivariate normal model, Scand. J. Statist.

11 (1984), 211–223.
25. A. Takatsu, On Wasserstein geometry of Gaussian measures. In: Probabilistic approach to

geometry, pp. 463–472, Adv. Stud. Pure Math., 57, Math. Soc. Japan, Tokyo, 2010.

26. A. Takatsu, Wasserstein geometry of Gaussian measures, Osaka J. Math. 48 (2011), N 4,
1005–1026.

27. M. Talagrand, Transportation cost for Gaussian and other product measures, Geom. Funct.

Anal. 6 (1996), N 3, 587–600.
28. C. Villani, Topics in optimal transportation, Amer. Math. Soc., Providence, Rhode Island,

2003.

29. C. Villani, Optimal transport, old and new, Springer, New York, 2009.

Department of Mechanics and Mathematics, Moscow State University, Moscow 119991,

Russia

E-mail address: d.b.bukin@gmail.com

Russian Institute for Scientific and Technical Information, Usievicha 20, Moscow 125190,

Russia

E-mail address: ekrugo@mail.ru


