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DMITRY B. BUKIN AND ELENA P. KRUGOVA

TRANSPORTATION COSTS FOR OPTIMAL AND TRIANGULAR
TRANSFORMATIONS OF GAUSSIAN MEASURES

We study connections between transportation costs (with the quadratic Kantorovich
distance) for Monge optimal mappings and increasing triangular mappings between
Gaussian measures. We show that the second cost cannot be estimated by the first
cost with a dimension-free coefficient, but under certain restrictions a comparison is
possible.

Many results of the theory of extremal problems, measure theory and nonlinear analy-
sis are closely connected with the problem of transforming one given measure into another
by means of mappings from some special classes. Widely used classes of this type consist
of monotone mappings (gradients of convex functions) and triangular mappings. Gradi-
ents of convex functions arise as optimal transformations in the Monge transportation
problem. The goal of this paper is to compare transportation costs for optimal and
triangular transformations of Gaussian measures.

A mapping T = (T1,...,T,): R® — R" is called triangular if 7} is a function of 1,
T5 is a function of (z1,22), T3 is a function of (x1,22,23) and so on: T; is a function
of (z1,x2,...,2;). A triangular mapping T is called increasing if every component 7; is
increasing with respect to the variable x;; we do not require monotonicity with respect
to other variables. A measurable increasing triangular mapping is sometimes called
canonical; the existence and uniqueness theorems are known for such (finite-dimensional)
mappings under broad assumptions (see [3], [4], [8], [9]). The term “triangular mapping”
is explained by the fact that for such differentiable mappings the Jacobi matrix has a
triangular form. An obvious advantage of triangular mappings is their constructiveness,
the possibility to obtain explicit (although cumbersome) formulas. Another advantage of
the class of triangular mappings is that it is closed under compositions, unlike the class
of optimal mappings.

Another important class of mappings is provided by the Monge-Kantorovich optimal
transportation problem (see [1], [7], [14], [22], [28], [29]). Let X be a measurable space
with two measures v and p defined on it, and let ¢(z,y) be a nonnegative measurable
function on X x X (it is called a cost function). The Kantorovich problem for the cost
function c¢ is to minimize the transportation cost

IC(I/):/X Xc(arl,xg)u(dmldmg)

over all measures v on X x X with marginals v and p. If X is a metric space with a
metric d, the quadratic Kantorovich-Rubinstein distance (see [3], [5]) between v and p
is defined using the functional K(r) with the cost function c(z,y) = d(z, y)*:

1/2
Wa(v, 1) = inf [/ d(zq, ;vg)zu(dacldxg) ,
XxX
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where the infimum is taken over all measures v on X x X with marginals v and g on the
first and second factors, respectively.

In many particular cases there exists a mapping 7: X — X, called an optimal map-
ping, such that g =~ o7 ~! and

Wa(y, p)? = /X d(z, T(2))? (dz).

This mapping is said to be a solution of the Monge problem of minimization of the
integral

/ d(, ()% ~(dx)
X

(called the transportation cost for T') in the class of Borel mappings taking v to pu
(actually, the classical Monge problem, as well as the Kantorovich problem [17], deals
with the distance cost function d(z, y), not with its square, but the squared distance leads
to much more regular solutions). Under broad assumptions such mappings are unique.
In particular, for any two absolutely continuous probability measures p;dx and podx
on the space X = R"” there is an optimal transportation T' of p;dx into padx which is
prdz-unique and has the form T' = VW, where W is a convex function satisfying the
Monge—-Ampére equation
p2(V¥) det D>V = p;.

Suppose that the measure p is absolutely continuous with respect to the measure +.
The entropy Ent, () is defined by

Ent, (1) = Ent,(p) = /X plog pdy,

where p = du/dy is the Radon—Nikodym density of p with respect to .

It was shown by Talagrand [27] that for the standard Gaussian measure v on R™ and
any probability measure p < « with finite entropy Ent,(x) there exists an increasing
triangular mapping 7' such that g =y o T~! and

[ 17@) a2t < 2Ent, 1),

The same inequality holds for the optimal mapping (see [6], [19], [20]), so it is natural to
compare the values of the Monge transportation costs for these two classes of mappings.
We do this for Gaussian measures y. Let us mention the papers [25], [26] concerned with
the quadratic Kantorovich distance in the class of Gaussian measures (see also [21], [23],
[24] on the Riemmannian geometry of Gaussian distributions).

We investigate how great can the difference be between the quantity

[ 17@) - 2 5(de)

for the canonical triangular mapping 7" and the quantity

[ 1o(a) = o (a0

for the optimal mapping Tp.

It turns out that these quantities are comparable only if the corresponding measures
and mappings satisfy quite narrow restrictions. In particular, even for linear images of
the standard Gaussian measure the best possible constant K in the estimate

(1) | @) = e atn) < i [ (@) - a5 (o)
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is increasing to infinity when the dimension n increases. However, a dimension-free
estimate holds if the eigenvalues of the covariance matrix of the image measure belong
to [1/2,3/2].

We employ the following fact about centered Gaussian measures.

Lemma 1. Let vy and p be two centered nondegenerate Gaussian measures on R™. Then
the optimal mapping Ty that transforms ~ into p is linear and the canonical triangular
mapping T of v into u is also linear.

Proof. First we prove that Ty is linear. It is known (see [28]) that it is unique y-almost
everywhere and has the form 7, = VU for some convex function ¥: R®™ — R. Hence
it suffices to construct a linear operator with a symmetric matrix which transforms -~y
into u (this operator will be the gradient of a quadratic form).

The measures v and u are defined by their Fourier transforms ¢, and ¢,,, respec-
tively (see [2]), given by

B (Mz,z) B (Nz,x)
%(fﬂ)exp<—2>7 w(fﬂ)exp<— 5 >

where the symmetric and positive definite matrices M and N are the covariance matrices
of the measures v and u, respectively. Given two symmetric positive definite matrices
M and N, one can find a positive symmetric matrix A such that N = AM A (which is
called the Riccati matrix equation): the solution is

A= M-L/2 (M1/2NM1/2) 1/2j\4—1/2.
Indeed, substituting A into the required equality we obtain

AMA = (M1/2(M1/2NM1/2>1/2M1/2> x

X (M1/2M1/2) (M1/2 (M1/2NM1/2) 1/2M1/2>

/2

— M2 (]\41/2]\[1\41/2)1/2 (Ml/zNM1/2>1 ML/2

— M71/2M1/2NM1/2M71/2 — N.

Due to the symmetry of the matrix A the corresponding linear mapping is the gradient of
the quadratic form 271(Az, x). On the other hand, 7 is transformed into p by the linear
operator with the matrix A. It follows from the uniqueness of the gradient defining the
optimal map that this linear operator is optimal.

Let us now construct a linear triangular mapping 7. There exists a lower triangular
matrix D such that N = DM D™. Indeed, we can apply the Cholesky decomposition for
the positive symmetric matrices M and N (see [16]):

M =BBT and N=cCC7,

where B and C' are lower triangular matrices with positive elements on the diagonal.
The required matrix is D = CB~'. The class of positive lower triangular matrices is a
group, so the matrix D is lower triangular. It is shown in the following equality that the
linear operator 1" defined by the matrix D transforms the measure v into the measure u:

pMDT = (B ) (BBT)(cB )" =B 'BBT (B ) CT =ccT = N.

The mapping 7' is triangular, hence it is the unique canonical triangular mapping trans-
forming v into p. (]

We now obtain some preliminary estimate for the coefficient K in (1).
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Theorem 1. Let v be the standard Gaussian measure on R™ and let M be a positive
definite matrix with eigenvalues p; such that its determinant is equal to 1. Then there is
an orthonormal basis in R™ such that the centered Gaussian measure p with the covari-
ance M in this new basis has the following property: for the optimal linear mapping Ty
that transforms ~ into u (which is VM in this basis) and for the canonical triangular
transformation T of v to p (with respect to the new basis) one has

Z?:l(/\i — 1)
Dim (A= 1)

where the numbers \; are all eigenvalues of the matriz A of the mapping Ty in the
standard basis, i.e., \; = \/l;.

(2) K>1+2

Proof. The optimal mapping T is linear by Lemma 1. The corresponding matrix is
A =+ M. Of course, it is diagonal in some basis, but it can fail to be triangular in the
standard basis. It follows that

n
(3) S a2 = A

ij=1

Let us consider the matrix M. We shall construct a sequence of orthogonal operators
transforming it to a form where all principal minors are equal to 1. There exists an
orthogonal matrix U which reduces the matrix M to the diagonal form

0 125 0
(S ) U=M, U t=U".
0 0 Hon

Without loss of generality we can assume that all diagonal elements p; are different
from 1 for ¢ = 1,...,n and the product of any subset of these elements is different from 1
except for the product pqps ... puy,. Otherwise we apply the orthogonal transformations
described below to the corresponding subspaces.

Inductively we consider the rotations of the pairs of coordinate vectors reducing the
diagonal matrix to the form with unit principal minors. Without loss of generality
we assume that g1 > 1 > p, (which can always be obtained by the permutation of
coordinate vectors taking for py and p, the maximal and the minimal values among
all u;, respectively). The rotation in the (z1,x,)-plane by the angle ¢ leads to

cosp 0 0 sing w0 ... 0 0
0 1 0 0 0 e 0 0
: . ) . %
0 0 1 0 0 0 Hn—1 O
—sing 0 0 cose 0 0 0 Ln,
cosp 0 ... 0 —singp
0 1 0 0
X : . :
0 0 1 0

sing 0 ... 0 cosep
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After multiplication we have

p1cos? @4 ppsin®p 0 ... 0 (pn — p1)singcos @
0 12 0 0
0 0 fin_1 0

(b, — p1)sinpcose 0 ... 0 i sin? @ + i, cos? @

For the equality 1 cos? ¢ + puy, sin® p = 1 we see that it is sufficient to take

fur —1
tgp = 1 .
— Hn

Let now the first ¢ — 1 principal minors of the covariance matrix be equal to 1. By a
suitable permutation of coordinate vectors we obtain p; > 1 > p1 ... i—1fbn OF p; < 1 <
11 ... li—1lyn. Rotating in the (z;, x,) plain we have (i is the element in the lower right
angle of the matrix calculated after all previous rotations)

1 0 0 0 mi1 . mii—1 0 min
0 1 0 0 mii—1 .. Mij—14-1 0 mMi—1n X
0 0| cosp singp 0 o 0 i 0
0 0| —singy cosyp Mip ... Mi—1n | 0 m
1 0 0 0
<10 1 0 0 )
0 0| cosp —singp
0 0| sinp cosgp
which can be written as
mi1 mi,i—1 M1y SINQ M1y, COS (P
Mmy;—1 ... Mij_1;_1 mMi_1,, S0 M;_1,5 COS
Mipsing ... Mmi_ypsing | p;cos? @+ asin®e  (Ji — ;) sin pcos ¢
M1n COSY ... Mi_1,C08¢ | (— pi)sinpcosy i, sin? ¢ + Jicos® ¢
The variables x;41,...,2,—1 that are not employed in rotations are omitted in this

formula.
We need ¢ such that the following determinant is equal to 1:

mi1 e mii—1 min singo
D =
mii—1 mi—1,i—1 mMij—1,n S
Minsing ... mi_1n,sing  p;cos? g+ fisin? @

Under the inductive hypothesis, the principal minor M; 1 of order (i — 1) x (i — 1) is
equal to 1. The minor corresponding to the subspace (z1,...,;—1,xy) is invariant under
all considered rotations, therefore, the following equality holds:

mii cee mii—1 min

= ,Ltl . ’,Ui—l,un-
mii—1 -« Mi—145-1 Mi—1n

Min ... Mi—1n H
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We expand the obtained determinant along the last row:

i—1 i—1
M i1y = M + Z M M1 =11+ Z M Mi—1 1,
k=1 k=1

where M,_; ; are the adjugate minors of order (¢ — 1) x (i — 1) with the corresponding
signs. We expand the determinant D along the last row as well:
i—1
D = (p; cos® o + fisin? @) M;_ + Z(m;m sin @) (M;—1 x sin ¢)
k=1

i—1
= i cos” o + (/7 + Z mani—l,k) sin® @ = 1 cos> © + p11 -+ fli— 1ty S0 .
k=1

Similarly to the very first rotation we take

tg o = pi — 1
L— g fimifin

Eventually we obtain the matrix M with unit principal minors and an orthogonal basis
in which this matrix has this form.

By Lemma 1 the canonical triangular transformation of the standard Gaussian mea-
sure v into the measure p (with respect to the obtained orthogonal basis) is a linear
operator T' defined by a lower triangular matrix B in the obtained orthogonal basis, B
has positive elements on the diagonal and

(4) M=BB" and trM= ) b

ij=1
We prove that all diagonal elements of B are equal to 1. Let us express them through
the principal minors of M. The matrix B has the form

by 0 ... 0
B— b12 b22 Ce 0
bin ban ... bun

We denote its principal (i x i)-minor by B;. According to (4), the principle minor M; of
the matrix M is equal to the determinant of the following matrix product:

b11 0 AN 0 bu b12 - bli
b12 b22 AN 0 0 b22 - bgi

hence M; = B?. Since B is lower triangular, B; is equal to the product of its diagonal
elements, so the following equalities hold:

My =b3, My=03b2, ..., M,=|M|=0% -2 .

Hence the diagonal elements of the matrix B are represented as follows:

bll =V Mla b22 =

All M; are equal to 1, therefore,

biy =l =--- =bpp = 1.
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Thus, we have a basis in which both linear operators Ty and T are represented by the
matrices A and B, respectively, and B has unit diagonal elements. Estimate (1) takes
the form

(5) /Rn |Bx — x|? y(dx) < K/}Rn | Az — z|? y(dz).

Let us calculate the value of the transportation cost for an arbitrary linear operator
represented by a matrix C' in some orthogonal basis of the space R™:

/ |Cx — z|? y(dx) = tr(CTC) = 2tr C +n = Z c?j - QZC“‘ +n.

R™ ij=1 i=1

Given (3) and (4), let us calculate the values of the transportation cost for the mappings
T and Ty:

/ |Az — z|?y(dz) = tr M — 2tr A +n,
/ |Bx — z|>y(dz) =tr M —2tr B+n =tr M — n.

It is worth noting that the first formula with A = VM is a particular case of a more
general formula for the quadratic Kantorovich—-Rubinstein distance between two arbitrary
Gaussian measures on R™ (see [15] and [12]). It will be important below that this formula
and the first equality in the second formula hold for arbitrary linear operators taking ~y
to u, but the optimal mapping has the maximal trace among such operators.

Substituting the obtained values into (5), we arrive at the following estimate for the
constant K:
(6) KzterQtquLn: trM —n 14 trd—n .

trM —2trA+n  trM—2trA+n trM —2trA+n

Since the trace of a matrix is invariant under orthogonal changes of variables, we cal-
culate the traces in the orthogonal basis in which A has a diagonal form with eigenval-
ues Aq, ..., A\, on the diagonal. Then

trA = i)\i, tr M = tr(A%) = i:/\g
i=1

i=1

Substituting into (6) we have
i A —n DimNi— 1)
S AT =230 A+ S (i —1)%

as announced. O

K>1+2 =1+2

Let now p be the centered Gaussian measure with a nondegenerate covariance ma-
trix M. One can obtain this measure from the centered Gaussian measure p; with a
covariance matrix M7 such that det M7 = 1. It is sufficient to multiply all the elements
of M by |M|~/" and take the resulting matrix for M;. Then p; is transformed into u
by the homothety with the ratio a = (det M)*/(™). We now use Theorem 1 and the
orthogonal basis constructed there. The linear optimal mapping transforming « into p
is given by the symmetric matrix A; with unit determinant defined by A? = M;. The
matrix A obtained by multiplying all the elements of A; by « is also symmetric and
satisfies the equality A? = M, so A is the matrix of the optimal mapping of ~ into u (the
proof of this statement replicates the corresponding part of Lemma 1). The canonical
triangular mapping of v into p; is given by a lower triangular matrix B; in the con-
structed orthogonal basis. Then we multiply all the elements of B; by a and obtain
the matrix of the canonical triangular mapping that transforms ~ into u. The trace of
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this matrix is equal to na. The traces of the matrices A and M are represented by the
eigenvalues \q, ..., A, of the matrix A; as follows:

n n
trA:aZ)\i, trM:a2Z/\f.
i=1 i=1
We substitute these expressions into (6) for the coefficient K:

tr A—tr B 142 S el — na
trM —2trA+n S (@) =230 aN +n

ay i (hi—1)
S (aX, — 1)

In the next theorem we investigate the possible values of the expression in (7) and find
a lower bound for the coefficient K. We also show that K is increasing to infinity when n
increases. Thus, this theorem implies that in the general case the triangular mapping
and the Monge optimal mapping are not comparable for the considered cost function.
Before proving this result, let us observe that if || M| > 4, then for an arbitrary linear
operator L transforming the standard Gaussian measure v on R" to the measure with
covariance M we have

/ \L:z:f:c\Q’y(dz) < (5n+4)/ |T0:fo|2”y(d:17),

() K>1+2

=1+2

where Ty = v/M is the optimal mapping. Indeed, we know that the left-hand side equals
trM —2trL+n and LYL = M, so |[L||> = ||M||. Then 2|trL| < 2n||M||*/? and the
left-hand side does not exceed tr M +2n||M||'/? 4+n, which is estimated by the right-hand
side, since M2 — [ > 271 MY/% and || M|Y/? < tr M/2.

On the other hand, let 7 be the same standard Gaussian measure on R™ and let p
be the centered Gaussian measure whose covariance matrix M has eigenvalues 1, . .. fy.
Then the entropy equals

/plogpdvz/logpdu:TlZ(m —1—log p;),

i=1
where p = du/dry. Indeed, we can assume that M is diagonal, then
n
logp = (=2 logp; + 27 2 (1 - 1/py),
i=1

where the integral of 27 with respect to u equals p;. If |u; — 1] < 1/2, then

n

- 25
/plogpdv§2 > (i —1)* < 5 > (1;"* =12,
i=1

i=1

since (p; — 1) < 25(;11.1/2 —1)2/4. On the right we have the cost of the optimal trans-
portation Ty = M'/2. Hence by the Talagrand inequality we obtain

(®) [ 170~ atd) <25 [ [T — o a(de) it 01 - 1) < 172
As we shall now see the bound on the norm of M is important.

Theorem 2. Let v be the standard Gaussian measure on R™. Suppose that K is a
constant such that the inequality

[ @) = et < i [ (@) - a5 (o)
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holds for every nondegenerate centered Gaussian measure i on R™ for which T is the
canonical triangular mapping and Ty is the optimal mapping transforming v into . Then

K>n++vn2—n.

Moreover, even if we consider only measures p with the determninant of the covariance
matriz equal to 1, the coefficient K cannot be smaller than /n.

Proof. The last assertion follows directly from Theorem 1 by taking the matrix M such
that \; = /s = 1 +n Y2 fori=1,...,n—1and A\, = /lin = (1 —ﬁ—n’l/z)l*". Note

nl/2?
that (1 4+n~"1/2)" = ((1 + n_l/z)”l/z) =(e+ 0(1))”1/2. Hence

n n

i) =m-n 2 —140(1), Y (Ai—1)°>=n-1n""+1+0(1),

i=1 =1

so the ratio is n!/2 + o(1).

Let us show that in the general case the ratio can be even larger. We already know
that the mappings Ty and T are linear and their matrices A (which is positive definite)
and B satisfy the conditions

A%? = BBT = M,

where M is the covariance matrix of the measure u. Let A; be the matrix with unit
determinant obtained from the matrix A by dividing all its elements by the number o =
(det M)/ ") Then A; is symmetric. Let A1, .., A, be the eigenvalues of the matrix A;.
We maximize the quantity

QZ?:l()‘i —1)
isi(ad —1)2

as the function of v with fixed A\, k=1,...,n.

First we note that the case where all \; are equal is not meaningful, since if the
product of all numbers A; is equal to 1 (it is the determinant of A;), then A; = 1 for
all i = 1,...,n. Then the function (8) is undefined when a = 1, which is explained by
the fact that the measure v is transformed into itself by the linear mapping with the
matrix A, so the optimal mapping is identical and the transportation cost equals 0. This
case is trivial.

Let us assume that there are at least two different A;, so the function Fy, ., (c) is
defined and differentiable for all &« > 0. Note that its limits as @« — 0 and o — oo are
equal to 0, hence it is bounded on (0, +00) and has an extremum on this interval. The
derivative has the form

, Z?:l(a)‘i —1) - QZ?:l 2Xi(ar; — 1) Z?:l()‘i -1)
(10) Fy A (@) = 2 =0.
130 ( :L:l(a)\l B 1)2)

9) Fx, (@) =

Not all numbers \; are equal, hence

n

Z()\i—l):zn:)\i—n>07
=1

i=1

since we have
1 n n 1/n
- /\¢>( AZ) -1,

where the equality is only possible when all numbers \; are equal.



30 DMITRY B. BUKIN AND ELENA P. KRUGOVA

Let us return to equation (9). After simplifications we obtain

Sani =12 —a Y 2xi(ah — 1) = (0222 - 2a); + 1 — 20°\? + 2a;)
i=1 i=1 i

=Y (1=a®X)=n-0a’Y N =0,
hence the expected extremum point is
Vn
YA
The derivative F)’\1 e () is positive if 0 < @ < g and is negative if « > «yp, therefore,
the maximum of Fy, . x,(«) over a > 0 with fixed A1,..., A, is achieved when a = ay:

Z?:l()‘i -1)
a0 Yo A =230 A+ n/ag
ST} SO
V”Zz DA 2 N Vi A (\/nZ?:l)‘?_Z?:l)\i)
Then estimate (7) takes the form

DA n an 1
(11) K>1+2- =
(\/n21 1 Zz 1 ) nZ’ 1 Zz 1

We now consider the following special case. Let A\; = --- = A\,_1 = A, A, = A'™™. Then
the right-hand side in (10) takes has the form

m*” \/n(n—l))\2+n)\2f2nfn
VRS A =Y A /(= DA+ A2 (n— DA — AL
\/n(n — 1) +nA2n —pA~!
/=) AT - (n—1) = A

ag —

F>\1)-~':>\n (ao) =

Letting A — oo, we obtain the limit
n(n—1) vn
nn—1)—(n—-1) \f Vn—1
Inequality (10) holds for all A, hence

K >n++/n?—n,

which completes the proof. (I

=n+vn?—n.

Thus, for the linear images of the measure «y the coefficient K in the inequality
[ 17~ aPs(de) < K [ (To(a) - a2 (do)
n R’n

has a lower bound n + v/n2 — n, so it increases to infinity when n tends to infinity. In
addition, in the class of image measures with unit determinant of covariance matrices
the coefficient cannot be made smaller than n'/2.

This means that in the Monge problem for the linear images of Gaussian measures on
infinite-dimensional spaces with the cost function defined by the Euclidean distance the
value of the transportation cost for the triangular mapping cannot be estimated by the
minimal value with any constant (about infinite-dimensional Monge problems, see [7],
[10], [11], [13], [19]). However, some positive result holds. Let v be the measure on the
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space R of all sequences that is the countable power of the standard Gaussian measure
on the real line. Its Cameron-Martin space is the classical Hilbert space H = 2. For
Gaussian measures p equivalent to -y it is natural to consider the Monge and Kantorovich
problems corresponding to the cost function |z — y|3, = Yoo, (z; — y;)?. It is known
(see [7]) that for u equivalent to 7 the cost is finite and there is a measurable linear

optimal operator Tj taling v to g and minimizing the value

/ |Tox — x|% ~v(dx).

A typical example of p equivalent to «y is this: g4 = yo A™!, where A =1 + B and B is
the measurable linear operator with values H generated by a Hilbert—Schmidt operator
By: H — H with the Hilbert—Schmidt norm less than 1. The operator B is defined
by Bz = Y .2, x;Boe;, where the series converges y-almost everywhere (this converges
follows from the assumption that By is Hilbert—Schmidt). From the considered finite-
dimensional case and the known method of constructing triangular transformations in
infinite dimensions (see [9]) we obtain the following assertion.

Corollary 1. Suppose that the Hilbert—Schmidt norm of By does not exceed 1/2. Then
the measure p = ~ o (I + B)™1 is equivalent to v and has finite entropy, there is a
measurable linear triangular mapping T taking v to p and for the optimal operator Ty

there holds estimate (8) along with Talagrand’s estimates of the integrals of |Tox — x|%
and |Tz — z|3; by 2Ent. ().

Note that if |; — 1| < g, where g < 1, then (8) holds with another constant depending
on q.

This work has been supported by the Russian Science Foundation Grant 17-11-01058
at Lomonosov Moscow State University.
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