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LIMIT THEOREMS FOR THE NUMBER OF CLUSTERS OF THE
ARRATIA FLOW

In this paper we prove the central limit theorem for the number of clusters formed
by the particles of the Arratia flow starting from the interval [0;n] as n → ∞, obtain
an estimate of the Berry–Esseen type for the rate of this convergence, and prove the
corresponding functional law of the iterated logarithm.

1. Introduction

In this paper we consider the Arratia flow {x(u, ·), u ∈ R}, which is an ordered family
of standard Brownian motions starting from every point of the real line such that for any
u, v ∈ R the joint quadratic variation of x(u, ·) and x(v, ·) is given by

〈x(u, ·), x(v, ·)〉t =

t∫
0

1I{0}(x(u, s)− x(v, s)) ds, t> 0,

where 1I{0} stands for the indicator function of the set {0}. This flow was constructed
by R. A. Arratia [1] as a weak limit of families of coalescing simple random walks and
can be informally described as a system of Brownian particles, any two of which move
independently until they collide, coalesce at the moment of collision and after that move
together.

In [8], T. E. Harris considered a generalisation of the Arratia flow, in which the
indicator function 1I{0} is replaced by a non-negative definite function Γ, which is called
the covariance function of the flow, and proved its existence under certain conditions on
Γ.

In the same paper, T. E. Harris proved that for the Arratia flow {x(u, ·), u ∈ R} for
any time t > 0 and interval [u1;u2] ⊂ R the number

νt([u1;u2]) := # x([u1;u2], t)

of elements of the set x([u1;u2], t) is almost surely finite (for a different proof see mono-
graph [2] of A. A. Dorogovtsev). R. Tribe and O. Zaboronski [16] proved that for any
t > 0 the random point process x(R, t) is Pfaffian and found its kernel; basing on some
of their formulae, the distribution of νt([0;u]) was found in [6]. Earlier for Harris flows
the necessary and sufficient condition of the existence of coalescence of particles and an
estimate for the mean value of the number of clusters had been obtained by H. Mat-
sumoto in [11]. For the Arratia flow the large deviation principle and the law of the
iterated logarithm for the size of the cluster containing the point zero were established
by A. A. Dorogovtsev and O. V. Ostapenko [5] and A. A. Dorogovtsev, A. V. Gnedin
and M. B. Vovchanskii [4] respectively.

Since the covariance of any two particles in Harris flows depends only on the distance
between them, such flows are stationary with respect to the spatial variable. In [7], under
the assumption that the covariance function converges to zero at infinity, their ergodicity
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with respect to the spatial variable was established and an estimate for the strong mixing
coefficient was found.

In this paper we prove the following central limit theorem for νt([0;n]) as n→∞.

Theorem 1. For any t > 0

νt([0;n])−Eνt([0;n])√
n

=⇒ N (0;σ2
t ), n→∞,

where σ2
t :=

3− 2
√

2√
πt

.

Furthermore, we also obtain an estimate for the rate of this convergence by proving
the following inequality of the Berry–Esseen type.

Theorem 2. There exists some constant C > 0 such that for any n> 1

sup
z∈R

∣∣∣∣∣∣P
{
νt([0;n])−Eνt([0;n])√

n
6 z

}
−

z∫
−∞

1√
2πσt

e−r
2/2σ2

t dr

∣∣∣∣∣∣6C · (log n)2√
n

.

Let us note that due to the scaling invariance of the Arratia flow (e. g., see [16,
Subsection 2.3])

(1) x(·, ·) d
=

1

ε
x(ε·, ε2·), ε > 0,

from Theorem 1 the following corollary can be deduced.

Corollary 3. The following convergence in distribution takes place:

4
√
t · νt([0; 1])− 1

4
√
t ·
√
π

=⇒ N (1;σ2), t→ 0+,

where σ2 =
3− 2

√
2√

π
.

Finally, we prove the functional law of the iterated logarithm for νt([0;n]) as n→∞.

Theorem 4. For any t > 0 the sequence of stochastic processes{
νt([0; [ns]])−Eνt([0; [ns]])

σt
√

2n ln lnn
, 06 s6 1

}
, n> 1,

where [ns] is the integer part of ns, obeys Strassen’s functional law of the iterated loga-
rithm.

The main part of this paper consists of two sections. In Section 2 we establish the
asymptotic behaviour of the variance and all moments of νt([0;u]) and in Section 3 we
give the proof of Theorems 1, 2, and 4.

2. Asymptotics of the variance and moments of νt([0;u])

In this section we establish the asymptotic behaviour of the variance and all moments
of νt([0;u]). Our proof is based on the results of R. Tribe and O. Zaboronski [16], and
we refer the reader to this paper for the definitions of the objects we use in this section.

In paper [16], its authors proved that for any time t > 0 the clusters of the Arratia
flow form a Pfaffian point process with kernel

Kt(u, v) =

(
−F ′′t (v − u) −F ′t (v − u)
F ′t (v − u) sign (v − u) · Ft(|v − u|)

)
,
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where the function Ft is given by

Ft(z) :=
1√
π

+∞∫
z/
√
t

e−r
2/4 dr, z> 0.

In particular, it means that for any n> 1 the nth factorial moment (for this moment we
will use the notation a[n] = a(a− 1) . . . (a− n+ 1), a ∈ Z+) of the number Nt([0;u]) of
particles of the Arratia flow that at time t > 0 are found at the interval [0;u] is given by

EN
[n]
t ([0;u]) =

u∫
0

n. . .

u∫
0

ρ
(n)
t (v1, . . . , vn) dv1 . . . dvn,

where ρ(n)t is the n-point density, which permits the following representation:

ρ
(n)
t (v1, . . . , vk) = Pf [Kt(vi, vj), i, j = 1, . . . , n] , v1, . . . , vn ∈ R.

To obtain the expressions for the moments of νt([0;u]) it remains to note that

(2) νt([0;u])
d
= Nt([0;u]) + 1,

which can be easily proved with the help of the dual flow (e. g., see [15], [3], [16, Sub-
section 2.2]). Recall that for fixed time t0 > 0 the dual flow is a system {y(u, t), u ∈
R, 06 t6 t0} of coalescing Brownian motions in backward time starting from every point
of the real line characterised by the property that its trajectories do not intersect those of
the particles of the restriction {x(u, t), u ∈ R, 06 t6 t0} of the Arratia flow to the time
interval [0; t0]. It is known that {y(u, t), u ∈ R, 06 t6 t0} agrees in distribution with
{x(u, t), u ∈ R, 06 t6 t0}, and equality (2) follows from the fact that the set y(R, t)
coincides with the set of points of discontinuity of the mapping x(·, t) : R→ R.

Proposition 5. For any t > 0 and u > 0 we have

Var νt([0;u]) = − 4

π
+

3u√
πt

+
4

π
e−u

2/2t − 2

π

u/
√
t∫

0

e−z
2/4 dz − 4u

π
√
t

u/
√
t∫

0

e−z
2/2 dz.

Proof. First of all, let us note that

ENt([0;u]) = EN
[1]
t ([0;u]) =

u∫
0

ρ
(1)
t (v) dv =

u√
πt
,

and so

(3) Eνt([0;u]) = 1 +
u√
πt
.

Moreover, on the one hand,

(4) EN
[2]
t ([0;u]) = Eν2t ([0;u])− 3Eνt([0, u]) + 2,

and, on the other hand,

(5) EN
[2]
t ([0;u]) =

u∫
0

u∫
0

ρ
(2)
t (v1, v2) dv1dv2,
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where (for notational simplicity here and below for antisymmetric matrices we omit their
entries below the diagonal)

ρ
(2)
t (v1, v2) = Pf



0
1√
πt

−v2 − v1
2
√
πt3

e−(v2−v1)
2/4t 1√

πt
e−(v2−v1)

2/4t

0 − 1√
πt
e−(v2−v1)

2/4t sign (v2 − v1)√
π

·
+∞∫

|v2−v1|/
√
t

e−v
2/4 dv

0
1√
πt
0


=

=
1

πt

1 +
|v2 − v1|

2
√
t
· e−(v2−v1)

2/4t ·
+∞∫

|v2−v1|/
√
t

e−v
2/4 dv − e−(v2−v1)

2/2t

 .

Therefore, computing the integral in (5) by integrating by parts (several times) and
using (3) and (4), we obtain

(6) Eν2t ([0;u]) = 1− 4

π
+

5u√
πt

+
u2

πt
+

4

π
e−u

2/2t− 2

π

u/
√
t∫

0

e−z
2/4 dz− 4u

π
√
t

u/
√
t∫

0

e−z
2/2 dz.

Finally, using (3) and (6), we arrive at the desired result. �

Corollary 6. The following assertions hold true:

Var νt([0;u]) ∼ (3− 2
√

2) · u√
πt
, u→ +∞ or t→ 0+,

Var νt([0;u]) ∼
(

3− 2√
π

)
· u√

πt
, u→ 0 + or t→ +∞.

Theorem 7. For any k> 1 we have

Eνkt ([0;u]) ∼
(

u√
πt

)k
, u→ +∞ or t→ 0 + .

Proof. Owing to the scaling invariance (1) of the Arratia flow it is enough to prove the
corresponding assertion for t → 0+. To do it, we will use induction. For k = 1 the
assertion follows from (3). Now suppose that it holds true for all k′6 k − 1. Then
from (2) it follows that

lim
t→0+

tk/2Eνkt ([0;u]) = lim
t→0+

tk/2EN
[k]
t ([0;u]),

provided that the limit on the right-hand side exists. However,

tk/2EN
[k]
t ([0;u]) =

u∫
0

k. . .

u∫
0

Pf
[√

t ·Kt(vi, vj), i, j = 1, . . . , k
]
dv1 . . . dvk,
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and the Pfaffian on the right-hand side converges as t→ 0+ to the Pfaffian

Pf



0 1/
√
π 0 0 0 . . . 0 0 0

0 0 0 0 . . . 0 0 0
0 1/

√
π 0 . . . 0 0 0

0 0 . . . 0 0 0
0 . . . 0 0 0

. . .
...

...
...

0 0 0
0 1/

√
π

0


=

(
1√
π

)k
.

Thus, by the dominated convergence theorem we obtain

lim
t→0+

tk/2EN
[k]
t ([0;u]) =

(
u√
π

)k
.

The theorem is proved. �

3. Proof of the main results

Proof of Theorem 1. Fixing arbitrary t > 0, let us note that for any u1 < u2 < u3 we
have

(7) νt([u1;u3]) + 1 = νt([u1;u2]) + νt([u2;u3]),

since on the right-hand side the cluster containing the point x(u2, t) is taken into account
twice due to the almost sure continuity of the random mapping x(·, t) : R → R at the
point u2. From (7) it follows that for all n> 1

(8) νt([0;n])−Eνt([0;n]) =

n∑
k=1

ηk,

where
ηk := νt([k − 1; k])−Eνt([k − 1; k]), k> 1.

Since the stochastic process {x(u, t)−u, u ∈ R} is strictly stationary, so is the sequence
{ηn, n> 1}. Now to this sequence we would like to apply the following theorem.

Theorem 8. [9, Theorem 18.5.3] Let {Xn, n> 1} be a strictly stationary sequence of
centred random variables with zero mean and finite variance such that for some δ > 0

E|X1|2+δ < +∞

and
∞∑
n=1

(αX(n))
δ/(2+δ)

< +∞,

where αX is its strong mixing coefficient:

αX(n) := sup{|P(AB)−P(A)P(B)| | A ∈ σ(Xj , j6 k),

B ∈ σ(Xj , j> k + n), k ∈ Z}, n ∈ Z,

with σ(A) standing for the σ-field generated by the set A of random variables.
Then the series

EX2
1 + 2

∞∑
k=2

EX1Xk
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is absolutely convergent and, provided that its sum σ2 is strictly positive, the following
convergence in distribution takes place:

1√
n

n∑
k=1

Xk =⇒ N (0;σ2), n→∞.

Remark 9. Note that σ2 permits the representation

σ2 = lim
n→∞

1

n
Var

n∑
k=1

Xk,

since

1

n
Var

n∑
k=1

Xk =
1

n
E

(
n∑
k=1

Xk

)2

=
1

n

n∑
i,j=1

EXiXj = EX2
1 + 2

n∑
k=2

n− k
n

EX1Xk,

and, if the series
∑

EX1Xk is absolutely convergent, by the dominated convergence
theorem

lim
n→∞

n∑
k=2

n− k
n

EX1Xk =

∞∑
k=2

EX1Xk − lim
n→∞

n∑
k=2

k

n
EX1Xk =

∞∑
k=2

EX1Xk.

Now let us verify that the conditions of this theorem are satisfied for the sequence
{ηn, n> 1}. First, we note that all absolute moments of η1 are finite, since such are
those of νt([0; 1]). Second, from equality (8) and Corollary 6 we get

1

n
Var

n∑
k=1

ηk =
1

n
Var νt([0;n]) −→ 3− 2

√
2√

πt
> 0, n→∞,

and so in particular

Var

n∑
k=1

ηk −→ +∞, n→∞.

Third, it is easy to check that for the strong mixing coefficient αη of the sequence
{ηn, n> 1} we have

αη(n)6α(n), n> 1,

where

α(n) := sup{|P(AB)−P(A)P(B)|, A ∈ σ(x(u, t)− u, u6h),

B ∈ σ(x(u, t)− u, u>h+ n), h ∈ R}.
In [7], it was proved that for n> 1 large enough

α(n)6 2

√
2

πt

+∞∫
n

e−r
2/2t dr.

Therefore, using the standard estimate for the tails of the Gaussian distribution, we
obtain that for n> 1 large enough

αη(n)6 2

√
2

πt

+∞∫
n

e−r
2/2t dr6

2

n

√
2

πt
e−n

2/2t,

and so for all δ > 0
∞∑
n=1

(αη(n))
δ/(2+δ)

< +∞.

Thus, applying Theorem 8 to the sequence {ηn, n> 1} and using equality (8) finishes
the proof. �
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Proof of Theorem 2. The proof is based on the following theorem.

Theorem 10. [14, Theorem 2] Let {Xn, n> 1} be a strictly stationary sequence of
centred random variables with zero mean and finite variance such that for some δ ∈ (0; 1]

E|X1|2+δ < +∞

and for some constants K > 0 and β > 0

αX(n)6Ke−βn, n> 1.

Then there exists a constant A = A(K,β, δ) > 0 such that

sup
z∈R

∣∣∣∣∣∣P
{

1

σn

n∑
k=1

Xk 6 z

}
− 1√

2π

z∫
−∞

e−r
2/2 dr

∣∣∣∣∣∣6A · (log n)1+δ

nδ/2
, n> 1,

where

σ2
n := E

(
n∑
k=1

Xk

)2

.

Applying this theorem to the sequence {ηn, n> 1} defined above and using equal-
ity (8), we obtain the desired result. �

Proof of Theorem 4. This theorem is a direct corollary of [13, Theorem 2] together with
the comment and Example 4 that follow it. �

Remark 11. In [10], a central limit theorem for quaternion determinantal point processes
was proved (see [10, Theorem 1.9]), and it was shown that any Pfaffian point process is
a quaternion determinantal point process and vice versa. However, it can be shown that
the corresponding quaternion kernel of the random point process formed by the clusters
of the Arratia flow is not of finite rank, and so [10, Theorem 1.9] cannot be applied.
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References

1. R. A. Arratia, Coalescing Brownian motions on the line (PhD thesis), PhD dissertation, Uni-
versity of Wisconsin, Madison, 1979, 128 p.

2. A. A. Dorogovtsev, Measure-valued processes and stochastic flows, Institute of Mathematics of
the National Academy of Sciences of Ukraine, Kiev, Ukraine, 2007. (in Russian)

3. A. A. Dorogovtsev, Stochastic flows, CRC Press. (to appear)
4. A. A. Dorogovtsev, A. V. Gnedin, M. B. Vovchanskii, Iterated logarithm law for sizes of clusters

in Arratia flow, Theory of Stochastic Processes 18(34) (2012), no. 2, 1–7.
5. A. A. Dorogovtsev, O. V. Ostapenko, Large deviations for flows of interacting Brownian mo-

tions, Stochastics and Dynamics 10 (2010), no. 3, 315–339.
6. V. V. Fomichov, The distribution of the number of clusters in the Arratia flow, Communications

on Stochastic Analysis 10 (2016), no. 3, 257–270.
7. E. V. Glinyanaya, Spatial ergodicity of the Harris flows, Communications on Stochastic Anal-

ysis 11 (2017), no. 2, 223–231.
8. T. E. Harris, Coalescing and noncoalescing stochastic flows in R1, Stochastic Processes and

their Applications 17 (1984), 187–210.
9. I. A. Ibragimov, Yu. V. Linnik, Independent and stationary sequences of random variables,

Wolters-Noordhoff Publishing, Groningen, The Netherlands, 1971, 443 p.
10. V. Kargin, On Pfaffian random point fields, Journal of Statistical Physics 154 (2014), no. 3,

681–704.
11. H. Matsumoto, Coalescing stochastic flows on the real line, Osaka Journal of Mathematics 26

(1989), no. 1, 139–158.
12. H. Oodaira, K. I. Yoshihara, The law of the iterated logarithm for stationary processes satisfying

mixing conditions, Kodai Math. Sem. Rep. 23 (1971), 311–334.



40 E. V. GLINYANAYA AND V. V. FOMICHOV

13. E. Rio, The functional law of the iterated logarithm for stationary strongly mixing sequences,
The Annals of Probability 23 (1995), no. 3, 1188–1203.

14. A. N. Tikhomirov, On the convergence rate in the central limit theorem for weakly dependent
random variables, Theory of Probability and its Applications 25 (1980), no. 4, 790–809.

15. B. Tóth, W. Werner, The true self-repelling motion, Probability Theory and Related Fields 111
(1998), no. 3, 375–452.

16. R. Tribe, O. Zaboronski, Pfaffian formulae for one dimensional coalescing and annihilating
systems, Electronic Journal of Probability 16 (2011), no. 76, 2080–2103.

E. V. Glinyanaya: Institute of Mathematics, National Academy of Sciences of Ukraine,
Tereshchenkivska str. 3, Kiev 01004, Ukraine

E-mail address: glinkate@gmail.com

V. V. Fomichov: Institute of Mathematics, National Academy of Sciences of Ukraine,
Tereshchenkivska str. 3, Kiev 01004, Ukraine

E-mail address: v-vfom@imath.kiev.ua


