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M. B. VOVCHANSKII

CONVERGENCE OF SOLUTIONS OF SDES TO HARRIS FLOWS

A method of the approximation of a coalescing Harris flow with homeomorphic sto-
chastic flows built as solutions to SDEs w.r.t. continuous martingales with spatial

parameters in the sense of Kunita is proposed. The joint convergence of forward and

backward flows as diffusions is obtained, as well as the joint convergence of forward
and backward transformations of the real axe under the action of the flows.

We consider a system of correlated and sticking together after a meeting Brownian
motions with R × R+ as a set of start points. The object discussed is characterized
via its n−point motions that are approximated with n−point motions of ”ordinary”
stochastic flows, where hereinafter a term ”stochastic flow” is referring to a family of
random mappings. The first class of examples considered in the paper is provided with
flows of solutions to SDEs w.r.t. a martingale with spatial parameters in the sense of [18],
while the second one is provided with Harris flows [12].

The Harris flow’s original definition is up to Harris himself [12], though we use a mod-
ified formulation (see [7, 23]). Let D(R) be a separable topological space of rcll functions
on R equipped with the Skorokhod topology [9, 2]. The space D(R) is completely metriz-
able (see [2] for an example of such a metric). A composition f(g) is denoted f ◦ g, and
Id is the identity mapping.

Definition 1. A Harris flow X with the infinitesimal covariance ϕ is a family of
D(R)−valued random variables {X(s, t) | X(s, t) ≡ X(·, s, t), s ≤ t} such that

(1) for any s ≤ t ≤ r P {X(·, s, r) = X(·, t, r) ◦X(·, s, t)} = 1; X(s, s) = Id a.s.;
(2) for any t1 ≤ t2 ≤ . . . ≤ tn random elements X(t1, t2), . . . , X(tn−1, tn) are inde-

pendent;
(3) for any s, t ∈ R, h > 0 Law (X(s, t)) = Law (X(s+ h, t+ h)) ;
(4) as h→ 0+, X(0, h)→ Id in probability;
(5) for any x a process t 7→ X(x, 0, t) − x is a Brownian motion started at 0 w.r.t.

filtration σ {X(u1, u2), 0 ≤ u1 ≤ u2 ≤ t}t≥0 ;

(6) for any x, y 〈X(x, 0, ·), X(y, 0, ·)〉 (t) =
∫ t

0
ϕ (X(x, 0, s)−X(y, 0, s)) ds.

It is shown in [12] that if a symmetric continuous nonnegative definite function ϕ
whose Fourier transform is not of pure jump type is Lipschitz continuous outside any
interval containing the origin the corresponding Harris flow exists. If ϕ is smooth enough,
the flow can be considered as a flow in the sense of Kunita [18, 23]. However, not every
Harris flow is a flow of homeomorphisms in contrast to those treated in [18]. Indeed, the
difference ξ = (X(u1, 0, ·)−X(u2, 0, ·)) is a Feller diffusion with the infinitesimal operator

(1− ϕ(x)) d2

dx2 on the upper halfline until it hits the origin (if ever). If
∫ δ

0
x

1−ϕ(x)dx is

finite for some small δ the Feller criterion [3, 12] implies that ξ hits the origin in a finite
time a.s.. It being a nonnegative martingale, the process ξ never leaves 0 after hitting it.
Thus Harris flows can be referred to as coalescing flows in this case. At the same time,
the origin can still be either an exit or a regular point for the diffusion ξ (see [22][Section
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9c]). In [23] it is shown how the regularity of the origin influences properties of the noises
associated with coalescing Harris flows.

The Brownian web ([13, 10, 11, 21]) can be considered as an extreme example of
a Harris flow with a discontinuous infinitesimal characteristic ϕ(x) = 1x=0. In [4] a
constructive approach to n−point motions of the Brownian web is proposed that is similar
to the one adopted in this paper. More specifically, let W be a Brownian sheet [17].
Suppose that a sequence {κn}n≥1 of infinitely differentiable functions weakly converges
to δ0 in the sence of generalized functions, and there exist infinitely differentiable square
integrable functions ρn such that ρn ∗ ρn = κn, n ∈ N. One consider the following SDE

(1) Xn(x, t) = x+

∫ t

0

∫
R
ρn(y −Xn(x, s))W (ds, dy),

(for a general theory of integration w.r.t. the Brownian sheet, the reader is referred to [17,
7]). Given x1, . . . , xn ∈ R a sequence {Xn(x1, ·), . . . , Xn(xn, ·)}n≥1 weakly converges to

(X(x1, 0, ·), . . . , X(xn, 0, ·)) in (C(R+))
n
, X being a Brownian web [4].

In this paper we obtain a similar result for a Harris flow whose infinitesimal covariance
is a characteristic function of a symmetric stable law, possibly, with infinite mean. In
the latter case the convolutional square root of the covariance does not belong to L2(R),
violating conditions for (1) to have a solution. In order to overcome this difficulty we
use integration w.r.t. continuous martingales with spatial parameters [18] obtaining
n−point motions of a coalescing Harris flow as weak limits of n−point motions of flows
of homeomorphisms given by the SDE

(2) Xε(x, s, t) = x+

∫ t

s

Fε(Xε(x, s, r), dr),

where Fε is a continuous C(R)−valued martingale as defined in [18]. Now we give a
rigorous description of the approach proposed.

We consider

ϕ(x) = e−β|x|
α

, x ∈ R, β ∈ (0; +∞), α ∈ (0; 2).

Suppose that {ϕε}ε∈(0;1) is a fixed throughout the paper sequence of twice continuously
differentiable symmetric nonnegative definite functions such that ϕε → ϕ, ε → 0+, uni-
formly on compact subsets of R, and ϕε(0) = 1. For instance, one can consider a mollifier
h and put

(3) ϕε = ε−1cεϕ ∗ h
( ·
ε

)
, ε ∈ (0; 1),

with cε selected to give ϕε(0) = 1. A reference example of such mollifier is provided
with a Gaussian density. In this case the result of [12][Lemma 10.4] states that n−point
motions of Harris flows with the infinitesimal covariances built as in (3) weakly converge
to those of a Harris flow with the infinitesimal covariance ϕ. In the paper we investigate
the joint convergence of n−point motions of forward and backward (inverse) flows viewed
as diffusions (see [18][Chapter 5]) and the convergence as D(R)−valued random elements
of Definition 1. Note that in the case of a smooth infinitesimal covariance the inverse flow
X−1 solves an SDE analogous to that of (2), although in the inverse time and w.r.t a
backward infinitesimal generator [18] so X−1(·, s, t) is a homeomorphism of R onto itself.
Moreover, since the infinitesimal covariance is symmetric additionally the flows X−1 and
X have the same distribution [18][Theorem 4.2.10]. In constrast, for ϕ in question a
mapping X(·, s, t) is a.s. a step function [12, 19]. However, one can still consider an
inverse flow [12, 16] on [t1; t2] defined via

X−1(x, t1, t2, s) = inf
{
X(y, r, t1 + t2 − s) | X(y, r, t2) ≥ x, y ∈ R, r ∈ [t1; t1 + t2 − s]

}
,

s ∈ [t1; t2],(4)
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that is, the inverse flow is built with using all possible trajectories of the forward flow
on [t1; t2]. In the case of homeomorphic flows this definition of the inverse flow coincides
with the standard one formulated in terms of integrals w.r.t. a backward infinitesimal
generator [18], due to the ordered nature of the trajectories within the flow. But for flows
of discontinuous mappings we understand this relations as a definition of the inverse
flow (see also [10, 11, 21]). It is worth noting that for any Harris flow X mappings
X−1(·, 0, t, s) and X(·, s, t) have the same distribution [12][Theorem 10.5] as elements of
D(R).

The following notation is adopted hereinafter. Let C(∆), where ∆ can be a finite
closed interval, the real line or the real halfline, be a space of continuous functions
on ∆ equipped with the topology of uniform convergence on compact sets. In prod-
uct spaces the product topology is always considered henceforth. Denote C∞([s; t]) =

(C([s; t]))∞ , CN ([s; t]) = (C([s; t]))N , N ∈ N. Given real numbers a, a1, b : a < a1 < b a
function f ∈ C([a1; b]) can be embedded into C([a; b]) with a transformation Pa,bf(s) =
1s∈[a;a1]f(a1) + f(s)1s∈(a1;b], s ∈ [a; b].

Remark 1. Given nonnegative s, r, t : s < r < t and an arbitrary Harris flow X
one has Ps,tX(x, r, ·) ∈ C([s; t]) and Ps,tX−1(x, r, t, r + t − ·) ∈ C([s; t]). Note that
Ps,tX−1(x, r, t, r + t− ·)(u) = X−1(x, r, t, t), u ∈ [s; r].

We start with collections of C(R)−valued Brownian motions Fε, ε ∈ (0; 1) [18].

Proposition 1. Given ε ∈ (0; 1) there exists a real-valued Gaussian process Fε ≡
{Fε(x, t) | x ∈ R, t ∈ R+} such that

(1) ∀t ∈ R+ Fε(·, t) ∈ C(R);
(2) ∀t1 < . . . < tn Fε(·, t1), Fε(·, t2)−Fε(·, t1), . . . , Fε(·, tn)−Fε(·, tn−1) are indepen-

dent C(R)−valued elements;

(3) ∀t ≥ 0, s ≥ 0 Fε(·, t+ s)− Fε(·, s)
d
= Fε(·, t)

d
=
√
tFε(·, 1);

(4) the process t→ Fε(·, t) ∈ C(R) is a.s. continuous;
(5) Cov(Fε(t, x), Fε(s, y)) = min{t, s}ϕε(x− y).

Proof. Since the mapping (t, s, x, y) → min{t, s} · ϕε(x− y) is nonnegative definite as a
product of two covariances a Gaussian process Fε with such covariance exists. To check
the continuity of Fε one calculates

ρT (u) := sup
(x−y)2+(t−s)2≤u2,t,s≤T

√
E(Fε(x, t)− Fε(y, s))2

= sup
(x−y)2+(t−s)2≤u2,t,s≤T

√
t+ s− 2 (t ∧ s)ϕε(x− y)

= sup
(x−y)2+(t−s)2≤u2,t,s≤T

√
(t+ s)(1− ϕε(x− y)) + (t ∨ s− t ∧ s)ϕε(x− y)

≤ sup
(x−y)2+(t−s)2≤u2,t,s≤T

√
2T |ϕ′′ε (0)|u2 + u ≤ C

√
Tu,

with some constant C. Since for sufficiently small δ∫ ∞
δ

ρT (e−x
2

)dx <∞

the process {Fε(x, t) | x ∈ R, t ∈ [0;T ]} has a continuous version w.r.t. both argu-
ments [1]. Applying an usual expansion argument we get the existence of such version
for {F (x, t) | x ∈ R, t ∈ R+}. This is the version we work with. Property 4 is checked
trivially.

Since Fε is a Gaussian field Properties 2 and 3 immediately follow from usual calcu-
lations of corresponding covariances. �
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The process Fε is a continuous C(R)−valued martingale in the sense of Kunita.

Proposition 2. Fix ε ∈ (0; 1). Then there exists a Harris flow {Xε(·, s, t) | 0 ≤ s ≤ t}
with the infinitesimal covariance ϕε such that

(1) for any x ∈ R, 0 ≤ s ≤ t

Xε(x, s, t) = x+

∫ t

s

Fε(Xε(x, s, r), dr);

(2) ∀0 ≤ s ≤ t Xε(·, s, t) is a homeomorphism on R.

Proof. We use Theorem 4.5.1 from [18] which states the existence of such a flow on a
finite time interval. To be applicable, Theorem 4.5.1 imposes additional requirements on
ϕε that in our case are reduced to the finiteness of

sup
x,x′,y,y′∈K,x6=x′,y 6=x′

|ϕε(x− y) + ϕε(x
′ − y′)− ϕε(x− y′)− ϕε(x′ − y)|
|x− x′||y − y′|

for any compact subset K of R, which is a consequence of the mean value theorem since
ϕε has bounded second partial derivatives. �

Let M(R) be a space of locally finite nonnegative Radon measures on the real line

equipped with the vague topology. PutMN (R) = (M(R))
N
, N ∈ N. The spaceMN (R)

is separable [15].

Theorem 1. Let {Xε}ε∈(0;1) be the Harris flows from Proposition 2, and let X be a
Harris flow with the infinitesimal covariance ϕ. Fix T > 0 and a set {(xn, tn)}n∈N ∈
(R× [0;T ])

∞
. Then(
P0,TXε(x1, t1, ·),P0,TX

−1
ε (x1, t1, T, T + t1 − ·), . . . ,

P0,TXε(xN , tN , ·),P0,TX
−1
ε (xN , tN , T, T + tN − ·), . . .

)
⇒
(
P0,TX(x1, t1, ·),P0,TX

−1(x1, t1, T, T + t1 − ·), . . . ,

P0,TX(xN , tN , ·),P0,TX
−1(xN , tN , T, T + tN − ·), . . .

)
,

in C∞([0;T ]) as ε→ 0 + .
Let λ be the Lebesque measure on the real line. For ε ∈ (0; 1), 0 ≤ s ≤ t ≤ T, define

the following M(R)−valued random elements:

µε(s, t) = λ ◦Xε(·, s, t)−1,

µ(s, t) = λ ◦X(·, s, t)−1,

µ̂ε(s, t) = λ ◦
(
X−1
ε (·, 0, t, s)

)−1
,

µ̂(s, t) = λ ◦
(
X−1(·, 0, t, s)

)−1
.

Then for any s1 ≤, . . . ≤ sN , t1 ≤, . . . ≤ tN , si ≤ ti, i = 1, N,N ∈ N,

(µε(s1, t1), . . . , µε(sN , tN ), µ̂ε(s1, t1), . . . , µ̂ε(sN , tN ))

⇒ (µ(s1, t1), . . . , µ(sN , tN ), µ̂(s1, t1), . . . , µ̂(sN , tN )) ,

in M2N (R) as ε→ 0 + .

Proof. Ideas and techniques from [12, 5, 20] are used in the proof.
The set {(xn, tn)}n∈N is additionally supposed to contain all duadic numbers in R ×

[0;T ], which is always achievable.
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We start with a result on the finite-dimensional convergence. As it was noted previ-
ously, [12][Lemma 10.4] establishes the convergence of

(Xε(x1, s, ·), . . . , Xε(xN , s, ·))

for a particular choice of {ϕε}ε∈(0;1), although a part of the reasoning is left to a reader.
Due to our case being more general and in order to keep the presentation comprehensive
we present a complete proof covering and generalizing that of [12][Lemma 10.4].

Fix a natural number K. Suppose that functions aij , bi, i, j = 1,K, are continuous and
bounded, a matrix ‖aij‖i,j=1,K is nonnegative definite, and define an operator A acting
on the space of infinitely differentiable functions with bounded derivatives via

A =
1

2

∑
i,j=1,K

aij
∂2

∂xi∂xj
+
∑
i=1,K

bi
∂

∂xi
.

Let C be a set of continuous functions whose coordinates stay equal after the moment
they meet. Fix s ≥ 0. Given y ∈ RK and s ∈ R+ a measure PKy,s on CK([s; +∞)) is
called a C−solution for the martingale problem for the operator A if for any compactly
supported infinitely differentiable f a process [s,+∞) 3 r 7→ f(ω(r))−

∫ r
s
Af(ω(q))dq is

a martingale w.r.t. PKy,s, where ω stands for a canonical realisation of a diffusion process,

and additionally PKy,s{ω(s) = y} = 1, {ω(r + ·) | ω ∈ C} ⊂ C, and PKy,s(C) = 1.

Solutions PKy,s, y ∈ RK , s ∈ R+, defined and investigated in [12][Sections 2-3], posess

a strong Markov property and are Feller processes. They exist for A = 1
2

∑K
i,j=1 g(xi −

xj)
∂2

∂xi∂xj
, g = ϕε or g = ϕ and are unique (idem). So since the coefficients of the operator

A do not depend on the time variable, all measures PKy,s, s ≥ 0, are essentially shifts of

PKy,0. Speaking informally, {PKy,0} define a process that solves the martingale problem

for A up to the moment of hitting the boundary of {z ∈ RK | z1, . . . , zK are distinct},
after that stays on the boundary and its distinct coordinates again form a solution to the
martingale problem for an operator of the same form in the space of a lesser dimension
until a new collision happens and so on. In our case each coordinate itself is a Brownian
motion.

Let s ≥ 0, y1 ≤ . . . ≤ yK be fixed. For any ε the distribution of

ηKε (y1, . . . , yK) = (Xε(y1, s, ·), . . . , Xε(yK , s, ·))

is a C−solution for the martingale problem for the operator 1
2

∑K
i,j=1 ϕε(xi − xj)

∂2

∂xi∂xj
.

The sequence {ηKε (y1, . . . , yK)}ε is tight in CK([s; +∞)) by the Tychonoff theorem. Sup-
pose that ηK is a weak limit of this sequence as ε → 0 + . Note that ηK ∈ C. For
this we argue differently to [12][Lemma 10.4]. Each coordinate of ηK is a martingale
w.r.t. the joint filtration, inheriting this property from the prelimit processes. Since
{(f1, . . . , fN ) | fi − fj never changes the sign } is a closed set in CK([s;∞)) any differ-
ence ηKk − ηKi is a martingale that does not change the sign, which implies the claim.

The uniform convergence on compact sets of the sequence {ϕε}ε to ϕ is used to check
the represention of the join characteristic of the coordinates of ηK on any finite time
interval and to prove that the process r 7→ f(ηK(r))−

∫ r
s
Af(ηK(q))dq stays a martingale

for A = 1
2

∑K
i,j=1 ϕ(xi − xj)

∂2

∂xi∂xj
(see [20][Remark after Theorem 9 in Chapter 3]

for a standard proof). Using the same reasoning as that of [12][Lemma 3.2] one gets
Law(ηK) = PKy,s.

Now we consider the case of distinct moments of start, s1 ≤ . . . ≤ sK . Fix N ∈ N.
The sequence

ξε = (P0,TXε(x1, s1, ·), . . . ,P0,TXε(xN , sN , ·))
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is tight in CN ([0; +∞)) by the Tychonoff theorem as its each coordinate is a Brownian
motion after a certain moment of time and a constant before that. We shall show that
the distribution of a weak limit of {ξε}ε is uniquely determined. Let ξ = (ξ1, . . . , ξN ) be
such a limit.

To simplify the notation we suppose that all s1, . . . , sN are distinct; adjustments
needed in a general case can be made easily. Fix M ≥ N and r1, . . . , rM such that
s1 ≤ r1 ≤ . . . ≤ rM . Let {r1, . . . , rM} =

⋃
i=1,N Ai, Ai ⊂ [si; si+1), i = 1, N − 1, AN ⊂

[sN ; +∞). Note that ξj(r) = ξj(sj), r ≤ sj , j = 1, N. Let fj , j = 1,M, be bounded
continuous functions from RN to R. Define the following measurable functions

gN (Y ) =

∫
Ω

∏
j∈AN

fj(ω(rj))P
N
Y,sN (dω), Y ∈ RN ,

gl(Y ) =

∫
Ω

∏
j∈Al

fj
(
ω(rj)

)
gl+1

(
ω(sl+1)

)
QlY (dω), Y ∈ RN ,

QlY = P l(Y1,...,Yl),sl
⊗

⊗
j=l+1,N

δ(Yj), l = 1, N − 1,

where a measure δ(u) is an atomic measure concentrated at a function identically equal
to u. Here the product over an empty set equals 1 by definition. Then

E
∏

j=1,M

fj(ξ(rj)) = EE

 ∏
j=1,M

fj(ξ(rj)) | ξ(r), r ≤ sN


= E

∏
j∈

⋃
j=1,N−1 Aj

fj(ξ(rj))E

( ∏
k∈AN

fk(ξ(rk)− ξ(sN ) + ξ(sN )) | ξ(r), r ≤ sN

)

= E
∏

j∈
⋃
j=1,N−1 Aj

fj(ξ(rj))

(∫
Ω

∏
k∈AN

fk (ω(rk))PNY,sN (dω)

)∣∣∣
Y=ξ(sN )

= E
∏

j∈
⋃
j=1,N−1 Aj

fj(ξ(rj))gN (ξ(sN ))

= E
∏

j∈
⋃
j=1,N−2 Aj

fj(ξ(rj))E
( ∏
i∈AN−1

fj(ξ(ri))gN (ξ(sN )) | ξr, r ≤ sN−1

)
= E

∏
j∈

⋃
j=1,N−2 Aj

fj(ξ(rj))gN−1(ξ(sN−1)) = . . . = g1(y).

Since all gj are uniquelly determined, such is the distribution of ξ.
Define

χNε = (P0,TXε(x1, t1, ·), . . . ,P0,TXε(xN , sN , ·)) ,
χ̂Nε =

(
P0,TX

−1
ε (x1, t1, T, T + t1 − ·), . . . ,P0,TX

−1
ε (xN , tN , T, T + tN − ·)

)
, ε ∈ (0; 1),

χN = (P0,TX(x1, t1, ·), . . . ,P0,TX(xN , tN , ·)) ,
χ̂N =

(
P0,TX

−1(x1, t1, T, T + t1 − ·), . . . ,P0,TX
−1(xN , tN , T, T + tN − ·)

)
.

We have proved that χNε ⇒ χN , ε → 0, in CN ([0;T ]) for any N. Denote by πK the
projection mapping in C∞([0;T ]) on the first K coordinates, and consider the following
C∞([0;T ])−valued elements χε, χ̂ε, χ, χ̂ defined via

πN (χε) = χNε , π
N (χ) = χN ,

πN (χ̂ε) = χ̂Nε , π
N (χ̂) = χ̂N , ε ∈ (0; 1), N ∈ N,
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their existence being guaranteed by the Kolmogorov theorem. Given κ ∈ C∞([s; t]) we
write κ[j] for the j−th coordinate of κ. Due to the definition of the product topology a
system{

{κ ∈ C∞([0, T ]) | κ[j] ∈ Aj , j = 1, k}, Aj is open in C([0;T ]), j = 1, k, k ∈ N
}

is a convergence-determining π−system [2][Theorem 2.2]. Consequently, χε ⇒ χ, ε→ 0,
in C∞([0;T ]). For the purpose of working with the inverse flows, consider a mapping
I : C∞([0;T ]) 7→ C∞([0;T ]) :

I(κ)[j](r) = inf{κ[i](r) | κ[i](T ) ≥ xj , ti ≤ r}, r ∈ [tj ;T ],

I(κ)[j](r) = I(κ)[j](tj), r ∈ [0; tj),

j ∈ N.

Since the Harris flows are right-continuous and the set {(xn, tn)}n∈N is dense in R× [0;T ]
I(χε) = χ̂ε a.s., ε ∈ (0; 1), and I(χ) = χ̂ a.s. due to (4). The mapping I, although
discontinuous, is Law(χ)−continuous in the following sense. Let C1 be a set of ψ ∈
C∞([0;T ]) such that ∀j1, j2 ∈ N(

∃s : ψ[j1](s) ≥ ψ[j2](s)
)
⇒
(
ψ[j1](t) ≥ ψ[j2](t), t ≥ s

)
,

and ψ[k](tk) = xk, k ∈ N. Let C2 be a subset of C1 such that for any ψ ∈ C2
(1) ∀k ∈ N ∃κk > 0

(5)

{
∀i :

(
xi ≥ I(ψ)[k](ti)

)
⇒
(
ψ[i] (T )− xk ≥ κk

)
,

∀i :
(
xi < I(ψ)[k](ti)

)
⇒
(
xk − ψ[i] (T ) ≥ κk

)
;

(2) ∀δ > 0 ∀M > 0 ∃L ∈ N

sup
l=0,dTe2L

sup
j : |xj |≤M,tj=l2−L

sup
∆t∈[0;2−L]

∣∣ψ[j](tj + ∆t)− xj
∣∣ ≤ δ.(6)

We state that if ψn → ψ, n → ∞, ψn ∈ C1, n ∈ N, ψ ∈ C2, then I(ψn) → I(ψ), n → ∞.
To see that, suppose the opposite. Then there exist a sequence {sn}n∈N ⊂ [0;T ]∞ and
numbers s ∈ [0;T ], κ ∈ R+ and k ∈ N such that sn → s, n→∞, and

inf
n∈N
|I(ψn)[k](sn)− I(ψ)[k](sn)| ≥ κ.

Since I(ψ)[k] is a continuous function,

lim inf
n→∞

|I(ψn)[k](sn)− I(ψ)[k](s)| ≥ κ

2
,

so there exists a sequence {jn}n∈N, tjn ≤ sn, n ∈ N, such that at least one of the following
relations holds:

ψn[jn](sn)− I(ψ)[k](s) ≥ κ

4
and (ψn[jn](T ) < xk infinitely often) ,(7)

I(ψ)[k](s)− ψn[jn](sn) ≥ κ

4
and (ψn[jn](T ) ≥ xk infinitely often) .(8)

We suppose that (7) holds. The case (8) is treated similarly.
Because of (6), there exist ε > 0 and j ∈ N such that

tj ≤ s− ε,
sup

t∈[s−ε;s+ε]
|ψ[j](t)− I(ψ)[k](s)| ≤ κ

8 ,

ψ[j](s)− I(ψ)[k](s) > 0.

(9)

Due to (9) and (5) we have:

(10) ψ[j](T ) ≥ xk + κk.
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Combining (9) with (7), we have:

inf
n∈N

(
ψn[jn](sn)− ψ[j](sn)

)
≥ κ

8
.

At the same time, ψn[j]→ ψ[j], n→∞, in C([0;T ]) thus there exists n0 such that

(11) ∀n ≥ n0

(
ψn[jn](sn)− ψn[j](sn)

)
≥ κ

16
.

Moreover, (11) and (7) imply that

ψ[j](T ) = lim
n→∞

ψn[j](T ) ≤ lim inf
n→∞

ψn[jn](T ) < xk,

which contradicts (10). Hence I(ψn)→ I(ψ), n ∈ ∞, in C∞([0;T ]).
Obviously, χε ∈ C1 a.s., ε ∈ (0; 1). In order to check that χ ∈ C2, only the properties (5)

and (6) need be verified. For arbitrary positive δ and M

P

 ⋃
l=0,dTe2L

{
sup

u∈[−M ;M ]

sup
t∈[l2−L;(l+1)2−L]

∣∣X(u, l2−L, t)− u
∣∣ ≥ δ} for inf. many L

 = 0.

(12)

Indeed, if

UlL =

{
sup

u∈[−M ;M ]

sup
t∈[l2−L;(l+1)2−L]

∣∣X(u, l2−L, t)− u
∣∣ ≥ δ} ,

then it is sufficient for (12) to hold that the series
∑
L≥1

∑
l=0,dTe2L P (UlL) converge.

Proceeding exactly as in the proof of Theorem 4.7 of [12] and using an estimate [12][4.8]
one obtains:∑

L≥1

∑
l=0,dTe2L

P (UlL) ≤
(

16M

δ
+ 2

)√
2

π

∑
L≥1

(
dT e2L + 1

) ∞∫
δ2
L
2

e−
y2

2 dy

≤
(

16M

δ
+ 2

)
2

δ

√
2

π
dT e

∑
L≥1

2
L
2 e−δ2

L

< +∞.

It is easily seen that (12) implies the property (6). To prove (5), note that, according
to [12][Chapter 7], a mapping X(·, s, t) is a jump function, so, due to [12][Chapter 4], for
any s ∈ [0;T ):

P {{X(x, s, T ) | x ∈ R} ∩ {x1, . . . , xN} 6= ∅}

= P
{{

X(x, s, T ) | x =
u

v
, u, v ∈ Z

}
∩ {x1, . . . , xN} 6= ∅

}
≤
∑
u,v∈Z

P
{
X
(u
v
, s, T

)
∈ {x1, . . . , xN}

}
= 0,

and thus follows (5). Hence χ ∈ C2 a.s..
The continuous mapping theorem [14][Theorem 4.27 + Exercise 4.27] implies that

(χε, χ̂ε)⇒ (χ, χ̂) , ε→ 0+,

which is essentially, after a reformulation, the first assertion of the theorem.
To verify the second assertion of the theorem we start with checking that given s, t, s <

t, it holds that µε(s, t)⇒ µ(s, t) inM(R) as ε→ 0+, or, equivalently [15][Theorem 4.2],
that for any continuous compactly supported function f 〈µε(s, t), f〉 ⇒ 〈µ(s, t), f〉, ε→ 0,
where for any ν ∈M(R) and any function g

〈ν, g〉 :=

∫
R
g(y)ν(dy),
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assuming that the integral exists. We proceed gradually. Firstly, we prove this conver-
gence to hold with an additional assumption of f being Lipshitz continuous; secondly,
we establish the result for arbitrary continuous compactly supported functions.

Suppose that f is compactly supported and Lipschitz continuous with a Lipschitz
constant Cf . Let supp(f) ⊂ [−S;S] for some S > 0 and Rf = supy∈R |f(y)|. Given a
standard Brownian motion W it holds, for any ε ∈ (0; 1) and M > S, that

E
∣∣∣ ∫
|y|≥M

f (Xε (y, s, t)) dy
∣∣∣ ≤ E ∑

k≥M

k+1∫
k

(
|f (Xε (y, s, t)) |+ |f (Xε (−y, s, t)) |

)
dy

≤ Rf
∑
k≥M

k+1∫
k

(
P {Xε (y, s, t) ∈ [−S;S]}+ P {Xε (−y, s, t) ∈ [−S;S]}

)
dy

≤ 2Rf
∑
k≥M

P {Xε (k, s, t) ≤ S} ≤ 2Rf
∑
k≥M

P {W (t− s) ≥ k − S} .

The same estimate, obviously, holds for X, too. Fix δ > 0. Then there exists M such
that

max
{

sup
ε(0;1)

E
∣∣∣ ∫
|y|≥M

f (Xε (y, s, t)) dy
∣∣∣, E∣∣∣ ∫

|y|≥M
f (X (y, s, t)) dy

∣∣∣} ≤ δ.(13)

Define

〈µNε , f〉 =

N∑
k=−N

f

(
Xε

(
kM

N
, s, t

))
MN−1,

〈µN , f〉 =

N∑
k=−N

f

(
X

(
kM

N
, s, t

))
MN−1, N ∈ N.

Fix a Lipschitz continuous function g with the Lipschitz constant Cg. Put

AN = Eg
(
〈µN (s, t), f〉

)
− Eg (〈µ(s, t), f〉) ,

AεN = Eg
(
〈µNε (s, t), f〉

)
− Eg (〈µε(s, t), f〉) , ε ∈ (0; 1).

Since Harris flows are stationary w.r.t. the time variable, we have, by (13), that

|AεN | =
∣∣Eg (〈µε(s, t), f〉)− Eg

(
〈µNε (s, t), f〉

)∣∣
≤ CgE

∣∣〈µε(s, t), f〉 − 〈µNε (s, t), f〉
∣∣

≤ Cgδ + CgE

∣∣∣∣∣
∫ M

−M
f (Xε (y, s, t)) dy −

N∑
k=−N

f

(
Xε

(
kM

N
, s, t

))
MN−1

∣∣∣∣∣
≤ Cgδ + CgE

N∑
k=−N

∫ (k+1)M
N

kM
N

∣∣∣∣f (Xε (y, s, t))− f
(
Xε

(
kM

N
, s, t

))∣∣∣∣ dy
= Cgδ + 2CgNE

∫ MN−1

0

|f (Xε (y, s, t))− f (Xε (0, s, t))| dy

≤ Cgδ + 2CgCfN

∫ MN−1

0

[
E (Xε (y, s, t)−Xε (0, s, t))

2
] 1

2

dy.(14)

The result of [8][Lemma 5], after an investigation of its proof, can be reformulated as
follows: for any Harris flow Y and any y1, y2 ∈ R, 0 ≤ s ≤ t, t− s ≤ 1,

(15) E (Y (y1, s, t)− Y (y2, s, t))
2 ≤ (y1 − y2)2 +

8

π
|y1 − y2|.
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Using (14) and (15) one obtains, for MN−1 ≤ 1 :

|AεN | ≤ Cgδ + 6CfCgN

∫ MN−1

0

y
1
2 dy ≤ Cgδ + 4CgCfM

3
2N−

1
2 .

Exactly the same reasoning is applicable in the case of AN . So, for sufficiently large N,

sup
ε∈(0;1)

|AεN |+ |AN | ≤ 2Cgδ + 8CgCfM
3
2N−

1
2 .

Therefore,∣∣∣Eg (〈µε(s, t), f〉)− Eg (〈µ(s, t), f〉)
∣∣∣ ≤ ∣∣Eg (〈µNε (s, t), f〉

)
− Eg

(
〈µN (s, t), f〉

)∣∣
+ 2Cgδ + 8CgCfM

3
2N−

1
2 ,(16)

for sufficiently large N. Here δ can made arbitrary small by taking M large enough. Due
to the first statement of the theorem, for any fixed natural N,M(

Xε(−M, s, t), . . . ,Xε

(
−kM
N

, s, t

)
, . . . , Xε(0, s, t), . . . ,

Xε

(
kM

N
, s, t

)
, . . . , Xε(M, s, t)

)
⇒(

X(−M, s, t), . . . ,X

(
−kM
N

, s, t

)
, . . . , X(0, s, t), . . . ,

X

(
kM

N
, s, t

)
, . . . , X(M, s, t)

)

in R2N+1, as ε→ 0. Hence for any N ∈ N

Eg
(
〈µNε (s, t), f〉

)
− Eg

(
〈µN (s, t), f〉

)
→ 0, ε→ 0.

This, together with (16), implies that for any Lipschitz continuous g

Eg (〈µε(s, t), f〉)→ Eg (〈µ(s, t), f〉) , ε→ 0.

Equivalently,

(17) 〈µε(s, t), f〉 ⇒ 〈µ(s, t), f〉 in R, ε→ 0.

Now we shall show that (17) holds for arbitrary continuous functions f whose support
is contained in [−S;S]. It is sufficient to show that for any δ > 0 there exists a Lipschitz
continuous function f? such that for any Lipschitz continuous function g

|Eg (〈µε(s, t), f〉)− Eg (〈µε(s, t), f?〉)| ≤ Cδ,
|Eg (〈µ(s, t), f〉)− Eg (〈µ(s, t), f?〉)| ≤ Cδ,

where the constant C does not depend on f? or ε. Obviously, there exists a Lipschitz
continuous function f? supported on [−S;S] such that maxy∈R |f(y)− f?(y)| ≤ δ. Let ν
denote any of {µε(s, t)}ε∈(0;1), or µ(s, t). We have:

|Eg (〈ν, f〉)− Eg (〈ν, f?〉)| ≤ CgE
∫ S

−S
|f(y)− f?(y)|ν(dy) ≤ CgδEν((−S;S]).
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Let W be a standard Wiener process started from 0. Then

Eµ(s, t)((−S;S]) = Eλ{y | X(y, s, t) ∈ (−S;S]}

=

∫ ∞
0

P
{
λ{y | X(y, s, t) ∈ (−S;S]} ≥ c

}
dc

≤
∫ ∞

0

P
{
∃y1, y2 : y2 − y1 ≥ c,X(y1, s, t), X(y2, s, t) ∈ [−S;S]

}
dc

≤ 2S +

∫ ∞
2S

P
{
∃y : |y| ≥ c

2
, X(y, s, t) ∈ [−S;S]

}
dc

≤ 2S +

∫ ∞
2S

P

{
X
( c

2
, s, t

)
≤ S or X

(
−c
2
, s, t

)
≥ −S

}
dc

≤ 2S + 2

∫ ∞
2S

P
{ c

2
+W (t− s) ≤ S

}
dc

= 2S + 2

∫ ∞
2S

P
{
W (t− s) ≥ c

2
− S

}
dc

= 2S + 4

∫ ∞
0

P
{
W (t− s) ≥ c

}
dc ≤ 2S + 2E|W (t− s)| ≤ 2S + 2T.

This estimate holds also for µε(s, t). Thus

|Eg (〈ν, f〉)− Eg (〈ν, f?〉)| ≤ Cg(2S + 2T )δ,

and, as a result, (17) holds for compactly supported continuous f. So µε(s, t) ⇒ µ(s, t)
in M(R), ε→ 0.

By [12][Theorem 10.5] we have that Law(µε(s, t)) = Law(µ̂ε(s, t)), ε ∈ (0; 1), and
Law(µ(s, t)) = Law(µ̂(s, t)) so, since M(R) is separable the mappings µε(s1, t1) and
µε(s2, t2) are independent as soon as (s1, t1)∩ (s2, t2) = ∅, as well as those of the inverse
flows. Hence, the second assertion of the theorem follows by standard reasoning. �

Remark 2. In Theorem 1 the measures µε(s, t) are considered instead of the mappings
Xε(·, s, t) (although the finite-dimensional distributions of the latter ones are conver-
gent as random variables) because the family {Xε(·, s, t)}ε∈(0;1) is not tight in D(R) :
the limit function X(·, s, t) is discontinuous while the prelimit ones are continuous, and
the Skorokhod topology does not allow such convergence to happen. However, one can
consider another possible topologies, for instance the weak convergence topology metriced
with the Levy-Prokhorov distance (or, equivalently, with the L1−Wasserstein metric with
a bounded integrand). This is essentially what is done in the theorem.

Remark 3. In [6] estimates on the Wasserstein metric between the distributions of
the forward n-point motions of one-dimensional Harris flows with compactly supported
covariance functions are obtained in terms of the diameters of supporting sets. However,
in our case for any collection {ϕε}ε∈(0;1) of compactly supported functions approximating
ϕ, the corresponding supporting sets grow indefinitely.
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