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M. B. VOVCHANSKII

CONVERGENCE OF SOLUTIONS OF SDES TO HARRIS FLOWS

A method of the approximation of a coalescing Harris flow with homeomorphic sto-
chastic flows built as solutions to SDEs w.r.t. continuous martingales with spatial
parameters in the sense of Kunita is proposed. The joint convergence of forward and
backward flows as diffusions is obtained, as well as the joint convergence of forward
and backward transformations of the real axe under the action of the flows.

We consider a system of correlated and sticking together after a meeting Brownian
motions with R x RT as a set of start points. The object discussed is characterized
via its n—point motions that are approximated with n—point motions of ”ordinary”
stochastic flows, where hereinafter a term ”stochastic flow” is referring to a family of
random mappings. The first class of examples considered in the paper is provided with
flows of solutions to SDEs w.r.t. a martingale with spatial parameters in the sense of [18],
while the second one is provided with Harris flows [12].

The Harris flow’s original definition is up to Harris himself [12], though we use a mod-
ified formulation (see [7, 23]). Let D(R) be a separable topological space of rcll functions
on R equipped with the Skorokhod topology [9, 2]. The space D(R) is completely metriz-
able (see [2] for an example of such a metric). A composition f(g) is denoted f o g, and
Id is the identity mapping.

Definition 1. A Harris flow X with the infinitesimal covariance ¢ is a family of
D(R)—valued random variables {X (s,t) | X(s,t) = X (-, s,t),s <t} such that
(1) forany s <t <r P{X(,s,71)=X(t,7)0oX(,s,t)} =1; X(s,8) =1d a.s.;
(2) for any t1 <tg < ... <t, random elements X (t1,t2),..., X (tn—1,tn) are inde-
pendent;
(3) for any s,t € R,h >0 Law (X(s,t)) = Law (X (s + h,t+ h));
(4) as h — 0+, X(0,h) — Id in probability;
(5) for any x a process t — X (x,0,t) — x is a Brownian motion started at 0 w.r.t.
filtration o {X (u1,u2),0 <up <wug <t},oq;

(6) for any z,y (X(,0,-), X (y,0,)) (£) = [y 0 (X(2,0,5) — X(y,0,5)) ds.

It is shown in [12] that if a symmetric continuous nonnegative definite function ¢
whose Fourier transform is not of pure jump type is Lipschitz continuous outside any
interval containing the origin the corresponding Harris flow exists. If ¢ is smooth enough,
the flow can be considered as a flow in the sense of Kunita [18, 23]. However, not every
Harris flow is a flow of homeomorphisms in contrast to those treated in [18]. Indeed, the
difference £ = (X (uq,0,-) — X (u2,0,-)) is a Feller diffusion with the infinitesimal operator
(1—p(x)) j—; on the upper halfline until it hits the origin (if ever). If f05 %dw is
finite for some small § the Feller criterion [3, 12] implies that £ hits the origin in a finite
time a.s.. It being a nonnegative martingale, the process £ never leaves 0 after hitting it.
Thus Harris flows can be referred to as coalescing flows in this case. At the same time,
the origin can still be either an exit or a regular point for the diffusion £ (see [22][Section
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9¢]). In [23] it is shown how the regularity of the origin influences properties of the noises
associated with coalescing Harris flows.

The Brownian web ([13, 10, 11, 21]) can be considered as an extreme example of
a Harris flow with a discontinuous infinitesimal characteristic ¢(x) = 1,—¢. In [4] a
constructive approach to n—point motions of the Brownian web is proposed that is similar
to the one adopted in this paper. More specifically, let W be a Brownian sheet [17].
Suppose that a sequence {ky}n>1 of infinitely differentiable functions weakly converges
to dp in the sence of generalized functions, and there exist infinitely differentiable square
integrable functions p,, such that p, * p, = ky,n € N. One consider the following SDE

(1) Xp(z,t) =2 +/O /an(y — X, (x,8))W(ds,dy),

(for a general theory of integration w.r.t. the Brownian sheet, the reader is referred to [17,
7]). Given z1,...,2, € R a sequence {X,,(z1,-),..., Xn(2n,)},~,; weakly converges to
(X(21,0,-),...,X(2,,0,-)) in (C(R*))", X being a Brownian web [4].

In this paper we obtain a similar result for a Harris flow whose infinitesimal covariance
is a characteristic function of a symmetric stable law, possibly, with infinite mean. In
the latter case the convolutional square root of the covariance does not belong to L2(R),
violating conditions for (1) to have a solution. In order to overcome this difficulty we
use integration w.r.t. continuous martingales with spatial parameters [18] obtaining
n—point motions of a coalescing Harris flow as weak limits of n—point motions of flows
of homeomorphisms given by the SDE

(2) Xc(z,s,t) ==z +/ F (X (xz,s,7),dr),

where F; is a continuous C(R)—valued martingale as defined in [18]. Now we give a
rigorous description of the approach proposed.
We consider
o(z) = PI?I" 2 e R, B € (0;+00), o € (0;2).

Suppose that {¢.}.c(0;1) is a fixed throughout the paper sequence of twice continuously
differentiable symmetric nonnegative definite functions such that ¢, — ¢, — 0+, uni-
formly on compact subsets of R, and ¢.(0) = 1. For instance, one can consider a mollifier
h and put

(3) e =elccpxh (g) e €(0;1),

with ¢, selected to give ¢.(0) = 1. A reference example of such mollifier is provided
with a Gaussian density. In this case the result of [12][Lemma 10.4] states that n—point
motions of Harris flows with the infinitesimal covariances built as in (3) weakly converge
to those of a Harris flow with the infinitesimal covariance ¢. In the paper we investigate
the joint convergence of n—point motions of forward and backward (inverse) flows viewed
as diffusions (see [18][Chapter 5]) and the convergence as D(R)—valued random elements
of Definition 1. Note that in the case of a smooth infinitesimal covariance the inverse flow
X~ solves an SDE analogous to that of (2), although in the inverse time and w.r.t a
backward infinitesimal generator [18] so X ~!(-, s,t) is a homeomorphism of R onto itself.
Moreover, since the infinitesimal covariance is symmetric additionally the lows X ~! and
X have the same distribution [18][Theorem 4.2.10]. In constrast, for ¢ in question a
mapping X (-, s,t) is a.s. a step function [12, 19]. However, one can still consider an
inverse flow [12, 16] on [t1;t2] defined via

X_l((E,tl,tQ,S) = il’lf{X(y,T‘,tl +t2 - S) | X(y,?‘,tg) 2 x,y S er S [tl;tl +t2 - S]},
(4) S € [tl;tg},
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that is, the inverse flow is built with using all possible trajectories of the forward flow
on [t1;t2]. In the case of homeomorphic flows this definition of the inverse flow coincides
with the standard one formulated in terms of integrals w.r.t. a backward infinitesimal
generator [18], due to the ordered nature of the trajectories within the flow. But for flows
of discontinuous mappings we understand this relations as a definition of the inverse
flow (see also [10, 11, 21]). It is worth noting that for any Harris flow X mappings
X71(-,0,t,8) and X (-, s,t) have the same distribution [12][Theorem 10.5] as elements of
D(R).

The following notation is adopted hereinafter. Let C(A), where A can be a finite
closed interval, the real line or the real halfline, be a space of continuous functions
on A equipped with the topology of uniform convergence on compact sets. In prod-
uct spaces the product topology is always considered henceforth. Denote C*([s;t]) =
(C([s;4]))>,CN ([s;]) = (C([s;]))" , N € N. Given real numbers a,a1,b: a < a; < b a
function f € C([a1;b]) can be embedded into C([a;b]) with a transformation P, f(s) =
]]-se[a;al]f(al) + f(s)]]-se(al;b]vs € [a’; b}

Remark 1. Given nonnegative s,r,t: s < r < t and an arbitrary Harris flow X
one has Ps X (z,7,-) € C([s;t]) and Ps; X t(z,r,t,r +t — ) € C([s;t]). Note that
Po e X Ya,rt,r +t —)(u) = X a,rt,t),u € [s;7].

We start with collections of C(R)—valued Brownian motions F.,e € (0;1) [18].

Proposition 1. Given ¢ € (0;1) there exists a real-valued Gaussian process F, =
{F.(z,t) | x € R,t € R} such that

(1) Vt e Rt F.(-,t) € C(R);

(2) Vt1 < ... <ty F(-yt1), Fe(yte) — Fe(t1), .- Fe(vytn) — Fo(-, tn—1) are indepen-

dent C(R)—wvalued elements;

(3) V£ >0,5>0 Fo(-,t+8) — Fo(r8) L Fo(-,t) £ VAFL(-,1);

(4) the process t — F.(-,t) € C(R) is a.s. continuous;

(5) Cov(F.(t,x), F-(s,y)) = min{t, s}p-(z — y).

Proof. Since the mapping (¢, s,z,y) — min{t, s} - p(z — y) is nonnegative definite as a
product of two covariances a Gaussian process F. with such covariance exists. To check
the continuity of F. one calculates

pr(u) = sup VE(F.(2,1) = F.(y,s))?
(z—y)?+(t—5)><u?t,s<T

= sup Vi+s—2(tAs)e(z—1y)
(@—y)?+(t—s)?<u?,t,s<T

- sup VE+s) 1 —p(@—y) + (Vs —tAs)pe(a —y)
(z—y)2+(t—s)2<u2,t,s<T

< sup V2T |02 (0)[u? 4+ u < CVTu,

 (2-y)2+(t—s)?<u2 t,s<T

with some constant C'. Since for sufficiently small §

/ pT(e*‘”2)dac < 00
5

the process {F.(x,t) | * € R,t € [0;T]} has a continuous version w.r.t. both argu-
ments [1]. Applying an usual expansion argument we get the existence of such version
for {F(z,t) | # € R,t € RT}. This is the version we work with. Property 4 is checked
trivially.

Since F; is a Gaussian field Properties 2 and 3 immediately follow from usual calcu-
lations of corresponding covariances. (I
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The process F; is a continuous C(R)—valued martingale in the sense of Kunita.

Proposition 2. Fiz e € (0;1). Then there exists a Harris flow {Xc(-,s,t) | 0 < s < t}
with the infinitesimal covariance p. such that

(1) foranyx e R,0< s <t
t
Xs(x,s,t):x—i—/ F.(X (z,s,7),dr);

(2) VO < s <t X(,s,t) is a homeomorphism on R.

Proof. We use Theorem 4.5.1 from [18] which states the existence of such a flow on a
finite time interval. To be applicable, Theorem 4.5.1 imposes additional requirements on
e that in our case are reduced to the finiteness of

sup =@ = 9) + pe(a — ) — pe(x = y') — (o’ — )|
z,x' Y,y €K, x4z ,ytx’ |l‘ - JJ/‘ |y - y/‘

for any compact subset K of R, which is a consequence of the mean value theorem since
e has bounded second partial derivatives. O

Let M(R) be a space of locally finite nonnegative Radon measures on the real line
equipped with the vague topology. Put MY (R) = (M(R))"Y, N € N. The space M" (R)
is separable [15].

Theorem 1. Let {X.}.c0;1) be the Harris flows from Proposition 2, and let X be a
Harris flow with the infinitesimal covariance ¢. Fix T > 0 and a set {(@n,tn) nen €
(R x [0;T]). Then

(7907TX5(x1,t1, )y Por X wy b, T, T+t — ), ...
PorXe(@n,ty, ) Por X (@ tn, T,T +ty — -, .. )

= (PO,TX(zl,tl,-),PO,TX*l(xl,tl,T,T+t1 e R
PorX(xn,tn, ), PorX (an tn, T, T +tx — ), .. )

in C=([0;T]) ase — 0+.
Let X be the Lebesque measure on the real line. For e € (0;1),0 < s <t < T, define
the following M(R)—wvalued random elements:

pe(s,t) = Xo X (-, 5,t)7 ",

( )Z)\oX(-,S,t)_l,
fic(s,) = Ao (XZ1(-,0,t,8) ",
(s,1)

€

Then for any s1 <,... <sny,t1 <,...<tn,s; <t;,i=1,N,N € N,
(M8(817t1)7"'7ME(SN7tN)aﬁE(817t1)7"°7ﬁ5(sN7tN))
= (u(s1,t1), -+, p(snytN), B(s1,t1), -5 (SN, EN))

in M?N(R) as e — 0+ .

Proof. Ideas and techniques from [12, 5, 20] are used in the proof.
The set {(zn,tn)}nen is additionally supposed to contain all duadic numbers in R x
[0; T'], which is always achievable.
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We start with a result on the finite-dimensional convergence. As it was noted previ-
ously, [12][Lemma 10.4] establishes the convergence of

(Xc(z1,8,7), ..., Xe(TN, 8,7))

for a particular choice of {¢:}.¢(0;1), although a part of the reasoning is left to a reader.
Due to our case being more general and in order to keep the presentation comprehensive
we present a complete proof covering and generalizing that of [12][Lemma 10.4].

Fix a natural number K. Suppose that functions a;;, b;, 4, j = 1, K, are continuous and
bounded, a matrix [|a;;|[; ;_77 is nonnegative definite, and deﬁne an operator A acting
on the space of infinitely differentiable functions with bounded derivatives via

1
A=5 2. Sig o axj Zb

i,j=1,K i=1,K

Let C be a set of continuous functions whose coordinates stay equal after the moment
they meet. Fix s > 0. Given y € RX and s € RT a measure PX on C¥([s;+00)) is
called a C'—solution for the martingale problem for the operator .A 1f for any compactly
supported infinitely differentiable f a process [s,+00) 3 r — f(w f Af(w(q))dg is
a martingale w.r.t. Py <, Where w stands for a canonical reahsatlon of a d1ffus1on process,
and additionally P {w(s) =y} =1, {w(r+-) |w e C} C C, and P(C) = 1.
Solutions P, S7y e RE s € R+, defined and investigated in [12] [Sectlons 2-3], posess
a strong Markov property and are Feller processes. They exist for A = 3 ZZ =1 glx; —
xj) a%;ﬁ, g = e or g = ¢ and are unique (idem). So since the coefficients of the operator
i0T;

A do not depend on the time variable, all measures Py <, 8 > 0, are essentially shifts of

- Speaking informally, {P, 0} define a process that solves the martingale problem
for .A up to the moment of hlttlng the boundary of {z € R¥ | z;,..., zx are distinct},
after that stays on the boundary and its distinct coordinates again form a solution to the
martingale problem for an operator of the same form in the space of a lesser dimension
until a new collision happens and so on. In our case each coordinate itself is a Brownian
motion.

Let s > 0,y1 < ... < yg be fixed. For any ¢ the distribution of
5, yr) = (Xe(yr, s, Xe(yk, s, )
02

is a C—solution for the martingale problem for the operator 3 Zin:l (i — ) 5305
) J

The sequence {n% (y1,...,yx)}e is tight in CX([s; +00)) by the Tychonoff theorem. Sup—
pose that 7 is a weak limit of this sequence as ¢ — 0 + . Note that n € C. For
this we argue differently to [12][Lemma 10.4]. Each coordinate of n’ is a martingale
w.r.t. the joint filtration, inheriting this property from the prelimit processes. Since
{(f1,---, fn) | fi — f; never changes the sign } is a closed set in C¥ ([s;00)) any differ-
ence n,ﬁ( —nK is a martingale that does not change the sign, which implies the claim.

The uniform convergence on compact sets of the sequence {¢.}. to ¢ is used to check
the represention of the join characteristic of the coordinates of n® on any finite time
interval and to prove that the process r— f(n f Af(n™ (¢))dq stays a martingale
for A = §Zi,j:1 olx; — mj)m (see [20] [Remark after Theorem 9 in Chapter 3]
for a standard proof). Using the same reasoning as that of [12][Lemma 3.2] one gets
Law(n™) = Pf,.

Now we consider the case of distinct moments of start, s; < ... < sig. Fix N € N.
The sequence

& = (PorXo(x1,51,7), ..., PorXe(xN, SN, )
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is tight in CV([0; +o0)) by the Tychonoff theorem as its each coordinate is a Brownian
motion after a certain moment of time and a constant before that. We shall show that
the distribution of a weak limit of {£.}. is uniquely determined. Let £ = (£1,...,&n) be
such a limit.

To simplify the notation we suppose that all si,...,sy are distinct; adjustments
needed in a general case can be made easily. Fix M > N and ry,...,7r) such that
s <1 <o <y Let {ry, e = Ul 1NAZ,A C [si; 8i41),0 = 1 N —-1,Ay C
[sn;+00). Note that &;(r) = &;(s;),7 < s;,j = 1,N. Let f;,j = 1, M, be bounded
continuous functions from RY to R. Define the following measurable functions

/ II fiwr) P, (dw), Y e RV,

jGAN
/ TT £ (@) g (w(s111)) QL (dw), ¥ € BY,
JEA;
Qv =P, yna® @ 6, 1= N1,

j= l+1N

where a measure J(u) is an atomic measure concentrated at a function identically equal
to u. Here the product over an empty set equals 1 by definition. Then

E I[ fie))=EE[ ] £Er)|&0).r <sy

j=1,M j=1,M

=E ] fj(E(Tj))E< I A(€trw) = €Gsn) +E(sw)) [ €(r),r < SN)

jGUj:m Aj kIEAN

SV | G ( ([ II 5 PYSN<dw>> s

jEUj:mA keAN

=FE H fi(€(ri))gn(§(sn))

jeUj—tn=14;

=2 I smeens( T HEeonEsn) & < o)

JeU;rm—= Aj I€EAN_1
=E ]  £Er)gn-1Esn-1) = .. = g1 (y)-
jeU -t =2 4

Since all g; are uniquelly determined, such is the distribution of .
Define

o = (PorXe(z1,t1,),. .., PorXe(xn, 5N, ),
N = (Por X N1, t1, T, T +t1 — ), ..., Por X Han, tn, T, T +tn — ) e € (0;1),
= (PorX(z1,t1,7),..., PorX(zn,tN,")),
N = (PorX Mo, t1, T, T +t1 —),...,PorX “an,tn, T, T +ty — ).

We have proved that xY = x,e — 0, in CV([0;T]) for any N. Denote by 7% the
projection mapping in C°°([0;T]) on the first K coordinates, and consider the following
C°([0; T])—valued elements xc, Xe, X, X defined via

™ (xe) = xY, 7N (x) = xV,

Nxe) =X, aN (%) =xN,e € (0;1), N € N,
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their existence being guaranteed by the Kolmogorov theorem. Given xk € C*(][s;t]) we
write k[j] for the j—th coordinate of k. Due to the definition of the product topology a
system

{{r € C=((0,T]) | Klj) € A;,j = T, %}, A; is open in C((0;T)), j = T, %, k € N}

is a convergence-determining w—system [2][Theorem 2.2]. Consequently, x. = x,¢ — 0,
in C*([0;T]). For the purpose of working with the inverse flows, consider a mapping
T: ¢([0:T)) — C=([0; T)) -

Z(r)l(r) = inf{sli](r) | li)(T) =2 zj,t; <r},re [t 7],

Z(w)jl(r)  =Z(x)[1(t;), m € [0:15),

jeN
Since the Harris flows are right-continuous and the set {(z,, tn) }nen is dense in R x [0; T7]
Z(xe) = Xe a.s., € € (0;1), and Z(x) = X a.s. due to (4). The mapping Z, although
discontinuous, is Law(x)—continuous in the following sense. Let C; be a set of ¢ €
C>([0;T]) such that Vj1,j2 € N

(3s: vlil(s) > ¥[52)(s)) = (LLA](t) > l5a)(#). t > s),
and Y[k](ty) = zx, k € N. Let C3 be a subset of C; such that for any ¢ € Cy
(1) Yk e N3k, >0
(5) { Vi (2 > Z() k() = (Wl (T) — x1 > ki),
Vi: (@; < Z(V)[K)(t:) = (z — Y[ (T) = Ki);
(2) V6 >0VM >03LeN

(6) sup sup sup W[t + At) — ;] < 6.
1=0,[T]2E 5+ |w5| <M t;=12-L Ate[0;2~ L]

We state that if ¥, — ¥,n — 00,1, € C1,n € N, € Ca, then Z(¢,) — Z(1)),n — oo.
To see that, suppose the opposite. Then there exist a sequence {s,}neny C [0;T]°° and
numbers s € [0; 7], x € RT and k € N such that s,, — s,n — oo, and

inf [Z(¥n)[k](sn) = Z(4)[K)(s0)] = .
Since Z(v)[k] is a continuous function,
timint [Z(6,) (](51) — Z@)H(3)] >

so there exists a sequence {jy, }nen, tj, < sn,n € N, such that
relations holds:

3

2 wl=x

t least one of the following

(7) VYnlinl(sn) — Z(Y)[K](s) > g and (¢¥p[jn](T) < xy infinitely often),
(8) Z()[k](s) — ¥nlinl(sn) = g and (Yn[jn](T) > zy infinitely often) .

We suppose that (7) holds. The case (8) is treated similarly.
Because of (6), there exist € > 0 and j € N such that

thS—E,

(9) sup  [P[j](t) = Z(¥)[K](s)| <

t€[s—e;s+e]

Plil(s) = Z()[K](s) > 0.
Due to (9) and (5) we have:
(10) YEIT) = g + Ky

bl

o[
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Combining (9) with (7), we have:
inf (Vulial(sn) = $1i](50)) = 3
At the same time, ¥,,[j] = 1[j],n — oo, in C([0; T]) thus there exists ng such that
(11) Vi 2 o (Yalin)(sn) = $alil(sn)) = 1.
Moreover, (11) and (7) imply that
GLNT) = Jim G [(T) < liminf v [ja)(T) < 2,

n—oo
which contradicts (10). Hence Z(1,,) — Z(),n € oo, in C*=([0;T1).
Obviously, x. € C; a.s., € € (0;1). In order to check that x € Ca, only the properties (5)
and (6) need be verified. For arbitrary positive 6 and M

(12)
P U { sup _jup |X(u,l2_L,t) — u’ > 5} for inf. many L » = 0.
1=0.[TT2E u€[—M;M] te[l2—L;(I+1)2-L]
Indeed, if
Uyr = sup sup ‘X(u,l2_L,t)—u| >0y,
[-M;M]te[i2—L;(141)2— L]

then it is sufficient for (12) to hold that the series } ;- ZI:WP (Uy) converge.
Proceeding exactly as in the proof of Theorem 4.7 of [12] and using an estimate [12][4.8]
one obtains:

o) Pp)< (WH)\fZ 2L+1Zo

L>1,_ =0, [T]ZL L>1

16M 2 [2 P
< | — Y - 2 .
< < 5 + 2) 3 \/;fTW E 27e < 400

L>1
It is easily seen that (12) implies the property (6). To prove (5), note that, according
to [12][Chapter 7], a mapping X (-, s,t) is a jump function, so, due to [12][Chapter 4], for
any s € [0;T):

P{{X(z,s,T) |z e R}N{z1,...,xn} # 0}
:P{{X(x,s,T) |z = %,u,v EZ}ﬂ{zl,...,xN}7é@}

< Z P{ (%,S,T) G{xl,...,xN}} =0

w,vEZL

and thus follows (5). Hence x € C3 a.s..
The continuous mapping theorem [14][Theorem 4.27 + Exercise 4.27] implies that

(st)/(\e) = (X75€) ,€ = 0+,

which is essentially, after a reformulation, the first assertion of the theorem.

To verify the second assertion of the theorem we start with checking that given s,¢,s <
t, it holds that p.(s,t) = u(s,t) in M(R) as e — 0+, or, equivalently [15][Theorem 4.2],
that for any continuous compactly supported function f (e (s,t), f) = (u(s,t), f),e = 0,
where for any v € M(R) and any function g

@ngémwwwx
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assuming that the integral exists. We proceed gradually. Firstly, we prove this conver-
gence to hold with an additional assumption of f being Lipshitz continuous; secondly,
we establish the result for arbitrary continuous compactly supported functions.

Suppose that f is compactly supported and Lipschitz continuous with a Lipschitz
constant Cy. Let supp(f) C [-S5;5] for some S > 0 and Ry = sup,cp [f(y)|- Given a
standard Brownian motion W it holds, for any € € (0;1) and M > S, that

k+1

Bl [ st <B Y [ (15 s t) [+ 1F (X (a50) Dy
PEY M
k+1
<R Y [ (PUXcns) € [-8iS)) 4 PAX. (ysit) € 253 ) dy
k>M 5,
<2R; Y P{Xc(kst)<S}<2R; Y P{W(t—s)>k-S}.
k>M k> M

The same estimate, obviously, holds for X, too. Fix § > 0. Then there exists M such
that

(13) max sup E’/ (y,
(0;1) ly|>M

o= S (S

M
= Z f (X (stt>> MN~' N eN.
k=—N

Fix a Lipschitz continuous function g with the Lipschitz constant Cy. Put

An = Eg ((t" (s,1), f)) = Eg ((u(s,1), 1)),

Aoy = Eg (12 (s,1), [)) — Eg ((p=(s,1), ) ;& € (0;1).
Since Harris flows are stationary w.r.t. the time variable, we have, by (13), that

[Aen| = [Eg (e (s5,1), ) = Eg (' (5,), 1))]
< CyE [(pe(s,t), f) — (12 (s,1), £

. X(y,s,t))dy’} <4

Define

< Cyb+ CyE

M al kM .
/_Mf(XE (5, 5,4)) dy — k;Nf (Xa (N,s,t>) MN
N (k+1)M
P s.0) = 1 (% (5 st) )
k=—N"Y N
MN~!

< Cyd+CyE > /
— C,5+20,NE / 1f (X2 (g, 5,8) — £ (X2 (0,5,))] dy

MN™! 1
(14) < Oy +2C ch/ E(XE (y,s,t) — X. (o,s,t))ﬂ *dy.

The result of [8][Lemma 5|, after an investigation of its proof, can be reformulated as
follows: for any Harris flow Y and any y1,y € R0 < s <t,t—s<1,

3
(15) E (Y (y1,5.t) = Y (y2,5,1)" < (s = 92)” + — |1 — v
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Using (14) and (15) one obtains, for MN ! < 1:
MN_l 1 3 1
|Aen| gCg§+GCfC’gN/ y2dy < Cyd +4C,CyM2N"2.
0
Exactly the same reasoning is applicable in the case of Ay. So, for sufficiently large N,

sup |Acn| 4 |An| < 2C,6 +8C,Cy M3 N3,
e€(0;1)

Therefore,

Eg ((pe(s,t), f)) — Eg ((u(s, 1), f)) ‘ <|Eg ((nX (s, 1), 1)) — Bg ((u" (s,1), 1))
(16) +2C,6 +8C,CM3N"2,

for sufficiently large IN. Here é can made arbitrary small by taking M large enough. Due
to the first statement of the theorem, for any fixed natural N, M

kM
(XE(—M,&t), v, Xe (—N,s,t> yeooy Xe(0,8,1), ...,

kM
Xg <N787t> 7...,X5(M,S7t)> =

kM
(X(M,s,t),...,X (N,s,t) oo, X(0,8,t),. ..,

X(%,s,t) ,...,X(M,s,t))

in R2VN+1as ¢ — 0. Hence for any N € N

Bg ((nd (s,0).f)) — Eg ((n" (s.1), f)) — 0,e = 0.

This, together with (16), implies that for any Lipschitz continuous g

Eg((pe(s,1), 1)) = Eg ((1(s,1), f)) ,& = 0.

Equivalently,

(17) (11c(s,8), ) = (u(s,1), f) in Rye = 0.

Now we shall show that (17) holds for arbitrary continuous functions f whose support
is contained in [—S; S]. It is sufficient to show that for any § > 0 there exists a Lipschitz
continuous function f* such that for any Lipschitz continuous function g

|Eg (<M5(Sa t)a f>) —Eyg (<N5(57t)7 f*>)| < Co,
|Eg ((u(s,1), f)) — Eg ({u(s, 1), [))] < C6,

where the constant C' does not depend on f* or . Obviously, there exists a Lipschitz
continuous function f* supported on [—S;S] such that max,cr |f(y) — f*(y)| < 6. Let v
denote any of {uc(s,t)}ce(0;1), or p(s,t). We have:

S
[Eg (v, ) = Eg ({v, )] < CgE[S lf(y) = [*(W)lv(dy) < CydEv((=S; S]).
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Let W be a standard Wiener process started from 0. Then
Eu(s, t)((=5;5]) = EMy | X(y,s,t) € (=5; 5]}

_ / P{My | X(y.5.t) € (—5; 8]} = clde
0

S/ P{3y17y2: Y2 — Y1 = CaX(y1787t)7X(y2387t) € [—S,S]}dc
0

<25+ [ P{3 = 5. X0 € [-5i8) e
28 2

i c —c
< — < — >
725+/2S P{X(z,s,t> SorX( 5 ,s,t) > S}dc

§2S+2/ P{E+W(t75)§5}dc
25 2

e c
= — > — -
25+2/2$P{W(t RS S}dc

= 2S+4/ P{W(t—s)>c}dc <25+ 2E|W(t — s)| < 25 + 2T.
0

This estimate holds also for . (s,t). Thus
[Eg (v, [)) — Eg ({v, f*))] < Cg(25 + 2T)5,

and, as a result, (17) holds for compactly supported continuous f. So pc(s,t) = u(s,t)
in M(R),e — 0.

By [12][Theorem 10.5] we have that Law(u.(s,t)) = Law(fic(s,t)),e € (0;1), and
Law(u(s,t)) = Law(fi(s,t)) so, since M(R) is separable the mappings p.(s1,t1) and
(82, t2) are independent as soon as (s1,%1) N (s2,t2) = 0, as well as those of the inverse
flows. Hence, the second assertion of the theorem follows by standard reasoning. ([l

Remark 2. In Theorem 1 the measures p.(s,t) are considered instead of the mappings
X:(+y8,t) (although the finite-dimensional distributions of the latter ones are conver-
gent as random variables) because the family {X (-, 5,t)}ce(0;1) s not tight in D(R) :
the limit function X (-, s,t) is discontinuous while the prelimit ones are continuous, and
the Skorokhod topology does mot allow such convergence to happen. However, one can
consider another possible topologies, for instance the weak convergence topology metriced
with the Levy-Prokhorov distance (or, equivalently, with the L1— Wasserstein metric with
a bounded integrand). This is essentially what is done in the theorem.

Remark 3. In [6] estimates on the Wasserstein metric between the distributions of
the forward n-point motions of one-dimensional Harris flows with compactly supported
covariance functions are obtained in terms of the diameters of supporting sets. However,
in our case for any collection {ape}se(o;l) of compactly supported functions approximating
p, the corresponding supporting sets grow indefinitely.
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