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FARES ALAZEMI, SOUKAINA DOUISSI, AND KHALIFA ES-SEBAIY

BERRY-ESSEEN BOUNDS FOR DRIFT PARAMETER ESTIMATION

OF DISCRETELY OBSERVED FRACTIONAL VASICEK-TYPE

PROCESS

In this paper, we study statistical estimation problems of drift parameters of Vasicek-

type processes driven by fractional Brownian motion. Based on fixed-time-step ob-
servations and using Malliavin calculus combined with the recent Nourdin-Peccati

analysis, we provide estimators of the drift parameters and analyze their asymp-

totic behaviors. More precisely, we study the strong consistency and the asymptotic
distribution of the estimators and we give the rate of their convergence in law.

1. Introduction

In this work, we are concerned about solving a parameter estimation problem for
the Vasicek-type process X, defined as the unique solution to the following stochastic
differential equation

(1) dXt = a(b−Xt)dt+ dBHt , t ≥ 0, X0 = 0,

where BH is a fractional Brownian motion of Hurst parameter H ∈ (0, 1). The drift
parameters a > 0 and b ∈ R in (1) are assumed to be unknown, we aim to estimate those
parameters based on discrete time observations of the process X.
Similar question was studied recently by Nourdin and Tran [14], where they consider
that the driving noise in equation (1) is an Hermite process and the process is observed
continuously in time. They proved the strong consistency and the asymptotic distribution
of the estimators of a and b.
Practically, it is not easy to observe a process continuously in time, this reason motivated
us to solve this parameter estimation problem using discrete time observations with no
in fill assumptions on the data when the noise of equation (1) is a fractional Brownian
motion.
The estimators are constructed based on empirical moments and this work continues
the line of research of the papers [7] and [3]. In [7], using stationary property, this
type of estimation was performed where no constraints on the mesh of the data are
made. In those papers a variety of parameter estimation problems are studied for a
range of fractional-driven noise processes with stationary and non-stationary covariance
structures.
The tools used in [7], [3] and in the present paper are related to the analysis on Wiener
space through Malliavin Calculus and the so-called optimal fourth moment theorem,
see [13].

Using those techniques among others, we were able to prove that the estimators of
the drift parameters for the Vasicek process (1) are strongly consistent for all H ∈ (0, 1)
and asymptotically normal and we gave the speed of their convergence in law in the
Wasserstein metric.
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Recently, several researchers have been interested in studying statistical estimation
problems for (1). Let us mention some works in this direction: in the case when a > 0, the
statistical estimation for the parameters a and b based on continuous-time observations of
{Xt, t ∈ [0, T ]} as T →∞, has been studied by several papers, for instance [2, 1, 14, 17]
and the references therein. When b = 0 in (1), the estimation of a has been investigated by
using least squares method as follows: the case of ergodic fractional Ornstein-Uhlenbeck
processes, corresponding to a > 0, has been considered in [8, 5, 9], and the case non-
ergodic fractional Ornstein-Uhlenbeck processes has been studied in [4, 6].
On the other hand, using Malliavin-calculus advances (see [12]), the work [7] provided new
techniques to statistical inference for stochastic differential equations related to stationary
Gaussian processes, and its result has been used to study drift parameter estimation
problems for some stochastic differential equations driven by fractional Brownian motion
with fixed-time-step observations, in particular for the fractional Ornstein-Uhlenbeck
given in (1), where b = 0 and a > 0. Similarly, in [3] the authors studied an estimator
problem for the parameter a in (1), where the fractional Brownian motion is replaced
with a general Gaussian process.

The paper is organized as follows. In Section 2 we recall some properties of the
driving noise of equation (1), which is the fractional Brownian motion. We also recall
some elements of Malliavin Calculus with respect to fractional Brownian motion. In
Section 3 we present the estimators chosen to estimate the drift parameters a and b
respectively. We show their strong consistency and we prove in details how we obtained
their speed of convergence in law depending on the values of the Hurst parameter H.
Finally, the reader will find in the Appendix the proofs of some auxiliary results.

2. Preliminaries

This section is dedicated to some notions that are required in our study, related mainly
to the analysis on Wiener space through Malliavin Calculus. We start by recalling the
definition of the fractional Brownian motion. For further details about this process, we
refer the reader to [11] and [15].

A fractional Brownian motion (fBm for short) of Hurst parameter H ∈ (0, 1), BH =
(BHt )t≥0 is a centered continuous Gaussian process with covariance function:

RH(t, s) := E(BHt B
H
s ) =

1

2

(
t2H + s2H − |t− s|2H

)
s, t ∈ R+,

When H = 1/2, B
1
2 is the standard Brownian motion. Moreover, the fBm has the

following main properties:

• (Self-similarity) For all λ > 0, (λ−HBHλt)t≥0
law
= (BHt )t≥0.

• (Stationary increments) For all h > 0, (BHt+h −BHt )t≥0
law
= (BHt )t≥0.

When H > 1/2, BH exhibits also the property of long range dependence, which makes
the fBm an important driving noise in modeling different phenomena arising from finance,
telecommunication networks, and physics.

Let us now recall some elements of Malliavin Calculus that we will need in our study.
The interested reader can find more details in [15, Chapter 1] and [12, Chapter 2]. In the
following H will denote the closure of the set of step functions with respect to the scalar
product 〈1[0,t],1[0,s]〉H = RH(t, s) defined previously and H�q denotes the qth tensor
product of H.

• The Wiener chaos expansion. For every q ≥ 1, Hq denotes the qth Wiener
chaos of BH , defined as the closed linear subspace of L2(Ω) generated by the
random variables {Hq(B

H(h)), h ∈ H, ‖h‖H = 1} where Hq is the qth Hermite
polynomial.
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• Multiple Wiener integrals. The mapping Iq(h
⊗q) : = q!Hq(B

H(h)) is a linear
isometry between the symmetric tensor productH�q (equipped with the modified
norm ‖.‖H�q = 1√

q!
‖.‖H⊗q ) andHq. Iq(h⊗q) denotes the multiple Wiener integral

of h⊗q with respect to BH .
• Hypercontractivity in Wiener chaos. For h ∈ H⊗q, the multiple Wiener

integrals Iq(h), which exhaust the set Hq, satisfy a hypercontractivity property
(equivalence in Hq of all Lp norms for all p ≥ 2), which implies that for any
F ∈ ⊕ql=1Hl (i.e. in a fixed sum of Wiener chaoses), we have

(2)
(
E
[
|F |p

])1/p
6 cp,q

(
E
[
|F |2

])1/2
for any p ≥ 2.

• The isometry property and the product formula . For every f, g ∈ H�q,
the following extended isometry property holds

E (Iq(f)Iq(g)) = q!〈f, g〉H⊗q .

We will need the product formula (see [12, Chapter 2]) for q = 1: for every
f, g ∈ H,

I1(f)I1(g) =
1

2
I2 (f ⊗ g + g ⊗ f) + 〈f, g〉H.

• Distances between random variables. Recall that, if X,Y are two real-
valued random variables, then the total variation distance between the law of X
and the law of Y is given by

dTV (X,Y ) = sup
A∈B(R)

|P [X ∈ A]− P [Y ∈ A]|

where the supremum is over all Borel sets. If X,Y are two real-valued integrable
random variables, then the Wasserstein distance between the law of X and the
law of Y is given by

dW (X,Y ) = sup
f∈Lip(1)

|Ef(X)− Ef(Y )|

where Lip(1) indicates the collection of all Lipschitz functions with Lipschitz
constant 6 1.

• The optimal fourth moment theorem. Let N ∼ N (0, 1) denote the stan-
dard normal law. For each integer n, let Xn ∈ Hq. Assume V ar [Xn] = 1
and (Xn)n converges in distribution to N . It is known (original proof in [16],
known as the fourth moment theorem) that this convergence is equivalent to
limnE

[
X4
n

]
= 3. The following optimal estimate for dTV (Xn, N), known as the

optimal fourth moment theorem, was proved in [13]: with the sequence (Xn)n≥1

as above, assuming convergence, there exist two constant c, C > 0 depending
only on (Xn)n≥1 but not on n, such that

(3) cmax
{
E
[
X4
n

]
− 3,

∣∣E [X3
n

]∣∣} 6 dTV (Xn, N) 6 C max
{
E
[
X4
n

]
− 3,

∣∣E [X3
n

]∣∣} .
3. Asymptotic behavior of the estimators

Note first that the process X of equation (1) has the following explicit form

(4) Xt = b(1− e−at) +

∫ t

0

e−a(t−u)dBHu ,

where the integral with respect to BH must be understood in the Wiener sense. As we
explained in the introduction, the drift parameters a > 0 and b ∈ R in (1) and (4) are
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assumed to be unknown. We propose to estimate them using the following estimators

(5) ân :=

[
1

HΓ(2H)

(
1

n

n−1∑
k=0

X2
i − (

1

n

n−1∑
i=0

Xi)
2

)]−1/2H

and b̂n :=
1

n

n−1∑
i=0

Xi.

In the next section, we prove the strong consistency of the estimators ân and b̂n given in
(5). This study valid for all H∈ (0, 1).

3.1. Strong consistency.

Theorem 3.1. Let X be given by (1) and (4), where BH is a fractional Brownian motion
with Hurst parameter H ∈ (0, 1), and consider the estimators given in (5), then we have

(6) (ân, b̂n)→ (a, b)

almost surely as n→ +∞.

Proof. The process X given by (1) and (4) can be written as follows

(7) Xt = b+ ZHt + Y Ht , t ≥ 0,

where

(8) ZHt := e−at
∫ t

−∞
easdBHs and Y Ht := −e−at(b+ ZH0 ), t ≥ 0.

Moreover, it is known that ZH is an ergodic stationary Gaussian process with covariance
ρH(k) := E[ZHk Z

H
0 ].

Then, using the Ergodic theorem, it’s clear that b̂n → b, a.s. as n→ +∞.
On the other hand, by the Ergodic theorem we also have

1

n

n−1∑
i=0

X2
i =

1

n

n−1∑
i=0

(b+ ZHi + Y Hi )2 −→ E[(b+ ZH0 )2] = b2 +
HΓ(2H)

a2H

almost surely, as n→ +∞. Hence by the expression of the estimator ân given in (5), we
get ân → a almost surely as n→ +∞, which finishes the proof. �

Remark 3.1. Theorem 3.1 has been proved in [10, Theorem 2.3.] for similar estimators
for the drift parameters of (1). But, to the best of our knowledge, there is no study for

the asymptotic behavior in distribution of the estimators ân and b̂n given in (5).

3.2. Asymptotic behavior in distribution. In this section we prove that the esti-

mators ân and b̂n are asymptotically normal. We also give in details the rate of their
convergence in law depending on the values of the Hurst parameter H.

3.2.1. Asymptotic distribution of ân. The estimator ân can be written as follows ân =

f−1
H (Vn) where f−1

H is the inverse function of fH(x) := HΓ(2H)
x2H , and

Vn :=
1

n

n∑
i=1

X2
i −

(
1

n

n∑
i=1

Xi

)2

.

Therefore we first study the rates of convergence in law of the sequence Vn. Using the
decomposition of X given in (7), we get

Vn =
1

n

n∑
i=1

(ZHi )2 +RH(n),
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where
(9)

RH(n) :=
2

n

n∑
i=1

Y Hi ZHi +
1

n

n∑
i=1

(Y Hi )2− 2

n2

n∑
i,j=1

ZHi Y
H
j −

1

n2

n∑
i,j=1

Y Hi Y Hj −
1

n2

n∑
i,j=1

ZHi Z
H
j .

We have ZHi = I1(εi), with εi(.) := e−a(i−.)1]−∞,i](.). Then, using the product formula

and the fact that ZH is a stationary process, we can write

Vn = I2(fn) + fH(a) +RH(n).

Hence √
n(Vn − fH(a)) = I2(

√
nfn) +

√
nRH(n)

where fn := 1
n

∑n
i=1 ε

⊗2
i and fH(a) = HΓ(2H)

a2H
= E[(ZH0 )2].

We also set Fn := I2

( √
n√
vn
fn

)
, with vn := E[I2(

√
nfn)2] = 2

n

∑n
k,i=1 ρH(i − k)2.

Hence, we have

(10)

√
n

√
vn

(Vn − fH(a)) = Fn +

√
nRH(n)
√
vn

.

Now we will study the rate of convergence in law of Fn. From the definition of Fn and
estimating the third and the fourth cumulant of the sequence {Fn}n≥0, we get

κ3(Fn) =
8

(nvn)3/2

n∑
i,j,k=1

E[ZHi Z
H
k ]E[ZHi Z

H
j ]E[ZHj Z

H
k ]

=
1

(nvn)3/2

n∑
i,j,k=1

ρH(i− k)ρH(i− j)ρH(j − k)

E
1

(nvn)3/2

n∑
i,j,k=1

|i− k|2H−2|i− j|2H−2|j − k|2H−2

E
1

v
3/2
n
√
n

∑
|k|<n

|k|3H−3

2

,(11)

and

κ4(Fn) =
1

v2
nn

2

n∑
k,i,j,l=1

E[ZHk Z
H
i ]E[ZHi Z

H
j ]E[ZHj Z

H
l ]E[ZHl Z

H
k ]

=
1

v2
nn

2

n∑
k,i,j,l=1

ρH(i− k)ρH(i− j)ρH(j − l)ρH(l − k)

E
1

v2
nn

2

n∑
k,i,j,l=1

|i− k|2H−2|i− j|2H−2|j − l|2H−2|l − k|2H−2

E
1

v2
nn

∑
|k|<n

|k| 83 (H−1)

3

.(12)

Note that, throughout the paper, the symbol E means that we omit multiplicative uni-
versal constants.
The following theorem investigates the rate of convergence in law of the sequence {Fn}n≥1

towards a normal random variable.



PARAMETER ESTIMATION OF DISCRETELY OBSERVED FRACTIONAL VASICEK PROCESS 11

Proposition 3.1. If 0 < H 6 3
4 and N ∼ N (0, 1), then

dTV (Fn, N)E



n−
1
2 if H ∈

(
0, 2

3

)
n−

1
2 log(n)2 if H = 2

3

n6H− 9
2 if H ∈

(
2
3 ,

3
4

)
log(n)−3/2 if H = 3

4 .

Proof. A straightforward calculation shows that

∑
|k|<n

|k|3H−3 E



1 if 0 < H < 2
3

log(n) if H = 2
3

n3H−2 if 2
3 < H < 3

4

n1/4 if H = 3
4

,

∑
|k|<n

|k| 83 (H−1) E



1 if 0 < H < 5
8

log(n) if H = 5
8

n
1
3 (8H−5) if 5

8 < H < 3
4

n1/3 if H = 3
4 .

.

Combining these estimates, (11) and (12) together with the fact that the sequence
{vn}n≥1 is convergent (see Proposition 4.1 in the Appendix) and the optimal fourth
moment theorem recalled in the preliminaries, we can therefore conclude the desired
result. �

Therefore, we obtain the following rates for the normal convergence of {Vn}n≥1.

Theorem 3.2. If 0 < H < 3/4 and N ∼ N (0, 1), then

dW

(√
n

σH
(Vn − fH(a)) , N

)
E

 n−
1
2 if 0 < H < 1/2

n2H−3/2 if 1/2 ≤ H < 3/4.

where σ2
H := limn vn = 2

∑
i∈Z ρH(i)2, with ρH(k) = E[ZHk Z

H
0 ] defined above.

If H = 3/4, we have

dW

(√
n (Vn − fH(a))

σ3/4

√
log(n)

, N

)
E log(n)−1/2.

where σ2
3/4 = 9

16a4 .

Consequently, if 0 < H < 3/4, then, as n→∞

√
n (Vn − fH(a))

law−→ N (0, σ2
H),

and if H = 3/4, then, as n→∞
√
n
(
Vn − f3/4(a)

)√
log(n)

law−→ N (0, σ2
3/4).
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Proof. Using a standard properties of the Wasserstein distance (see [7, Lemma 9]), the
decomposition (10), Proposition 3.1 and Proposition 4.1, we obtain the following esti-
mates,
if 0 < H < 3

4 , then

dW

(√
n

σH
(Vn − fH(a)) , N

)

6 C
(√
n‖RH(n)‖L1(Ω) + |vn − σ2

H |
)

+ C


n−

1
2 if H ∈

(
0, 2

3

)
n−

1
2 log(n)2 if H = 2

3

n6H− 9
2 if H ∈

(
2
3 ,

3
4

)
.

Also, if H = 3/4, we have

dW

( √
n√

log(n)σ3/4

(
Vn − f3/4(a)

)
, N

)

6 C

( √
n√

log(n)
‖RH(n)‖L1(Ω) +

∣∣∣∣ vn
log(n)

− σ2
3/4

∣∣∣∣
)

+ C log(n)−3/2,

which completes the proof. �

The following theorem gives the rates of the convergence in law of the estimator
ân based on Theorem 3.2 and the analyze of [[7], Section 5.2.2, page 22] applied to
ân = f−1

H (Vn).

Theorem 3.3. If 0 < H < 3/4 and N ∼ N (0, 1), then

dW

(
2H2Γ(2H)

√
n

σHa1+2H
(ân − a) , N

)
E

 n−
1
2 if 0 < H < 1/2

n2H−3/2 if 1/2 ≤ H < 3/4.

If H = 3/4, we have

dW

(
3Γ(3/2)

√
n (ân − a)

2
√
a
√

log(n)
, N

)
E log(n)−1/2.

Consequently, we have, when 0 < H < 3/4, as n→∞

√
n (ân − a)

law−→ N
(

0,
σ2
Ha

2+4H

4H4Γ(2H)2

)
.

Also, if H = 3/4, then, as n→∞
√
n (ân − a)√

log(n)

law−→ N
(

0,
4a

9Γ(3/2)2

)
.

3.2.2. Asymptotic distribution of b̂n. For the convergence in law of the estimator b̂n of
the parameter b. For this aim we set for 0 < H < 1 and n ≥ 1

ψH(n) =


√
n if 0 < H ≤ 1/2

n1−H if 1/2 < H < 1.
(13)
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From the definition of b̂n, we have

ψH(n)
(
b̂n − b

)
=
ψH(n)

n

n∑
i=1

∫ i

0

e−a(i−u)dBHu −
ψH(n)

n

n∑
i=1

e−ai

= I1
(
gHn
)
− ψH(n)

n

n∑
i=1

e−ai

where gHn := ψH(n)
n

∑n
i=1 e

−a(i−.)1[0,i](.). Hence ψH(n)
(
b̂n − b

)
is Gaussian. Then using

a bound of the Wasserstein metric between the law of two Gaussian random variables

see [12] and according to the calculus of the variance of ψH(n)
(
b̂n − b

)
for both cases

0 < H ≤ 1/2 and 1/2 < H < 1 treated separately, we first get

dW
(
I1(gHn ),N (0, β2

H)
)
≤

√
2/π(

‖I1(gHn )‖L2(Ω) ∨ βH
) × ∣∣E[I1(gHn )2]− β2

H

∣∣
where β2

H := lim
n→+∞

E[I1(gHn )2]. Therefore, using Lemma 9 in [7], we get the following

estimate

dW

(
ψH(n)(b̂n − b),N (0, β2

H)
)

≤
√

2/π(
‖I1(gHn )‖L2(Ω) ∨ βH

) × ∣∣E[I1(gHn )2]− β2
H

∣∣+ CψH(n)× n−1.

According the calculus of Lemma 4.1 and Lemma 4.2 in the Appendix, we get the fol-

lowing convergences in law of the estimator b̂n.

Theorem 3.4. Let 0 < H < 1 and N ∼ N (0, 1). Then, as n→∞

ψH(n)(b̂n − b)
law−→ N (0, β2

H),

where β2
H = HΓ(2H)

a2H
+ 2

∑
r∈N\{0}

ρH(r) if 0 < H ≤ 1/2, and β2
H = 1/a2 if 1/2 < H < 1.

Moreover, if 0 < H ≤ 1/2, we have

dW

(√
n(b̂n − b),N (0, β2

H)
)
E

 n−
1
2 if 0 < H < 1/4

n2H−1 if 1/4 ≤ H ≤ 1/2.

3.2.3. Asymptotic distribution of (ân, b̂n). Since fH(ân) = Vn (resp. ân) belongs to the
second (resp. first) Wiener chaos, we deduce from Theorem 3.2, Theorem 3.3, Theorem
3.4 and the seminal Peccati-Tudor criterion (see, e.g., [12, Theorem 6.2.3]) the following

convergences in law for (ân, b̂n).

Theorem 3.5. Let 0 < H < 1. Then, according to the values of the Hurst parameter
H, the following convergences in law take place when n→ +∞.

• 0 < H ≤ 1/2(√
n(ân − a),

√
n(b̂n − b)

)
law→
(
− σHa

1+2H

2H2Γ(2H)
N,

σH√
2
N ′
)
,

with σH :=
(
2
∑
i∈Z ρH(i)2

)1/2
, where ρH(k) := E[ZHk Z

H
0 ], k ∈ N, Z is the

process given in (8) and N , N ′ ∼ N (0, 1) are independent.
• 1/2 < H < 3/4(√

n(ân − a), n1−H(b̂n − b)
)
law→
(
− σHa

1+2H

2H2Γ(2H)
N,

1

a
N ′
)
,

where N , N ′ ∼ N (0, 1) are independent.
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• H = 3
4( √

n√
log(n)

(ân − a), n1/4(b̂n − b)

)
law→
(
− 2

√
a

3Γ(3/2)
N,

1

a
N ′
)
.

where N , N ′ ∼ N (0, 1) are independent.

4. Appendix

Lemma 4.1. Let 0 < H ≤ 1/2, then we have

(14)
∣∣E[I1(gHn )2]− β2

H

∣∣E n2H−1.

where in this case β2
H = HΓ(2H)

a2H
+ 2

∑
r∈N\{0}

ρH(r).

Proof. We have I1(gHn ) = 1√
n

∑n
i=1

(
ZHi − e−aiZH0

)
, where ZH is the process defined in

(8). Therefore

E[I1(gHn )2] =
1

n

n∑
i,j=1

E[(ZHi − e−aiZH0 )(ZHj − e−ajZH0 )]

=
1

n

n∑
i,j=1

E[ZHi Z
H
j ]− 2

n

n∑
i,j=1

e−ajE[ZHi Z
H
0 ] +

E[(ZH0 )2]

n2H

(
n∑
i=1

e−ai

)2

=
HΓ(2H)

a2H
+

2

n

n−1∑
i=1

n∑
j=i+1

ρH(j − i)− 2

n

n∑
i,j=1

ρH(i)e−aj +
ρH(0)

n

(
n∑
i=1

e−ai

)2

.

On the other hand ρH(0) = HΓ(2H)
a2H

. Therefore, we have∣∣E [I1(gHn )2
]
− β2

H

∣∣
≤

∣∣∣∣∣∣ 2n
n∑

i,j=1

ρH(j − i)− 2
∑

r∈N\{0}

ρH(r)

∣∣∣∣∣∣+ | 2
n

n∑
i,j=1

ρH(i)e−aj |+ |ρH(0)

n

(
n∑
i=1

e−ai

)2

|

where we set β2
H = HΓ(2H)

a2H
+ 2

∑
r∈N\{0}

ρH(r). As as ρH(r) ∼ HΓ(2H)
a2 r2H−2 as r ∼ +∞,

we have the following estimate∣∣∣∣∣∣ 2n
n∑

i,j=1

ρH(j − i)− 2
∑

r∈N\{0}

ρH(r)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 2n
n∑
k=1

(n− r)ρH(r)− 2
∑

r∈N\{0}

ρH(r)

∣∣∣∣∣∣
≤

∣∣∣∣∣2
+∞∑
r=n

ρH(r)

∣∣∣∣∣+

∣∣∣∣∣ 2n
n−1∑
r=1

rρH(r)

∣∣∣∣∣ ≤ C
+∞∑
r=n

r2H−2 +
C

n

n−1∑
r=1

r2H−1 E n2H−1.

On the other hand, as H < 1/2,
∑
r ρH(r) < +∞. Therefore we have∣∣∣∣∣∣ 2n

n∑
i=1

ρH(i)

n∑
j=1

e−aj

∣∣∣∣∣∣E n−1.

Finally, ∣∣∣∣∣∣ρH(0)

n

(
n∑
i=1

e−ai

)2
∣∣∣∣∣∣E n−1.

which completes the proof. �
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Lemma 4.2. Let 1/2 < H < 1, then we have in this case

(15) E
[
I1(gHn )2

]
−→ 1/a2 as n→ +∞.

Proof. We have I1(gHn ) = 1
nH

∑n
i=1

(
ZHi − e−aiZH0

)
, where ZH is the process defined in

(8). Therefore

E[I1(gHn )2] =
1

n2H

n∑
i,j=1

E[(ZHi − e−aiZH0 )(ZHj − e−ajZH0 )]

=
1

n2H

n∑
i,j=1

E[ZHi Z
H
j ]− 2

n2H

n∑
i,j=1

e−ajE[ZHi Z
H
0 ] +

E[(ZH0 )2]

n2H

(
n∑
i=1

e−ai

)2

=
HΓ(2H)

a2Hn2H−1
+

2

n2H

n−1∑
i=1

n∑
j=i+1

ρH(j − i)− 2

n2H

n∑
i,j=1

ρH(i)e−aj +
ρH(0)

n2H

(
n∑
i=1

e−ai

)2

.

On the other hand

(16)

∣∣∣∣∣∣ 2

n2H

n−1∑
i=1

n∑
j=i+1

ρH(j − i)− 1/a2

∣∣∣∣∣∣ =

∣∣∣∣∣ 2

n2H

n−1∑
r=1

(n− r)ρH(r)− 1

a2

∣∣∣∣∣
=

∣∣∣∣∣
(

2

n2H−1

n−1∑
r=1

ρH(r)− 2H

a2

)
−

(
2

n2H

n−1∑
r=1

rρH(r)− 2H − 1

a2

)∣∣∣∣∣
we have lim

n→+∞
| 2
n2H−1

∑n−1
r=1 ρH(r) − 2H

a2 | = 0, indeed as it’s shown in [7], ρH(r) ∼
H(2H−1)

a2 r2H−2 for large r and sinceH > 1/2, we have
∑n
r=1 r

2H−2 ∼ n2H−1

(2H−1) , as n ∼ +∞,

which gives the desired result. On the other hand, lim
n→+∞

| 2
n2H

∑n−1
r=1 rρH(r)− 2H−1

a2 | = 0,

in fact as rρH(r) ∼ H(2H−1)
a2 r2H−1 as r ∼ +∞ and using the fact that

∑n−1
r=1 r

2H−1 ∼ n2H

2H
as n ∼ +∞ we get the desired limit.

Moreover, using the equivalences above, we get

| 2

n2H

n∑
i=1

ρH(i)

n∑
j=1

e−aj |E n−1 → 0

as n→ +∞. Finally

1

n2H

(
HΓ(2H)

a2H

) n∑
i,j=1

e−a(i+j) E n−2H → 0

as n→ +∞. �

Proposition 4.1. Let 0 < H < 3/4. Define

(17) σ2
H := 2

∑
i∈Z

ρH(i)2

where ρH(k) := E[ZHk Z
H
0 ], k ∈ N and Z is the process given in (8). Then

|vn − σ2
H |E

 n−1 if 0 < H ≤ 1/2

n4H−3 if 1/2 < H < 3/4.

If H = 3/4, we have ∣∣∣∣ vn
log(n)

− 9

16a4

∣∣∣∣ 6 C log(n)−1.
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Proof. From the definition of vn, we have

vn = E[(I2(
√
nfn))2]

=
2

n

∑
i,j

(E[ZHi Z
H
j ])2 =

4

n

n∑
i=1

(n− r)ρ2
H(r) + 2ρ2

H(0)

Therefore, as 0 < H < 3/4 and using the fact that ρH(r) ∼ H(2H−1)
a2 r2H−2 for large r,

we get ∣∣vn − σ2
H

∣∣ ≤ 2

+∞∑
i=n

i4H−4 +
2

n

n−1∑
i=1

i4H−3

E

 n−1 if 0 < H ≤ 1/2

n4H−3 if 1/2 < H < 3/4.

For H = 3/4, we use the fact that
∑n
i=1 ρ

2
3/4(r) ∼ 9

64 log(n) for large n. �

Lemma 4.3. Consider the random sequence {RH(n)}n≥1 defined in (9), then we have

√
nE[|RH(n)|]E

 n−
1
2 if 0 < H < 1/2

n2H−3/2 if 1/2 ≤ H < 3/4.

If H = 3/4, then √
n√

log(n)
E[|RH(n)|]E log(n)−1/2.

Proof. We have

√
nE[RH(n)] =

2√
n

n∑
i=1

E[YiZi] +
1√
n

n∑
i=1

E[Y 2
i ]

− 2

n3/2

n∑
i,j=1

E[ZiYj ]−
1

n3/2

n∑
i,j=1

E[YiYj ]−
1

n3/2

n∑
i,j=1

E[ZiZj ].

On the other hand ∣∣∣∣∣ 2√
n

n∑
i=1

E[YiZi]

∣∣∣∣∣ =

∣∣∣∣∣ 2√
n

n∑
i=1

ρH(i)e−ai

∣∣∣∣∣E n−1/2,

∣∣∣∣∣ 1√
n

n∑
i=1

E[Y 2
i ]

∣∣∣∣∣ =
(b2 + ρH(0)2)√

n

n∑
i=1

e−2ai E n−1/2,

∣∣∣∣∣∣ 2

n3/2

n∑
i,j=1

E[ZiYj ]

∣∣∣∣∣∣ =

∣∣∣∣∣∣ −2

n3/2

n∑
i,j=1

e−ajρH(i)

∣∣∣∣∣∣
E

 n−
3
2 if 0 < H ≤ 1/2

n2H−5/2 if 1/2 < H < 1.∣∣∣∣∣∣ 1

n3/2

n∑
i,j=1

E[YjYi]

∣∣∣∣∣∣ =
(b2 + ρH(0)2)

n3/2

(
n∑
i=1

e−aj

)2

E n−3/2.
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Finally using the fact that ρH(r) ∼ H(2H−1)
a2 r2H−2 for large r, we get

∣∣∣∣∣∣ 1

n3/2

n∑
i,j=1

E[ZiZj ]

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

n3/2

n∑
i,j=1

ρH(j − i)

∣∣∣∣∣∣ =

∣∣∣∣∣ρH(0)√
n

+
2

n3/2

n∑
r=1

(n− r)ρH(r)

∣∣∣∣∣
E

 n−
1
2 if 0 < H ≤ 1/2

n2H−3/2 if 1/2 < H < 3/4.

The upper bound when H = 3/4 can be obtained easily using the previous computations
and this finishes the proof. �
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