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SERGIO ALVAREZ-ANDRADE AND SALIM BOUZEBDA

SOME SELECTED TOPICS FOR THE BOOTSTRAP OF THE
EMPIRICAL AND QUANTILE PROCESSES

Dedicated to the memory of Djalil Kateb

In the present work, we consider the asymptotic distributions of L, functionals of
bootstrapped weighted uniform quantile and empirical processes. The asymptotic
laws obtained are represented in terms of Gaussian integrals. We investigate the
strong approximations for the bootstrapped Vervaat process and the weighted boot-
strap for Bahadur-Kiefer process. We obtain new results on the precise asymptotics
in the law of the logarithm related to complete convergence and a.s. convergence,
under some mild conditions, for the weighted bootstrap of empirical and the quan-
tile processes. In addition we consider the strong approximation of the hybrids of
empirical and partial sums processes when the sample size is random.

1. INTRODUCTION

Bootstrap samples were introduced and first investigated in [34]. Since this seminal
paper, bootstrap methods have been proposed, discussed, investigated and applied in a
huge number of papers in the literature. Being one of the most important ideas in the
practice of statistics, the bootstrap also introduced a wealth of innovative probability
problems, which in turn formed the basis for the creation of new mathematical theories.
The asymptotic theory of the bootstrap with statistical applications has been reviewed in
the books among others [17], [63], [40], [16], [31], [73], [47] and [59]. A major application
for an estimator is in the calculation of confidence intervals. By far the most favored
confidence interval is the standard confidence interval based on a normal or a Student
t-distribution. Such standard intervals are useful tools, but they are based on an approx-
imation that can be quite inaccurate in practice. Bootstrap procedures are an attractive
alternative. One way to look at them is as procedures for handling data when one is
not willing to make assumptions about the parameters of the populations from which
one sampled. The most that one is willing to assume is that the data are a reasonable
representation of the population from which they come. One then resamples from the
data and draws inferences about the corresponding population and its parameters. The
resulting confidence intervals have received the most theoretical study of any topic in
the bootstrap analysis. Roughly speaking, it is known that the bootstrap works in the
ii.d. case if and only if the central limit theorem holds for the random variable under
consideration. For further discussion we refer the reader to the landmark paper by [39].
The following notation is needed for the statement of our results. Let X, Xo,... be a
sequence of i.i.d. random variables [rv’s] with common df

F(t) = P(X; < 1).
For each n > 1, the empirical distribution function of X1,..., X, is given by
Fo(t) =n'#{X; <t:1<i<n}, for —oo<t< oo,
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where # stands for cardinality. The quantile function [gf] pertaining to F(-), is defined,
for u € (0,1), by

F~Y(u) =inf{z : F(z) > u}.
The empirical quantile function is given, for each n > 1 and u € (0, 1), by

F Y u) = inf{z: F,(z) > u}.

Given the sample Xi,...,X,, let X7,..., X} be conditionally independent rv’s with
common distribution function F,(-). Let

Frnt)=m 1 #{X <t:1<i<m}, for —oo<t< oo,
denote the classical Efron (or multinomial) bootstrap (see, e.g. [34] and [35] for more de-

tails). Consider also the bootstrapped empirical quantile function, belonging to Fi, . (-),

F.L(w) =inf{z: F, () >u}, for 0<u<l.

m,n

Define the bootstrapped empirical and quantile processes, respectively, by

(1.1) Emm(t) == mY2(Fpn(t) — Fu(t), for —oo<t< oo,
and
(1.2) G () == m 2(FL L (8) — F oM (), for 0<t<L.

[10] investigated the weak convergence of the processes in (1.1) and (1.2), which make
possible to obtain the asymptotic validity of the bootstrap method in forming confidence
bounds for F(-). [70] provided an elegant proof of weak convergence of the process in
(1.1) [see also [71], Section 23.1]. The generalization of the work of Bickel and Freedman
was given in the multivariate setting as well as in very general sample spaces and for
various set and function-indexed random objects [see, for example [9], [37]]. The most
advanced results for the bootstrap are due to [39] and [30]. For a survey of further
results on weighted bootstrap the reader is referred to [6], for recent reference see [13].
One of important question (both in probability and in statistics) is about the rates of
convergence and formed the basis of works for great number of authors (see [20], [57],
[51], [11] and the references therein).

In this paper, we consider several selected topics for the bootstrap for empirical and
quantile processes. We are first concerned with the characterization of the asymptotic
distributions of L, functionals of bootstrapped weighted uniform quantile and empirical
processes. We consider also the bootstrap of the Vervaat process, which is an important
tools in several applications, see for example [28]. We investigate the behavior of the
weighted bootstrap for the well know Bahadur-Kiefer processes, see [5], [55, 56]). [77]
investigated the uniform empirical process and obtained the precise asymptotics in the
Baum-Katz and Davis law of large numbers given by [42] and [43] for a sequence of
iid. random. For further details we refer to [60], [45], [44], [67], [75], [76], [41, 46],
[2, 3, 4] and the references therein. The legendary paper by [52] introducing the concept
of “complete convergence” is to be cited here. The last mentioned reference generated a
series of papers, in particular [7]’s seminal work which provided necessary and sufficient
conditions for the convergence of the series
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for suitable values of r and p. We consider the Baum-Katz and Davis law of large numbers
for weighted bootstrap for the empirical and quantile processes. We consider the strong
approximation of the hybrid processes when the sample size is random. The motivation
for introducing random simple sizes is that in some applied situations the number of
elements in the sample is not fixed a priori because of constraints in time, costs or space,
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see [8] where the Kac process appear as a particular case of randomly indexed empirical
processes. [68] study the limit behavior of the empirical process with random index for
a broad class of indices 7, say. [61] showed that the approximation on the tails with
Poisson processes is better than that with Brownian bridge if d = 1. [48] obtained
the same rates for the tail approximations of the multivariate empirical process using
Kac’s representation. Later [49] stated some weighted approximations of the multivariate
empirical process with Poisson bridges and proved that the Poisson approximation is
better on the tail in the case of heavy weight functions when the approximating process is
derived from Kac’s representation. [12] obtained some approximations of the multivariate
empirical copula process with Poisson bridges. The construction of the Poisson bridges
is based on Kac’s representation of empirical processes of [49] combined with Bahadur-
Kiefer representation of the empirical copula process. Notice that the present work
extends largely, in many directions, the scope of our previous work [1].

To best of our knowledge, some of the results presented here, respond to a problems those
have not been studied systematically until present, and it gives the main motivation to
the present investigation.

The present work is organized as follows. In Section 2, we recall some elementary
definitions for the empirical processes and the gaussian processes. In Section 3, we
provide our results concerning the distributions of L, norms of bootstrapped weighted
uniform empirical and quantile processes. These results are largely inspired by the results
in [24] combined with those in [30]. In Section 4, we investigate the multinomial bootstrap
for the Lorenz curves, in the same spirit of [28, 29]. In Section 5, we study the weighted
bootstrap for the Bahadur-Kiefer processes. In Section 6, we investigate the moment
convergence for the weighted bootstrap for the empirical and quantile processes, in the
same spirit as in [15] in connection with main tools of the strong approximations obtained
in [1]. In Section 7, we investigate the weighted bootstrap for the hybrid processes when
the sample size is random. To avoid interrupting the flow of the presentation, all proofs
are relegated to the Section 8.

2. SOME PRELIMINARY RESULTS

Let U := Uy, Us,... be i.i.d. rv’s on a probability space (2, 27,P). Let U follow a

uniform on (0, 1) law, which is denoted by U Z 14(0,1). For each n > 1, let Uy, ; < -+ <
Un.n be the order statistics of Uy, ...,U,, and set Uy, = 0 and Uy11,, = 1 for n > 0.
Since the strict inequalities

(21) 0= U(],n < Ul,n << Un,n < Un+1,n =1,

hold almost surely for all n > 0, we will work, without loss of generality, on the event
(2.1), of probability 1. Let
Up(u) :=n"'9#{U; <u:1<i<n}, for 0<u<l,
be the empirical df based upon Uy, ..., U,. Define the empirical gf, pertaining to U,(+),
" U, (v) :=inf{u>0:U,(u) > v}, for 0 <v < 1;
U, '(v) :=0,v <0, and U, ' (v) := 1,0 > 1.
Denote the uniform empirical (resp. quantile) process by

o (u) :=n'? (U, (u) —u) and B,(u) :=n'/? (U, (u) — ), for uel0,1].

n

Let us now introduce some definitions and notations. Let W = {W(s) : s > 0} and
B = {B(u) : u € [0,1]} be the standard Wiener process and Brownian bridge, that is,
the centered Gaussian processes with continuous sample paths, and covariance functions

EW(s)W(t)) =sAt for s,t>0
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and
E(B(u)B(v)) =uAv—uv for w,ve][0,1].

A Kiefer process K = {K(s,u) : s > 0,u € [0,1]} is a two-parameters centered Gaussian
process, with continuous sample paths, and covariance function

E(K(s,u)K(t,v)) = (sAt)(uAv—uv) for s,t>0 and wu,ve€E0,1].
It satisfies the following distributional identities:
{K(s,u):ue[O,l]}z{ﬁB(u):ue[O,l]} for s>0
and
{K(s,u):sEO}g{MW(s):SZO} for w€[0,1].

The interested reader may refer to [20] for details on the Gaussian processes mentioned
above.

3. THE DISTRIBUTIONS OF Lp NORMS OF BOOTSTRAPPED WEIGHTED UNIFORM
EMPIRICAL AND QUANTILE PROCESSES

We assume, without loss of generality, that the underlying probability space (2, o7, P),
constructed in [22], is so rich that it accommodates all the r.v.’s and processes introduced
so far and also later on. This space carries a sequence of Brownian bridges {B;};>1 such
that (3.1) holds true. [22] obtained the following deep results

|an(s) = B, ()|
0<s<1 (5(1 —s5))/2™

(31) 180(s) = Ba(s)]

Mn<s<i—x/n (s(1— s))/27

= Op(n™"),
Op(n=72),

forall0 <A <ocand 0 <u; < 1,0< 1o <3 where Bi(s) = B,(s)if1/n<s<1-1/n
and zero otherwise. Throughout the paper, we use the notation logy) = := loglogz for
x > 3 and we will denote by || - || the sup-norm i.e., || - || = supg<;<q | - (t)]. For the same
construction we also have o

Sup [an(s) = Ba(s)] = O(n~Y4(logn)"/*(loggy n)/%) a.s.,
(32) 0<s<1

sup |Bn(s) — Bu(s)] = O(n~'/?logn) a.s.
0<s<1

[As in [30], alternatively, we could choose (€2, .27, P) to be the space constructed by [66]
with v, and v transposed in (3.1) and (3.3) below and the rate sequences transposed
in (3.2)]. As in [30], now extend (2,4, P) to obtain a probability space (Q,/,P),
which besides {U;} and {B;}, carries another sequence of independent uniform (0,1)

r.v.’s &1, &9, ... and another sequence of Brownian bridges By, EQ, ... such that the sets
of random elements

{Ui}2, U{Bi(s): 0< s <1}
and
{632, U{Bi(s): 0 < s <1}
are independent. We define the uniform empirical quantile function by &,,(0) = 0,
Em(s) =Ckm, (k—1)/m<s<k/m, for k=1,...,m,
and the uniform quantile process

km(s) = mY?(s — &n(s)), for 0<s<1.



BOOTSTRAP OF THE EMPIRICAL AND QUANTILE PROCESSES 23

Define also the uniform empirical distribution function

07 glﬁn >0
Em(s) = k/m, fk:,m §5<§k:+1,m for k= L...,m—1,
1, gm,m <s,
and
em(s) =mY3(Ep(s) —s), for 0<s<1.
We have
lem () = By (s)] —n
12— O@(m )a
(3.3) 0<s<1 (s(1 —s))”
km(s) — Bp(s .,
) = B _

Am<s<i—a/m (s(1—s))t/27v2

forall0 < A < ocand 0 < vy < i, 0< 1y < % where E;*n(s) = Em(s) if 1/m<s<
1—1/m and zero otherwise. As pointed out in [30], (€2, &7, P) can be obtained by taking

the product (9, 7, P)with itself. Now P can be replaced by P in (3.1). Introduce
(34)  Uman(s) = En(Un(s)) and UL, (s) = U (Em(s)), for 0<s <1

The bootstrapped uniform empirical and quantile processes are defined, respectively, by
Qmon(8) = ml/Q(Um)n(s) —U,(s)) and
Bmm(s) =m2(U 1 (s) — UL (s)), for 0 < s <1.

n m,n

(3.5)

Set £(n) = n~'/*(log n)l/Q(log@) n)/* for the rate sequence figuring in (3.2). [30] showed
the following result. We make no claim of originality for the results that we highlight
in this section. In fact, the results presented heavily rely on those of [24] and [30]. It is
worth noticing that these results are not stated elsewhere.

Theorem 3.1. For any sequence m = m(n) — oo of positive integers and each 0 < v <
1/4,

m,n - E*
56 L)~ Bio)
U n<s<Unn (s(1—38)) /2-v

— Ox((mAn)™),

and

(3.7) SUp |Qm.n(s) — B (s)] = (€(m) V £(n)) a.s.,

0<s<1
and whenever m = m(n) satisfies the condition that for two constants 0 < C7 < Cy,
(38) C’lmﬁnSC'gm,n:l,Z...,
and for any 0 < A< oo and 0 < v < 1/4,

mm,n(s) - EW(S)‘ — O~(m™~"
(39) )\/mgigll)—k/m (S(]. _ s))l/Q—V - OIP( )7

and

(3.10) sup 1Bmn(s) = Bi(s)] = O(£(m)) a.s.

Let {¢1,,} and {{2,,} be sequences of positive numbers, such that, as n — co

(3.11) 1< Gpn<n, G —00
(3.12) Cin/n— 0,
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and
(313) 1 < CQJL < n, Cg’n — 00
(3.14) (:2771/71 — 0.

Let {¢1,m} and {(2.m} be sequences of positive numbers, such that, as n — oo

1 S Cl,m S ’n” gl,m — 00
(3.15) C1,m/m — 0,

and

1 < CQ,m < n, §2,m — 00
(3.16) Com/m — 0.

The following theorem is the bootstrapped version of Theorem 2.1 of [24].

Theorem 3.2. Let ¢(-) be a positive function on (0,1/2], 1 < p < co and assume that

1/2
(3.17) / sP/2/q(s)ds < co.
0
Then with {(1,m} as in (3.15) we have, as n — oo,
1/2 1/2
(3.18) / Bl /al)s | 1@ /s,
C1,m/m 0
Cl,m/m
(3.19) [ malslfads 50 0,
1/(m+1)
and
Uon(1/2) 1/2
(3.20) / ann ) fa(s)ds o[BG g,
Uﬂhn((l,m/m) 0
U'm,n((l,'m/m)
(3.21) / |am.n(s)|P/q(s)ds —4 O.
Um,n(1/m)

Theorem 3.3. As n — oo, we have

m/(m+1) P_ R P
1/(m+1) (s(1—s))P
and
1-X\/(m+1) P _ | 3* P
(3.23) / [@m.n(5)] |i”1(15)‘ s = 0s(1), for all A >0,
A/ (m+1) (s(1—s))P
U, %
[ (8) P — | B, (5)[P)
3.24 ’ m ds = Os(1).
(3.24) /U e 5(1)

From now on we assume that the weight function ¢(-) is regularly varying at zero.
This means that ¢(s) = s¥L(s), —oo < v < oo, where L(-) is a slowly varying function,
i.e., L(s) is positive on (0,1/2], Lebesgue measurable and

(3.25) liné L(Xs)/L(s) =1, for all A > 0.
5—

We mention as in [24], that the condition (3.17) holds true for all ¢(-) regularly varying
at zero with exponent v <1+ p/2.
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Theorem 3.4. Let L(-) be slowly varying at zero and {C1,m} as in (3.15). If —oo < v <
1+ p/2, then as n — oo,

v—(p/2+1) C1,m/m P 1
(3.26) (Clm) L <<1’m> / Lfﬁn(s)' ds =g / sTV|W(s)|Pds,
m m ) Jijmgry $"L(s) 0

and

v—(p/2+1)
(3.27) (%f) ’ L<C;j>

Corollary 3.1. Let m/(m+1) < (1m < Com < m?/(m+1) and assume that, asn — oo,

Um,n(cl,m/m) P 1
/ Mds —>@/ 57V |W (s)[Pds.
Upon(1/(mt1)) S L(s) o

<2,m m — Cl,m

(328) Cl,m m — <2,m

— 0Q.

Then we have
C2mm—C1m)>1/2
2D lo mIT SLm
( & (Cl,m m— C2,m
Gom/m |ﬂm n(s)\p <2 mm — Cl m
| {/c/m e o (E2 1222 ) § 2 MO

where D = D(P)is positive constant, p = pu(p) = E|N(0,1)|?, and N(0,1) stands for the
standard normal r.v.

Corollary 3.2. Let 0 < (1 < (o < m and assume (3.28). Then, with Gom =
(Cl,m \ 1) and C;,m = (CZ,m A 1); we have

G an )\
- D1 2,m m— 1,m
(3:29) (2 8 (cim = c;,m>>

Um,n((?,m/nl) p * m — *
’ / |ﬁm’n(8)|/2+1 — plog Ci’m 7%’7“ —9 N(0,1),
Unmon(Crom/m)  (8(1 = 5))P Gmm—Cm

where D = D(P), p = p(p) = E|N(0,1

—_

[P, and N(0,1) are as in Corollary (5.1).

4. BOOTSTRAP APPROACH FOR THE LORENZ CURVES

Let us define the Lorenz curve by
~ 1/t
Lp(t) = 5/ F~Y(s)ds, for 0 <t <1,
0

where
1
ﬁ:/xdF(x) :/ F~(s)ds < 00
R 0

when X admits a df F(-) and X = F~1(U), 9 # 0. In econometrics it is customary to
interpret Lp(-) as the proportion of total amount of “wealth” that is owned by the least
fortunate ¢ x 100 percent of a “population.” For some details on the variety of situations

where estimating the curve Lp(-) is of importance, we may refer, for example to [28].
The empirical Lorenz curve is defined to be

~ 1 [t
L,(t) = 197/0 FY(s)ds, for 0<t<1,
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where 9, denotes the usual empirical mean. Let U, (-) the uniform empirical distribution

function corresponding to Uy = F(X4),...,U, = F(X,,) and V,(-) denotes the Vervaat
process defined by

P
(41) +/ (Fu(s) — F(s))ds, for 0<t< 1.

It is worth noticing that the Lorenz curve and the Vervaat process are related by the
following relation (refer to the equation (2.1) in [29])

~ ~ 1~ g -9
L,—Lr=— 1 n n—1
where

1 [P0
LUn(t) 1) = — (Un(F(z)) — F(z)) dx

— 00

+oo
+%LF(t)[m (Un(F(z)) — F(x)) dx.

We will denote by V,(t) the version of V,(t) where we replace F,(t) resp. F.(t),
resp F(t) by Uy,(t) resp. U, '(t), resp. t. Recall that we have to deal with a sequence

X7,..., X}, conditionally independent r.v.’s with common distribution function F,(x)

and X7, <... < X7 . their order statistics and let

_ R R

Let us define
1 [mu]+1

1
~ B X: i 0<u<l,
Lm,n(u) = Xm,n m ; im 1 <u

1 if u=1,

and
Lo () = Vi1 (L (0) = ()
[21] provide the following result (see also [23]).
Theorem 4.1. If F~1(.) is continuous on [0,1), and
0< hnrgloréf(m/n) < lim%sup(m/n) < 00,
then there is a sequence of Gaussian processes

{Am(u):0<u<1}2{A%(u):0<u<1}

and as, m An — oo
~ P
sup |Lpyn(u) — A} (u)] =0,
0<u<1
where

M) = 5 {= [ Butelar o)+ Letw) | 1 Bu(s)iF ()}

where { By () : m > 1} denotes a sequence of Brownian bridges.
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Let us introduce
1t
L,t)=— [ U, (s)ds, for 0<t<1.
19“ 0

Let H denote the so called Finkelstein set, consisting of all absolutely continuous functions
h:[0,1] — R such that

1
h(0) = 0= h(1) and / {1 (s)}2ds < 1.
0

Let D[0,1] denote the set of all left-continuous functions on [0, 1] that have right-hand
limits at each point. Let £ denote the set {Ly, : h € H}, where

. 1 [Fo 1~ o0
Ly :=—-— h(F(x))dz + fLF(t)/ h(F(x))dx.
9 Jo v 0
Recall also the following arguments given in [78]. Let
(4.2) () =U,(t) —t, for 0<t<1.

It is well known that

{, /n/2log s n} vr, is relatively compact in H, a.s.

see [36] and v/nv,(t) =4 B(t) ([32] in the space D(0,1) endowed, respectively, with the
uniform and Skorohod J; topology, where B(-) denotes a Brownian bridge on [0, 1]. The
combination of these two results is summarized in Theorem 1.1 of [78], that we state

n V,, is relatively compact in H? := {h2 : he 7-[} a.s.
log(g)y 1

Moreover
2nV,,(t) =4 BA(t),
holds true in the space C|0, 1] endowed with the topology of uniform convergence. Let

Vynn(+) a uniform on (0,1) version of V,,(-) where we consider also that U,, ,(-) replaces
F,.(-). Recall the definition of Uy, ,,(-) in (3.4). Let us define

1 t
Liypn(t) = / UL (s)ds, for 0<t<1.
0

m,n
ﬁm,n ’

and
1 m
'ﬂm - ﬁm,n - E ;gz

Let us introduce
1/2

1
ds(F,G) = (/ (F1(t) - G (1)) dt) ,
0
where F'(-) and G(-) are two dfs in F», where

o

Fo = {F:Fisadfsuch that/

—00

22dF(z) < oo} ,

refer to [71], see pp.62-63. Recall the definition of ayy, ,(-) in (3.5). Let us introduce
i:'m;n = \/E{Lm,n - Ln}
We summarize our first result in the following theorem.

Theorem 4.2. Assume that the following conditions are satisfied :

(H1): The functions F(-) and F~1(-) are continuous;
(H2): E[X]?T¢ < 0o for some € > 0.



28 SERGIO ALVAREZ-ANDRADE AND SALIM BOUZEBDA

We have

o jI: 1 1— [/7 t L 1
MLim,n — {_ 4 / amm(s)ds R / Oém,n(s)ds} , G.S.,
m 10%(2) Mfbm,n 1og(2) m Uman Jo [ —
in the space DI0, 1] with respect to the norm sup || - ||.

Remark 4.1. In the proof of Lemma 2.1 of [29] the study of the behavior of V., ,,(¢) is
based on the study of the behavior of

”anH = va,n”[o,ém] \ ||Vm,nH[6m,1—6m] \ ||Vm,nH[1—6m,1]a
where || - ||@ denotes the supremum norm on © C [0, 1].

Inspired by Theorem 4.1 of [78], and keeping in mind the definitions of V,, ,(¢) and
Yn(t) given by (4.2), we obtain the following result.

Theorem 4.3. Under the assumptions of Theorem /.2, we have
1/2

1
Vm,n - 5{771}2 = 07 a.s.

. ml/?
s (zm) v l(m))
5. WEIGHTED BOOTSTRAP FOR BAHADUR-KIEFER PROCESSES
We recall the result due to [57] [refer also to [58]], which is one of the deepest results
in probability theory.

Theorem 1. For each n, there exists a sequence of Brownian bridges {BT(LI)(t) 0<t<
1} such that

(5.1) IP’{ sup |am (t) — BV()] > n~23(crlogn + x)} < ¢g exp(—csx),
0<t<1

for all x > 0, where c¢1, co and c3 are positive constants.

In his manuscript, [62] details the original proof of (5.1). The following result is due
to [27] improved in Theorem 3.2.1 of [25].

Theorem 2. For each n, there exists a sequence of Brownian bridges {Br(Lz)(t) :0<t <
1} such that

]P’{ sup |Bn(t) — BA ()| > n~2(cqlogn + .’L‘)} < ¢5 exp(—cgx),
0<t<1

for all x > 0, where cq, c5 and cg are positive constants.

Let Z1,Zs, ... be a sequence of positive independent, identically distributed random
variables with a df H(-) and
(5.2) EZ;y =1 and varZ; = 1.
We assume that
(5.3) Eexp(tZy) < oo, [t| <tp with some tg > 0,
and finally
(5.4) {Ui,1 <i< oo} and {Z;,1 <i < oo} are independent.
Foralln>1,let T, = Zy +---+ Z, and define the random weights,
(5.5) Wi i= Zi for i=1,...,n.
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The generalized bootstrapped empirical distribution becomes
(5.6) U (t) :=> Winliy,<py, for 0<t <1,

i=1
The bootstrapped empirical quantile function U;ly,/() is the left-continuous inverse of
Un,w ()
(5.7) U,y (s) i=inf {t : Uy (t) > s}, for 0<s<1.
We now define the generalized bootstrapped empirical process to be
(5.8) oy (t) = 02 {Up, 9 (1) = Up(t)}, for 0<t <1,
and the generalized bootstrapped quantile process to be
(5.9) By () := nt/? {Ugl(s) - U;}W(s)} L for0<s<1.
[1] proved the following theorems.

Theorem 3. Let assumptions (5.2)-(5.4) hold. Then, it is possible to define a sequence
of Brownian bridges {Br(Ll),/(t)7 0 <t < 1} such that, for n large enough,

(5.10) P ( sup

(1) — Bf}?,,(t) >n"Y2(¢rlogn + x)) < cgexp(—cox),
0<t<1 ’

for all x > 0, where c7, cg and cg are positive universal constants.

The following theorem establishes the strong approximation of the generalized boot-
strapped uniform quantile process {fn,# (s) : 0 < s <1}.

Theorem 4. Let assumptions (5.2)-(5.4) hold. Then, it is possible to define a sequence
of Brownian bridges {BT(LQ?,/(t); 0 <t < 1} such that, for n large enough,

(5.11) P < sup
0<t<1

B, (t) — Bn2)W(t) >n"2(¢yglogn + as)) < ¢11 exp(—cia1),

for all x > 0, where ¢y, c11 and c12 are positive universal constants.

Remark 5.1. The system of weights defined in (5.5) appears in [65], p.1617, where it
is shown that it satisfies assumptions (#7), (#7r) and (#111) on p.1612 of the same
reference, so that all the results therein hold for the objects to be treated in this paper.
In particular, weak convergences for the bootstrapped empirical and quantile processes
to a Brownian bridges are proved.

Let us introduce the object that we are interested in. The sum
R, (t) = an(t) + Bu(t), for t € [0,1]

of the empirical and quantile processes is known in the literature as the Bahadur-Kiefer
process (cf. [5], [55, 56]). Define the bootstrapped Bahadur-Kiefer process, by

Ryw (t) = an o (t) + B (t), for ¢t € ]0,1].

Theorem 5.1. We have, as n — 0o,

sup |Rpw (t) — Rn(t)| =0 (n_1/2 10gn> , a.s.
0<t<1

Theorem 5.2. We have, as n — 00,

(5.12) lim sup n'/*(log n)71/2(log(2) n) VY Ry || <274 as.
n—oo

and

(5.13) lim inf n'/*(log n) ~*/2(log () n) /|| Ruw | < 87472, a.s.

n— oo
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Let .
Loy () = / Ry (5)ds
0
and
Voo (t) = 20 21, 4 (t).

In the following result, we obtain an upper-bound for H Vow — n=Y 2a2 H as a consequence
of Theorem 5.1 and from Theorem 4.1 of [78].

Corollary 5.1. We have, as n — oo,

Vo, — n~12a2|| = O(n"Y?logn), a.s.

6. MOMENT CONVERGENCE RATES

Motivated by the moment convergence rates for the uniform empirical process (also
for the uniform quantile process) stated by [15], see Theorem 5 below, we state analogue
results for the bootstrapped processes oy, % (-) and B, % (-) defined respectively in (5.8)
and (5.9). [15] result for the uniform empirical process is given in the following theorem,
where {2z} = max{z,0}.

Theorem 5. Let a > —1, then

a+1 1/2 +oo 7T/2
lim (1— ) ZnaE{HanH —6\/210gn} — ,
n=1 + a

2
ANz s 4e

and

a+1\"*X (logn)* /2
1i 1— 71@{ = ey/21 } - .
G\l\mﬂ; EDY ( 4€2 ) Z n ||a H ¢ ogn + a+1

Roughly speaking, our aim now, is to study the same kind of results when we replace
ap(+) by the generalized bootstrapped empirical process to o, » (-) and the generalized
bootstrapped quantile process B, % (-). Let us recall Proposition 2.1 of [15], stating the
following result for the Brownian bridge {B(¢),0 <t < 1}.

Theorem 6. Let a > —1, a, = o(1/logn), then

. a+1 1/2 +oo . 71'/2
lim (1462> Zn E{||B||f(e+an)\/2logn}+:

Nl e+l

n=1

Theorem 6.1. Let a > —1, then

a+1\"?Ix w/
lim <1 vy ) ;n“E{|an7W| —e\/2logn}+ =

N e+l

[\

and

()

: +1 1/2 £ 1 a
lim (1_a ) Z(mng)E{”an’W”_e\/m}Jr: 7/ '

YT de? — a+1

Theorem 6.2. Let a > —1, then

a+1 1/2 oo 7_‘_/
lim (1— 1 ) ZnaE{||ﬁn7W||—e\/21ogn}+ =

N E a1

\V)

n=1

and

\}

a+1

1/2 +oo
) a+1 (logn)® o r/
lim (1 I ) E {Hﬁn,wn — e\/210gn}+ = .
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7. APPROXIMATIONS OF THE BOOTSTRAPPED KAC EMPIRICAL PROCESSES

Let us define

i=1

where Z,, denotes the empirical mean. Let us remark that

n _ i —
an,W(t) = T {n 1/2 Z(Zz - Zn)]l{UiSt}}
" i=1

= (?) n124,(t).

In this section, we are mainly concerned with the strong approximation of the following
process

Vn
A,/n(t) = Z (Zz _71'7,) 1{X1§t}’ for —co <t < oo,
i=1
where v, denotes a Poisson random variable with mean n, independent of Z;’s and X;’s
by a sequence of Brownian bridges.

7.1. Some useful results. Consider now the version of L, (-) on (0, 1), let
Lo, (t) =Y Ly, for 0<t<1,
i=1

where the random variables U;’s are i.i.d. uniformly distributed on (0,1). Let us intro-
duce the Poisson bridges defined, for each n € N*, by

1
N, (t) := ﬁ(ﬂ% (t) —vnt) for 0<t<1.
The inequality of [33] stipulates that there exists a positive constant ¢;3 such that, for
any ¢ > 0 and any n € N*,

(7.1) P {f‘é{i IF,(t) — F(t)| > % } < 13 exp(—222).

Actually (7.1) simply reads, by means of «,(-), for any > 0 and any n € N*, as

IP’{ sup |, (u)| > x} < 13 exp(—222).
u€l0,1]

We also mention some bounds that we will use further. By appealing to Chung’s law of
the iterated logarithm for the empirical process, see [18], which stipulates that

an, (t 1
i sup SPeer @O _ 1

n—00 A /lOg(Q) n \/E

we see that, with probability 1, as n — oo,

(7.2) ilelﬂlg |ae, (8)] = (9(, [log ) n)

Moreover, by [57], on a suitable probability space, we can define the uniform empirical
process {a,, : n € N*}, in combination with a sequence of Brownian bridges { B, : n € N*}
together with a Kiefer process {K(s,u) : s > 0,u € [0, 1]}, such that, with probability 1,
as n — oo,

- logn
(73 S an() = B (0] = 0( e ) ,
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and

_ 2
lrgnéiécnuzl[lo?l] ‘\/Eak(u) — K(k, u)‘ = O((logn)?),

from which we extract, with probability 1, as n — oo,

o (1) — % K(n,u)’ - 0((105;)2)

As a result, by putting (7.2) into (7.3) and (7.4), one derives the following bounds: with
probability 1, as n — oo,

(7.5) uil[l()}?l] | B, (u)| = (9(1 [log ) n) and uil[lor,)u | K (n,u)| = (9(1 /nlog ) n)

Notice that the second bound in (7.5) comes also from the law of the iterated logarithm
for the Kiefer process; see [20], p. 81.

(7.4) sup
u€[0,1]

7.2. Poisson index. Recall that, letting {v, : n € N*} be a sequence of Poisson r.v.’s
independent of the sequence {X; : i € N*} such that E(v,,) = n and, for each n € N*, set

]LV" (t) = Z H{Xigt}a for teR.
i=1

It is easy to check that for any n € N*, L, = {L,, (¢) : t € R} is a Poisson process
with intensity E(L,, (t)) = nF(t), see [38]. Let vy be a Poisson random variable with
mean A > 0, and let Uy, Us, ... be independent real random variables with law U(0, 1)
independent of 7y. [54] defines the modified empirical process by

D3N
&)\(t) = \/X ()\_1 ZI[{UzSt} — t) 5 for 0 <t< 17
i=1

where the sum is taken to be zero if vy = 0. Some important properties of this process
such that {ax(¢) : 0 <t <1} is an independent increment process, \/?&;A(-) —q B(),
can be found in chapter 7 of [20], also in the general case when 7 is replaced by a
sequence {7, } of positive integer value random variables defined on the same probability
space. Without loss of generality we will consider that X; = F~1(U;) and we will replace
A, (t) for t € R by A, (t) for t € [0,1].

Theorem 7.1. If conditions (5.2), (5.3) and (5.4) hold, consider also the random variable
v, with Poisson law with mean n, then there exists a sequence of Brownian bridges
{Bn(t), 0 <t <1} such that

(7.6)]P’{ sup |n_1/2A,,n (t) — Bn(t)| > n_1/2(014 logn + a:)} < ¢15 exp(—ci62),
0<t<1

for all x > 0, where c14, c15 and c1g are positive universal constants.

8. PROOFS

This section is devoted to the proofs of our results. The previously presented notation
continues to be used in the following.
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PROOF OF THEOREM 3.2.
We will follows the proof of [24]. Given any 0 < ¢ < 1/2, by (3.9) we get

Y2 B (P~ Bl
/ ’ s = o03(1).
. q(s) ’

(8.1)

By Markov’s inequality we obtain
~ € B, (s)|P
(8.2) lim lim sup P / ﬂds >4§ =0,
€0 m—oo mt1) ()

for all § > 0. Now making use of (3.9) with v = 0, we get

(/f BrnS)F QP/f |ﬁmmw)—izﬂ$wd8+2p/* BrnG)P
1/(m+1) q(S) N 1/(m+1) Q(S) 1/(m+1) q(S)
€ € ) P
8.3 = 5(1 S q(s)ds + 2 ————ds.
001y [ 7 Ja(syds 1 2 Bu(s)”
0 1/(m+1) q(s)
Therefore
~ € P
(8.4) lim lim sup P / Mds >4 =0,
€0 m—oo m+r)  4(8)

for all 6 > 0. Hence (3.18) and (3.19) are proven. The proofs of (3.20) and (3.21) are
similar, and hence omitted. (I

PROOF OF THEOREM 3.3.

First we note that it follows by Markov’s inequality that

m/(m+1) _

€5 v Bn()|P™/(s(1 = 8))?/2¥1/2ds = O5(1),
1/(m+1)

for v > 0. Note that for p > 1, we have

(8.6) lla[? — [b]P] < p2P~a = b]P + p2P~ b~ a - b].

The last equation when combined with (3.9) implies, for v > 0, that
m/(m+1) |[Bmn (8)[” = B, (s)[”]
o1 ds
1/(m+1) (s(1—s))"
< ot [M Bnale) B0
B Ymen (s —s))PT
m/(m+1) % * p—1
1

Jm41) (s(1 — )/2*!
(8.7) = 0O3(1).
This completes the proof of (3.22). In a similar way we get (3.23). By combining (3.23)
and Theorem 3.2 of [24] (refer to [74]) we obtain (3.24). O

PROOF OF THEOREM 3.4.

As in [24] in the proof of Theorem 2.2, we have, for 1+¢/2—7 > 0, 7 < 14 ¢/2, that

" 7—(q/2+1) C1om/m )19 1 92—
lim sup P { <<1m> L (Cl’m> / W)l dt > K} < ,u(q)7+ q}/{ T,
0

m—s00 m m tTL(t)
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for all K > 0. Consequently,

Tﬁ(q/z‘#l) Cl,m/m q
. = L : dt = O5(1
(88) ( m m 0 t7L(t) Op(1),
and similar argument also yields
T—(q/2+1) C1,m/m q
Ci,m C1,m / ’ |B(t)|
. 2077 L 207 — - 1 .
(8.9) ( m m 0 tTL(t) dt = Op(1)

Let 0 < n < 1/2 so that
v<p/2+1—pn.
By combining (3.9) with (8.6), we infer that

(Gom) ™ L (G [ a0,
1

m m J(m+1) s"L(s)

p2p71 <C1,m>y_(q/2+1) I (Cl,m) /Cl’m/m |an(s) - ém(5)|p ds
1

m m J(m+1) s¥L(s)

v—(q/2+1) C1om/m -n ) p—1
-1 1,m> I (Cl,m)/ |ﬁm,n(5) Bm(5)||Bm(s)| ds
1

m m /(m+1) SDL(S)

v—(q/2+1) Ciom/m p/2—pn—v
= o (Sm) T (S )y [,
m m 1/(m+1) (s)

v—(gq/2+1) Ci,m/m Ep—l
+05(1) (Cl””) L<Cl’m>n_"/ i G
1

m Jmr1) 8" HFL(s)
= Oﬁ(l).

By using (4.9) of [24], we infer that

v—(q/2+1) Cm/m | B p 1
(=) p(Sm) [ B s [wiopas
1 0

m m J(m+1) S"L(s)

IN

This suffices for the proof of (3.26). In a similar way, we have

<cl,m>”—<”/2+” . (cl,m> /Um“l’m/m) emn(3)I” = 1B, (5)I7|
m m ) Ju,. (1) (m+1) s"L(s)

By using (4.17) of [24], we infer that
v—(p/2+1) Upyn (C1,m/m) E* p
m m

Upm n(1/(m+1)) s¥L(s)
This suffices for the proof of (3.27). Hence the proof of Theorem 3.4 is complete. O

ds = o3(1).

1
ds —>@/ sTV|W(s)|Pds.
0

PrROOF OF COROLLARY 3.1.

The proof follows the same line of the proof of Corollary 2.1 of [24]. O
Proor oF COROLLARY 3.2.
Let 1 <r, <m—m/(m+1). By Theorems 3.2 and 3.3 of [24], we have

(8.11)

Up n (rm/m)A(rm/m) E* P
[ RGP

Upon (rm )y (rmymy - (8(1 — ))P/2H1
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(8.12) /U (S(f"j’;)()szl;l ds = O5(1),
and

Ut,m Am n(S p
(8.13) /0 st — 0:(1).

Moreover, from [71] we have that from a normalized Brownian bridge, we can obtain an
Ornstein-Uhlenbeck process denoted by V(-) given by

(8.14) zfl(tit) —v (; log <1t_t)> ,

where B(-) denotes a brownian bridge. Now from Theorem 3.3 and 3.4 of [24], jointly
with (3.24) and (8.14) we obtain (3.29). Hence the proof of Corollary 3.2 is complete.

PROOF OF THEOREM 4.2

We use the notation ¢, = ¥, ,. We have the following easy-to-check representation

L= Lalt) = 5= [ (Ua(0) = 00 0) ds = 2L, 1)

— i /0 ([U;lln(s) — U;l(s)) ds
La(t)

(8.15) — 9, /0 (U;ﬁn(s) — U;l(s)) ds.
In order to work in the same spirit of [78], let us define
dalt) = 250 [l (9 - U7 9) s
-5 [ ) - 07 ) s
I et 210} t s) —Uy(s))ds
Mnnlt) = =520 [ Unls) = V(s d
(8.16) —l—Lgit)/t (Upn(s) = Up(s)) ds,

t
(8.17) + / (Upnn(5) — Un(s)) ds — 262.
0
In similar spirt of [28], notice that we have

Ly n(t) — Ly(t) = g—n)\mﬂ(t)

m

where
(8.18) M = N + 95, Vo .

The relation (8.18) is obtained by combing change of variables and integration by parts
with the following relation

_ / (UL (s) — U (s)) ds = / (Upn(s) — Un(s)) ds.
0 0
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We can also obtain, for ¢ > max{Uy, »(t), Un(t)} in other word U}, (t) > t and U, *(t) >

/min(U;{n(t), U ()
t

Vin(t) = Ym.n(8)ds

(8.19)

max(U;in(t), Uil(t))
+/ (t — min (Um,n(s)v Un(s))) dS,

min(Utn (8), Uzt (1))
where

We now prove that V,, ,, is asymptotically negligible in the same way as in [78] to handle
V.., refer to the equation (3.1) therein. Let us introduce the following definitions

a(t) = max Uy (1), Un(t)),
a_l(t) = max (IU,_nTn(t)7 U;l(t))
and
b(t) = min (U, (t), Un(t)),
b='(t) = min (UL, (1), U, (1)).
Lemma 8.1. We have, as m = m(n) — oo
(8.20) limsup 0,12V, = 0, a.s.,
m—r o0
where

5m = mfl log(z) m.

PROOF OF LEMMA 8.1.

We have the inequalities

bH(t) a=(t)
Vo < [ dmalds| 4 [ e be)as
t b—l(t)
< s ) (710 — )
sEft, b=1(t)]
+  sup[t=b(s)] (a7H(t) —bT(H))
se[b=1(t), a1 (t)]
<t = En()] (571(0) 1)
+  sup[t=b(s)] (a7H(t) —bT(H))
s€b=1(t), a1 (t)]
< B~ 1)l (a7 () ~ 1) -

We therefore obtain readily that
— — Em -1 — -
0 21m (0] < 0572 (L= e (ot = 1, ot - 1))

where
q&(t) _ t1/276(1 _ t)1/276.
We obtain from [53] that

E, -1
(8.21) lim sup 6;11/2w =0, a.s.
n—s>0 qs
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From exercise 5 on page 651 of [71], we can refer also to [64], we have that

(8:22) max (g5 (U, = DI, llas(Us,, = D) = o(1), as.
By combining (8.21) and (8.22), readily implies (8.20). |
Making use of (8.18) and Lemma 8.1 completes the proof of Theorem 4.2. O

PROOF OF THEOREM 4.3.

Let us collect some known results that are needed in the proof of the Theorem 4.2.
From [21] p.159, we infer that we have

(8.23) sup [U,'(t)) —t| = sup |Un(t)) —t|.
0<t<1 0<t<1

An application of the law of iterated logarithm, refer to Theorem 5.3.1 in [20], implies,
with probability one, that

(8.24) sup |U L (t) -t/ =0 (n_l/Q(log@) n)l/z) .

0<t<1
Let us remark that we have

UL N (EL (1) UM () = UZHERN(1) - EL'(t)
(U = b)) + B (1) — t.
This when combined with (8.23), implies that

(8.25) U (1) = U5 () and — (Un(t) = Unm,n(2)),

m,n

are asymptotically equivalent. From [30], we have

—1/p—1 -1 _ B:w,n(t) Br*z(t)
(8.26) +O(m~Y2((m) v I(n))) + E;Nt) — t,

where we recall
I(m) = m~*(logm)"/?(log o) m)"/*.
Recall the following inequality, for ¢;7 > 0 and x > 0, see for instance p.2463 of [26],
(8.27) P ( sup |B;(t)| > $1/2> < cy7exp(—z/2),
0<t<1
Making use of [72] about the oscillation of the empirical processes, we infer that
_(Un(t) - Um,n(t)) = Em(Un(t)) - Un(t)

_ _ n'/4 1 -1/2(] —1/4
= E,t)—-t+0 7 (logn) (log(9)n) )
m

Making use of [5] and [55, 56] results, we infer that

UL =0t = En(t)—t
n'/t 1/2 1/4
We have
sup [t —Uy(t)|+ sup |t — En,(t)] if  b(t) = Upn(t),
sup [t —b(t)] < { ==t 0st=1 .
i MLLIC S S P ) it b(E) = Un(t).

0<t<1
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By the law of iterated logarithm, we readily infer that

8.29
( ) log oy n 1/2 log oy m 1/2
sup [t —b(t)| < ) 1/2
0<t<1 0 (%) it b(t) = Un(2).

In a similar way, we obtain

sup [t UL (0] i b() = Uk (b),
sup |t = b 1(1)] < 0st=1 _ ) _ _
Sup =0T TG vl i b = U).

0<t<1

Making use of the last equation in combination with [21] and Theorem 5.3.1 in [20], we
infer that

(8.30)
log oy 1/2 .
o titm vimh + 0 (22)) it ) = Ul
sup |t - b_l(t)| < lo n\ 1/2
0<t<1 0 <( LS) ) ) it b(t) = Uy,(t).
Recall that
b1 (t) a”(t)
(8.31) Vin(t) = / Ym,n(8)ds +/ (t —b(s))ds.
¢ b-1(t)
It is noteworthy that we have
1 1 2 b7
Vi) = 3O =0+ [ (mals) = Gmn(t)) ds
t

a=1(1)
—I—/ (t —b(s))ds
b=1(t)

FO7H () = ymn(t) = tla™ () =07 (2)).
An application of Lemma 5.4 of [21], gives

limsup(logn) ™%  sup |§mn(t +h) — Emn(t)| < (2n)Y/2,
n—00 0<t<1—h

By using the last equation and choosing h(t) = (b~1(t)—t) which implies h = (I(m)Vi(n)),
we have

bl(t) 1 b= (1)
/t (nns) = mn()}ds = —= / {Gmn(t) — Qi n(5)} ds

_ % /t o (Boun(s) ~ Brn(t)) ds
+0 (m*1/2(1(m) v l(n)))
(8.32) - o(m*1/4(1(m)v1(n))1/2).

From (8.29), we obtain

a”'(t)
(8.33) /bl(t) (t—b(s))ds =0 ((log(z) n/n)l/2 Vv (log s m/m)1/2) )

Using once more (8.29), we have

(8.34) (07H(E) = ) Yman (W) = O ((I(n) V U(m)) /v/m) .
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A combination of (8.28) with (8.29) yields to

(8.35) ta () — b)) = o(1).
We infer readily from (8.32), (8.33), (8.34) and (8.35) that
1
Vi) = =5 (U 1(0) = 12,
Therefore the proof is complete. ([l

PROOF OF THEOREM 5.1.
On one hand, one can write
(8.36) B (t) = Bu(t) = Bu(Wy, (1) = Vu{ W, (2) — t,

where, for 0 <t <1,

Walt) = Zwm:Tinzzi

i<nt i<nt
W, ht) = inf{u: W, (u) >t,uc0,1]}.
On the other hand, the process o, » (t) can be expressed as
1 1) ¢ n
anyp(t) =vn (T - n) Y Zilwen + % > (Zi= D1y
" i=1 i=1

In view of the last equation, we obtain readily that

(8.37) P ( sup |Rn () — Ra(t)] > n~2(c1glogn + ;v))

0<t<1

=P < sup |an,“/ﬂ(t) - an(t) + 5n,W(t) - 6n(t)| > 7171/2(018 logn + x))
0<t<1

<P < sup |, (t) — an ()| + sup |Bn,w (t) — Bn(t)| > n71/2(618 logn + x))
0<t<1 0<t<1

<P ( sup o, w () — an(t)| > 2_1n_1/2(018 logn + x))
0<t<1

+P < Sup | B (t) — Bu(t)] > 270" Y2(c15logn + x))

0<t<1
= In,l + In,2-

We can write

Ino = P ( sup |Bn(W, (1)) + vo{W, 1 (t) — t}| > n_l/z(clg logn + x))
0<t<1

IN

P ( sup (W (1)) — BOW (1)) > n~2(canlogn + x/3>)
0<t<1

+ (s BV 0) - BAO]> 0 en logn-+a/3) )
0<t<1

+P ( sup VoWt (#) =t} + B (t)] > n~ Y2 (¢p0 logn + x/3)> .
0<t<1
Making use of Theorem 4, one has

(s 18,0 0) ~ BOOV )] > 0 Pewlogn +2/3)) < nesp (- 52e).

0<t<1 3
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The two others probabilities can be handled analogously to (6.8) and (6.9) in [1]. Hence,
we conclude that, with probability one, we have

sup |Bn,w (t) — Bn(t)] = O (n_1/2 log n) .

0<t<1

We next evaluate the first term I,, ; in the right side of (8.37). We can therefore write
the following chain of inequalities

P ( sup |an,w () — an(t)] > n_1/2(023 logn + x))
0<t<1

< P (s lann (0] + sup fan(0] > 1 enlogn +) )
0<t<1 0<t<1

< ]P’( sup | ()] > 2772 (co3 logn—|—x)>
0<t<1
(8.38) +P ( sup o, ()] > 272 (cp3logn + m)) ,
0<t<1

for some positive constant cg3. The first term in the right hand-side of (8.38) can be
evaluated by

P ( sup | ()] > n~Y2(coqlogn + x)>
0<t<1

< su — = — Z;1
< <O<t1:<)1 Vn ( ) Z (U<t}
+ sup £ (Z - 1y,<sy| > n"Y2(coy logn + x))
0<t<1| M = -
= su -1 Zi1
<0<t51 < ) \fz vty
Vi 1/2
+ sup |— Z;— 1)1 >n- coglogn +x) | .
ogt% - z; (U<t} (€24 10g )

[50, p.3] constructed a sequence of Wiener processes W, (t) in such a way that

1 W (t
(02151 U X Dz - 0)

where ¢a5, cag, co7 > 0 are universal constants. Moreover from [1] (6.6)

> n71/2(025 logn + x)) < cog eXp(7027x)a

P (‘; — 1‘ > 1) < cog exp(—ca9),

where cag, cag > 0 are universal constants and from [1] (6.3) and (6.4)
P | sup
0<t<1

‘

where c3gp,c31 > 0 are universal constants. The second term in the right hand-side of
(8.38), can be evaluated by using the results of [57]. More precisely, one can construct a

1 n
% Z Zilyy,<ey| > 2*17171/2(024 logn + x))
i=1

>

Z;| > a:/2> < cz0 exp(—cs312),

1=
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sequence of Brownian bridges in such a way that

P ( sup | ()] > 272 (cp3 logn +x)>
0<t<1

< P ( sup |an(t) — B (8)] > 272072 (cog logn + 33))
0<t<1

+P ( sup |BU ()] > 2720~ Y2 (cp3 logn + m)) .
0<t<1

From [62], see Theorem 1, we have, for > 0,

(8.39) IE”{ sup oy (t) — B > n~ 2% (crlogn + x)} < egexp(—caz).

0<t<1

41

Making use of similar arguments as in (6.5) and (6.6) of [1] and keeping in mind equation

(8.27), we have

P ( sup |BW ()] > 272072 (cp3logn + x))
0<t<1

< P( sup |BWU ()] > 22n1/2x)
0<t<1
< exp(—csez),

for some positive constant czs > 0. We conclude that

sup |an,w (t) — an(t)| = O (nil/Q log n) .
0<t<1

Hence the proof is complete.

PRrROOF OF THEOREM 5.2

By the law of the iterated logarithm for empirical process the results of [55, 56] im-

mediately implies

(8.40) limﬂsup n/4(log n)*1/2(log(2) n) VYR, = 2714
1/2

.. 1/4 -1/2 1/4 _ ™
(8.41) lzniloréfn (logn) (logoyn) Rl = e

We may refer to [19, 847] for more details and references on these relations. By combining

relation (8.40) with Theorem 5.1, we infer that

lim sup n1/4(log n)_1/2 (log(2) n)_1/4 | Ryl

n— oo

< limsupn'/*(log n)*l/z(log@) n) V4| Row — Ral|

o n—oo
+n'/*(logn) /% (log 5y n) "V R
_ _1/4l0gn
= O<n1/4(10gn) 1/2(10g(2)n) 1/4711/2>

+limsupn'/4(logn) /2 (logp) n) /4| Ry |

n—oo
= O (n_1/4(1og n)l/Z(log@) n)_1/4)

+limsupn'/4(logn) /2 (log ) n) /4| Ry |

n—oo

= 2_1/4, a.s.
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By using Theorem 5.1 in connection with (8.41), equation (5.13) can be obtained analo-
gously. Therefore the proof is complete. ]

PROOF OF COROLLARY 5.1

Making use of the triangle inequality, we obtain readily that
Vo =202 ]| < [V — Vall + Ve = n=/202].
An application of Theorem 4.1 of [78] gives
(8.42) [V = n~ 202 || = o(n ™" log 4y n).
Now, we infer from Theorem 5.1 that
(8.43) Ve — V|l = O(n~ /2 logn).

Theorem 5.1 is consequence of (8.42) and (8.43). O

PRrROOF OF THEOREM 6.1

In a similar way as in the paper by [15], we infer, for p < —1/2, that

E {HBS?WH - (e 2logn + (logn)p)}_Ir —-E [ sup

0<t<1

< E [ llan || - e/2logn]
+

<E [HB"I)WH - (e 2logn + (logn)p)} +E { sup
’ + 0<t<1

anon(t) = B 0)] = (og
.

Cw (£) = B, (8)] = (log n)p]
N

Making use of Theorem 3 in connection with the following relation
(oo}
1 1
E[IB -1 = [ P(IB0 > t+a) de

it follows in a similar fashion as in [15], p.9089, that

Z n*E [ sup oy, w (t) — Br(Ll)W(t)| — (log n)p}
el 0<t<1 ’

+
0 [e%s}
= Zn“/ IP’( sup |Bn,w(t) — B,(Il)w(t)‘ > (logn)? + x) dx
ot 0 0<t<1 ’
2. can®exp(cse; logn) /°°
< exp(—c3v/nr)dx
2 eplea/llogn)?)
< 00.

We then obtain

. a+1 1/2 oo .
hnal+1 <1 - 4€2> E n?E | sup
NpLE ot 0<t<1

(1) — Bﬁ;,(t)\ — (log n)p] —0.
+

The rest of proof of being similar the proof of Theorem 1.1 of [15], and therefore, omit-
ted. O
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PROOF OF THEOREM 6.2

An application of Theorem 4 in combination with

E[HBS)WH—t} :/ P(HBff?,,‘sz)dx,
, L ,

implies, in the same way as in [15], p.9089, that

i n’E [ sup
n=1

0<t<1

oo
n“/ ]P’( sup
T 0 0<t<1

con®exp(czcy logn
< exp(csy/n(logn)P)

Buow (0) = B2 (0)] = ogny |
.

I
[M]8

Buw (8) = B (8)] = (log n)” + x) dx

n

M8

<

) /000 exp(—c3v/nx)dx

81

<

We infer that

1/2 oo
. a+1
\hnc.l,H (1 e > Z n’E [ sup
N n=1

0<t<1

Bun (1) — B, (0)] - (logn)p} 0.
+

The proof is achieved by using similar arguments as in the proof of Theorem 1.1 of [15],
and therefore, omitted. (|

PROOF OF THEOREM 7.1

Let ¢, = Z; — 1. First of all, remark that we have

n~Y2A, (t)— Bn(t) = nY24, (t) —n"2A4,(t)
(8.44) +n"Y24,,(t) — B,(2).

[50] constructed a sequence of Wiener processes {W,,(t), 0 < t < oo} such that, for all
x>0,

P| sup
0<t<1

where ¢33, ¢34, 35 > 0 are universal constants. From the last equation, we readily infer
that

P sup
0<t<1

n_1/2 Z €i1{Ui§t} — Wn(t)

=1

> n_1/2(633 logn + x)) < czgexp(—c357),

n*1/2 (Z ei]l{UiSt} — tz €i> — (Wn(t) — th(l))
=1 1=1

> n"Y2(eg6logn + a:))
< c37exp(—csgx),

where ¢3¢, c37, c3s > 0 are universal constants. This implies that

P ( sup |n"Y2 A, (t) — Bu(t)] > n 2 (es6logn + x)) < ca7exp(—cssx),
0<t<1

where
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Hence, the main term to be investigated in the relation (8.44) is A, (t) — A, (t). Notice
that we have

Vp n

Ay, (1) — An(t) = Z eiliy, <ty — Z ey, <ty

=1 i=1

—& (Z Liv<y =) H{Ui<t}> :
i=1 =1

Un n
= Y ealwey — ) <y
=1 =1

—€n (Ly, (1) — nUL(t)) .
For any ¢ € [0,1], we obtain
(nUn(t) — Lo, ()] = [n (Un(t) = ) — (L, (t) — vat) + (nt — vat) |,
from which we deduce that
[nUn(t) — Ly, ()] = |\/ﬁ(0‘n(t) =N, (1) +t(n—uvy)l.

[14], Theorem 2, showed the following result related to the corresponding empirical uni-
form process.

Theorem 7. For all x > 0 and n € N\{0, 1},
(8.45) IP’{ sup |am(u) = N, (u)| > ;C/AL} < 8exp(—x).
u€l0,1] n
Applying Theorem 2 of [14] (see the preceding Theorem 7), we obtain
P ( sup |an(t) — Nup ()| > xn_1/4) < 8exp(—zx),
0<t<1
for all x > 0, and for cgg > 0,
P (Jvy — n| > v/na/2) < exp(—cson) < exp(—csoz)

if 0 <z < n, where we have used (3.12) of [50], also see Theorem 2.6 of [69]. The case
where x > n. Let us define
Sn = Z Y;v
i=1

where Y; = §; — 1 are i.i.d. and centered random variables, with §; of same Poisson with
mean one law, then

Elexp(tY1)] = exp(—t)E[exp(tdy1)]
= exp(—(t + 1)) exp(exp(t)).
]

Notice that for 0 < t < 1, we have E[exp(tY1)] = exp(t?/2 + o(1)), and from Theorem
2.6 of [69], we have that, for c4g > 0,

(8.46) P (Jv, — n| > vnz/2) < exp(—caoz), for z > cn.

Then, for all z > 0, we have, for some positive constant c41,

P ( sup |[nU,(t) — Ly, ()] > n/*z + M/2>

0<t<1

< P < sup |a,(t) =N, (t)] > xn1/4>

0<t<1

+P (In — vy| > vnz/2)

8exp(—1x) + exp(—cq1 7).

IN
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Hence, we obtain

P ( sup |&, (nU,(t) — L, (t))| > n'/*z + \/7%/2)

0<t<1

< P ( sup |nU,(t) — Ly, (t)| > n'/4z + \/nx/2>

0<t<1

P(
i=1

€

>\/%>

S

< 8exp(—z) + exp(—cq1x +P<

2%).

From (3.3) of [51], we obtain, for 0 < z < n,

|

where cy2, c43 > 0 are universal constants. Then, for all z > 0, we have

n

ZQ‘

i=1

> \/nm> < cyoexp(—cazn) < cqo exp(—cq3).

P < sup |, (nUp(t) — Ly, (£))| > n'/4z + \/mc/Q) < eyqq exp(—cyp),
0<t<1

where ¢44, 45 > 0 are universal constants. Now, in order to obtain a bound of A4, (t) —

A, (t), we have to deal with
su 61 — 61
<O<tI<)1 Z {U:<t} Z {U:<t}
sup(un73n/2)

< P| sup Z €ily,<ey| = Van

OSEST i int (s Ln/2))
+P (Jvn — n| > Vnx/2),

for the first term in the right hand-side, we have by using (3.3) of [51] that

>r>

[3n/2]
P Z €| > van | < cypexp(—carx),

i=1
where ¢4, c47 > 0 are universal constants. This when combined with (8.46), implies that
P ( sup |4,, (t) — An(t)| > \/nm) < cy6 exp(—cqrx) + exp(—cq1),
0<t<1

for all x > 0. Hence the proof is complete. O
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