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SERGIO ALVAREZ-ANDRADE AND SALIM BOUZEBDA

SOME SELECTED TOPICS FOR THE BOOTSTRAP OF THE

EMPIRICAL AND QUANTILE PROCESSES

Dedicated to the memory of Djalil Kateb

In the present work, we consider the asymptotic distributions of Lp functionals of

bootstrapped weighted uniform quantile and empirical processes. The asymptotic

laws obtained are represented in terms of Gaussian integrals. We investigate the
strong approximations for the bootstrapped Vervaat process and the weighted boot-

strap for Bahadur-Kiefer process. We obtain new results on the precise asymptotics

in the law of the logarithm related to complete convergence and a.s. convergence,
under some mild conditions, for the weighted bootstrap of empirical and the quan-

tile processes. In addition we consider the strong approximation of the hybrids of

empirical and partial sums processes when the sample size is random.

1. Introduction

Bootstrap samples were introduced and first investigated in [34]. Since this seminal
paper, bootstrap methods have been proposed, discussed, investigated and applied in a
huge number of papers in the literature. Being one of the most important ideas in the
practice of statistics, the bootstrap also introduced a wealth of innovative probability
problems, which in turn formed the basis for the creation of new mathematical theories.
The asymptotic theory of the bootstrap with statistical applications has been reviewed in
the books among others [17], [63], [40], [16], [31], [73], [47] and [59]. A major application
for an estimator is in the calculation of confidence intervals. By far the most favored
confidence interval is the standard confidence interval based on a normal or a Student
t-distribution. Such standard intervals are useful tools, but they are based on an approx-
imation that can be quite inaccurate in practice. Bootstrap procedures are an attractive
alternative. One way to look at them is as procedures for handling data when one is
not willing to make assumptions about the parameters of the populations from which
one sampled. The most that one is willing to assume is that the data are a reasonable
representation of the population from which they come. One then resamples from the
data and draws inferences about the corresponding population and its parameters. The
resulting confidence intervals have received the most theoretical study of any topic in
the bootstrap analysis. Roughly speaking, it is known that the bootstrap works in the
i.i.d. case if and only if the central limit theorem holds for the random variable under
consideration. For further discussion we refer the reader to the landmark paper by [39].
The following notation is needed for the statement of our results. Let X1, X2, . . . be a
sequence of i.i.d. random variables [rv’s] with common df

F (t) = P(X1 ≤ t).
For each n ≥ 1, the empirical distribution function of X1, . . . , Xn, is given by

Fn(t) = n−1#{Xi ≤ t : 1 ≤ i ≤ n}, for −∞ < t <∞,
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where # stands for cardinality. The quantile function [qf] pertaining to F (·), is defined,
for u ∈ (0, 1), by

F−1(u) = inf{x : F (x) ≥ u}.
The empirical quantile function is given, for each n ≥ 1 and u ∈ (0, 1), by

F−1n (u) = inf{x : Fn(x) ≥ u}.
Given the sample X1, . . . , Xn, let X∗1 , . . . , X

∗
m be conditionally independent rv’s with

common distribution function Fn(·). Let

Fm,n(t) = m−1#{X∗i ≤ t : 1 ≤ i ≤ m}, for −∞ < t <∞,
denote the classical Efron (or multinomial) bootstrap (see, e.g. [34] and [35] for more de-
tails). Consider also the bootstrapped empirical quantile function, belonging to Fm,n(·),

F−1m,n(u) = inf{x : Fm,n(x) ≥ u}, for 0 < u < 1.

Define the bootstrapped empirical and quantile processes, respectively, by

(1.1) ξm,n(t) := m1/2(Fm,n(t)− Fn(t)), for −∞ < t <∞,
and

(1.2) ζm,n(t) := m1/2(F−1m,n(t)− F−1n (t)), for 0 < t < 1.

[10] investigated the weak convergence of the processes in (1.1) and (1.2), which make
possible to obtain the asymptotic validity of the bootstrap method in forming confidence
bounds for F (·). [70] provided an elegant proof of weak convergence of the process in
(1.1) [see also [71], Section 23.1]. The generalization of the work of Bickel and Freedman
was given in the multivariate setting as well as in very general sample spaces and for
various set and function-indexed random objects [see, for example [9], [37]]. The most
advanced results for the bootstrap are due to [39] and [30]. For a survey of further
results on weighted bootstrap the reader is referred to [6], for recent reference see [13].
One of important question (both in probability and in statistics) is about the rates of
convergence and formed the basis of works for great number of authors (see [20], [57],
[51], [11] and the references therein).

In this paper, we consider several selected topics for the bootstrap for empirical and
quantile processes. We are first concerned with the characterization of the asymptotic
distributions of Lp functionals of bootstrapped weighted uniform quantile and empirical
processes. We consider also the bootstrap of the Vervaat process, which is an important
tools in several applications, see for example [28]. We investigate the behavior of the
weighted bootstrap for the well know Bahadur-Kiefer processes, see [5], [55, 56]). [77]
investigated the uniform empirical process and obtained the precise asymptotics in the
Baum-Katz and Davis law of large numbers given by [42] and [43] for a sequence of
i.i.d. random. For further details we refer to [60], [45], [44], [67], [75], [76], [41, 46],
[2, 3, 4] and the references therein. The legendary paper by [52] introducing the concept
of “complete convergence” is to be cited here. The last mentioned reference generated a
series of papers, in particular [7]’s seminal work which provided necessary and sufficient
conditions for the convergence of the series

∞∑
n=1

nr/p−2P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ ε
)

for suitable values of r and p. We consider the Baum-Katz and Davis law of large numbers
for weighted bootstrap for the empirical and quantile processes. We consider the strong
approximation of the hybrid processes when the sample size is random. The motivation
for introducing random simple sizes is that in some applied situations the number of
elements in the sample is not fixed a priori because of constraints in time, costs or space,
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see [8] where the Kac process appear as a particular case of randomly indexed empirical
processes. [68] study the limit behavior of the empirical process with random index for
a broad class of indices ν̃n say. [61] showed that the approximation on the tails with
Poisson processes is better than that with Brownian bridge if d = 1. [48] obtained
the same rates for the tail approximations of the multivariate empirical process using
Kac’s representation. Later [49] stated some weighted approximations of the multivariate
empirical process with Poisson bridges and proved that the Poisson approximation is
better on the tail in the case of heavy weight functions when the approximating process is
derived from Kac’s representation. [12] obtained some approximations of the multivariate
empirical copula process with Poisson bridges. The construction of the Poisson bridges
is based on Kac’s representation of empirical processes of [49] combined with Bahadur-
Kiefer representation of the empirical copula process. Notice that the present work
extends largely, in many directions, the scope of our previous work [1].
To best of our knowledge, some of the results presented here, respond to a problems those
have not been studied systematically until present, and it gives the main motivation to
the present investigation.

The present work is organized as follows. In Section 2, we recall some elementary
definitions for the empirical processes and the gaussian processes. In Section 3, we
provide our results concerning the distributions of Lp norms of bootstrapped weighted
uniform empirical and quantile processes. These results are largely inspired by the results
in [24] combined with those in [30]. In Section 4, we investigate the multinomial bootstrap
for the Lorenz curves, in the same spirit of [28, 29]. In Section 5, we study the weighted
bootstrap for the Bahadur-Kiefer processes. In Section 6, we investigate the moment
convergence for the weighted bootstrap for the empirical and quantile processes, in the
same spirit as in [15] in connection with main tools of the strong approximations obtained
in [1]. In Section 7, we investigate the weighted bootstrap for the hybrid processes when
the sample size is random. To avoid interrupting the flow of the presentation, all proofs
are relegated to the Section 8.

2. Some preliminary results

Let U := U1, U2, . . . be i.i.d. rv’s on a probability space (Ω,A ,P). Let U follow a

uniform on (0, 1) law, which is denoted by U
D
= U(0, 1). For each n ≥ 1, let Un,1 ≤ · · · ≤

Un,n be the order statistics of U1, . . . , Un, and set U0,n = 0 and Un+1,n = 1 for n ≥ 0.
Since the strict inequalities

(2.1) 0 = U0,n < U1,n < · · · < Un,n < Un+1,n = 1,

hold almost surely for all n ≥ 0, we will work, without loss of generality, on the event
(2.1), of probability 1. Let

Un(u) := n−1#{Ui ≤ u : 1 ≤ i ≤ n}, for 0 ≤ u ≤ 1,

be the empirical df based upon U1, . . . , Un. Define the empirical qf, pertaining to Un(·),
by

U−1n (v) := inf{u ≥ 0 : Un(u) ≥ v}, for 0 ≤ v ≤ 1;

U−1n (v) := 0, v < 0, and U−1n (v) := 1, v ≥ 1.

Denote the uniform empirical (resp. quantile) process by

αn(u) := n1/2 (Un(u)− u) and βn(u) := n1/2
(
U−1n (u)− u

)
, for u ∈ [0, 1].

Let us now introduce some definitions and notations. Let W = {W (s) : s ≥ 0} and
B = {B(u) : u ∈ [0, 1]} be the standard Wiener process and Brownian bridge, that is,
the centered Gaussian processes with continuous sample paths, and covariance functions

E(W (s)W (t)) = s ∧ t for s, t ≥ 0
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and

E(B(u)B(v)) = u ∧ v − uv for u, v ∈ [0, 1].

A Kiefer process K = {K(s, u) : s ≥ 0, u ∈ [0, 1]} is a two-parameters centered Gaussian
process, with continuous sample paths, and covariance function

E(K(s, u)K(t, v)) = (s ∧ t) (u ∧ v − uv) for s, t ≥ 0 and u, v ∈ [0, 1].

It satisfies the following distributional identities:

{K(s, u) : u ∈ [0, 1]} D
=
{√

sB(u) : u ∈ [0, 1]
}

for s ≥ 0

and

{K(s, u) : s ≥ 0} D
=
{√

u(1− u)W (s) : s ≥ 0
}

for u ∈ [0, 1].

The interested reader may refer to [20] for details on the Gaussian processes mentioned
above.

3. The distributions of Lp norms of bootstrapped weighted uniform
empirical and quantile processes

We assume, without loss of generality, that the underlying probability space (Ω,A ,P),
constructed in [22], is so rich that it accommodates all the r.v.’s and processes introduced
so far and also later on. This space carries a sequence of Brownian bridges {Bi}i≥1 such
that (3.1) holds true. [22] obtained the following deep results

(3.1)

sup
0<s<1

|αn(s)−B∗n(s)|
(s(1− s))1/2−ν1

= OP(n−ν1),

sup
λ/n<s<1−λ/n

|βn(s)−Bn(s)|
(s(1− s))1/2−ν2

= OP(n−ν2),

for all 0 < λ <∞ and 0 ≤ ν1 < 1
4 , 0 ≤ ν2 < 1

2 where B∗n(s) = Bn(s) if 1/n ≤ s ≤ 1−1/n
and zero otherwise. Throughout the paper, we use the notation log(2) x := log log x for

x > 3 and we will denote by ‖ · ‖ the sup-norm i.e., ‖ · ‖ = sup0≤t≤1 | · (t)|. For the same
construction we also have

(3.2)
sup

0<s<1
|αn(s)−Bn(s)| = O(n−1/4(log n)1/2(log(2) n)1/4) a.s.,

sup
0<s<1

|βn(s)−Bn(s)| = O(n−1/2 log n) a.s.

[As in [30], alternatively, we could choose (Ω,A ,P) to be the space constructed by [66]
with ν1 and ν2 transposed in (3.1) and (3.3) below and the rate sequences transposed

in (3.2)]. As in [30], now extend (Ω,A ,P) to obtain a probability space (Ω̃, Ã , P̃),
which besides {Ui} and {Bi}, carries another sequence of independent uniform (0,1)

r.v.’s ξ1, ξ2, . . . and another sequence of Brownian bridges B̃1, B̃2, . . . such that the sets
of random elements

{Ui}∞i=1 ∪ {Bi(s) : 0 ≤ s ≤ 1}
and

{ξi}∞i=1 ∪ {B̃i(s) : 0 ≤ s ≤ 1}
are independent. We define the uniform empirical quantile function by ξm(0) = 0,

ξm(s) = ξk,m, (k − 1)/m < s ≤ k/m, for k = 1, . . . ,m,

and the uniform quantile process

km(s) = m1/2(s− ξm(s)), for 0 < s ≤ 1.
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Define also the uniform empirical distribution function

Em(s) =

 0, ξ1,m > 0
k/m, ξk,m ≤ s < ξk+1,m for k = 1, . . . ,m− 1,
1, ξm,m ≤ s,

and

em(s) = m1/2(Em(s)− s), for 0 ≤ s ≤ 1.

We have

(3.3)

sup
0<s<1

|em(s)− B̃∗m(s)|
(s(1− s))1/2−ν1

= OP̃(m−ν1),

sup
λ/m<s<1−λ/m

|km(s)− B̃m(s)|
(s(1− s))1/2−ν2

= OP̃(m−ν2),

for all 0 < λ < ∞ and 0 ≤ ν1 <
1
4 , 0 ≤ ν2 <

1
2 where B̃∗m(s) = B̃m(s) if 1/m ≤ s ≤

1− 1/m and zero otherwise. As pointed out in [30], (Ω̃, Ã , P̃) can be obtained by taking

the product (Ω,A ,P)with itself. Now P can be replaced by P̃ in (3.1). Introduce

(3.4) Um,n(s) = Em(Un(s)) and U−1m,n(s) = U−1n (ξm(s)), for 0 ≤ s ≤ 1.

The bootstrapped uniform empirical and quantile processes are defined, respectively, by

(3.5)
αm,n(s) = m1/2(Um,n(s)− Un(s)) and

βm,n(s) = m1/2(U−1n (s)− U−1m,n(s)), for 0 ≤ s ≤ 1.

Set `(n) = n−1/4(log n)1/2(log(2) n)1/4 for the rate sequence figuring in (3.2). [30] showed
the following result. We make no claim of originality for the results that we highlight
in this section. In fact, the results presented heavily rely on those of [24] and [30]. It is
worth noticing that these results are not stated elsewhere.

Theorem 3.1. For any sequence m = m(n)→∞ of positive integers and each 0 ≤ ν <
1/4,

(3.6) sup
U1,n≤s<Un,n

|αm,n(s)− B̃∗m(s)|
(s(1− s))1/2−ν

= OP̃((m ∧ n)−ν),

and

(3.7) sup
0≤s≤1

|αm,n(s)− B̃∗m(s)| = (`(m) ∨ `(n)) a.s.,

and whenever m = m(n) satisfies the condition that for two constants 0 < C1 < C2,

(3.8) C1m ≤ n ≤ C2m, n = 1, 2, . . . ,

and for any 0 ≤ λ <∞ and 0 ≤ ν < 1/4,

(3.9) sup
λ/m≤s<1−λ/m

|βm,n(s)− B̃m(s)|
(s(1− s))1/2−ν

= OP̃(m−ν),

and

(3.10) sup
0≤s≤1

|βm,n(s)− B̃m(s)| = O(`(m)) a.s.

Let {ζ1,n} and {ζ2,n} be sequences of positive numbers, such that, as n→∞

1 ≤ ζ1,n ≤ n, ζ1,n →∞(3.11)

ζ1,n/n→ 0,(3.12)
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and

1 ≤ ζ2,n ≤ n, ζ2,n →∞(3.13)

ζ2,n/n→ 0.(3.14)

Let {ζ1,m} and {ζ2,m} be sequences of positive numbers, such that, as n→∞

1 ≤ ζ1,m ≤ n, ζ1,m →∞
ζ1,m/m→ 0,(3.15)

and

1 ≤ ζ2,m ≤ n, ζ2,m →∞
ζ2,m/m→ 0.(3.16)

The following theorem is the bootstrapped version of Theorem 2.1 of [24].

Theorem 3.2. Let q(·) be a positive function on (0, 1/2], 1 ≤ p <∞ and assume that∫ 1/2

0

sp/2/q(s)ds <∞.(3.17)

Then with {ζ1,m} as in (3.15) we have, as n→∞,∫ 1/2

ζ1,m/m

|βm,n(s)|p/q(s)ds →D

∫ 1/2

0

|B(s)|p/q(s)ds,(3.18) ∫ ζ1,m/m

1/(m+1)

|βm,n(s)|p/q(s)ds →D 0,(3.19)

and ∫ Um,n(1/2)

Um,n(ζ1,m/m)

|αm,n(s)|p/q(s)ds →D

∫ 1/2

0

|B(s)|p/q(s)ds,(3.20) ∫ Um,n(ζ1,m/m)

Um,n(1/m)

|αm,n(s)|p/q(s)ds →D 0.(3.21)

Theorem 3.3. As n→∞, we have

(3.22)

∫ m/(m+1)

1/(m+1)

||βm,n(s)|p − |B̃m(s)|p|
(s(1− s))p/2+1

ds = OP̃(1),

and ∫ 1−λ/(m+1)

λ/(m+1)

||αm,n(s)|p − |B̃∗m(s)|p|
(s(1− s))p/2+1

ds = OP̃(1), for all λ > 0,(3.23) ∫ Um,m

U1,m

||αm,n(s)|p − |B̃∗m(s)|p|
(s(1− s))p/2+1

ds = OP̃(1).(3.24)

From now on we assume that the weight function q(·) is regularly varying at zero.
This means that q(s) = sνL(s), −∞ < ν < ∞, where L(·) is a slowly varying function,
i.e., L(s) is positive on (0, 1/2], Lebesgue measurable and

(3.25) lim
s→0

L(λs)/L(s) = 1, for all λ > 0.

We mention as in [24], that the condition (3.17) holds true for all q(·) regularly varying
at zero with exponent ν ≤ 1 + p/2.
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Theorem 3.4. Let L(·) be slowly varying at zero and {ζ1,m} as in (3.15). If −∞ < ν <
1 + p/2, then as n→∞,

(3.26)

(
ζ1,m
m

)ν−(p/2+1)

L

(
ζ1,m
m

)∫ ζ1,m/m

1/(m+1)

|βm,n(s)|p

sνL(s)
ds→D

∫ 1

0

s−ν |W (s)|pds,

and

(3.27)

(
ζ1,m
m

)ν−(p/2+1)

L

(
ζ1,m
m

)∫ Um,n(ζ1,m/m)

Um,n(1/(m+1))

|αm,n(s)|p

sνL(s)
ds→D

∫ 1

0

s−ν |W (s)|pds.

Corollary 3.1. Let m/(m+1) ≤ ζ1,m < ζ2,m ≤ m2/(m+1) and assume that, as n→∞,

(3.28)
ζ2,m
ζ1,m

m− ζ1,m
m− ζ2,m

→∞.

Then we have(
2D log

(
ζ2,m
ζ1,m

m− ζ1,m
m− ζ2,m

))−1/2
·

{∫ ζ2,m/m

ζ1,m/m

|βm,n(s)|p

(s(1− s))p/2+1
− µ log

(
ζ2,m
ζ1,m

m− ζ1,m
m− ζ2,m

)}
→D N(0, 1),

where D = D(P)is positive constant, µ = µ(p) = E|N(0, 1)|p, and N(0, 1) stands for the
standard normal r.v.

Corollary 3.2. Let 0 ≤ ζ1,m < ζ2,m ≤ m and assume (3.28). Then, with ζ∗1,m =
(ζ1,m ∨ 1) and ζ∗2,m = (ζ2,m ∧ 1), we have

(3.29)

(
2D log

(
ζ∗2,m
ζ∗1,m

m− ζ∗1,m
m− ζ∗2,m

))−1/2

·

{∫ Um,n(ζ2,m/m)

Um,n(ζ1,m/m)

|βm,n(s)|p

(s(1− s))p/2+1
− µ log

(
ζ∗2,m
ζ∗1,m

m− ζ∗1,m
m− ζ∗2,m

)}
→D N(0, 1),

where D = D(P), µ = µ(p) = E|N(0, 1)|p, and N(0, 1) are as in Corollary (3.1).

4. Bootstrap approach for the Lorenz Curves

Let us define the Lorenz curve by

L̃F (t) =
1

ϑ

∫ t

0

F−1(s)ds, for 0 ≤ t ≤ 1,

where

ϑ =

∫
R
xdF (x) =

∫ 1

0

F−1(s)ds <∞

when X admits a df F (·) and X = F−1(U), ϑ 6= 0. In econometrics it is customary to

interpret L̃F (·) as the proportion of total amount of “wealth” that is owned by the least
fortunate t×100 percent of a “population.” For some details on the variety of situations

where estimating the curve L̃F (·) is of importance, we may refer, for example to [28].
The empirical Lorenz curve is defined to be

L̃n(t) =
1

ϑn

∫ t

0

F−1n (s)ds, for 0 ≤ t ≤ 1,



26 SERGIO ALVAREZ-ANDRADE AND SALIM BOUZEBDA

where ϑn denotes the usual empirical mean. Let Un(·) the uniform empirical distribution

function corresponding to U1 = F (X1), . . . , Un = F (Xn) and Ṽn(·) denotes the Vervaat
process defined by

Ṽn(t) =

∫ t

0

(
F−1n (s)− F−1(s)

)
ds

+

∫ F−1(t)

−∞
(Fn(s)− F (s)) ds, for 0 ≤ t ≤ 1.(4.1)

It is worth noticing that the Lorenz curve and the Vervaat process are related by the
following relation (refer to the equation (2.1) in [29])

L̃n − L̃F =
1

ϑn
Ṽn +

(
1 +

ϑ− ϑn
ϑn

)
l (Un − I) ,

where

l (Un(t)− t) = − 1

ϑ

∫ F−1(t)

−∞
(Un(F (x))− F (x)) dx

+
1

ϑ
LF (t)

∫ +∞

−∞
(Un(F (x))− F (x)) dx.

We will denote by Vn(t) the version of Ṽn(t) where we replace Fn(t) resp. F−1n (t),
resp F (t) by Un(t) resp. U−1n (t), resp. t. Recall that we have to deal with a sequence
X∗1 , . . . , X

∗
m conditionally independent r.v.’s with common distribution function Fn(x)

and X∗1:m ≤ . . . ≤ X∗m:m their order statistics and let

X̄m,n =
1

m

m∑
i=1

X∗m =
1

m

m∑
i=1

X∗i:m.

Let us define

L̃m,n(u) =


1

X̄m,n

1

m

bmuc+1∑
i=1

X∗i:m, if 0 ≤ u < 1,

1, if u = 1,

and

L̃m,n(u) =
√
m
(
L̃m,n(u)− L̃n(u)

)
.

[21] provide the following result (see also [23]).

Theorem 4.1. If F−1(·) is continuous on [0, 1), and

0 < lim inf
n→∞

(m/n) ≤ lim sup
n→∞

(m/n) <∞,

then there is a sequence of Gaussian processes

{Λm(u) : 0 ≤ u ≤ 1} d
= {Λ∗m(u) : 0 ≤ u ≤ 1}

and as, m ∧ n→∞
sup

0≤u≤1
|L̃m,n(u)− Λ∗m(u)| P→ 0,

where

Λ∗m(u) =
1

ϑ

{
−
∫ u

0

B̃m(s)dF−1(s) + L̃F (u)

∫ 1

0

B̃m(s)dF−1(s)

}
,

where {B̃m(·) : m ≥ 1} denotes a sequence of Brownian bridges.
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Let us introduce

Ln(t) =
1

ϑn

∫ t

0

U−1n (s)ds, for 0 ≤ t ≤ 1.

LetH denote the so called Finkelstein set, consisting of all absolutely continuous functions
h : [0, 1] −→ R such that

h(0) = 0 = h(1) and

∫ 1

0

{h′(s)}2ds ≤ 1.

Let D[0, 1] denote the set of all left-continuous functions on [0, 1] that have right-hand

limits at each point. Let L denote the set {L̃h : h ∈ H}, where

L̃h := − 1

ϑ

∫ F−1(t)

0

h(F (x))dx+
1

ϑ
L̃F (t)

∫ ∞
0

h(F (x))dx.

Recall also the following arguments given in [78]. Let

(4.2) γn(t) = Un(t)− t, for 0 ≤ t ≤ 1.

It is well known that{√
n/2 log(2) n

}
γn is relatively compact in H, a.s.

see [36] and
√
nγn(t)→D B(t) ([32] in the space D(0, 1) endowed, respectively, with the

uniform and Skorohod J1 topology, where B(·) denotes a Brownian bridge on [0, 1]. The
combination of these two results is summarized in Theorem 1.1 of [78], that we state{

n

log(2) n

}
Vn is relatively compact in H2 :=

{
h2 : h ∈ H

}
a.s.

Moreover
2nVn(t)→D B2(t),

holds true in the space C[0, 1] endowed with the topology of uniform convergence. Let

Vm,n(·) a uniform on (0, 1) version of Ṽn(·) where we consider also that Um,n(·) replaces
Fn(·). Recall the definition of Um,n(·) in (3.4). Let us define

Lm,n(t) =
1

ϑm,n

∫ t

0

U−1m,n(s)ds, for 0 ≤ t ≤ 1.

and

ϑm = ϑm,n =
1

m

m∑
i=1

ξi.

Let us introduce

d2(F,G) =

(∫ 1

0

(
F−1(t)−G−1(t)

)2
dt

)1/2

,

where F (·) and G(·) are two dfs in F2, where

F2 =

{
F : F is a df such that

∫ ∞
−∞

x2dF (x) <∞
}
,

refer to [71], see pp.62-63. Recall the definition of αm,n(·) in (3.5). Let us introduce

L̃m,n =
√
m{Lm,n − Ln}.

We summarize our first result in the following theorem.

Theorem 4.2. Assume that the following conditions are satisfied :

(H1): The functions F (·) and F−1(·) are continuous;
(H2): E[X]2+ε <∞ for some ε > 0.
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We have

ϑM L̃m,n√
m log(2)mµm,n

=
1√

log(2)m

{
−1− Ln

ϑm,n

∫ t

0

αm,n(s)ds+
Ln
ϑm,n

∫ 1

t

αm,n(s)ds

}
, a.s.,

in the space D[0, 1] with respect to the norm sup ‖ · ‖.

Remark 4.1. In the proof of Lemma 2.1 of [29] the study of the behavior of Vm,n(t) is
based on the study of the behavior of

‖Vm,n‖ = ‖Vm,n‖[0,δm] ∨ ‖Vm,n‖[δm,1−δm] ∨ ‖Vm,n‖[1−δm,1],

where ‖ · ‖Θ denotes the supremum norm on Θ ⊆ [0, 1].

Inspired by Theorem 4.1 of [78], and keeping in mind the definitions of Vm,n(t) and
γn(t) given by (4.2), we obtain the following result.

Theorem 4.3. Under the assumptions of Theorem 4.2, we have

lim sup
m−→∞

(
m1/2

l(n) ∨ l(m)

)1/2 ∥∥∥∥Vm,n − 1

2
{γn}2

∥∥∥∥ = 0, a.s.

5. Weighted bootstrap for Bahadur-Kiefer processes

We recall the result due to [57] [refer also to [58]], which is one of the deepest results
in probability theory.

Theorem 1. For each n, there exists a sequence of Brownian bridges {B(1)
n (t) : 0 ≤ t ≤

1} such that

(5.1) P
{

sup
0≤t≤1

|αn(t)−B(1)
n (t)| ≥ n−1/2(c1 log n+ x)

}
≤ c2 exp(−c3x),

for all x ≥ 0, where c1, c2 and c3 are positive constants.

In his manuscript, [62] details the original proof of (5.1). The following result is due
to [27] improved in Theorem 3.2.1 of [25].

Theorem 2. For each n, there exists a sequence of Brownian bridges {B(2)
n (t) : 0 ≤ t ≤

1} such that

P
{

sup
0≤t≤1

|βn(t)−B(2)
n (t)| ≥ n−1/2(c4 log n+ x)

}
≤ c5 exp(−c6x),

for all x ≥ 0, where c4, c5 and c6 are positive constants.

Let Z1, Z2, . . . be a sequence of positive independent, identically distributed random
variables with a df H(·) and

(5.2) EZ1 = 1 and varZ1 = 1.

We assume that

(5.3) E exp(tZ1) <∞, |t| ≤ t0 with some t0 > 0,

and finally

(5.4) {Ui, 1 ≤ i <∞} and {Zi, 1 ≤ i <∞} are independent.

For all n ≥ 1, let Tn = Z1 + · · ·+ Zn and define the random weights,

(5.5) Wi;n :=
Zi
Tn
, for i = 1, . . . , n.
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The generalized bootstrapped empirical distribution becomes

(5.6) Un,W (t) :=

n∑
i=1

Wi;n1{Ui≤t}, for 0 ≤ t ≤ 1.

The bootstrapped empirical quantile function U−1n,W (·) is the left-continuous inverse of

Un,W (·)
(5.7) U−1n,W (s) := inf {t : Un,W (t) ≥ s} , for 0 ≤ s ≤ 1.

We now define the generalized bootstrapped empirical process to be

(5.8) αn,W (t) := n1/2 {Un,W (t)− Un(t)} , for 0 ≤ t ≤ 1,

and the generalized bootstrapped quantile process to be

(5.9) βn,W (s) := n1/2
{
U−1n (s)− U−1n,W (s)

}
, for 0 ≤ s ≤ 1.

[1] proved the following theorems.

Theorem 3. Let assumptions (5.2)-(5.4) hold. Then, it is possible to define a sequence

of Brownian bridges {B(1)
n,W (t); 0 ≤ t ≤ 1} such that, for n large enough,

(5.10) P
(

sup
0<t<1

∣∣∣αn,W (t)−B(1)
n,W (t)

∣∣∣ > n−1/2(c7 log n+ x)

)
≤ c8 exp(−c9x),

for all x ≥ 0, where c7, c8 and c9 are positive universal constants.

The following theorem establishes the strong approximation of the generalized boot-
strapped uniform quantile process {βn,W (s) : 0 ≤ s ≤ 1}.

Theorem 4. Let assumptions (5.2)-(5.4) hold. Then, it is possible to define a sequence

of Brownian bridges {B(2)
n,W (t); 0 ≤ t ≤ 1} such that, for n large enough,

(5.11) P
(

sup
0<t<1

∣∣∣βn,W (t)−B(2)
n,W (t)

∣∣∣ > n−1/2(c10 log n+ x)

)
≤ c11 exp(−c12x),

for all x ≥ 0, where c10, c11 and c12 are positive universal constants.

Remark 5.1. The system of weights defined in (5.5) appears in [65], p.1617, where it
is shown that it satisfies assumptions (WI), (WII) and (WIII) on p.1612 of the same
reference, so that all the results therein hold for the objects to be treated in this paper.
In particular, weak convergences for the bootstrapped empirical and quantile processes
to a Brownian bridges are proved.

Let us introduce the object that we are interested in. The sum

Rn(t) = αn(t) + βn(t), for t ∈ [0, 1]

of the empirical and quantile processes is known in the literature as the Bahadur-Kiefer
process (cf. [5], [55, 56]). Define the bootstrapped Bahadur-Kiefer process, by

Rn,W (t) = αn,W (t) + βn,W (t), for t ∈ [0, 1].

Theorem 5.1. We have, as n→∞,

sup
0≤t≤1

|Rn,W (t)−Rn(t)| = O
(
n−1/2 log n

)
, a.s.

Theorem 5.2. We have, as n→∞,

(5.12) lim sup
n→∞

n1/4(log n)−1/2(log(2) n)−1/4‖Rn,W ‖ ≤ 2−1/4, a.s.

and

(5.13) lim inf
n→∞

n1/4(log n)−1/2(log(2) n)1/4‖Rn,W ‖ ≤ 8−1/4π1/2, a.s.
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Let

In,W (t) =

∫ t

0

Rn,W (s)ds

and

Vn,W (t) = 2n1/2In,W (t).

In the following result, we obtain an upper-bound for
∥∥Vn,W − n−1/2α2

n

∥∥ as a consequence
of Theorem 5.1 and from Theorem 4.1 of [78].

Corollary 5.1. We have, as n→∞,

‖Vn,W − n−1/2α2
n‖ = O(n−1/2 log n), a.s.

6. Moment convergence rates

Motivated by the moment convergence rates for the uniform empirical process (also
for the uniform quantile process) stated by [15], see Theorem 5 below, we state analogue
results for the bootstrapped processes αn,W (·) and βn,W (·) defined respectively in (5.8)
and (5.9). [15] result for the uniform empirical process is given in the following theorem,
where {x}+ = max{x, 0}.

Theorem 5. Let a > −1, then

lim
ε↘
√
a+1
2

(
1− a+ 1

4ε2

)1/2 +∞∑
n=1

naE
{
‖αn‖ − ε

√
2 log n

}
+

=

√
π/2

a+ 1
,

and

lim
ε↘
√
a+1
2

(
1− a+ 1

4ε2

)1/2 +∞∑
n=1

(log n)a

n
E
{
‖αn‖ − ε

√
2 log n

}
+

=

√
π/2

a+ 1
.

Roughly speaking, our aim now, is to study the same kind of results when we replace
αn(·) by the generalized bootstrapped empirical process to αn,W (·) and the generalized
bootstrapped quantile process βn,W (·). Let us recall Proposition 2.1 of [15], stating the
following result for the Brownian bridge {B(t), 0 ≤ t ≤ 1}.

Theorem 6. Let a > −1, an = o(1/ log n), then

lim
ε↘
√
a+1
2

(
1− a+ 1

4ε2

)1/2 +∞∑
n=1

naE
{
‖B‖ − (ε+ an)

√
2 log n

}
+

=

√
π/2

a+ 1
.

Theorem 6.1. Let a > −1, then

lim
ε↘
√
a+1
2

(
1− a+ 1

4ε2

)1/2 +∞∑
n=1

naE
{
‖αn,W ‖ − ε

√
2 log n

}
+

=

√
π/2

a+ 1
,

and

lim
ε↘
√
a+1
2

(
1− a+ 1

4ε2

)1/2 +∞∑
n=1

(log n)a

n
E
{
‖αn,W ‖ − ε

√
2 log n

}
+

=

√
π/2

a+ 1
.

Theorem 6.2. Let a > −1, then

lim
ε↘
√
a+1
2

(
1− a+ 1

4ε2

)1/2 +∞∑
n=1

naE
{
‖βn,W ‖ − ε

√
2 log n

}
+

=

√
π/2

a+ 1
,

and

lim
ε↘
√
a+1
2

(
1− a+ 1

4ε2

)1/2 +∞∑
n=1

(log n)a

n
E
{
‖βn,W ‖ − ε

√
2 log n

}
+

=

√
π/2

a+ 1
.
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7. Approximations of the bootstrapped Kac empirical processes

Let us define

Ãn(t) =

n∑
i=1

(
Zi − Zn

)
1{Xi≤t}, for −∞ < t <∞,

where Zn denotes the empirical mean. Let us remark that

αn,W (t) =
n

Tn

{
n−1/2

n∑
i=1

(Zi − Zn)1{Ui≤t}

}

=

(
n

Tn

)
n−1/2An(t).

In this section, we are mainly concerned with the strong approximation of the following
process

Ãνn(t) =

νn∑
i=1

(
Zi − Zn

)
1{Xi≤t}, for −∞ < t <∞,

where νn denotes a Poisson random variable with mean n, independent of Zi’s and Xi’s
by a sequence of Brownian bridges.

7.1. Some useful results. Consider now the version of Lνn(·) on (0, 1), let

Lνn(t) :=

νn∑
i=1

1{Ui≤t}, for 0 < t < 1,

where the random variables Ui’s are i.i.d. uniformly distributed on (0, 1). Let us intro-
duce the Poisson bridges defined, for each n ∈ N∗, by

Nνn(t) :=
1√
n

(
Lνn(t)− νnt

)
for 0 < t < 1.

The inequality of [33] stipulates that there exists a positive constant c13 such that, for
any x > 0 and any n ∈ N∗,

(7.1) P
{

sup
t∈R
|Fn(t)− F (t)| ≥ x√

n

}
≤ c13 exp(−2x2).

Actually (7.1) simply reads, by means of αn(·), for any x > 0 and any n ∈ N∗, as

P
{

sup
u∈[0,1]

|αn(u)| ≥ x
}
≤ c13 exp(−2x2).

We also mention some bounds that we will use further. By appealing to Chung’s law of
the iterated logarithm for the empirical process, see [18], which stipulates that

lim sup
n→∞

supt∈R |α̃n(t)|√
log(2) n

=
1√
2

a.s.,

we see that, with probability 1, as n→∞,

(7.2) sup
t∈R
|α̃n(t)| = O

(√
log(2) n

)
.

Moreover, by [57], on a suitable probability space, we can define the uniform empirical
process {αn : n ∈ N∗}, in combination with a sequence of Brownian bridges {Bn : n ∈ N∗}
together with a Kiefer process {K(s, u) : s ≥ 0, u ∈ [0, 1]}, such that, with probability 1,
as n→∞,

(7.3) sup
u∈[0,1]

|αn(u)−Bn(u)| = O
(

log n√
n

)
,
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and

max
1≤k≤n

sup
u∈[0,1]

∣∣∣√k αk(u)−K(k, u)
∣∣∣ = O

(
(log n)2

)
,

from which we extract, with probability 1, as n→∞,

(7.4) sup
u∈[0,1]

∣∣∣∣αn(u)− 1√
n
K(n, u)

∣∣∣∣ = O
(

(log n)2√
n

)
.

As a result, by putting (7.2) into (7.3) and (7.4), one derives the following bounds: with
probability 1, as n→∞,

(7.5) sup
u∈[0,1]

|Bn(u)| = O
(√

log(2) n
)

and sup
u∈[0,1]

|K(n, u)| = O
(√

n log(2) n
)
.

Notice that the second bound in (7.5) comes also from the law of the iterated logarithm
for the Kiefer process; see [20], p. 81.

7.2. Poisson index. Recall that, letting {νn : n ∈ N∗} be a sequence of Poisson r.v.’s
independent of the sequence {Xi : i ∈ N∗} such that E(νn) = n and, for each n ∈ N∗, set

Lνn(t) :=

νn∑
i=1

1{Xi≤t}, for t ∈ R.

It is easy to check that for any n ∈ N∗, Lνn = {Lνn(t) : t ∈ R} is a Poisson process
with intensity E(Lνn(t)) = nF (t), see [38]. Let ν̃λ be a Poisson random variable with
mean λ > 0, and let U1, U2, . . . be independent real random variables with law U(0, 1)
independent of ν̃λ. [54] defines the modified empirical process by

α̃λ(t) =
√
λ

(
λ−1

ν̃λ∑
i=1

1{Ui≤t} − t

)
, for 0 ≤ t ≤ 1,

where the sum is taken to be zero if ν̃λ = 0. Some important properties of this process

such that {α̃λ(t) : 0 ≤ t ≤ 1} is an independent increment process,
√

ν̃λ
λ α̃ν̃λ(·)→D B(·),

can be found in chapter 7 of [20], also in the general case when ν̃λ is replaced by a
sequence {ν̃n} of positive integer value random variables defined on the same probability
space. Without loss of generality we will consider that Xi = F−1(Ui) and we will replace

Ãνn(t) for t ∈ R by Aνn(t) for t ∈ [0, 1].

Theorem 7.1. If conditions (5.2), (5.3) and (5.4) hold, consider also the random variable
νn with Poisson law with mean n, then there exists a sequence of Brownian bridges
{Bn(t), 0 ≤ t ≤ 1} such that

P
{

sup
0≤t≤1

|n−1/2Aνn(t)−Bn(t)| > n−1/2(c14 log n+ x)

}
≤ c15 exp(−c16x),(7.6)

for all x ≥ 0, where c14, c15 and c16 are positive universal constants.

8. Proofs

This section is devoted to the proofs of our results. The previously presented notation
continues to be used in the following.
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Proof of Theorem 3.2.

We will follows the proof of [24]. Given any 0 < ε < 1/2, by (3.9) we get∫ 1/2

ε

||βm,n(s)|p − |B̃m(s)|p|
q(s)

ds = oP̃(1).(8.1)

By Markov’s inequality we obtain

lim
ε→0

lim sup
m→∞

P̃

{∫ ε

1/(m+1)

|B̃m(s)|p

q(s)
ds > δ

}
= 0,(8.2)

for all δ > 0. Now making use of (3.9) with ν = 0, we get∫ ε

1/(m+1)

|βm,n(s)|p

q(s)
ds ≤ 2p

∫ ε

1/(m+1)

|βm,n(s)− B̃m(s)|p

q(s)
ds+ 2p

∫ ε

1/(m+1)

|B̃m(s)|p

q(s)
ds

= OP̃(1)

∫ ε

0

sp/2/q(s)ds+ 2p
∫ ε

1/(m+1)

|B̃m(s)|p

q(s)
ds.(8.3)

Therefore

lim
ε→0

lim sup
m→∞

P̃

{∫ ε

1/(m+1)

|βm,n(s)|p

q(s)
ds > δ

}
= 0,(8.4)

for all δ > 0. Hence (3.18) and (3.19) are proven. The proofs of (3.20) and (3.21) are
similar, and hence omitted. �

Proof of Theorem 3.3.

First we note that it follows by Markov’s inequality that

n−ν
∫ m/(m+1)

1/(m+1)

|B̃m(s)|p−1/(s(1− s))p/2+1/2+νds = OP̃(1),(8.5)

for ν > 0. Note that for p ≥ 1, we have

(8.6) ||a|p − |b|p| ≤ p2p−1|a− b|p + p2p−1|b|p−1|a− b|.

The last equation when combined with (3.9) implies, for ν > 0, that∫ m/(m+1)

1/(m+1)

||βm,n(s)|p − |B∗m(s)|p|
(s(1− s))p/2+1

ds

≤ p2p−1
∫ m/(m+1)

1/(m+1)

|βm,n(s)−B∗m(s)|p

(s(1− s))p/2+1
ds

+p2p−1
∫ m/(m+1)

1/(m+1)

|βm,n(s)−B∗m(s)||B∗m(s)|p−1

(s(1− s))p/2+1
ds

= OP̃(1).(8.7)

This completes the proof of (3.22). In a similar way we get (3.23). By combining (3.23)
and Theorem 3.2 of [24] (refer to [74]) we obtain (3.24). �

Proof of Theorem 3.4.

As in [24] in the proof of Theorem 2.2, we have, for 1 + q/2− τ > 0, τ < 1 + q/2, that

lim sup
m→∞

P̃

{(
ζ1,m
m

)τ−(q/2+1)

L

(
ζ1,m
m

)∫ ζ1,m/m

0

|W (t)|q

tτL(t)
dt > K

}
≤ µ(q)

1 + q/2− τ
K

,
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for all K > 0. Consequently,

(8.8)

(
ζ1,m
m

)τ−(q/2+1)

L

(
ζ1,m
m

)∫ ζ1,m/m

0

|W (t)|q

tτL(t)
dt = OP̃(1),

and similar argument also yields

(8.9)

(
ζ1,m
m

)τ−(q/2+1)

L

(
ζ1,m
m

)∫ ζ1,m/m

0

|B(t)|q

tτL(t)
dt = OP̃(1).

Let 0 < η < 1/2 so that

ν < p/2 + 1− pη.
By combining (3.9) with (8.6), we infer that(

ζ1,m
m

)ν−(q/2+1)

L

(
ζ1,m
m

)∫ ζ1,m/m

1/(m+1)

||βm,n(s)|p − |B̃m(s)|p|
sνL(s)

ds

≤ p2p−1
(
ζ1,m
m

)ν−(q/2+1)

L

(
ζ1,m
m

)∫ ζ1,m/m

1/(m+1)

|βm,n(s)− B̃m(s)|p

sνL(s)
ds

+p2p−1
(
ζ1,m
m

)ν−(q/2+1)

L

(
ζ1,m
m

)∫ ζ1,m/m

1/(m+1)

|βm,n(s)− B̃m(s)||B̃m(s)|p−1

sνL(s)
ds

= OP̃(1)

(
ζ1,m
m

)ν−(q/2+1)

L

(
ζ1,m
m

)
n−pη

∫ ζ1,m/m

1/(m+1)

sp/2−pη−ν

L(s)
ds

+OP̃(1)

(
ζ1,m
m

)ν−(q/2+1)

L

(
ζ1,m
m

)
n−η

∫ ζ1,m/m

1/(m+1)

B̃p−1m (s)

sν−1/2+ηL(s)
ds

= oP̃(1).

By using (4.9) of [24], we infer that(
ζ1,m
m

)ν−(q/2+1)

L

(
ζ1,m
m

)∫ ζ1,m/m

1/(m+1)

|B̃m(s)|p

sνL(s)
ds→D

∫ 1

0

s−ν |W (s)|pds.

This suffices for the proof of (3.26). In a similar way, we have(
ζ1,m
m

)ν−(p/2+1)

L

(
ζ1,m
m

)∫ Um,n(ζ1,m/m)

Um,n(1/(m+1))

||αm,n(s)|p − |B̃∗m(s)|p|
sνL(s)

ds = oP̃(1).

By using (4.17) of [24], we infer that

(8.10)

(
ζ1,m
m

)ν−(p/2+1)

L

(
ζ1,m
m

)∫ Um,n(ζ1,m/m)

Um,n(1/(m+1))

|B̃∗m(s)|p

sνL(s)
ds→D

∫ 1

0

s−ν |W (s)|pds.

This suffices for the proof of (3.27). Hence the proof of Theorem 3.4 is complete. �

Proof of Corollary 3.1.

The proof follows the same line of the proof of Corollary 2.1 of [24]. �

Proof of Corollary 3.2.

Let 1 ≤ rm ≤ m−m/(m+ 1). By Theorems 3.2 and 3.3 of [24], we have

(8.11)

∫ Um,n(rm/m)∧(rm/m)

Um,n(rm/m)∨(rm/m)

|B̃∗m(s)|p

(s(1− s))p/2+1
ds = OP̃(1),



BOOTSTRAP OF THE EMPIRICAL AND QUANTILE PROCESSES 35

(8.12)

∫ 1

Um,m

|αm,n(s)|p

(s(1− s))p/2+1
ds = OP̃(1),

and

(8.13)

∫ U1,m

0

|αm,n(s)|p

(s(1− s))p/2+1
ds = OP̃(1).

Moreover, from [71] we have that from a normalized Brownian bridge, we can obtain an
Ornstein-Uhlenbeck process denoted by V (·) given by

(8.14)
B(t)√
t(1− t)

= V

(
1

2
log

(
t

1− t

))
,

where B(·) denotes a brownian bridge. Now from Theorem 3.3 and 3.4 of [24], jointly
with (3.24) and (8.14) we obtain (3.29). Hence the proof of Corollary 3.2 is complete.�

Proof of Theorem 4.2

We use the notation ϑm = ϑm,n. We have the following easy-to-check representation

Lm,n(t)− Ln(t) =
1

ϑm

∫ t

0

(
U−1m,n(s)− U−1n (s)

)
ds− ϑm − ϑn

ϑm
Ln(t)

=
1

ϑm

∫ t

0

(
U−1m,n(s)− U−1n (s)

)
ds

−Ln(t)

ϑm

∫ 1

0

(
U−1m,n(s)− U−1n (s)

)
ds.(8.15)

In order to work in the same spirit of [78], let us define

λm,n(t) =
1− Ln(t)

ϑn

∫ t

0

(
U−1m,n(s)− U−1n (s)

)
ds

−Ln(t)

ϑn

∫ 1

t

(
U−1m,n(s)− U−1n (s)

)
ds,

Λm,n(t) = −1− Ln(t)

ϑn

∫ t

0

(Um,n(s)− Un(s)) ds

+
Ln(t)

ϑn

∫ 1

t

(Um,n(s)− Un(s)) ds,(8.16)

Vm,n(t) =

∫ t

0

(
U−1m,n(s)− U−1n (s)

)
ds

+

∫ t

0

(Um,n(s)− Un(s)) ds− 2t2.(8.17)

In similar spirt of [28], notice that we have

Lm,n(t)− Ln(t) =
ϑn
ϑm

λm,n(t)

where

λm,n = Λm,n + ϑ−1n Vm,n.(8.18)

The relation (8.18) is obtained by combing change of variables and integration by parts
with the following relation

−
∫ 1

0

(
U−1m,n(s)− U−1n (s)

)
ds =

∫ 1

0

(Um,n(s)− Un(s)) ds.
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We can also obtain, for t > max{Um,n(t), Un(t)} in other word U−1m,n(t) > t and U−1n (t) >
t,

Vm,n(t) =

∫ min(U−1
m,n(t), U−1

n (t))

t

γm,n(s)ds

+

∫ max(U−1
m,n(t), U−1

n (t))

min(U−1
m,n(t), U−1

n (t))
(t−min (Um,n(s), Un(s))) ds,(8.19)

where

γm,n(t) = Um,n(t)− Un(t).

We now prove that Vm,n is asymptotically negligible in the same way as in [78] to handle
Vn, refer to the equation (3.1) therein. Let us introduce the following definitions

a(t) = max (Um,n(t), Un(t)) ,

a−1(t) = max
(
U−1m,n(t), U−1n (t)

)
and

b(t) = min (Um,n(t), Un(t)) ,

b−1(t) = min
(
U−1m,n(t), U−1n (t)

)
.

Lemma 8.1. We have, as m = m(n) −→∞

(8.20) lim sup
m→∞

δ−1/2m ‖Vm,n‖ = 0, a.s.,

where

δm = m−1 log(2)m.

Proof of Lemma 8.1.

We have the inequalities

|Vm,n(t)| ≤

∣∣∣∣∣
∫ b−1(t)

t

γm,n(s)ds

∣∣∣∣∣+

∣∣∣∣∣
∫ a−1(t)

b−1(t)

(t− b(s)) ds

∣∣∣∣∣
≤ sup

s∈[t, b−1(t)]

|γm,n(s)|
(
b−1(t)− t

)
+ sup
s∈[b−1(t), a−1(t)]

|t− b(s)|
(
a−1(t)− b−1(t)

)
≤ |t− Em(t)|

(
b−1(t)− t

)
+ sup
s∈[b−1(t), a−1(t)]

|t− b(s)|
(
a−1(t)− b−1(t)

)
≤ ‖Em − I‖

(
a−1(t)− t

)
.

We therefore obtain readily that

δ−1/2m |Vm,n(t)| ≤ δ−1/2m

(
‖Em − I‖

qδ
× qδ max

(
‖U−1n − I‖, ‖U−1m,n − I‖

))
,

where

qδ(t) = t1/2−δ(1− t)1/2−δ.
We obtain from [53] that

(8.21) lim sup
n−→0

δ−1/2m

‖Em − I‖
qδ

= 0, a.s.
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From exercise 5 on page 651 of [71], we can refer also to [64], we have that

(8.22) max
(
‖qδ(U−1n − I)‖, ‖qδ(U−1m,n − I)‖

)
= o(1), a.s.

By combining (8.21) and (8.22), readily implies (8.20). �
Making use of (8.18) and Lemma 8.1 completes the proof of Theorem 4.2. �

Proof of Theorem 4.3.

Let us collect some known results that are needed in the proof of the Theorem 4.2.
From [21] p.159, we infer that we have

(8.23) sup
0≤t≤1

|U−1n (t))− t| = sup
0≤t≤1

|Un(t))− t|.

An application of the law of iterated logarithm, refer to Theorem 5.3.1 in [20], implies,
with probability one, that

(8.24) sup
0≤t≤1

|U−1n (t))− t| = O
(
n−1/2(log(2) n)1/2

)
.

Let us remark that we have

U−1n (E−1m (t))− U−1n (t) = U−1n (E−1m (t))− E−1m (t)

−(U−1n (t)− b−1(t)) + E−1m (t)− t.

This when combined with (8.23), implies that

(8.25) U−1m,n(t)− U−1n (t) and − (Un(t)− Um,n(t)),

are asymptotically equivalent. From [30], we have

U−1n (E−1m (t))− U−1n (t) =
B∗m,n(t)
√
m

+
B∗n(t)√

n

+O(m−1/2(l(m) ∨ l(n))) + E−1m (t)− t,(8.26)

where we recall

l(m) = m−1/4(logm)1/2(log(2)m)1/4.

Recall the following inequality, for c17 > 0 and x > 0, see for instance p.2463 of [26],

(8.27) P
(

sup
0≤t≤1

|B∗n(t)| > x1/2
)
≤ c17 exp(−x/2),

Making use of [72] about the oscillation of the empirical processes, we infer that

−(Un(t)− Um,n(t)) = Em(Un(t))− Un(t)

= Em(t)− t+O

(
n1/4

m1/2
(log n)−1/2(log(2) n)−1/4

)
.

Making use of [5] and [55, 56] results, we infer that

U−1m,n(t)− U−1n (t) = Em(t)− t

+O

(
n1/4

m1/2
(log n)−1/2(log(2) n)−1/4

)
(8.28)

We have

sup
0≤t≤1

|t− b(t)| ≤


sup

0≤t≤1
|t− Un(t)|+ sup

0≤t≤1
|t− Em(t)| if b(t) = Um,n(t),

sup
0≤t≤1

|t− Un(t)| if b(t) = Un(t).
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By the law of iterated logarithm, we readily infer that
(8.29)

sup
0≤t≤1

|t− b(t)| ≤


O

((
log(2) n

n

)1/2)
+O

((
log(2)m

m

)1/2)
if b(t) = Um,n(t),

O

((
log(2) n

n

)1/2)
if b(t) = Un(t).

In a similar way, we obtain

sup
0≤t≤1

|t− b−1(t)| ≤


sup

0≤t≤1
|t− U−1m,n(t)| if b−1(t) = U−1m,n(t),

sup
0≤t≤1

|t− U−1n (t)| if b−1(t) = U−1n (t).

Making use of the last equation in combination with [21] and Theorem 5.3.1 in [20], we
infer that
(8.30)

sup
0≤t≤1

|t− b−1(t)| ≤


O ({l(m) ∨ l(n)}) +O

((
log(2) n

n

)1/2)
if b(t) = Um,n(t),

O

((
log(2) n

n

)1/2)
if b(t) = Un(t).

Recall that

Vm,n(t) =

∫ b−1(t)

t

γm,n(s)ds+

∫ a−1(t)

b−1(t)

(t− b(s)) ds.(8.31)

It is noteworthy that we have

Vm,n(t) = −1

2
(U−1n (t)− t)2 +

∫ b−1(t)

t

{γm,n(s)− γm,n(t)} ds

+

∫ a−1(t)

b−1(t)

(t− b(s))ds

+(b−1(t)− t)γm,n(t)− t(a−1(t)− b−1(t)).

An application of Lemma 5.4 of [21], gives

lim sup
n→∞

(log n)−1/2 sup
0≤t≤1−h

|B̃m,n(t+ h)− B̃m,n(t)| ≤ (2h)1/2.

By using the last equation and choosing h(t) = (b−1(t)−t) which implies h = (l(m)∨l(n)),
we have∫ b−1(t)

t

{γm,n(s)− γm,n(t)} ds =
1√
m

∫ b−1(t)

t

{αm,n(t)− αm,n(s)} ds

=
1√
m

∫ b−1(t)

t

(
B̃m,n(s)− B̃m,n(t)

)
ds

+O
(
m−1/2(l(m) ∨ l(n))

)
= O

(
m−1/4(l(m) ∨ l(n))1/2

)
.(8.32)

From (8.29), we obtain

(8.33)

∫ a−1(t)

b−1(t)

(t− b(s))ds = O
(

(log(2) n/n)1/2 ∨ (log(2)m/m)1/2
)
.

Using once more (8.29), we have

|(b−1(t)− t)γm,n(t)| = O
(
(l(n) ∨ l(m))/

√
m
)
.(8.34)
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A combination of (8.28) with (8.29) yields to

t(a−1(t)− b−1(t)) = o(1).(8.35)

We infer readily from (8.32), (8.33), (8.34) and (8.35) that

Vm,n(t) = −1

2
(U−1n (t)− t)2.

Therefore the proof is complete. �

Proof of Theorem 5.1.

On one hand, one can write

βn,W (t) = βn(t)− βn(W−1n (t))−
√
n{W−1n (t)− t},(8.36)

where, for 0 ≤ t ≤ 1,

Wn(t) =
∑
i≤nt

Wi:n =
1

Tn

∑
i≤nt

Zi

W−1n (t) = inf{u : Wn(u) ≥ t, u ∈ [0, 1]}.

On the other hand, the process αn,W (t) can be expressed as

αn,W (t) =
√
n

(
1

Tn
− 1

n

) n∑
i=1

Zi1{Ui≤t} +

√
n

n

n∑
i=1

(Zi − 1)1{Ui≤t}.

In view of the last equation, we obtain readily that

(8.37) P
(

sup
0≤t≤1

|Rn,W (t)−Rn(t)| > n−1/2(c18 log n+ x)

)
= P

(
sup

0≤t≤1
|αn,W (t)− αn(t) + βn,W (t)− βn(t)| > n−1/2(c18 log n+ x)

)
≤ P

(
sup

0≤t≤1
|αn,W (t)− αn(t)|+ sup

0≤t≤1
|βn,W (t)− βn(t)| > n−1/2(c18 log n+ x)

)
≤ P

(
sup

0≤t≤1
|αn,W (t)− αn(t)| > 2−1n−1/2(c18 log n+ x)

)
+ P

(
sup

0≤t≤1
|βn,W (t)− βn(t)| > 2−1n−1/2(c18 log n+ x)

)
= In,1 + In,2.

We can write

In,2 = P
(

sup
0≤t≤1

|βn(W−1n (t)) +
√
n{W−1n (t)− t}| > n−1/2(c19 log n+ x)

)
≤ P

(
sup

0≤t≤1
|βn(W−1n (t))−B(2)

n (W−1n (t))| > n−1/2(c20 log n+ x/3)

)
+P
(

sup
0≤t≤1

|B(2)
n (W−1n (t))−B(2)

n (t)| > n−1/2(c21 log n+ x/3)

)
+P
(

sup
0≤t≤1

|
√
n{W−1n (t)− t}+B(2)

n (t)| > n−1/2(c22 log n+ x/3)

)
.

Making use of Theorem 4, one has

P
(

sup
0≤t≤1

|βn(W−1n (t))−B(2)
n (W−1n (t))| > n−1/2(c10 log n+ x/3)

)
≤ c11 exp

(
−c12

3
x
)
.
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The two others probabilities can be handled analogously to (6.8) and (6.9) in [1]. Hence,
we conclude that, with probability one, we have

sup
0≤t≤1

|βn,W (t)− βn(t)| = O
(
n−1/2 log n

)
.

We next evaluate the first term In,1 in the right side of (8.37). We can therefore write
the following chain of inequalities

P
(

sup
0≤t≤1

|αn,W (t)− αn(t)| > n−1/2(c23 log n+ x)

)
≤ P

(
sup

0≤t≤1
|αn,W (t)|+ sup

0≤t≤1
|αn(t)| > n−1/2(c23 log n+ x)

)
≤ P

(
sup

0≤t≤1
|αn,W (t)| > 2−1n−1/2(c23 log n+ x)

)
+P
(

sup
0≤t≤1

|αn(t)| > 2−1n−1/2(c23 log n+ x)

)
,(8.38)

for some positive constant c23. The first term in the right hand-side of (8.38) can be
evaluated by

P
(

sup
0≤t≤1

|αn,W (t)| > n−1/2(c24 log n+ x)

)
≤ P

(
sup

0≤t≤1

∣∣∣∣∣√n
(

1

Tn
− 1

n

) n∑
i=1

Zi1{Ui≤t}

∣∣∣∣∣
+ sup

0≤t≤1

∣∣∣∣∣
√
n

n

n∑
i=1

(Zi − 1)1{Ui≤t}

∣∣∣∣∣ > n−1/2(c24 log n+ x)

)

= P

(
sup

0≤t≤1

∣∣∣∣∣
(
n

Tn
− 1

)
1√
n

n∑
i=1

Zi1{Ui≤t}

∣∣∣∣∣
+ sup

0≤t≤1

∣∣∣∣∣
√
n

n

n∑
i=1

(Zi − 1)1{Ui≤t}

∣∣∣∣∣ > n−1/2(c24 log n+ x)

)
.

[50, p.3] constructed a sequence of Wiener processes Wn(t) in such a way that

P

(
sup

0≤t≤1

∣∣∣∣∣ 1√
n

n∑
i=1

(Zi − 1)1{Ui≤t} −Wn(t)

∣∣∣∣∣ > n−1/2(c25 log n+ x)

)
≤ c26 exp(−c27x),

where c25, c26, c27 > 0 are universal constants. Moreover from [1] (6.6)

P
(∣∣∣∣ nTn − 1

∣∣∣∣ ≥ 1

)
≤ c28 exp(−c29x),

where c28, c29 > 0 are universal constants and from [1] (6.3) and (6.4)

P

(
sup

0≤t≤1

∣∣∣∣∣ 1√
n

n∑
i=1

Zi1{Ui≤t}

∣∣∣∣∣ > 2−1n−1/2(c24 log n+ x)

)

≤ P

(∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ > x/2

)
≤ c30 exp(−c31x),

where c30, c31 > 0 are universal constants. The second term in the right hand-side of
(8.38), can be evaluated by using the results of [57]. More precisely, one can construct a
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sequence of Brownian bridges in such a way that

P
(

sup
0≤t≤1

|αn(t)| > 2−1n−1/2(c23 log n+ x)

)
≤ P

(
sup

0≤t≤1
|αn(t)−B(1)

n (t)| > 2−2n−1/2(c23 log n+ x)

)
+P
(

sup
0≤t≤1

|B(1)
n (t)| > 2−2n−1/2(c23 log n+ x)

)
.

From [62], see Theorem 1, we have, for x > 0,

(8.39) P
{

sup
0≤t≤1

|αn(t)−B(1)
n (t)| ≥ n−1/2(c1 log n+ x)

}
≤ c2 exp(−c3x).

Making use of similar arguments as in (6.5) and (6.6) of [1] and keeping in mind equation
(8.27), we have

P
(

sup
0≤t≤1

|B(1)
n (t)| > 2−2n−1/2(c23 log n+ x)

)
≤ P

(
sup

0≤t≤1
|B(1)
n (t)| > 2−2n−1/2x

)
≤ exp(−c32x),

for some positive constant c32 > 0. We conclude that

sup
0≤t≤1

|αn,W (t)− αn(t)| = O
(
n−1/2 log n

)
.

Hence the proof is complete. �

Proof of Theorem 5.2

By the law of the iterated logarithm for empirical process the results of [55, 56] im-
mediately implies

lim sup
n→∞

n1/4(log n)−1/2(log(2) n)−1/4‖Rn‖ = 2−1/4(8.40)

lim inf
n→∞

n1/4(log n)−1/2(log(2) n)1/4‖Rn‖ =
π1/2

81/4
.(8.41)

We may refer to [19, 847] for more details and references on these relations. By combining
relation (8.40) with Theorem 5.1, we infer that

lim sup
n→∞

n1/4(log n)−1/2(log(2) n)−1/4‖Rn,W ‖

≤ lim sup
n→∞

n1/4(log n)−1/2(log(2) n)−1/4‖Rn,W −Rn‖

+n1/4(log n)−1/2(log(2) n)−1/4‖Rn‖

= O

(
n1/4(log n)−1/2(log(2) n)−1/4

log n

n1/2

)
+ lim sup

n→∞
n1/4(log n)−1/2(log(2) n)−1/4‖Rn‖

= O
(
n−1/4(log n)1/2(log(2) n)−1/4

)
+ lim sup

n→∞
n1/4(log n)−1/2(log(2) n)−1/4‖Rn‖

= 2−1/4, a.s.
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By using Theorem 5.1 in connection with (8.41), equation (5.13) can be obtained analo-
gously. Therefore the proof is complete. �

Proof of Corollary 5.1

Making use of the triangle inequality, we obtain readily that

‖Vn,W − n−1/2α2
n‖ ≤ ‖Vn,W − Vn‖+ ‖Vn − n−1/2α2

n‖.

An application of Theorem 4.1 of [78] gives

(8.42) ‖Vn − n−1/2α2
n‖ = o(n−1 log(2) n).

Now, we infer from Theorem 5.1 that

(8.43) ‖Vn,W − Vn‖ = O(n−1/2 log n).

Theorem 5.1 is consequence of (8.42) and (8.43). �

Proof of Theorem 6.1

In a similar way as in the paper by [15], we infer, for p < −1/2, that

E
[∥∥∥B(1)

n,W

∥∥∥− (ε√2 log n+ (log n)p
)]

+
− E

[
sup

0≤t≤1

∣∣∣αn,W (t)−B(1)
n,W (t)

∣∣∣− (log n)p
]
+

≤ E
[
‖αn,W ‖ − ε

√
2 log n

]
+

≤ E
[∥∥∥B(1)

n,W

∥∥∥− (ε√2 log n+ (log n)p
)]

+
+E

[
sup

0≤t≤1

∣∣∣αn,W (t)−B(1)
n,W (t)

∣∣∣− (log n)p
]
+

.

Making use of Theorem 3 in connection with the following relation

E
[
‖B(1)

n,W ‖ − t
]
+

=

∫ ∞
0

P
(
‖B(1)

n,W ‖ ≥ t+ x
)
dx,

it follows in a similar fashion as in [15], p.9089, that

∞∑
n=1

naE
[

sup
0≤t≤1

|αn,W (t)−B(1)
n,W (t)| − (log n)p

]
+

=

∞∑
n=1

na
∫ ∞
0

P
(

sup
0≤t≤1

∣∣∣βn,W (t)−B(1)
n,W (t)

∣∣∣ ≥ (log n)p + x

)
dx

≤
∞∑
n=1

c2n
a exp(c3c1 log n)

exp(c3
√
n(log n)p)

∫ ∞
0

exp(−c3
√
nx)dx

< ∞.

We then obtain

lim
ε↘
√
a+1
2

(
1− a+ 1

4ε2

)1/2 ∞∑
n=1

naE
[

sup
0≤t≤1

∣∣∣αn,W (t)−B(1)
n,W (t)

∣∣∣− (log n)p
]
+

= 0.

The rest of proof of being similar the proof of Theorem 1.1 of [15], and therefore, omit-
ted. �
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Proof of Theorem 6.2

An application of Theorem 4 in combination with

E
[∥∥∥B(2)

n,W

∥∥∥− t]
+

=

∫ ∞
0

P
(∥∥∥B(2)

n,W

∥∥∥ ≥ t+ x
)
dx,

implies, in the same way as in [15], p.9089, that

∞∑
n=1

naE
[

sup
0≤t≤1

∣∣∣βn,W (t)−B(2)
n,W (t)

∣∣∣− (log n)p
]
+

=

∞∑
n=1

na
∫ ∞
0

P
(

sup
0≤t≤1

∣∣∣βn,W (t)−B(2)
n,W (t)

∣∣∣ ≥ (log n)p + x

)
dx

≤
∞∑
n=1

c2n
a exp(c3c1 log n)

exp(c3
√
n(log n)p)

∫ ∞
0

exp(−c3
√
nx)dx

< ∞.

We infer that

lim
ε↘
√
a+1
2

(
1− a+ 1

4ε2

)1/2 ∞∑
n=1

naE
[

sup
0≤t≤1

∣∣∣βn,W (t)−B(2)
n,W (t)

∣∣∣− (log n)p
]
+

= 0.

The proof is achieved by using similar arguments as in the proof of Theorem 1.1 of [15],
and therefore, omitted. �

Proof of Theorem 7.1

Let εi = Zi − 1. First of all, remark that we have

n−1/2Aνn(t)−Bn(t) = n−1/2Aνn(t)− n−1/2An(t)

+n−1/2An(t)−Bn(t).(8.44)

[50] constructed a sequence of Wiener processes {Wn(t), 0 ≤ t < ∞} such that, for all
x ≥ 0,

P

(
sup

0≤t≤1

∣∣∣∣∣n−1/2
n∑
i=1

εi1{Ui≤t} −Wn(t)

∣∣∣∣∣ > n−1/2(c33 log n+ x)

)
≤ c34 exp(−c35x),

where c33, c34, c35 > 0 are universal constants. From the last equation, we readily infer
that

P

(
sup

0≤t≤1

∣∣∣∣∣n−1/2
(

n∑
i=1

εi1{Ui≤t} − t
n∑
i=1

εi

)
− (Wn(t)− tWn(1))

∣∣∣∣∣ > n−1/2(c36 log n+ x)

)
≤ c37 exp(−c38x),

where c36, c37, c38 > 0 are universal constants. This implies that

P
(

sup
0≤t≤1

|n−1/2An(t)−Bn(t)| > n−1/2(c36 log n+ x)

)
≤ c37 exp(−c38x),

where

Bn(t) = Wn(t)− tWn(1).
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Hence, the main term to be investigated in the relation (8.44) is Aνn(t)−An(t). Notice
that we have

Aνn(t)−An(t) =

νn∑
i=1

εi1{Ui≤t} −
n∑
i=1

εi1{Ui≤t}

−εn

(
νn∑
i=1

1{Ui≤t} −
n∑
i=1

1{Ui≤t}

)
.

=

νn∑
i=1

εi1{Ui≤t} −
n∑
i=1

εi1{Ui≤t}

−εn (Lνn(t)− nUn(t)) .

For any t ∈ [0, 1], we obtain

|nUn(t)− Lνn(t)| = |n (Un(t)− t)− (Lνn(t)− νnt) + (nt− νnt) |,
from which we deduce that

|nUn(t)− Lνn(t)| = |
√
n (αn(t)− Nνn(t)) + t (n− νn) |.

[14], Theorem 2, showed the following result related to the corresponding empirical uni-
form process.

Theorem 7. For all x > 0 and n ∈ N\{0, 1},

(8.45) P
{

sup
u∈[0,1]

∣∣αn(u)− Nνn(u)
∣∣ ≥ x

n1/4

}
≤ 8 exp(−x).

Applying Theorem 2 of [14] (see the preceding Theorem 7), we obtain

P
(

sup
0≤t≤1

|αn(t)− Nνn(t)| ≥ xn−1/4
)
≤ 8 exp(−x),

for all x > 0, and for c39 > 0,

P
(
|νn − n| >

√
nx/2

)
≤ exp(−c39n) ≤ exp(−c39x)

if 0 ≤ x ≤ n, where we have used (3.12) of [50], also see Theorem 2.6 of [69]. The case
where x > n. Let us define

Sn =

n∑
i=1

Yi,

where Yi = δi − 1 are i.i.d. and centered random variables, with δi of same Poisson with
mean one law, then

E[exp(tY1)] = exp(−t)E[exp(tδ1)]

= exp(−(t+ 1)) exp(exp(t)).

Notice that for 0 < t < 1, we have E[exp(tY1)] = exp(t2/2 + o(1)), and from Theorem
2.6 of [69], we have that, for c40 > 0,

(8.46) P
(
|νn − n| >

√
nx/2

)
≤ exp(−c40x), for x > c′n.

Then, for all x > 0, we have, for some positive constant c41,

P
(

sup
0≤t≤1

|nUn(t)− Lνn(t)| ≥ n1/4x+
√
nx/2

)
≤ P

(
sup

0≤t≤1
|αn(t)− Nνn(t)| ≥ xn−1/4

)
+P
(
|n− νn| >

√
nx/2

)
≤ 8 exp(−x) + exp(−c41x).
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Hence, we obtain

P
(

sup
0≤t≤1

|ε̄n (nUn(t)− Lνn(t)) | ≥ n1/4x+
√
nx/2

)
≤ P

(
sup

0≤t≤1
|nUn(t)− Lνn(t)| ≥ n1/4x+

√
nx/2

)
+P

(∣∣∣∣∣
n∑
i=1

εi

∣∣∣∣∣ ≥ √nx
)

≤ 8 exp(−x) + exp(−c41x) + P

(∣∣∣∣∣
n∑
i=1

εi

∣∣∣∣∣ ≥ √nx
)
.

From (3.3) of [51], we obtain, for 0 ≤ x ≤ n,

P

(∣∣∣∣∣
n∑
i=1

εi

∣∣∣∣∣ ≥ √nx
)
≤ c42 exp(−c43n) ≤ c42 exp(−c43x).

where c42, c43 > 0 are universal constants. Then, for all x > 0, we have

P
(

sup
0≤t≤1

|ε̄n (nUn(t)− Lνn(t))| ≥ n1/4x+
√
nx/2

)
≤ c44 exp(−c45x),

where c44, c45 > 0 are universal constants. Now, in order to obtain a bound of Aνn(t)−
An(t), we have to deal with

P

(
sup

0≤t≤1

∣∣∣∣∣
νn∑
i=1

εi1{Ui≤t} −
n∑
i=1

εi1{Ui≤t}

∣∣∣∣∣ ≥ √xn
)

≤ P

 sup
0≤t≤1

∣∣∣∣∣∣
sup(νn,3n/2)∑
i=inf(νn,bn/2c)

εi1{Ui≤t}

∣∣∣∣∣∣ ≥ √xn


+P
(
|νn − n| ≥

√
nx/2

)
,

for the first term in the right hand-side, we have by using (3.3) of [51] that

P

∣∣∣∣∣∣
d3n/2e∑
i=1

εi

∣∣∣∣∣∣ ≥ √xn
 ≤ c46 exp(−c47x),

where c46, c47 > 0 are universal constants. This when combined with (8.46), implies that

P
(

sup
0≤t≤1

|Aνn(t)−An(t)| ≥
√
nx

)
≤ c46 exp(−c47x) + exp(−c41x),

for all x > 0. Hence the proof is complete. �
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25. Miklós Csörgő and Lajos Horváth, Weighted approximations in probability and statistics, Wiley

Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics,
John Wiley & Sons, Ltd., Chichester, 1993, With a foreword by David Kendall.
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Verlag, Basel, 1987.
38. Peter Gänssler, Empirical processes, Institute of Mathematical Statistics Lecture Notes—

Monograph Series, vol. 3, Institute of Mathematical Statistics, Hayward, CA, 1983.
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58. J. Komlós, P. Major, and G. Tusnády, An approximation of partial sums of independent RV’s,
and the sample DF. II, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 34 (1976), no. 1, 33–58.

59. Michael R. Kosorok, Introduction to empirical processes and semiparametric inference, Springer

Series in Statistics, Springer, New York, 2008.
60. De Li Li, Fu Xing Zhang, and Andrew Rosalsky, A supplement to the Baum-Katz-Spitzer

complete convergence theorem, Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 3, 557–562.
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