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VLADYSLAV BOGUN

ALMOST SURE ASYMPTOTIC EXPANSIONS FOR PROFILES OF

SIMPLY GENERATED RANDOM TREES

This paper is a continuation of the analysis of Edgeworth expansions for one-split

branching random walk and its application to random trees. We provide new results
for profile, mode and width for several simply generated random trees, in particular

for random recursive trees, p-oriented recursive trees and D-ary random trees. Our

results are corollaries of a general Edgeworth expansion for a one-split branching
random walk proved by Kabluchko, Marynych and Sulzbach [The Annals of Applied

Probability 27(6): 3478–3524, 2017]. We derive an additional characterization of
the random variables appearing in the coefficients of the asymptotic expansions by

calculating explicitly corresponding fixed-point equations of a branching type. We

further provide numerical simulations justifying our theoretical findings.

1. Introduction

The main purpose of this paper is three-fold. First, we obtain asymptotic expansions
for the profile, mode and width of simply generated random trees, such as D-ary recursive
trees, random recursive trees and p-oriented recursive trees, when the number of vertices
of those trees tends to infinity. This part of the paper consists mostly of corollaries of
the theorems proved by Kabluchko, Marynych and Sulzbach, see [14], for the profile of
a one-split branching random walk using mod-φ convergence technique. The reader can
find rigorous definitions of this type of convergence and some general results in [9] and
we also refer to [13] and [16] for examples of its usage. The second purpose of the paper
is to provide a further characterization of the random coefficients of the aforementioned
asymptotic expansions by providing explicit stochastic fixed-point equations characteriz-
ing their distributions. Last but not least, we provide numerical simulations supporting
our theoretical results. Simply generated random trees and in particular the aforemen-
tioned random trees are of course well-studied. The obtained results will be compared in
details to previously known limit theorems for profiles and related quantities. For better
understanding of random trees and their applications we refer the reader to the book [6].

The paper has the following structure. In Section 2 we collect all necessary definitions.
Section 3 contains our main results, almost sure asymptotic expansions for the profile,
mode and width of simply generated random trees. Furthermore, in this section we pro-
vide a characterization of random variables appearing in the main asymptotic expansions
via stochastic fixed-point equations. A comparison of our expansions with already known
results is also contained in this section. Section 4 is devoted to numerical simulations
and their comparison with our theoretical results.
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2. Random trees overview

2.1. One-split branching random walk. Consider a system of particles living on the
lattice Z. At time 0, the system contains a single particle usually located at 0. The
system evolves in the following way: in each discrete moment of time one of the particles
is chosen uniformly at random (if it exists). This particle (the mother) is replaced by
a random cluster of particles (children) whose relative displacements are described by a

point process ζ =
∑N
i=1 δZi . That is, if the mother was located at x then its children are

located at x+ Z1, . . . , x+ ZN . We assume that the number of particles N is a.s. finite.
All random mechanisms in the described process are independent. A sequence of point
processes on Z describing the positions of particles throughout generations is called one-
split branching random walk (one-split BRW).

Let us denote by Sn the number of particles at time n, and by x1,n, . . . , xSn,n their
positions. The profile of a one-split BRW at moment n is the following function:

(1) Ln(k) = #{1 ≤ j ≤ Sn : xj,n = k}, n ∈ N, k ∈ Z,

that is, Ln(k) is the number of particles at site k ∈ Z at time n.
Denote by νk the expected number of particles at site k ∈ Z in the cluster process ζ:

(2) νk = Eζ({k}) = E

[
N∑
i=1

1{Zi=k}

]
, k ∈ Z.

Further, denote by m(β) the moment generating function of the intensity of the cluster
process ζ minus 1:

(3) m(β) =
∑
k∈Z

eβkνk − 1 = E

[
N∑
i=1

eβZi

]
− 1.

We assume that there exists an open interval I containing 0 where the function m
is finite. Then m is well-defined for β ∈ {z ∈ C : Re z ∈ I } and is strictly convex and
infinitely differentiable on I . We define the function

ϕ(β) =
m(β)

m(0)
, Reβ ∈ I .

Denote by (β−, β+) ⊂ I the open interval where ϕ′(β)β < ϕ(β):

β− = inf{β ∈ I : ϕ′(β)β < ϕ(β)},(4)

β+ = sup{β ∈ I : ϕ′(β)β < ϕ(β)}.(5)

The interval (β−, β+) contains 0 and, thus, is non-empty.
Let ν be the intensity measure of the point process ζ:

(6) ν =
∑
k∈Z

νkδk.

The (normalized) moment-generating function of the one-split BRW profile is defined,
for Reβ ∈ I , by

(7) Wn(β) =
1

nϕ(β)

Sn∑
i=1

eβxi,n .

Under certain conditions (see Section 3) Wn converges as n → ∞ to a random analytic
function W∞ with probability 1. Note that W∞(0) = m(0) since Wn(0) = Sn/n.
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We define the following random variables:

χ1(0) = (logW∞)′(0) =
W ′∞(0)

m(0)
,(8)

χ2(0) = (logW∞)′′(0) =
W ′′∞(0)m(0)− (W ′∞(0))2

m2(0)
(9)

and, more generally, χj(β) = (logW∞)(j)(β) (j ≥ 1).

2.2. Random trees models. A simply generated random tree is a tree constructed by
the following iterative process. There are nodes of two types: external and internal. At
time 0 the tree usually contains only one external node, which is the root of the tree. At
each discrete time moment an external node is chosen uniformly at random, is usually
declared internal and a new finite (possibly random) subtree is attached to the chosen
node. There is a natural procedure of encoding the evolution of a simply generated
random tree using a one-split BRW. In this encoding the external nodes correspond to
alive particles, internal nodes which have been chosen at some step, to dead particles,
and the depth, that is, the distance to the root, of each node is the position of the
corresponding particle.

2.2.1. D-ary trees (D ≥ 2). At time 0 a D-ary tree contains only its root. At each
discrete time moment, one random external node is picked and replaced by an internal
node with D children (external nodes) attached. In other words, all external nodes of
D-ary tree are its leaves, and on each step D sons are added to a random leaf. Functional
limit theorems for profiles of those trees can be found in the paper [19].

Figure 1. A construction rule of a D-ary tree with D = 3 and an example

of its realization at time n = 3.

In case of D = 2 the tree becomes a well-known binary search tree (BST), which
can also be constructed using a uniformly distributed data input. It is one of the most
studied type of random trees, see for example [1, 2, 5, 7, 8, 11] to name but a few.

Let us also mention that for D > 2 the notion of D-ary tree is not the same as the
notion of D-ary search tree. For the comprehensive analysis of search trees we refer the
reader to [6].

The evolution of a D-ary tree can be represented by a one-split BRW with the deter-
ministic displacement point process ζ = Dδ1. We have

ϕ(β) =
Deβ − 1

D − 1
, m(0) = D − 1, ϕ(j)(0) =

D

D − 1
, j ∈ N.

The constants β− and β+ are the solution to Deβ(1− β) = 1.

2.2.2. Random recursive trees. A random recursive tree (RRT) is constructed using the
following procedure. At time 0 RRT consists of one node, the root. At each discrete
time moment a random existing node is chosen and a new node is attached to the chosen
one. In this representation each node is considered as external. Some recenet results for
RRT can be found in [5, 7, 11].
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Figure 2. A rule for creating a RRT and an example of its realization at

time n = 16.

A one-split BRW which corresponds to a RRT stems from the deterministic displace-
ment point process ζ = δ0 + δ1 for which

ϕ(β) = eβ , m(0) = 1, ϕ(j)(0) = 1, j ∈ N, β− = −∞, β+ = 1.

2.2.3. p-oriented recursive trees (p ≥ 2). A p-oriented recursive tree starts with an in-
ternal node (the root) and one external node attached to it. The construction rule is
depicted on Figure 3 (left) for p = 2. For arbitrary p = 2, 3, . . . the rule is similar but
with p instead of two external nodes in the middle.

Figure 3. A rule for creating a p-oriented recursive tree with p = 2 and an

example of its realization in a moment of time n = 6.

For p = 2 the tree becomes a well-known plane-oriented recursive tree (PORT). We
refer to [12, 20, 15] for some recent results about profiles of PORTs.

One-split BRW which corresponds to a p-oriented recursive tree starts with an original
particle located at x1,0 = 1 and has the deterministic displacement point process ζ =
pδ0 + δ1 for which

ϕ(β) =
1

p
(eβ + p− 1), m(0) = p, ϕ(j)(0) =

1

p
, j ∈ N, β− = −∞

and β+ is a solution of eβ(β − 1) = p− 1.

2.3. Functionals on random trees. There are many various functionals which can be
defined on trees. In this paper we focus only on some of them. The depth (or level) of
a node is by definition its distance to the root. Denote by Ln(k) the number of external
nodes of the tree at time n at depth k. This definition is equal (except for p-oriented
trees) to (1) given on a one-split BRW corresponding to the random tree. This functional
is called an external profile of the random tree (or occupation number) at level k.

The mode un of a random tree is defined by

(10) un = arg max
k∈N0

Ln(k), n ∈ N,

that is, un is the level containing the largest number of external nodes. The width Mn

of a random tree is defined by the following formula

(11) Mn = max
k∈N0

Ln(k),

and is equal to the largest number of external nodes on the same level.
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3. Results for random trees

We start with a lemma listing some properties of the one-split branching random walks
corresponding to the aforementioned three types of random trees.

Lemma 3.1. For the one-split BRWs corresponding to a D-ary tree, a RRT or a p-
oriented recursive tree the following statements are true:

(a) νk > 0 for at least one k ∈ Z\{0};

(b) the cluster point process ζ is a.s. non-empty, and has at least 2 particles with positive
probability;

(c) the function m(β) is finite on some non-empty open interval I containing 0;

(d) ν is not concentrated on any proper additive subgroup of Z;

(e) for any β ∈ (β−, β+) there is γ = γ(β) > 1 such that

E

[(
N∑
i=1

eβZi

)γ]
<∞.

Proof. (a) For each process there is at least one particle δ1.

(b) For each process there are at least 2 particles (exactly 2 for a RRT, D for a D-ary
tree and p+ 1 for a p-oriented recursive tree).

(c) The function m(β) is a finite sum of exponents, it’s finite on any finite interval I .

(d) For each process there is at least one particle δ1.

(e) For each process the sum under expectation is a.s. bounded by a non-random finite
constant; γ can be taken, for example, as γ = 2. �

We state this lemma for one-split BRWs introduced above but it holds also for a
much larger class of one-split BRWs. One of the results which follows from Lemma 3.1

is existence of W∞(β) such that Wn(β)
a.s.−→
n→∞

W∞(β) on an open neighborhood in C of

interval (β−, β+), see [2, 14]. From now on we assume that the argument β lies in this
open set, where W∞(β) is well-defined.

The following result provides a characterization of the random variables W∞(β) and
χj(β) via stochastic fixed-point equations.

Theorem 3.2. For a one-split BRW such that assumptions of Lemma 3.1 hold and
the displacement point process ζ is deterministic, a random variable W∞(β) satisfies the
stochastic fixed-point equation

(12) W∞(β)
d
=

N∑
i=1

eβZiU
ϕ(β)
i W (i)

∞ (β)

where W
(i)
∞ (β) are independent distributional copies of W∞(β) and an independent ran-

dom vector (Ui)
N
i=1 has a Dirichlet distribution with parameter 1

N−1 .

The following proof relies on a notion of the Polya-Eggenberger Urn model. In this
urn model there is a single urn containing balls of N different colors. The urn evolves in
discrete time. At each step we pick a ball from the urn uniformly at random, note the
color of the ball i ∈ 1, N and then return it back to the urn. Depending on the color i
of the drawn ball we also add ai,j balls of color j ∈ 1, N into the urn. The replacement
scheme is usually represented as matrix A = (ai,j)

N
i,j=1. The values ai,j can be zeros or

negative. For example, if a2,4 = −3, then we pull 3 balls of color 4 from the urn when
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the ball having color 2 was drawn. The Polya-Eggenberger Urn is called tenable if it’s
possible to continue the urn evolving process indefinitely on every possible stochastic
path. If all ai,j are not negative, then the corresponding urn model is obviously tenable.
However, if some ai,j is negative there might be a situation when a replacement rule
requires to pick |ai,j | balls of color j which are not contained in the urn. Tenable urns
and properties of tenability among most studied for the Polya-Eggenberger Urn model.
For more information about urn models and some classic results we refer the reader to
the book [17].

Proof of Theorem 3.2. The fact that the point process ζ is deterministic means that the
number of particles N as well as their positions Zi are constants. From Lemma 3.1 it
readily follows that N > 1.

At moment n = 0 there is only one particle located at x1,0. At moment n = 1 it
splits into N particles located at x1,0 + Z1, . . . , x1,0 + ZN . Each particle now evolves
independently and its evolution is the same as evolution of the original particle.

Consider the one-split BRW at moment of time n+ 1 (n > 0). We can rewrite (7) by

using values W
(i)
k (β) (k ∈ 1, n) of subprocesses on particles created after the first split

event as follows

(13)
Wn+1(β)

d
=

1

(n+ 1)ϕ(β)

N∑
i=1

(eβZi(V (i)
n )ϕ(β)W

(i)

V
(i)
n

(β)1{V (i)
n > 0}+

eβ(x1,0+Zi)1{V (i)
n = 0})

,

where V
(i)
n is the number of split events occurred in the subprocess created on particle

x1,0 +Zi (which was created after first split) and since n split events happened in total:

(14)

N∑
i=1

V (i)
n = n.

By symmetry all V
(i)
n have the same distribution for i = 1, . . . , N , since the sub-

processes are independent and identically distributed. Also V
(i)
n

a.s.−→
n→∞

∞ and thus

W
(i)

V
(i)
n

(β)
a.s.−→
n→∞

W
(i)
∞ (β) for i = 1, . . . , N .

It only remains to find the limit distribution of V
(i)
n /(n + 1) as n goes to infinity. It

can be rewritten in the following way:

(15)

lim
n→∞

V
(i)
n

n+ 1
= lim
n→∞

V
(i)
n

n
= lim
n→∞

V
(i)
n (N − 1)

n(N − 1)
= lim
n→∞

1 + V
(i)
n (N − 1)

N + n(N − 1)
=

= lim
n→∞

S
(i)
n

S∗n

where S
(i)
n is a sum of particles in the i-th subprocess and S∗n = Sn+1 – the sum of

particles in all subprocesses.
Note that each split event occurs by picking a random particle among all present

particles, then N − 1 particles are added to a subprocess corresponding to the picked
particle. It means that the probability that the split event occurs in a i-th subprocess is
proportional to the current number of particles in in this subprocess. The above process
can be described in terms of a Polya-Eggenberger Urn model with a single ball of each
color present at the beginning and with the replacement scheme A = (ai,j)

N
i,j=1 with

ai,i = N − 1 and ai,j = 0 for i 6= j. Here the balls of color i correspond to particles in
the i-th subprocess. It is a tenable urn model for which Gouet provided the following
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result, see [10],

(16) lim
n→∞

S
(i)
n

S∗n
= Ui

where vector (Ui)
N
i=1 has the Dirichlet distribution with parameter 1

N−1 .

The equation (12) follows by combining the above formulas. �

Remark 3.3. A random vector (x1, x2, . . . , xN ) has the Dirichlet distribution with pa-

rameter α > 0 if xi ≥ 0, i = 1, . . . , N ,
∑N
i=1 xi = 1 and the probability density function

is given by

(17) f(x1, . . . , xN , α) =
Γ(αN)

Γ(α)N

N∏
i=1

xα−1i ,

where Γ(α) is the gamma function.

Corollary 3.4. Under the assumptions of Theorem 3.2 the random variable χ1(0) sat-
isfies the stochastic fixed-point equation

(18) χ1(0)
d
=

N∑
i=1

(ZiUi + ϕ′(0)Ui logUi + Uiχ
(i)
1 (0))

where χ
(i)
1 (0) are independent distributional copies of χ1(0) and an independent random

vector (Ui)
N
i=1 has the Dirichlet distribution with parameter 1

N−1 .

Proof. Recall that W∞(0) = m(0) and ϕ(0) = 1. Taking the logarithmic derivative in
(12) and plugging β = 0 we obtain

(19)
W ′∞(0)

m(0)
=

∑N
i=1(ZiUim(0) + ϕ′(0)Ui logUim(0) + UiW

′
∞(0))∑N

i=1 Uim(0)
.

From the definition (8) of χ1(0) it follows W ′∞(0) = m(0)χ1(0). By the definition of

a Dirichlet distribution we have
∑N
i=1 Ui = 1. Combining these equations we derive

(18). �

Remark 3.5. By the same reasoning as in the proof of Corollary 3.4 one can derive similar
equations also for χj(β).

Example 3.6. Let us calculate the above quantities for a BST, that is for a D-ary tree
with D = 2, see Section 2.2. From Theorem 3.2 we obtain the stochastic fixed-point
equation for BST:

(20) W∞(β)
d
= eβU2eβ−1

1 W (1)
∞ (β) + eβU2eβ−1

2 W (2)
∞ (β).

The vector (U1, U2) has the Dirichlet distribution with parameter 1. It can be written
as ( Y1

Y1+Y2
, Y2

Y1+Y2
), where Y1, Y2 are independent random variables with the standard

exponential distribution, see [4]. We have for x ∈ [0, 1]:

(21)
P
{

Y1
Y1 + Y2

≤ x
}

=P
{
Y1 ≤

xY2
1− x

}
=

∫ ∞
0

e−y2
∫ xy1

1−x

0

e−y1dy1dy2 =

=

∫ ∞
0

e−y2
(

1− e
xy2
x−1

)
dy2 = x.

It means that the random variable Y1

Y1+Y2
has the standard uniform distribution on [0, 1],

thus the vector ( Y1

Y1+Y2
, Y2

Y1+Y2
) has the same distribution as the vector (U, 1−U) with U

being uniformly distributed on [0, 1].
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Thus, we can rewrite (20) as follows

(22) W∞(β)
d
= eβU2eβ−1W (1)

∞ (β) + eβ(1− U)2e
β−1W (2)

∞ (β).

By Corollary 3.4 we also have the stochastic fixed-point equation

(23) χ1(0)
d
= 1 + 2U logU + Uχ

(1)
1 (0) + 2(1− U) log (1− U) + (1− U)χ

(1)
2 (0).

It is a well-known fixed-point equation for the Quicksort law, see [18], which means that
χ1(0) has the Quicksort distribution (up to an additive constant).

3.1. Results for external profiles.

Theorem 3.7. Let Ln(k) (k ∈ Z) be the external profile of a D-ary tree with (D−1)n+1
external nodes. For every r ∈ N0 we have

(24) (log n)
r+1
2 sup

k∈Z

∣∣∣∣∣∣ 1nLn(k)−Hn(k)

r∑
j=0

Gj

k − D
D−1 log n√
D
D−1 log n

; 0

 1

(log n)j/2

∣∣∣∣∣∣ a.s.−→
n→∞

0,

where Gj is given in Remark 3.10 below, and

Hn(k) =
(D − 1)3/2√

2Dπ log n
e
−

(k− D
D−1

logn)2

2D
D−1

logn .

This theorem can be easily compared to the following central limit theorem which was
proved by Chauvin, Drmota and Jabbour-Hattab for BST, see [1],

(25) sup
k∈Z

∣∣∣∣ 1nLn(k)− 1√
4π log n

e−
(k−2 logn)2

4 logn

∣∣∣∣ = O

(
1

log n

)
a.s.

This result follows from Theorem 3.7 with D = 2 and r = 0, however the aforemen-
tioned theorem provides a much more accurate result.

Theorem 3.8. Let Ln(k) (k ∈ Z) be the external profile of a random recursive tree with
n+ 1 nodes. For every r ∈ N0 we have

(26) (log n)
r+1
2 sup

k∈Z

∣∣∣∣∣∣ 1nLn(k)− e−
(k−logn)2

2 logn

√
2π log n

r∑
j=0

Gj

(
k − log n√

log n
; 0

)
1

(log n)j/2

∣∣∣∣∣∣ a.s.−→
n→∞

0,

where Gj is given in Remark 3.10 below.

Theorem 3.9. Let Ln(k) (k ∈ Z) be the external profile of a p-oriented recursive tree
with pn+ 1 external nodes. For every r ∈ N0 we have

(27) (log n)
r+1
2 sup

k∈Z

∣∣∣∣∣∣ 1nLn(k)−Hn(k)

r∑
j=0

Gj

(
k − 1− 1

p log n√
log n/p

; 0

)
1

(log n)j/2

∣∣∣∣∣∣ a.s.−→
n→∞

0,

where Gj is given in Remark 3.10 below and

Hn(k) =
p3/2√

2π log n
e−

p(k−1− 1
p

logn)2

2 logn .

Proof of theorems 3.7, 3.8, 3.9. These results are corollaries from Theorem 3.11 in [14]
for one-split BRWs corresponding to random trees as described in Section 2.2 and Lemma
3.1. �

Remark 3.10. Gj(x;β) is a polynomial of degree at most 3j given by

(28) Gj(x;β) =
(−1)j

j!
e

1
2x

2

Bj(D1, . . . , Dj)e
1
2x

2

,
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where Bj is the j-th (exponential) complete Bell polynomial, see [3, Chapter 3.3], and
D1, D2, . . . are differential operators with random coefficients given by

(29) Dj =
ϕ(j+2)(β)

(j + 1)(j + 2)

(
1√
ϕ′′(β)

d

dx

)j+2

+ χj(β)

(
1√
ϕ′′(β)

d

dx

)j
.

In particular,

(30) G0(x; 0) = 1.

Theorem 3.11. Let Ln(k) (k ∈ Z) be the external profile of a D-ary tree with (D−1)n+1
external nodes. For every r ∈ N0 and every compact set L ⊂ ( D

D−1e
β− , D

D−1e
β+) we have

(log n)r+1 sup
k∈Z∩(logn)L

∣∣∣∣∣∣n 1
D−1

(
(D − 1)k

De log n

)k
Ln(k)− 1√

2πk

r∑
j=0

F2j(0; log (D−1)k
D logn )

(log n)j

∣∣∣∣∣∣ a.s.−→
n→∞

0,

where F2j is given in Remark 3.14

Theorem 3.12. Let Ln(k) (k ∈ Z) be the external profile of a random recursive tree
with n+ 1 nodes. For every r ∈ N0 and every compact set L ⊂ (0, e) we have

(log n)r+1 sup
k∈Z∩(logn)L

∣∣∣∣∣∣
(

k

e log n

)k
Ln(k)− 1√

2πk

r∑
j=0

F2j(0; log k
logn )

(log n)j

∣∣∣∣∣∣ a.s.−→
n→∞

0,

where F2j is given in Remark 3.14.

Theorem 3.13. Let Ln(k) (k ∈ Z) be the external profile of a p-oriented recursive tree
with pn + 1 external nodes. For every r ∈ N0 and every compact set L ⊂ (0, 1pe

β+) we

have

(log n)r+1 sup
k−1∈Z∩(logn)L

∣∣∣∣∣∣n 1−p
p

(
p(k − 1)

e log n

)k−1
Ln(k)−

r∑
j=0

F2j(0; log p(k−1)
logn )√

2π(k − 1)(log n)j

∣∣∣∣∣∣ a.s.−→
n→∞

0,

where F2j is given in Remark 3.14.

Proof of Theorems 3.11, 3.12, 3.13. These results follow from Theorem 3.15 in [14] for
one-split BRWs corresponding to random trees as described in Section 2.2 and Lemma
3.1. �

Remark 3.14. We have F2j(0;β) = W∞(β)G2j(0;β) and F2j(0;β) is a linear combination

of 1,W∞(β), . . . , W
(2j)
∞ (β). In particular,

(31) F0(0;β) = W∞(β).

Theorem 3.15. Let Ln(k) (k ∈ Z) be the external profile of a D-ary tree with (D−1)n+1
external nodes. Put L◦n(k) := Ln(k)−E[Ln(k)] and let (kn)n∈N be a deterministic integer
sequence.

(a) If kn = D
D−1 log n+ α

√
D
D−1 log n+ o(

√
log n) for some α ∈ R, then

log n

n
L◦n(kn)

a.s.−→
n→∞

(D − 1)2αe−
1
2α

2

D
√

2π
(χ1(0)− E[χ1(0)]).

(b) If kn = D
D−1 log n+ cn where cn = o(log n) and limn→∞ |cn| =∞, then

(log n)3/2

ncnecn

(
(D − 1)kn
D log n

)kn
L◦n(kn)

a.s.−→
n→∞

(D − 1)(χ1(0)− E[χ1(0)])

( D
D−1 )3/2

√
2π

.
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In particular, if cn = o(
√

log n) and limn→∞ |cn| =∞, then

(log n)3/2

ncn
L◦n(kn)

a.s.−→
n→∞

(D − 1)(χ1(0)− E[χ1(0)])

( D
D−1 )3/2

√
2π

.

(c) If kn = D
D−1 log n+ cn where cn = O(1), then

(log n)3/2

n
L◦n(kn)− D − 1

( D
D−1 )3/2

√
2π

(R(cn)− E[R(cn)])
a.s.−→
n→∞

0,

where R(cn) = (cn + 1
2 )χ1(0)− χ2

1(0)−χ2(0)
2 .

Theorem 3.16. Let Ln(k) (k ∈ Z) be the external profile of a random recursive tree
with n + 1 nodes. Put L◦n(k) := Ln(k) − E[Ln(k)] and let (kn)n∈N be a deterministic
integer sequence.

(a) If kn = log n+ α
√

log n+ o(
√

log n) for some α ∈ R, then

log n

n
L◦n(kn)

a.s.−→
n→∞

αe−
1
2α

2

√
2π

(χ1(0)− E[χ1(0)]).

(b) If kn = log n+ cn where cn = o(log n) and limn→∞ |cn| =∞, then

(log n)3/2

ncnecn

(
kn

log n

)kn
L◦n(kn)

a.s.−→
n→∞

χ1(0)− E[χ1(0)]√
2π

.

In particular, if cn = o(
√

log n) and limn→∞ |cn| =∞, then

(log n)3/2

ncn
L◦n(kn)

a.s.−→
n→∞

χ1(0)− E[χ1(0)]√
2π

.

(c) If kn = log n+ cn where cn = O(1), then

(log n)3/2

n
L◦n(kn)− 1√

2π
(R(cn)− E[R(cn)])

a.s.−→
n→∞

0,

where R(cn) = (cn + 1
2 )χ1(0)− χ2

1(0)−χ2(0)
2 .

Theorem 3.17. Let Ln(k) (k ∈ Z) be the external profile of a p-oriented recursive
tree with pn + 1 external nodes. Put L◦n(k) := Ln(k) − E[Ln(k)] and let (kn)n∈N be a
deterministic integer sequence.

(a) If kn = 1
p log n+ 1 + α

√
logn
p + o(

√
log n) for some α ∈ R, then

log n

n
L◦n(kn)

a.s.−→
n→∞

p2αe−
1
2α

2

√
2π

(χ1(0)− E[χ1(0)]).

(b) If kn = 1
p log n+ 1 + cn where cn = o(log n) and limn→∞ |cn| =∞, then

(log n)3/2

ncnecn

(
pkn
log n

)kn
L◦n(kn)

a.s.−→
n→∞

p5/2(χ1(0)− E[χ1(0)])√
2π

.

In particular, if cn = o(
√

log n) and limn→∞ |cn| =∞, then

(log n)3/2

ncn
L◦n(kn)

a.s.−→
n→∞

p5/2(χ1(0)− E[χ1(0)])√
2π

.
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(c) If kn = 1
p log n+ 1 + cn where cn = O(1), then

(log n)3/2

n
L◦n(kn)− p5/2√

2π
(R(cn)− E[R(cn)])

a.s.−→
n→∞

0,

where R(cn) = (cn + 1
2 )χ1(0)− χ2

1(0)−χ2(0)
2 .

Proof of Theorems 3.15, 3.16, 3.17. These results are corollaries of Theorem 3.25 in [14]
for one-split BRWs corresponding to random trees as described in Section 2.2 and Lemma
3.1. �

Remark 3.18. Note that all results for p-oriented recursive trees are shifted by x1,0 = 1
which is the position of the original particle of the corresponding one-split BRW.

3.2. Results for mode.

Theorem 3.19. There is an a.s. finite random variable K such that for n > K, the
mode un of a D-ary tree with (D− 1)n+ 1 external nodes is equal to one of the numbers

b D

D − 1
log n+ χ1(0)− 1

2
c or d D

D − 1
log n+ χ1(0)− 1

2
e.

Theorem 3.20. There is an a.s. finite random variable K such that for n > K, the
mode un of a random recursive tree with n+ 1 nodes is equal to one of the numbers

blog n+ χ1(0)− 1

2
c or dlog n+ χ1(0)− 1

2
e.

Theorem 3.21. There is an a.s. finite random variable K such that for n > K, the
mode un of a p-oriented recursive tree with pn + 1 external nodes is equal to one of the
numbers

b1
p

log n+ χ1(0) +
1

2
c or d1

p
log n+ χ1(0) +

1

2
e.

Proof of Theorems 3.19, 3.20, 3.21. These results are corollaries of Theorem 3.17 in [14]
for one-split BRWs corresponding to random trees as described in Section 2.2 and Lemma
3.1. �

3.3. Results for width.

Theorem 3.22. Let Mn be the width of a D-ary tree with (D− 1)n+ 1 external nodes,
then it satisfies √

2Dπ log n

(D − 1)3/2n
Mn

a.s.−→
n→∞

1.

Theorem 3.23. Let Mn be the width of a random recursive tree with n+ 1 nodes, then
it satisfies √

2π log n

n
Mn

a.s.−→
n→∞

1.

The above result is known in the literature, see [7]. However, it was proved by a
completely different technique.

Theorem 3.24. Let Mn be the width of a p-oriented recursive tree with pn+ 1 external
nodes, then it satisfies √

2π log n

p3/2n
Mn

a.s.−→
n→∞

1.

Proof of theorems 3.22, 3.23, 3.24. These results are corollaries of Theorem 3.20 in [14]
for one-split BRWs corresponding to random trees as described in Section 2.2, and Lemma
3.1. �
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Theorem 3.25. Let Mn be the width of a D-ary tree with (D− 1)n+ 1 external nodes.
With probability 1, the set of subsequential limits of the sequence

M̃n := 2
D

D − 1
log n

1−

√
2π log n

√
D
D−1Mn

(D − 1)n

 , n ∈ N,

is the interval [χ2(0) − 1/12, χ2(0) + 1/6]. Furthermore, with θn = mink∈Z | DD−1 log n +

χ1(0)− 1/2− k| we have

M̃n − θ2n
a.s.−→
n→∞

χ2(0)− 1

12
.

Theorem 3.26. Let Mn be the width of a random recursive tree with n + 1 external
nodes. With probability 1, the set of subsequential limits of the sequence

M̃n := 2 log n

(
1−
√

2π log nMn

n

)
, n ∈ N,

is the interval [χ2(0)−1/12, χ2(0)+1/6]. Furthermore, with θn = mink∈Z | log n+χ1(0)−
1/2− k| satisfied:

M̃n − θ2n
a.s.−→
n→∞

χ2(0)− 1

12
.

Theorem 3.27. Let Mn be the width of a p-oriented recursive tree with pn+ 1 external
nodes. With probability 1, the set of subsequential limits of the sequence

M̃n :=
2

p
log n

(
1−
√

2π log nMn

p3/2n

)
, n ∈ N,

is the interval [χ2(0) − 1/12, χ2(0) + 1/6]. Furthermore, with θn = mink∈Z | 1p log n +

χ1(0)− 1/2− k| we have

M̃n − θ2n
a.s.−→
n→∞

χ2(0)− 1

12
.

Proof of theorems 3.25, 3.26, 3.27. These results are corollaries of Theorem 3.21 in [14]
for one-split BRWs corresponding to random trees as described in Section 2.2 and Lemma
3.1. �

4. Simulations

The results presented in Section 3 provide an almost sure convergence which means
that the corresponding asymptotic relation must hold for a.s. every realization of a ran-
dom tree. Being results of pure theoretical nature, nevertheless it would be interesting to
compare them with real-world data. Simulations presented in this chapter are performed
for a single growing tree when n varies. Furthermore, the simulations were performed
according to the procedure described in Section 2.2.

Let us consider first a 3-ary tree. From Theorem 3.7 with r = 0 we get for every
k ∈ Z:

(32) Ln(k)
a.s.−→
n→∞

L∗n(k) =
2n√

3π log n
e−

(k− 3
2

logn)2

3 logn .

From Theorem 3.19 we get that mode un for large n should be equal to bu∗nc or du∗ne,
where

(33) u∗n =
3

2
log n− 1

2

and the random variable χ1(0) is taken as 0 without computing.



ASYMPTOTIC EXPANSIONS FOR PROFILES OF RANDOM TREES 61

From Theorem 3.22 we obtain that Mn/M
∗
n

a.s.−→
n→∞

1 where

(34) M∗n =
2n√

3π log n
.

Figure 4 represents evolution of the profile Ln(k) and its expected value L∗n(k) of a
simulated 3-ary tree over different n. In Table 1 we compare simulated and theoretical
values of the mode and the width of this tree when n varies.

n = 100 n = 1000

n = 100000 n = 10000000

Figure 4. Evolution of the profile Ln(k) of a 3-ary tree (solid line) and
its theoretical value L∗n(k) (dotted line)

n Mn M∗n Mn/M
∗
n un u∗n

100 38 30.4 1.252 6 6.41
1000 289 247.9 1.166 11 9.86
10000 2511 2146.6 1.170 14 13.32
100000 20269 19200.0 1.056 17 16.77
1000000 179494 175271.4 1.024 21 20.22
10000000 1653079 1622697.5 1.019 24 23.68

Table 1. Evolution of the width and the mode of a 3-ary tree

We proceed with simulations of PORTs. From the results of Section 3 we obtain

(35) L∗n(k) =
2n√
π log n

e−
(k−1− 1

2
logn)2

logn ,
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(36) u∗n =
log n

2
+

1

2
,

(37) M∗n =
2n√
π log n

.

Simulations are presented on Figure 5 and in Table 2.

n = 100 n = 1000

n = 100000 n = 10000000

Figure 5. Evolution of the profile Ln(k) of a PORT (solid line) and its
theoretical value L∗n(k) (dotted line)

n Mn M∗n Mn/M
∗
n un u∗n

100 65 52.6 1.236 4 2.80
1000 483 429.3 1.125 5 3.95
10000 4114 3718.1 1.106 6 4.11
100000 36333 33255.4 1.093 7 6.26
1000000 327194 303578.9 1.078 8 7.41
10000000 2976165 2810594.5 1.059 9 8.56

Table 2. Evolution of the width and the mode of a PORT

From the above simulations it is plausible that real values indeed converge to their
theoretical counterparts. However, the speed of convergence is quite slow.
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