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ALEXEY RUDENKO

INTERSECTION LOCAL TIMES IN L2 FOR MARKOV PROCESSES

We provide sufficient conditions for the existence of intersection and self-intersection

local times with additional weight in the space of square integrable random variables
for Markov processes under specific local upper bounds for their transition density.

We determine when this condition is satisfied for standard Brownian motion, sym-

metric stable processes and Brownian motions on Carnot group.

1. Introduction

The goal of this paper is to study the existence of functionals similar to intersection
and self-intersection local times as elements of L2, the space of square integrable random
variables, for a special class of Markov processes. The functionals that we want to study
are meant to describe intersections and self-intersections of a process. It is well-known
that for 2-dimensional Brownian motion the existence of self-intersection local times as
limits in L2 is only possible after renormalization [5, 11]. The renormalization makes it
possible to associate a functional with self-intersections, and therefore to have a random
variable that describes the self-intersection properties of the trajectory of the process (see
also [9] for an application of renormalized self-intersection local times). In this paper we
propose a different approach for defining such functionals, by introducing an additional
“weight”, a function that assigns a value for each selection of points on the trajectory
(see (1) for exact definition). For example in the case of self-intersections we can avoid
blow-up in the limit by assigning sufficiently small weight to two points on trajectory,
which are close to each other on time scale (see Remark 7 for more detailed explanation).

However our main motivation for this investigation lies in the ability to generalize
our results to a class of processes, which we call Brownian motions on Carnot group.
The name is an analogy of Brownian motions on Lie group, introduced by Ito [7], since
Carnot group is a stratified Lie group, with Rd as a base space and a specific choice of
coordinate system (see [2]). Since Rd with usual addition is also a Carnot group the case
of standard Brownian motion is included. There are many properties of such processes,
that distinguish them from standard Brownian motion, but for our context (studying the
second moment of its functionals) it is important that its transition density behaviour
can be described by a natural distance on Carnot group (see [2] or [13] for details).
The local behaviour of such distance differs from the behaviour of Euclidean distance
(in any Carnot group with non-trivial addition they are not locally equivalent), and
it is also different in different points. We choose our assumptions to describe the local
behavior of transition density, using specific upper bounds of the transition density inside
a compact, such that in the case of Brownian motion on Carnot group they follow from
the well-known upper bounds with the corresponding distance. Under such assumptions
we study the existence of self-intersection and intersection local times with weight. Since
our assumptions involve only transition density it is irrelevant that the process behind is
a Brownian motion on Carnot group, and we may consider a class of Markov processes.
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To our knowledge there are no known results about intersection or self-intersection
local times for Brownian motion on Carnot group (but as it was already mentioned the
partial case of standard Brownian motion is well-studied), except [12]. However in two
papers by M. Chaleyat-Maurel and J.-F. Le Gall [4, 3] the existence of intersections and
self-intersections (among other things) were studied for a class of processes generalizing
Brownian motion on Heisenberg group. The conditions used in [4] are very similar to the
assumptions of Theorem 13, and the conclusion is also similar, leading to the existence
of intersections. In our case the existence of the intersections or self-intersections follows
from the existence of non-zero intersection or self-intersection local time, as it happens
in our Theorems 3 and 12, since without intersections our approximations (1) always
become zero for small ε. It is worth emphasizing that the application of our results
to the case of Brownian motion on Carnot group becomes possible only because of the
estimates for transition densities proven in [13].

The paper is structured as follows: the main part is divided into two sections, first
devoted for self-intersection local times and second to intersection local times of indepen-
dent processes. Even though the general definitions of the first of these section formally
include the objects considered in the second, the approach we use for the case of indepen-
dent processes is different, and so this case demands separate treatment. To simplify the
exposition we reuse some of the notation from one section to denote the different objects
in the other, hopefully to the benefit of the reader. The structure of both sections is
similar: we present a general result about local time existence in terms of the finiteness
of some integral with transition density, then key technical result, which allows us to
use geometrical arguments to study finiteness of the integrals with transition density,
then prove the existence results for self-intersection local time (in one section) and for
intersection local time of independent processes (in other section) based on the geomet-
rical properties of the process, and finally provide applications for particular well-known
classes of processes, such as elliptic diffusions, Brownian motions on Carnot group and
symmetric stable processes.

2. Self-intersection local times

2.1. n-fold local time on the surface. Suppose that X(t) is a Markov process on Rd
and there is a non-negative function p(t, x, y) continuous for t > 0, which is a density of
the distribution of X(t) w.r.t. y, given that X(0) = x. Let m and n be a positive integers,
F : Rnd → Rm be an infinitely differentiable function, ψ : Rnd → R be a non-negative
bounded continuous function. We define approximations of local time as follows

(1) γε(ψ,F,A) =

∫
A

ψ(X(t1), . . . , X(tn))fm,ε(F (X(t1), . . . , X(tn)))dt1 . . . dtn

where A ⊂ [0, 1]n is a Borel set and fm,ε is an approximation of δ-measure at 0 ∈ Rm in
a sense of weak convergence of measures, which we define as follows:

fm,ε(u) = ε−dφm(
u

ε
)

where φm is any non-negative function on Rm, which has compact support and satisfies∫
Rm

φm(u)du = 1.

We denote H = {z = (z1, . . . , zn) ∈ Rnd|F (z1, . . . , zn) = 0} and assume that the
matrix of derivatives F ′ of F at z has maximal rank for all z ∈ H. Here and below we
use the derivatives sign to denote matrices of derivatives of the functions between subsets
of Euclidean spaces with the additional convention that a column index is the index of
direction of derivation, i.e. it indicates the coordinate in the original set (in particular
F ′ is m×nd matrix). In the following we will use a fixed coordinate system in Rd where
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it is needed, in particular to define matrices of derivatives. The choice of such system
does not matter, since both statements and proofs of our results do not depend on such
choice. We also fix an open bounded set M ⊂ Rnd and always assume that suppψ ⊂M .

Later we will consider self-intersections by taking

F (x1, . . . , xn) = (f(x1)− f(x2), . . . , f(xn−1)− f(xn)),

where n > 2, f : Rd → Rk for some fixed k 6 d, but Theorem 1 below does not use this
assumption.

The following construction is standard (its different variants can be found in litera-
ture), but the idea behind it is an important part of our approach to existence of local
times, so we describe it in details.

Proposition 1. There exists a unique family of finite measures ν(u, dy) on Borel sets of
Rnd, such that for all non-negative bounded continuous functions f on Rm with support
in some neighbourhood N of zero and g on Rnd with support inside M :∫

Rnd

g(y)f(F (y))dy =

∫
Rm

f(u)

∫
Rnd

g(y)ν(u, dy)du

and additionally ν(u, ·) = 0 for u /∈ N and the support ν(u, ·) is in M for all u ∈ N .

Proof. For any z ∈ H there is an open neighbourhood Uz ⊂M of z in Rnd, and an open
neighbourhood Vz of 0 in Rnd, such that there is an infinitely differentiable function
θz : Vz → Uz, which is an isomorphism between Vz and Uz satisfying θz(0) = z and
θz(y) ∈ H if and only if y1 = y2 = . . . = ym = 0. Indeed if we define θ−1z as F for first m
coordinates and as a linear function for the rest, such that (θ−1z )′ is non-degenerate at z (it
is always possible since F ′ has maximal rank), then θz also exist in some neighbourhood
of zero by the theorem of inverse function, and satisfies the conditions.

Using θz as a change of variables we obtain for all non-negative bounded continuous
functions f on Rm with support in some neighbourhood N of zero (N is chosen such
that F (y) ∈ N if y ∈ Uz) and g on Rnd with support inside Uz:∫

Rnd

g(y)f(F (y))dy =

∫
Rnd

g(θz(a))f(a1, . . . , am)|det θ′z(a)|da

Denote νz(u, da) = |det θ′z(a)|δu1
(da1) . . . δum(dam)dam+1 . . . dand then we have∫

Rnd

g(y)f(F (y))dy =

∫
Rm

f(u)

∫
Rnd

g(θz(a))νz(u, da)du

For each u ∈ N there exists a unique measure ν(u, ·) which restriction to Uz coincides with
θ−1z ◦ νz(u, ·) (ν(u,A) = νz(u, θ

−1
z (A)) for all measurable A ⊂ Uz). The existence follows

since for each g with support in M we can write
∫

Rnd
g(y)ν(u, dy) as sum of the integrals

over finite number of Uz by representing g as sum of gz with supports in U , and it is easy
to check that the result does not depend on the particular choice of such decomposition.
On the other hand the restriction of such measure on M is determined uniquely, so ν is
also unique. But such ν also satisfies the integral condition, by construction (it follows
from the definition of ν and νz), so the Proposition is proved. �

Some of the additional statements that was shown in the proof will be useful later so
we gather them as a separate result.

Corollary 1. For any z ∈ H ∩M there is an open neighbourhood Uz ⊂M of z in Rnd,
and an open neighbourhood Vz of 0 in Rnd, such that there is an infinitely differentiable
function θz : Vz → Uz, which is an isomorphism between Vz and Uz satisfying θz(0) = z
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and θz(y) ∈ H if and only if y1 = y2 = . . . = ym = 0. For all g on Rnd with support
inside Uz and u in some neighbourhood of zero in Rm we have:∫

Rnd

g(y)ν(u, dy) =

∫
Rnd

(g(θz(a))|det θ′z(a)|)|a1=u1,...,am=um
dam+1 . . . dand

Define

ql(x, z1, . . . , zl, B) =

∫
B

1t1<...<tlp(t1, x, z1)p(t2−t1, z1, z2) . . . p(tl−tl−1, zl−1, zl)dt1 . . . dtl

for any Borel set B ⊂ [0, 1]l. This integral can be infinite, and in this case we write
ql(x, z1, . . . , zl, B) = +∞.

Theorem 1. Fix X(0) = x ∈ Rd and non-negative bounded continuous function ψ on
Rnd with suppψ ⊂M . If for all σ ∈ S2n we have

q2n(x, yσ(1), . . . , yσ(2n), Aσ)) < +∞

for almost all y ∈M2 w.r.t. Lebesgue measure, where

Aσ = {t : (tσ(1), . . . , tσ(n)) ∈ A; (tσ(n+1), . . . , tσ(2n)) ∈ A},
and there is a function hσ(x, y), which satisfies the equality

hσ(x, y) = ψ(y1, . . . , yn)ψ(yn+1, . . . , y2n)q2n(x, yσ(1), . . . , yσ(2n), Aσ)

for almost all y ∈M2 w.r.t. Lebesgue measure such that hσ(x, y) is continuous for almost
all y ∈M2 w.r.t. ν(0, dy1 . . . dyn)ν(0, dyn+1 . . . dy2n) and there are such positive numbers
δ and β that

(2) sup
|u|<δ,|v|<δ

∑
σ∈S2n

∫
M2

(hσ(x, y))1+βν(u, dy1 . . . dyn)ν(v, dyn+1 . . . dy2n) < +∞

then there is a limit of γε(ψ, F,A) in L2. Additionally the L2 norm of the limit is equal
to ∑

σ∈S2n

∫
M2

hσ(x, y)ν(0, dy1 . . . dyn)ν(0, dyn+1 . . . dy2n)

and if hσ(x, y) > 0 for all y in a neighbourhood of some z ∈ (H ∩M)2, then the L2 norm
of the limit is not zero.

Proof. First we find (the expectation is conditional on X(0) = x)

Eγε1(ψ, F,A)γε2(ψ, F,A) =

= E

∫
A

ψ(X(t1), . . . , X(tn))fm,ε1(F (X(t1), . . . , X(tn)))dt1 . . . dtn∫
A

ψ(X(tn+1), . . . , X(t2n))fm,ε1(F (X(tn+1), . . . , X(t2n)))dtn+1 . . . dt2n =

∑
σ∈S2n

∫
A×A

1tσ(1)<...<tσ(2n)
Eψ(X(t1), . . . , X(tn))fm,ε1(F (X(t1), . . . , X(tn)))

ψ(X(tn+1), . . . , X(t2n))fm,ε1(F (X(tn+1), . . . , X(t2n)))dt =

=
∑
σ∈S2n

∫
Aσ

1t1<...<t2n

∫
R2nd

p(t1, x, yσ(1))p(t2−t1, yσ(1), yσ(2)) . . . p(t2n−t2n−1, yσ(2n−1), yσ(2n))

ψ(y1, . . . , yn)ψ(yn+1, . . . , y2n)
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fm,ε1(F (y1, . . . , yn))fm,ε2(F (yn+1, . . . , y2n))dydt =

=
∑
σ∈S2n

∫
Rm

∫
Rm

∫
R2nd

hσ(x, y)fm,ε1(u)fm,ε2(v)ν(u, dy1 . . . dyn)ν(v, dyn+1 . . . dy2n)dudv

Here changing of the order of integration is always valid since we are integrating non-
negative functions and taking ψ outside of the integral w.r.t t gives us exactly hσ. In
order to check the convergence of this expression as (ε1, ε2) → 0+ it is enough to show
that all functions ∫

R2nd

hσ(x, y)ν(u, dy1 . . . dyn)ν(v, dyn+1 . . . dy2n)

are continuous by (u, v) in some neighbourhood of zero.
We can represent the integral as the sum of finite number of integrals over Kzi ×Kzj ,

where Kzi ⊂ Uzi and Uz are open neighbourhoods of z ∈ H, such that on each of such
sets we can define differentiable one-to-one maps θz : Vz → Uz, and θ−1z transforming
ν(u, ·) on Uz into the measure (see Proposition 1)

νz(u, da) = |det θ′z(a)|δu1
(da1) . . . δum(dam)dam+1 . . . dand.

Then each such integral has form∫
Kzi×Kzj

hσ(x, θzi(a), θzj (b))|det θ′zi(a)||det θ′zj (b)|

δu1
(da1) . . . δum(dam)dam+1 . . . dandδv1(db1) . . . δvm(dbm)dbm+1 . . . dbnd

To show the convergence of such integral it is enough to verify that the function under
integral is continuous w.r.t. u, v a.s., which immediately follows from continuity assump-
tion on hσ, and to check the following condition (then the convergence follows by uniform
integrability) :

sup
|u|<δ,|v|<δ

∫
Kzi×Kzj

(hσ(x, θzi(a), θzj (b))|det θ′zi(a)||det θ′zj (b)|)
1+β

δu1
(da1) . . . δum(dam)dam+1 . . . dandδv1(db1) . . . δvm(dbm)dbm+1 . . . dbnd < +∞

But if we rewrite this again as an integral with ν we obtain that it holds under our
integrability condition (since all θ′z are bounded).

We note that we also proved that the L2-norm of the limit is∑
σ∈S2n

∫
R2nd

hσ(x, y)ν(0, dy1 . . . dyn)ν(0, dyn+1 . . . dy2n).

Using again that in some neighbourhood of such z each ν is a Lebesgue measure on a
linear manifold after a change of variable, we obtain that this integral is not zero, if
hσ(x, y) > 0 in a neighbourhood of z ∈ (H ∩M)2, and so the Theorem is proved. �

2.2. Density estimates and finiteness of integrals. We make some additional as-
sumptions on p, with the aim to provide a way of checking the conditions of the Theo-
rem 1. Let M1 be a bounded open set such that M ⊂Mn

1 .

(1) Suppose that p(t, x, y) is continuous at (0, x, y) for all x 6= y.
(2) Let a differentiable function S : R2d → Rd be such that S(x, x) = 0 for all x,

S(x, y) 6= 0 for x 6= y and the derivatives of S(x, y) w.r.t. x and w.r.t. y are
non-degenerate (as two separate d × d matrices) for all x, y. We suppose that
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there are positive numbers pi > 0, i = 1, . . . , d, Q > 2 and C1 > 0, such that for
all x ∈M1, y ∈M1 with x 6= y:

(3)

1∫
0

p(t, x, y)dt 6 C1(ρ(x, y))2−Q.

where ρ(x, y) = max
i=1,...,d

|Si(x, y)|1/pi also satisfies pseudo-triangle inequality: there

is C > 0 such that for all x ∈M1, y ∈M1:

ρ(x, y) 6 C(ρ(x, a) + ρ(a, y))

Remark 1. Note that we may have the same estimate in the second condition with
different Q and pi, more specifically the condition stays the same with 2+c(Q−2) instead
of Q, and cpi instead of pi (pseudo-triangle inequality is also true for any positive power
of ρ). Our setup comes from Carnot groups where Q is the homogeneous dimension of

the group and pi is a homogeneous dimension of coordinate i, and so we have Q =
d∑
i=1

pi.

There is no need to make that additional assumption for the general case.

The continuity assumption is motivated by the following proposition.

Proposition 2. If p(t, x, y) is continuous at (0, x, y) for all x 6= y and also at (t, x, y)
for all t > 0, x, y, then for all positive integers l, x0 ∈ Rn and Borel sets B ⊂ [0, 1]l

the function ql(x0, y1, . . . , yl, B) is continuous at any y = (y1, . . . , yl) ∈ Rld, satisfying
yi+1 6= yi for i = 1, . . . , l − 1 and y1 6= x0.

Proof. The statement follows from Lebesgue bounded convergence theorem and the es-
timate

sup
|x−x0|<δ,|zi−yi|<δ

1t1<...<tlp(t1, x0, z1)p(t2 − t1, z1, z2) . . .

. . . p(tl − tl−1, zl−1, zl) 6 sup
t∈(0,1),|x−x0|<δ,|y1−z1|<δ

p(t, x, z1)

sup
t∈(0,1),|y1−z1|<δ,|y2−z2|<δ

p(t, z1, z2) . . . sup
t∈(0,1),|yl−1−zl−1|<δ,|yl−zl|<δ

p(t, zl−1, zl)

�

The following Theorem is the main technical result, which shows the integrability
of powers of ρ w.r.t. ν under some geometrical condition on the structure of ρ and ν
(allowing us to check the condition (2) under our assumptions). Denote

Rσ,x(y1, . . . , y2n) = (S(x, yσ(1)), S(yσ(1), yσ(2)), . . . , S(yσ(2n−1), yσ(2n))).

and let T (z) be any 2nd× (2nd− 2m) matrix composed of the vectors, forming a basis
of the tangent space at z of H ×H, written in columns (the nature of the dependence
on z is irrelevant as it is only used for a fixed z). We also denote as N(D) the set of all
such multiindices I = (i1, . . . , iq), i1 < . . . < iq that the rows i1, . . . , iq of matrix D are
linearly independent.

Theorem 2. Fix σ ∈ S2n, z = (z1, z2, . . . , z2n) ∈ (H ∩M)2 (zi ∈ Rd) and real numbers
k1, . . . , k2n. If for all λ1 > 0, . . . , λ2n > 0 not all zero, but with λj = 0 if zσ(j−1) 6= zσ(j)
for j = 2, . . . , 2n, λ1 = 0 if x 6= zσ(1) and λj = 0 if kj > 0 for j = 1, . . . , 2n (if all λ are
forced to be zero the condition is trivially fulfilled), there exists I = (i1, . . . , i2(nd−m)) ∈
N(R′σ,x(z)T (z)), such that

(4)

2n∑
j=1

λj(
∑

s:[is/d]=j

(pismod d) + kj) > 0
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then there is an open neighbourhood Uz of z, δ > 0 and β > 0 such that

(5) sup
|u|<δ,|v|<δ

∫
Uz

(ρ(x, yσ(1))
k1ρ(yσ(1), yσ(2))

k2 . . .

. . . ρ(yσ(2n−1), yσ(2n))
k2n)1+βν(u, dy1 . . . dyn)ν(v, dyn+1 . . . dy2n) < +∞

Before we prove this theorem we need two lemmas. The first one describes the finitness
of the integral from the minimum of the set of power functions in several variables in
terms of values of the powers (it explains the origin of the form of the condition in the
Theorem 2).

Lemma 1. Let bij , i = 1, . . . , p, j = 1, . . . , q be a set of real numbers. Then the integral∫
[0,1]p

min
j=1,...,q

(

p∏
i=1

u
bij
i )du

is finite if and only if for any non-negative real numbers λ1, . . . , λp, not all zero, there

exists j ∈ {1, . . . , q}, such that
p∑
i=1

λi(bij + 1) > 0.

Proof. After change of variables vi = − lnui we obtain∫
[0,∞)p

exp(− max
j=1,...,q

(

p∑
i=1

vi(bij + 1)))dv

Let us prove the “if” part first. Notice that under the assumption we have

max
j=1,...,q

(

p∑
i=1

vi(bij + 1)) > 0

for all v ∈ [0,∞)p satisfying |v| = 1. But since the function on the left side is continuous
on v we also have the same inequality with some δ > 0 on the right side. It means that
our integral can be bounded above with the integral∫

[0,∞)p

e−δ|v|dv

which is obviously finite.

To prove the “only if” part we assume that for some λ1, . . . , λp with |λ| =

√
p∑
i=1

λ2i = 1

we have
p∑
i=1

λi(bij + 1) 6 0 for all j = 1, . . . , q. Then, the following estimate, valid for all

v ∈ [0,∞)p and r > 0,

| max
j=1,...,q

(

p∑
i=1

vi(bij + 1))− max
j=1,...,q

(

p∑
i=1

λir(bij + 1))| 6

6 max
j=1,...,q

p∑
i=1

|vi − rλi||bij + 1| 6 |v − rλ| max
j=1,...,q

√√√√ p∑
i=1

(bij + 1)2 = C|v − rλ|

allows us to find, that for any v ∈ [0,∞)p, satisfying for some r > 0, ε > 0 the inequality
|v − rλ| < ε we have

max
j=1,...,q

(

p∑
i=1

vi(bij + 1)) 6 Cε
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Consequently∫
[0,∞)p

exp(− max
j=1,...,q

(

p∑
i=1

vi(bij + 1)))dv > e−Cε
∫

[0,∞)p

1|v−(v,λ)λ|<εdv = +∞

as the last integral is clearly infinite since the domain of integration contains infinitely
many disjoint balls from the family {v : |v − rλ| < ε}. �

The next lemma provides an upper bound that allows us to involve only the tangent
space in the condition of Theorem 2.

Lemma 2. Suppose that f : Rd+k → Rd has continuous derivative in some neighbourhood
of 0 and A = ( ∂

∂xj
fi(0))i=1,...,d;j=1,...,d is non-degenerate. There exist such constants

δ > 0 and C > 0, that for all εi ∈ [0, δ], i = 1, . . . , n, we have

sup
|u|<δ

λ({x ∈ Rd : |x| < δ, |fi(x, u)| < εi, i = 1, . . . , d}) 6 C
d∏
i=1

εi

Proof. First of all by the inverse function theorem we can choose δ small enough, so
that for each |u| < δ there is a differentiable function gu, which is the inverse of f(x, u)
w.r.t. x ∈ Rd on |x| < δ. In particular we have that f(gu(a), u) = a for all a with
|gu(a)| < δ, that A(x, u) = ( ∂

∂xj
fi(x, u))i=1,...,d;j=1,...,d, |x| < δ, |u| < δ is non-degenerate

and g′u(f(x, u)) = A(x, u)−1 for |x| < δ and |u| < δ. Then we get for all |u| < δ:

λ({x ∈ Rd : |x| < δ, |fi(x, u)| < εi, i = 1, . . . , d}) =

∫
|x|<δ

1|fi(x,u)|<εi,i=1,...,ddx =

=

∫
|gu(a)|<δ

1|ai|<εi,i=1,...,d|det g′u(a)|da 6 sup
|x|<δ

|det g′u(f(x, u))|2d
d∏
i=1

εi =

= sup
|x|<δ

|detA(x, u)|−12d
d∏
i=1

εi

After taking supremum over |u| < δ Lemma is proved. �

Remark 2. This lemma provides the following interesting result (which we will not use
in this paper, but it explains the idea behind the lemma).

Proposition 3. Suppose that d 6 n, f : Rd → Rn has continuous derivative in some
neighbourhood of 0, f ′ has maximal rank d at 0 and f(0) = 0. Denote

g(x) = f ′(0)x = (

d∑
j=1

∂fi
∂xj

(0)xj)i=1,...,n

There exist such constants δ > 0 and C > 0, that for all εi ∈ [0, δ], i = 1, . . . , n, we have

λ({x : |x| < δ, |fi(x)| < εi, i = 1, . . . , n}) 6 Cλ({x : |gi(x)| < εi, i = 1, . . . , n})

Proof. By Lemma 2 for any I = (i1, . . . , id) with i1 < . . . < id, such that AI(x) =

(
d∑
j=1

∂fik
∂xj

(x))k=1,...,d;j=1,...,d is non-degenerate at x = 0, we have

λ({x : |x| < δ, |fik(x)| < εik , k = 1, . . . , d}) 6 C
d∏
k=1

εik 6

6 C1λ({x : |gik(x)| < εik , k = 1, . . . , d})
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It remains to show that

min
I:detAI(0) 6=0

λ({x : |gik(x)| < εik , k = 1, . . . , d}) 6 Cλ({x : |gi(x)| < εi, i = 1, . . . , n})

But this follows from the known expressions for the volume of such sets. In particular
we have that the measure on the left hand side is equal to 2dεi1 . . . εid |detAI(0)|−1,
and the measure on the right hand side is bounded below with C1(detBTB)−1/2, where
B = diag(ε−1i ; i = 1, . . . , n)f ′(0). Moreover

detBTB =
∑
I

ε−2i1 . . . ε−2id (detAI(0))2

and we obtain the final inequality after bounding this sum with maximum of its members.
�

What we obtained is something not entirely obvious: the intersection of a surface
with arbitrary small boxes (or ellipsoids) with box center being at the surface, can not
have significantly larger surface measure then their intersection with the tangent linear
manifold at box center. It may seem that, since any C1 surface is close to linear on small
scale, this should follow immediately, but arbitrary box can have arbitrary ratios of its
sizes along different coordinates, and therefore non-linearity can still be significant on
small scale. Note that the same inequality with the opposite sign is not true, for example
if we take d = 1, n = 2 and f(x) = (x, x2), then the additional bound from the second
coordinate can make the intersection with boxes much smaller compared to g(x) = (x, 0).

In the proof of Theorem 2 we will use the same idea of bounding the intersection of
boxes with the surface in terms of tangent linear manifold (unfortunately we can not use
the above result directly, since we need additional uniformity over some parameter and
also the ability to move the centers of the boxes). Therefore there may be cases, where
the sufficient condition in Theorem 2 is not necessary (it does not seem to be easy to
provide an example, so we will not pursue this here).

Proof of Theorem 2. In the case kj < 0 for all j we may use the formula

δkj = −kj

+∞∫
0

1δ<εε
kj−1dε

with ρ(yσ(j), yσ(j−1)) (or ρ(yσ(1), x) for j = 1) in place of δ and rewrite the integral in (5)
as follows:∫

[0,∞)2n

ε
k1(1+β)−1
1 . . . ε

k2n(1+β)−1
2n

ν(u, ·)× ν(v, ·)(Uz ∩ {|Si(x, yσ(1))| < εpi1 , . . .

. . . , |Si(yσ(2n−1), yσ(2n))| < εpi2n, i = 1, . . . , d})dε1 . . . dε2n.
If any of kj is non-negative we may simply bound the corresponding multiplier with a
constant and obtain the same formula without any components related to εj for such j.
For simplicity we assume in the following that kj < 0 for all j, but the general case can
be proved similarly.

Recall that in some neighbourhood of z the measure ν is the image under θ−1z of
Lebesgue measure with bounded density on the linear manifold. Therefore we can choose
Uz so that

ν(u, ·)× ν(v, ·)(Uz ∩ {|Si(x, yσ(1))| < εpi1 , . . .

. . . , |Si(yσ(2n−1), yσ(2n))| < εpi2n, i = 1, . . . , d}) 6
Cλ({(a, b) : (u, a) = θ(z1,...,zn)(y1, . . . , yn), (v, b) = θ(zn+1,...,z2n)(yn+1, . . . , y2n),
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y ∈ Uz, |Rσ,x(y)i+(j−1)d| < εpij , j = 1, . . . , 2n, i = 1, . . . , d})
Note that if at least one of the coordinates i+ (j− 1)d,i = 1, . . . , d of Rσ,x(z) is not zero
(which is equivalent to S(zσ(j−1), zσ(j)) 6= 0), then for small εj and small u,v the value of
measure is zero. It means that the integral w.r.t εj always finite for small u, v as long as
the rest of the integral is finite and therefore may be ignored, i.e. in that case we look for
finiteness of the remaining integral for each fixed εj (it is enough to consider one value of
εj since we have an increasing function of εj multiplied by power of εj under integral).

We may assume that θz and T (z) satisfy:

T (z) = (θ′(z1,...,zn)(θ
−1
(z1,...,zn)

((z1, . . . , zn)))Tij |i=1,...,nd;j=m+1,...,nd,

θ′(zn+1,...,z2n)
(θ−1(zn+1,...,z2n)

((zn+1, . . . , z2n)))Tij |i=1,...,nd;j=m+1,...,nd)

i.e. if we select columns m+1, . . . , nd from both θ′ and join them we obtain T (z). Indeed
such selection is also a basis of tangent space of H × H at z, and because the choice
of T (z) does not matter for the condition in the Theorem, we can always assume such
identity. Then the derivative of Rσ,x(θ−1(z1,...,zn)

(u, a), θ−1(zn+1,...,z2n)
(v, b)) at a = b = 0, is

equal to R′σ,x(z)T (z) if u = 0, v = 0 according to our definitions.
Consider all possible ways to choose linearly independent rows I = (i1, . . . , i2(nd−m))

in R′σ,x(z)T (z). For each such choice we apply Lemma 2 to the selection according to

I of the coordinates of the function Rσ,x(θ−1(z1,...,zn)
(u, a), θ−1(zn+1,...,z2n)

(v, b)) (with a, b as

the main variables, denoted as x in Lemma 2, and u, v as parameters). Therefore for all
small u,v and fixed I we obtain the bound (after shrinking Uz if necessary):

λ({(a, b) : (u, a) = θ(z1,...,zn)(y1, . . . , yn), (v, b) = θ(zn+1,...,z2n)(yn+1, . . . , y2n),

y ∈ Uz, |Rσ,x(y)i+(j−1)d| < εpij , j = 1, . . . , 2n, i = 1, . . . , d}) 6

6 C
2n∏
j=1

∏
s:[is/d]=j

ε
pis mod d
j

After taking minimum in the right hand side over all possible choices of I we can apply
Lemma 1 and find the condition for the finiteness of our integral: for all λj > 0, not all
zero, there exists multiindex I, which corresponds to a set of linearly independent rows
I = (i1, . . . , i2(nd−m)) in R′σ,x(z)T (z), such that

2n∑
j=1

λj(
∑

s:[is/d]=j

(pismod d) + kj(1 + β)) > 0

For β = 0 this condition coincides with the condition (4), after taking into account that
some εj are fixed or absent entirely as noted above, and we may set λj = 0 for such j.
Note that if the condition above is fullfilled with β = 0 then it is also fullfilled with some
β > 0. Additionally, since our bounds was uniform over u, v in some neighbourhood of
0, we also have the finiteness of the supremum of the same integral over small u, v for
some β > 0, and Theorem is proved. �

2.3. Self-intersection local times. For the following theorem we take, assuming n > 2,

F (x1, . . . , xn) = (f(x1)− f(x2), . . . , f(xn−1)− f(xn))

where f : Rd → Rk, for some fixed k 6 d, is a continuously differentiable function with
derivative of maximal rank for all x. This corresponds to self-intersections, since the set
of zeros of F is exactly {f(x1) = f(x2) = . . . = f(xn)} and therefore γε(1, F, [0, 1]n)
gives approximations of well-known n-fold self-intersection local time of f(X(t)) (for
planar Brownian motion and ψ = 1 it converges in L2 only after certain renormalization,
see [11]). Let L(x) be any d × (d − k) matrix consisting from vectors, giving basis of
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tangent space of {u ∈ Rd : f(u) = f(x)} at x, written in columns (such basis can be
constructed for example as a basis in the orthogonal complement of the linear space of
gradients of f(x) at x). We write a derivative of S as S′(x, y) = (S′1(x, y), S′2(x, y)),
where S′1 is the matrix of derivatives of S(x, y) w.r.t. x ∈ Rd and S′2 is the matrix of
derivatives of S(x, y) w.r.t. y ∈ Rd. Define

mf (x) = min{
∑
j /∈I

pj |I = (i1, . . . , id−k) ∈ N(S′2(x, x)L(x))}

Theorem 3. Let

ψ(y1, . . . , yn) =
∏
i 6=j

ρ(yi, yj)
Q−2φM (y)

where φM is any continious non-negative bounded function with support inside M . Sup-
pose that k < d. If

(6) mf (yi) <
2n

n− 1
+

n

n− 1
(

d∑
l=1

pl −Q),

for all yi, i = 1, . . . , n such that (y1, . . . , yn) ∈ H ∩M , then there is a limit of γε(ψ, F,A)
in L2 for any Borel A ⊂ [0, 1]n. If additionally φM (w) > 0 at some w ∈ H ∩M and
for some σ ∈ S2n we can find z ∈ (H ∩M)2 in any neighbourhood of (w,w), such that
q2n(x, zσ(1), . . . , zσ(2n), Aσ)) > 0, and x 6= zσ(1), zσ(i) 6= zσ(i−1), i = 2, . . . , 2n, then the
limit is not zero (x = X(0)). If ψ(y1, . . . , yn) = φM (y), then the same is true, if we
replace the inequality (6) with

(7) mf (yi) < 2 +

d∑
l=1

pl −Q.

Proof. We can define hσ(x, y) from Theorem 1 exactly by the equality in Theorem 1, if

q2n(x, yσ(1), . . . , yσ(2n), Aσ)) < +∞
and zero otherwise. We will show that∫

M2

(1x=yσ(1) + 1{y|∃i,j∈{1,...,2n},i6=j:yi=yj})ν(0, dy1 . . . dyn)ν(0, dyn+1 . . . dy2n) = 0.

Then such hσ satisfies the continuity condition of Theorem 1, since by Proposition 2
the function hσ(x, ·) is continuous outside the set {y|∃i, j ∈ {1, . . . , 2n}, i 6= j : yi =
yj} ∪ {x = yσ(1)}.

The measure ν(0, dy1 . . . dyn) is zero on any set {y|yj = a}, since it is easy to see, that
even {y|f(yj) = a} has zero measure. It remains to show that for k < d the set

{y|∃i, j ∈ {1, . . . , n}, i 6= j : yi = yj}
also has zero measure w.r.t ν(0, dy1 . . . dyn). We fix z = (z1, . . . , zn) ∈ H∩M , i 6= j, take
θz constructed in the proof of Proposition 1 and find az ∈ Rd such that az is not zero
and orthogonal to all rows of f ′(zi). Then it is clear that vector h = (h1, . . . , hn) ∈ Rnd
with hq = 0, q 6= i and hi = az is a tangent vector for H at z. On the other hand it is
not tangent for {y = (y1, . . . , yn) : yi = yj} at z. Because of this, we can see that the
image of {y = (y1, . . . , yn) : yi = yj} w.r.t θz in a linear subspace θz(H) of Rnd has zero
Lebesgue measure inside θz(H). But the image of ν(0, dy) is absolutely continuous w.r.t.
Lebesgue measure on θz(H) by definition, which proves our assertion.

Such definition of hσ works for both choices of ψ. To prove the integrability condi-
tion (2) of Theorem 1 it is enough to prove the condition (5) using Theorem 2 for a fixed
z ∈ (H ∩M)2 and some specific choice of ki, provided by an estimate of ψ. Note that if
the limit exists it is non-zero, since by our construction there is a point z ∈ (H ∩M)2
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(in a neigbourhood of (w,w)), such that hσ(x, z) > 0 and hσ(x, ·) is continuous in a
neighbourhood of z. Therefore in the following we can fix z and σ ∈ S2n and focus on
proving (5) using Theorem 2. We assume that the starting point of the process X(0) = x
is also fixed (the bound we are about to derive does not depend on x).

Let us describe the structure of R′σ,x(z)T (z) in our special case. The matrix R′σ,x(z)
can be seen to have the following structure in the column basis where y1, . . . , y2n has
coordinates yσ(1), yσ(2), . . . , yσ(2n) (i.e. 2n sets of d columns are permuted according to
σ) in terms of d× d blocks:

R′σ,x(z) =


S′2(x, yσ(1)) 0 . . . 0 0

S′1(yσ(1), yσ(2)) S′2(yσ(1), yσ(2)) . . . 0 0
. . .
0 0 . . . S′2(yσ(2n−2), yσ(2n−1)) 0
0 0 . . . S′1(yσ(2n−1), yσ(2n)) S′2(yσ(2n−1), yσ(2n))


To describe T (z) we split rows in 2n blocks of size d, and we split columns into two

blocks of size k and 2n blocks of size d − k. Denote G(z) = f ′(z)T (f ′(z)f ′(z)T )−1.
In the first block of columns row blocks 1, 2 . . . , n are equal to G(z1), . . . , G(zn) corre-
spondingly. In the second block of columns row blocks n + 1, n + 2, . . . , 2n are equal to
G(zn+1), . . . , G(z2n) correspondingly. In the column block i + 2, i = 1, . . . , 2n the row
block i is equal to L(zi). The rest of the blocks contain only zeros. It is easy to see that all
column vectors are such that directional derivatives of (F (z1, . . . , zn), F (zn+1, . . . , z2n))
along them are zero and they are linearly independent, so we have a basis in the tangent
space of H ×H at z. For example the directional derivatives of f(z1)− f(z2) along the
columns in the first column block can be calculated as follows:

(f(z1)− f(z2))′z1G(z1) + (f(z1)− f(z2))′z2G(z2) =

= f ′(z1)f ′(z1)T (f ′(z1)f ′(z1)T )−1 − f ′(z2)f ′(z2)T (f ′(z2)f ′(z2)T )−1 = 0

and the linear independence of all columns follows from the linear independence of joined
columns of f ′(zi)

T and L(zi) (they are linearly independent since gradients are orthogonal
to tangent vectors).

We split the set of indices {1, . . . , 2n} into five disjoint sets N1, . . . , N5 according to
σ: N1 = {1},

N2 = {i = 2, . . . , 2n : σ(i) ∈ {1, 2, . . . , n}, σ(i− 1) ∈ {n+ 1, n+ 2, . . . , 2n}},
N3 = {i = 2, . . . , 2n : σ(i) ∈ {1, 2, . . . , n}, σ(i− 1) ∈ {1, 2, . . . , n}},

N4 = {i = 2, . . . , 2n : σ(i) ∈ {n+ 1, n+ 2, . . . , 2n}, σ(i− 1) ∈ {1, 2, . . . , n}},
N5 = {i = 2, . . . , 2n : σ(i) ∈ {n+ 1, n+ 2, . . . , 2n}, σ(i− 1) ∈ {n+ 1, n+ 2, . . . , 2n}}.
Denote for i = 1, . . . , 2n and all a ∈ Rd, b ∈ Rd

Ai(a, b) =



1σ(1)∈{1,2,...,n}S
′
2(a, b)G(b), i ∈ N1;

S′2(a, b)G(b), i ∈ N2;

S′1(a, b)G(a) + S′2(a, b)G(b), i ∈ N3;

S′1(a, b)G(a), i ∈ N4;

0, i ∈ N5;

Bi(a, b) =



1σ(1)∈{n+1,n+2,...,2n}S
′
2(a, b)G(b), i ∈ N1;

S′1(a, b)G(a), i ∈ N2;

0, i ∈ N3;

S′2(a, b)G(b), i ∈ N4;

S′1(a, b)G(a) + S′2(a, b)G(b), i ∈ N5;

C(a, b) = S′2(a, b)L(b)
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D(a, b) = S′1(a, b)L(a)

Then it easy to see that R′σ,x(z)T (z) is equal to (we changed the order of column blocks
starting from the third according to σ for convenience)

A1(x, zσ(1)) B1(x, zσ(1)) C(x, zσ(1)) 0 . . . 0
A2(zσ(1), zσ(2)) B2(zσ(1), zσ(2)) D(zσ(1), zσ(2)) C(zσ(1), zσ(2)) . . . 0

. . .
A2n(zσ(2n−1), zσ(2n)) B2n(zσ(2n−1), zσ(2n)) 0 0 . . . C(zσ(2n−1), zσ(2n))


We choose 2k + 2n(d − k) rows of R′σ,x(z)T (z) as follows: take all rows at block 1,

all rows corresponding to all coordinates except some fixed set Ij = (ij1, . . . , i
j
k) in every

block j > 1, and finally rows corresponding to coordinates is1, . . . , i
s
k at some block s,

where s ∈ N2∪N4 and zσ(s) = zσ(s−1) (so that all rows are taken in such block). If such s
does not exist, then all λj for j > 2 are zero, except for j ∈ N3∪N5 with zσ(j) = zσ(j−1).
In this case we can make the following choice: for j ∈ N3 ∪N5 with zσ(j) = zσ(j−1) we

select all rows corresponding to all coordinates except some fixed set Ij = (ij1, . . . , i
j
k).

We also select all rows at block 1 and the rest of selection is from row blocks j > 1 with
λj = 0 and can be chosen arbitrary. Note that if zσ(j) 6= zσ(j−1) for all j then the desired
finitness of the integral in (5) is clearly fullfiled. The precise choice of Ij , s and the last
unspecified part is discussed below.

Let us find the condition that such choice produce linearly independent rows. Assume
that σ(1) ∈ {1, 2, . . . , n} (the other case σ(1) ∈ {n+ 1, n+ 2, . . . , 2n} can be considered
similarly), then first d rows are linearly independent since they contain non-degenerate d×
d matrix S′2(x, zσ(1))(G(zσ(1)), L(zσ(1))), in column blocks 1 and 3 combined. Moreover
the linear independence of the rest of rows can be considered separately after removing
column blocks 1 and 3 from the matrix, since the rest of the column blocks in the first
row block are zero. We can say that we now select from

B2(zσ(1), zσ(2)) C(zσ(1), zσ(2)) 0 . . . 0
B3(zσ(2), zσ(3)) D(zσ(2), zσ(3)) C(zσ(2), zσ(3)) . . . 0

. . .
B2n(zσ(2n−1), zσ(2n)) 0 0 . . . C(zσ(2n−1), zσ(2n))


Suppose that s ∈ N2∪N4 with zσ(s) = zσ(s−1) exists and we choose all rows in row block
s (we always use original row block numbers to avoid confusion, even after we removed
the first block). We can test linear independence of all chosen rows before row block s+1
and chosen rows in each block row starting from s + 1 separately, since the matrix for
such choice can be seen having square block structure with zero blocks above diagonal,
if we define the same set of new blocks sizes on both columns and rows (d− k)(s− 1) +
k, d − k, . . . , d − k (2n − s + 1 blocks althogether) for the selection matrix. Notice that
linear independence for blocks of sizes d − k is equivalent to the linear independence of
the selection of all rows except Ij from C(zσ(j−1), zσ(j)) = S′2(zσ(j−1), zσ(j))L(zσ(j)). For
the rest we can imagine that we make selection from

B2(zσ(1), zσ(2)) C(zσ(1), zσ(2)) 0 . . . 0 0
B3(zσ(2), zσ(3)) D(zσ(2), zσ(3)) C(zσ(2), zσ(3)) . . . 0 0

. . .
Bs(zσ(s−1), zσ(s)) 0 0 . . . D(zσ(s−1), zσ(s)) C(zσ(s−1), zσ(s))


Since zσ(s) = zσ(s−1) we have that C(zσ(s−1), zσ(s)) = −D(zσ(s−1), zσ(s)), because
S′2(x, x) = −S′1(x, x), which follows from the identity S(x, x) = 0. But then we can
replace D(zσ(s−1), zσ(s)) with zeros using linear transformation (multiplication by the
non-degenerate matrix from the right), and separate d last chosen rows (which is the
whole last row block s) and first and last column blocks in the new selection, which
contain S′2(zσ(s−1), zσ(s))(G(zσ(s)), L(zσ(s))) if i ∈ N4 or

(S′1(zσ(s−1), zσ(s))G(zσ(s−1)), S
′
2(zσ(s−1), zσ(s))L(zσ(s))) =
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= S′2(zσ(s−1), zσ(s))(−G(zσ(s)), L(zσ(s)))

if i ∈ N2, both matrices being non-degenerate. The rest of the selection again has block
structure with zero blocks above diagonal, now with all block sizes d− k. Block selected
from row block j for 1 < j < s of initial matrix is non-degenerate if the selection of all rows
except Ij from C(zσ(j−1), zσ(j)) = S′2(zσ(j−1), zσ(j))L(zσ(j)) are linearly independent.
Therefore we obtain that linear independence of the selection is equivalent to the linear
independence of each of the selections of all rows except Ij from C(zσ(j−1), zσ(j)) =
S′2(zσ(j−1), zσ(j))L(zσ(j)) for all j > 1, j 6= s. This also proves that such choice of linearly
independent rows is always possible, as long as there is s ∈ N2∪N4 with zσ(s) = zσ(s−1),
since the rank of C(zσ(j−1), zσ(j)) is always d− k.

Let us now consider the case where there is no such s. We recall that for row blocks
j ∈ N3 ∪ N5 with zσ(j) = zσ(j−1) we select all rows except Ij . We can deal with first
row block as before, and then assuming that, again, we have the linear independence
of the selection of all rows except Ij from C(zσ(j−1), zσ(j)) for all j ∈ N3 ∪ N5 with
zσ(j) = zσ(j−1), we can transform the matrix R′σ,x(z)T (z) with multiplication by non-
degenerate matrix from the right, so that in the chosen rows from row block j ∈ N3∪N5

with zσ(j) = zσ(j−1) all other elements except corresponding to C(zσ(j−1), zσ(j)) (column
block j+2) become zero. Indeed for j ∈ N3∪N5 with zσ(j) = zσ(j−1) we have zeros in two
first column blocks by construction. Moreover D(zσ(j−1), zσ(j)) = −C(zσ(j−1), zσ(j)), so
column block corresponding to D (column block j + 1) in this row block can be made
zero with the transformation, without changing other elements of the matrix, except that
the intersection of row block j + 1 and column block j + 1 (block numbers are as in the
original matrix) becomes D(zσ(j), zσ(j+1)) = D(zσ(j−1), zσ(j+1)) (it was zero). It is easy
to see this new matrix is similar to the original matrix after we remove row block j, so
after all such transformations we obtain the matrix of the form

B2(zj1 , zj2)) C(zj1 , zj2) 0 . . . 0 0
B3(zj2 , zj3) D(zj2 , zj3) C(zj2 , zj3) . . . 0 0

. . .
Bl(zjl−1

, zjl) 0 0 . . . D(zjl−1
, zjl) C(zjl−1

, zjl)


where j1, . . . , jl is σ(1), . . . , σ(2n) after all j ∈ N3∪N5 with zσ(j) = zσ(j−1) removed. The
rest of the selection, which were specified as arbitrary, is to be made from this matrix.
But we can always choose the needed number of linearly independent rows from this
matrix, since its rank is maximal (d+ (d− k)(l − 2)) by construction.

Now we can see that the sets of indices Ij can be chosen separately such that
k∑
q=1

pijq is

minimal possible (or
∑
q/∈Ij

pq is maximal possible), while keeping the linear independence

of the choice, at least for all those j > 2, where λj 6= 0. For all such j we obtain that

this minimal value of
k∑
q=1

pijq is equal to mf (zσ(j)) (and for the rest the choice of Ij does

not matter). We also choose the index s ∈ N2 ∪ N4 with zσ(s) = zσ(s−1) such that the
corresponding λs is maximal possible. The value of λs is also the maximal among all λj
for j ∈ N2 ∪N4, since λj = 0 if zσ(j) 6= zσ(j−1).

In order to finish the proof we need to specify kj from our choice of ψ. Suppose that
ψ(y1, . . . , yn) = φM (y), so there is no impact from ψ on kj . The sum in the condition
can bounded below with

∑
j 6=s

λj(2−Q+

d∑
l=1

pl −mf (zσ(j))) + (2−Q+

d∑
l=1

pl)(λs + λ1)
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which is positive since max
j=1,...,2n

mf (zσ(j)) < 2 − Q +
d∑
l=1

pl by our assumptions. When

s ∈ N2 ∪ N4 with zσ(s) = zσ(s−1) does not exist the bound still holds by the same
argument.

For the other choice of ψ, if we just use additional bound on ψ where we can, we obtain
kj = 0 if j ∈ N3∪N5 (the bound for ψ adding Q−2), and kj = 2−Q for j ∈ N1∪N2∪N4

(no bound coming from ψ). However since there might be no j ∈ N3 ∪ N5, we need to
find a better bound on ψ for a given σ. Note that if s ∈ N2 ∪ N4 with zσ(s) = zσ(s−1)
does not exist then all λj , for j > 2 are zero, and since the coefficient near λ1 is always
positive the condition is fulfilled, so we may assume s ∈ N2 ∪ N4 with zσ(s) = zσ(s−1)
exists.

We claim that there is a set of αrj , j = 1, . . . , 2n, r = 1, . . . , R with values 0 or Q− 2,
such that for each j = 3, . . . , 2n and r = 1, . . . , R we have either αrj = Q− 2 or αrj−1 =
Q− 2 (no two consecutive 0 starting from j = 2) and

ψ(z1, . . . , zn)ψ(zn+1, . . . , z2n) 6 C
R∑
r=1

∏
j=2,...,2n

ρ(zσ(j−1), zσ(j))
αrj .

To prove that we start with a trivial bound of such form with R = 1, but without
an extra condition of not having two consecutive 0 after j = 2. Let us improve this
bound by additionally keeping all ρ(zp, zq)

Q−2 for all available pairs p, q (not only such
that (p, q) coincides with (σ(j − 1), σ(j)) for some j). Then if we have two consecutive
αj = 0 and αj+1 = 0, we have either j ∈ N2, j + 1 ∈ N4 or j ∈ N4, j + 1 ∈ N2.
In the first case we conclude that both σ(j) and σ(j + 2) are in {1, 2, . . . , n}, and in
the second case both σ(j) and σ(j + 2) are in {n + 1, n + 2, . . . , 2n}. It means that
in the both cases we have a multiplier ρ(zσ(j), zσ(j+2))

Q−2, which can be bounded with

C(ρ(zσ(j), zσ(j+1))
Q−2 + ρ(zσ(j+1), zσ(j+2))

Q−2) using pseudo-triangle inequality. There-

fore we obtain an inequality of the same type, but with R = 2 and α1
j = Q − 2,

α2
j+1 = Q − 2, i.e. we eliminated a pair of consecutive 0 in αrj and αrj+1. By repeating

this operation for all members of the sum in the new bound for the other j we can remove
all pairs of consecutive 0 for this j. Then we repeat this again until all consecutive 0 are
removed. The total number of operations required is not larger than 22n (the number
of such pairs is not larger than 2n − 1 and to remove each we need no more than 2k

operations, if we have already removed k pairs), so in the end we obtain our claimed
inequality.

Now we can use this inequality and deal with each member of the sum separately,

meaning that we fix r. We can ignore the coefficient near λ1 since its always 2−Q+
d∑
l=1

pl,

which should be positive by the assumptions in the Theorem. For j ∈ N3 ∩N5 we have
αrj = Q− 2 and for all j such that αrj = Q− 2 we have λj = 0. We can also ignore the
case αrs = Q − 2, since then λs = 0, but it is also the maximal among all λj , j > 2, so
only non-zero λ is λ1, which means in this case the sum is always positive. The sum in
the condition can bounded below with

∑
j∈N2∪N4,αrj=0,j 6=s

λj(2−Q+

d∑
l=1

pl −mf (zσ(j))) + (2−Q+

d∑
l=1

pl)λs

If mf (zσ(j)) < 2−Q+
d∑
l=1

pl then the corresponding member of the sum is non-negative

and we may bound it with zero. Therefore we can bound this sum from below as follows,
replacing λj with larger λs, and using that the maximal number of j ∈ N2 ∩ N4 such
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that αrj = 0 is n:

λs(n(2−Q+

d∑
l=1

pl)− (n− 1) max
j∈N2∪N4

mf (zσ(j)))

which is positive if

max
j=1,...,2n

mf (zj) <
2n

n− 1
+

n

n− 1
(

d∑
l=1

pl −Q).

But this follows from our assumptions and the Theorem is proved. �

Remark 3. Note that the statement of the Theorem about the existence does not depend
on the starting point x. In other words we always assume the worst case zσ(1) = x in
the proof. It is interesting that we also do not need an additional multiplier ρ(x, zσ(1))
in ψ (such multiplier does not improve the bound for our choice of rows), which can only
mean that under our assumptions the corresponding singularity is always integrable. The
question remains whether it is possible to find weaker assumptions, so that we obtain a
stronger general statement for some x. Note that to find such assumptions we need to find
choices of rows in the proof, that does not always include the whole first row blocks, but
there are cases when such choice is surely not possible, for example for self-intersections
of Brownian motion.

Remark 4. Note that the absence of additional multipliers in ψ makes the condition
significantly worse. This is of course related to the known fact, that self-intersection
local time for Brownian motion in a standard sense (i.e. without any renormalizations or
weight, which in our definition means without multiplier ψ) exists only in one-dimensional
case (see [11] for 2-dimensional case). The reason to include this case in the Theorem is
to compare it to the case with additional multiplier, and also to relate with the known
results. Also note that the choice of additional multiplier in ψ is definitely not unique
and can be improved in some cases, for example in a sense of taking lower powers of
ρ(yi, yj). We did not try to find the best form for the multiplier (in any sense), since
we do not have the use for such result. Also there is nothing in the proof suggesting
that taking different ψ (from the one which already has multipliers) allows us to improve
other conditions.

Remark 5. The assumption that k < d seems too restrictive, since in classical self-
intersection situations we always have k = d. Unfortunately to handle such cases we need
some additional properties of p(t, x, y), so it is better to do this separately (see below).
On the other hand we can deal with classical self-intersections of standard Brownian
motion by artificial dimension increment: we may simply add one independent Brownian
motion as extra coordinate of the process, which is not involved in self-intersections. In
this way we obtain an interesting effect: an independent random object is used in the
mutiplier ψ to make the singularities in self-intersection local times integrable.

Let us drop the restriction k < d and replace it with a condition on p.

Theorem 4. Suppose that for all a ∈M1, b ∈M1, a 6= b we have
1∫
0

p(s, a, b)ds > 0, the

function (
1∫
0

p(s, a, b)ds)−1 is bounded on a ∈M1, b ∈M1, a 6= b and converges to zero as
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(a, b)→ (c, c) for any c ∈M1. Also suppose that the function

g(t, a, b) =

t∫
0

p(s, a, b)ds

1∫
0

p(s, a, b)ds

, a 6= b

can be extended to a continuous function for all (t, a, b) with t ∈ (0, 1], a ∈M1, b ∈M1,
and this extension (also denoted as g) satisfies g(t, a, a) = 1 for all t ∈ (0, 1], a ∈ M1.
Let n = 2 and

ψ(y1, y2) = (

1∫
0

p(s, y1, y2)ds)−1φM (y), y1 6= y2;ψ(y1, y1) = 0

where φM is any continious non-negative bounded function with support inside M . If

(8) mf (yi) < 4 + 2(

d∑
l=1

pl −Q),

for all yi, i = 1, 2 such that (y1, y2) ∈ H ∩M , then there is a limit of γε(ψ, F, [0, 1]2) in
L2. If φM (w) > 0 at some w ∈ H ∩M then the limit is not zero.

Proof. We can define hσ(x, y) from Theorem 1 as

hσ(x, y) =



0,∃i ∈ {1, 2}, j ∈ {3, 4} : yi = yj ;

0, yσ(1) = x;

0, q4(x, yσ(1), . . . , yσ(4), [0, 1]2)) = +∞, y1 6= y2, y3 6= y4;

ψ(y1, y2)ψ(y3, y4)q4(x, yσ(1), . . . , yσ(4), [0, 1]2)),

q4(x, yσ(1), . . . , yσ(4), [0, 1]2)) < +∞, y1 6= y2, y3 6= y4;

for all y ∈M2 w.r.t. Lebesgue measure, except the set

E = ({y1 = y2} ∪ {y3 = y4}) ∩ {∀i ∈ {1, 2}, j ∈ {3, 4} : yi 6= yj} ∩ {yσ(1) 6= x}.

We will show that it is possible to extend hσ on this set by continuation. Consider a case
σ(i) = i. Then

ψ(y1, y2)ψ(y3, y4)q4(x, yσ(1), . . . , yσ(4), [0, 1]2)) =

= φM (y1, y2)φM (y3, y4)(

1∫
0

p(s, y1, y2)ds

1∫
0

p(s, y3, y4)ds)−1

∫
[0,1]4

1s1+s2+s3+s4<1p(s1, x, y1)p(s2, y1, y2)p(s3, y2, y3)p(s4, y3, y4)ds1ds2ds3ds4 6

6 φM (y1, y2)φM (y3, y4)g(1, y1, y2)g(1, y3, y4)

∫
[0,1]2

1s1+s3<1p(s1, x, y1)p(s3, y2, y3)ds1ds3

and on the other hand

ψ(y1, y2)ψ(y3, y4)q4(x, yσ(1), . . . , yσ(4), [0, 1]2)) >

> φM (y1, y2)φM (y3, y4)(

1∫
0

p(s, y1, y2)ds

1∫
0

p(s, y3, y4)ds)−1
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[0,1]4

1s2<ε1s4<ε1s1+s3<1−2εp(s1, x, y1)p(s2, y1, y2)p(s3, y2, y3)p(s4, y3, y4)ds1ds2ds3ds4

= φM (y1, y2)φM (y3, y4)g(ε, y1, y2)g(ε, y3, y4)∫
[0,1]2

1s1+s3<1−2εp(s1, x, y1)p(s3, y2, y3)ds1ds3

which by our assumptions and using arguments similar to those in Proposition 2 allows
us to extend this function continuosly to each y ∈ E with both y1 = y2 and y3 = y4
satisfied at the same time.

Other cases can be treated similarly and in this way we obtain hσ which satisfies
the continuity condition from Theorem 1, since sets {∃i ∈ {1, 2}, j ∈ {3, 4} : yi = yj}
and {yσ(1) = x} have zero measure w.r.t. ν(0, dy1dy2)ν(0, dy3dy4). The rest of the
proof follows the lines of the proof of Theorem 3. Note that we can show that the
limit is not zero, since our assumptions guarantee that hσ(x, y) is positive a.e. w.r.t.
ν(0, dy1dy2)ν(0, dy3dy4) in all points y where φM (y1, y2)φM (y3, y4) is positive. �

Remark 6. Note that using the same arguments we can also prove the existence of the
limit also for n = 3, 4, . . . for a choice of ψ as in Theorem 3. However in this case we
have no guarantee that the limit is not zero. In fact it will always be zero for f(x) = x,
which makes this result essentially useless. To get a non-zero limit of γ we need to choose
another ψ. One such choice is shown below in Theorem 7 for self-intersection local time
for 2-dimensional Brownian motion. But since it leads to the absence of continuity for
hσ, we can not rely on Theorem 1. The proof of Theorem 7 shows how to weaken this
assumption. We will not pursue a general result analogous to Theorem 7 here (see also
the Remark 8 after Theorem 7).

2.4. Applications. Now we are set to find the corollaries of Theorems 3 and 4 for
specific processes (we keep all assumptions on F and specify X).

Theorem 5. Let d > 2 and X(t) be a solution of SDE:

dX(t) = a(X(t))dt+ σ(X(t))dW (t)

where W (t) is a d-dimensional standard Brownian motion, a, σ are bounded Lipshitz
functions and σσT (x) > cI for all x ∈ Rd and some c > 0. Suppose that k < d. If d > 2
let

ψ(y1, . . . , yn) =
∏
i 6=j

|yi − yj |d−2φM (y),

where φM is any continious non-negative bounded function with support inside M . If
d = 2 let

ψ(y1, . . . , yn) =
∏
i 6=j

|yi − yj |βφM (y),

where β is an arbitrary fixed positive number. If k 6 2 or if n = 2 and k 6 3, then
there is a limit of γε(ψ, F,A) in L2 for any Borel A ⊂ [0, 1]n. If φM (w) > 0 at some
w ∈ H ∩M and A has non-zero Lebesgue measure then the limit is not zero.

Proof. It is well-known that there is a unique strong solution to given SDE, and it is a
time-homogeneous Markov process, which transition density p is continuous and satisfies
Gaussian upper bounds (these bounds can be found, for example, in [6]): there are
positive constants C and γ, such that for all x ∈ Rd, y ∈ Rd, t ∈ [0, 1]

p(t, x, y) 6 Ct−d/2e−γ|x−y|
2/t
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If d > 3 we obtain: for all x ∈M1, y ∈M1

1∫
0

p(t, x, y)dt 6 C|x− y|2−d

If d = 2 this inequality contains logarithm, which does not fit in our framework, but we
can bound it with small negative power: there are C > 0 and δ > 0 such that for all
x ∈M1, y ∈M1

1∫
0

p(t, x, y)dt 6 C|x− y|−δ

So if d = 3 we have (3) with Q = d and pi = 1, and if d = 2 we have (3) with Q = 3
and pi = 1

δ . Therefore we can apply Theorem 3 and obtain the desired conclusion. Note
that if all pi are equal, as we have in this case, then mf (x) = kp1 everywhere, and then
the sufficient condition in Theorem 3 has form k < 2n

n−1 if d = 3. If d = 2 we have

k < 2n
n−1 (1− δ/2) which is essentially the same, since we can choose δ > 0 arbitrarily (it

only should be smaller then β). This condition can be resolved as k 6 2 or k = 3, n = 2
to complete the proof (here we only consider n > 2). �

Remark 7. Here we obtained a way to define self-intersection local times for 2- and
3- dimensional Brownian motion (including multiple self-intersections in 2-dimensional
case) as partial cases of Theorem 5. It is known that these local times generally speaking
do not exist in a standard definition, but in 2-dimensional case renormalization can be
applied (see [11]). Now we see that we do not need renormalization if we add a multiplier
inside time integral. Such multiplier contains a random component, partly independent
from the process, for which local times are constructed. It seems that the existence
of local time becomes possible, because, for example in case of double self-intersection,
multiplier is close to zero, when both time variables t,s in double time integral are close
to each other. We may conjecture that the multiplier of the form |t − s|a with large
enough a also leads to existence of the corresponding limit (such case, when multiplier
is a function from time, needs separate treatment).

Theorem 6. Let d > 2 and X(t) be a solution of SDE:

dX(t) = a(X(t))dt+ σ(X(t))dW (t)

where W (t) is a d-dimensional standard Brownian motion, a, σ are bounded Lipshitz
functions and σσT (x) > cI for all x ∈ Rd and some c > 0. Let n = 2 and

ψ(y1, y2) = (

1∫
0

p(t, y1, y2))−1φM (y), y1 6= y2;ψ(y1, y1) = 0

where φM is any continious non-negative bounded function with support inside M . If
k 6 3, then there is a limit of γε(ψ, F, [0, 1]2) in L2. If φM (w) > 0 at some w ∈ H ∩M
then the limit is not zero.

Proof. Again we use Gaussian bounds, but this time we also need lower bounds as well:

C1t
−d/2e−γ1|x−y|

2/t 6 p(t, x, y) 6 Ct−d/2e−γ|x−y|
2/t

These bounds guarantee that

g(t, a, b) =

t∫
0

p(s, a, b)ds

1∫
0

p(s, a, b)ds

= 1−

1∫
t

p(s, a, b)ds

1∫
0

p(s, a, b)ds

, a 6= b
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has continuous extension to a = b as needed. Using Theorem 4 we obtain the result. �

In the following Theorem we show what happens with multiple self-intersection local
times for 2-dimensional Brownian motion with simplest weights only depending on the
process itself. This case needs a special approach (since the continuity of hσ from Theo-
rem 1 can not be shown here), so what we obtain is not a direct consequence of Theorems
proved earlier, even though we follow the same ideas as before.

Theorem 7. Let X(t) = (W1(t),W2(t)) be a 2-dimensional Brownian motion started at
X(0) = x. Suppose that ϕ is a bounded continuous function on R2n. Assume that k = d
and f(x) = x and set

ψ(y1, . . . , yn) = ϕ(y1, . . . , yn)

n−1∏
i=1

| ln |yi+1 − yi||−1

Then there is a limit γ(ϕ) of γε(ψ,F, [0, 1]n) in Lp for integer p > 2 as ε→ 0+. Moreover
(9)

Eγ(ϕ)p = (2π)−pn2p(n−1)(n!)p
∑
σ∈Sp

∫
R2p

q(x, zσ(1), . . . , zσ(k), [0, 1]p)

p∏
i=1

ϕ(zi, . . . , zi)dz

Proof. We have as in the proof of Theorem 1:

Eγε1(ψ, F,A)γε2(ψ, F,A) =

=
∑
σ∈S2n

∫
R2nd

q2n(x, yσ(1), . . . , yσ(2n), [0, 1]n)ψ(y1, . . . , yn)ψ(yn+1, . . . , y2n)

fm,ε1(F (y1, . . . , yn))fm,ε2(F (yn+1, . . . , y2n))dy

We take w1 = yσ(1) − x, w2 = yσ(k+1) − yσ(k) for some k = 1, . . . , n (to be chosen later
differently for each σ) in such way that exactly one of σ(k + 1) and σ(k) is less or equal
n. The we change variables y 7→ u, v, w1, w2 in the integral with ui = yi+1 − yi and
vi = yn+i+1 − yn+i, i = 1, . . . , n, and due to the specific form of F and since f(x) = x
we obtain:

Eγε1(ψ, F,A)γε2(ψ, F,A) =

=
∑
σ∈S2n

∫
R2n−2

∫
R2n−2

∫
R4

(q2n(x, yσ(1), . . . , yσ(2n), [0, 1]n)ϕ(y1, . . . , yn)ϕ(yn+1, . . . , y2n))

n−1∏
i=1

| ln |ui| ln |vi||−1fm,ε1(u)fm,ε2(v)dw1dw2du1 . . . dun−1dv1 . . . dvn−1

where y = y(u, v, w1, w2) used inside integral is a function describing old variables as
functions from new variables:

yi = Sui + w1 + x, i = 1, . . . , n,

yn+i = Svi + w2 + Su + w1 + x, i = 1, . . . , n,

where Sui , Su are linear combinations of uj with coefficients 1, −1 or 0 (depending on σ),
and Svi are linear combinations of vj with coefficients 1, −1 or 0. Using that (we have
m = 2(n− 1) for given F )

fm,ε(u) = ε−dφm(
u

ε
)

we can make the change of variables by multipliying u by ε1 and v by ε2 (we keep the
same letters for new variables):
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σ∈S2n

∫
R2n−2

∫
R2n−2

∫
R4

(q2n(x, yσ(1), . . . , yσ(2n), [0, 1]n)ϕ(y1, . . . , yn)ϕ(yn+1, . . . , y2n))

n−1∏
i=1

| ln |ε1ui| ln |ε2vi||−1φm(u)φm(v)dw1dw2du1 . . . dun−1dv1 . . . dvn−1

and new y = y(ε1, ε2, u, v, w1, w2) have form

yi = ε1S
u
i + w1 + x, i = 1, . . . , n,

yn+i = ε2S
v
i + w2 + ε1S

u + w1 + x, i = 1, . . . , n,

To prove convergence of each integral for all σ as (ε1, ε2) → 0+ it is enough to
show convergence of the function under integral for almost all w1, w2, u, v w.r.t Lebesgue
measure and find such β > 0 and γ > 0 that the following integral

(10)

∫
R2n−2

∫
R2n−2

∫
R4

(q2n(x, yσ(1), . . . , yσ(2n), [0, 1]n)|ϕ(y1, . . . , yn)ϕ(yn+1, . . . , y2n)|)1+γ

n−1∏
i=1

| ln |ε1ui| ln |ε2vi||−1−γ(1 + |w1|)(2+β)γ(1 + |w2|)(2+β)γ

φm(u)φm(v)dw1dw2du1 . . . dun−1dv1 . . . dvn−1

is uniformly bounded over (ε1, ε2) in some neighbourhood of zero (this is similar to
what we did in Theorem 1 but with slightly different integral). The last condition gives
us uniform integrability of the function under integral multiplied by (1 + |w1|)2+β(1 +
|w2|)2+β w.r.t. the finite measure

(1 + |w1|)−2−β(1 + |w2|)−2−βφm(u)φm(v)dw1dw2du1 . . . dun−1dv1 . . . dvn−1,

so the convergence follows from this by well-known arguments.

Let us consider q2n, knowing that p(t, x, y) = (2πt)−1e−
|x−y|2

2t :

q2n(x, yσ(1), . . . , yσ(2n), [0, 1]n) =

(2π)−2n
∫

0<t1<...<t2n<1

t−11 e−
|x−yσ(1)|

2

2t1 . . . (t2n − t2n−1)−1e
−
|yσ(2n)−yσ(2n−1)|

2

2(t2n−t2n−1) dt

To estimate this integral the following lemma will be useful. Denote

Π(a) =

1∫
0

t−1e−
a
2t dt

Lemma 3. We have

Π(a) ∼ − ln a, a→ 0+

and

Π(a) 6
2

a
e−

a
2 , a > 0

Proof. With change of variables s = t
a we obtain

Π(a) =

1
a∫

0

s−1e−
1
2t dt
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which gives us the asymptotics as a→ 0+. Another change of variables s = a
2t produces

Π(a) =

+∞∫
a
2

s−1e−sds

and gives us the bound. �

We can find an upper bound for q2n by simply extending the domain of the integral
to 0 < t1 < 1, 0 < t2 − t1 < 1, . . . , 0 < t2n − t2n−1 < 1:

(11) q2n(x, yσ(1), . . . , yσ(2n), [0, 1]n) 6 (2π)−2nΠ(|yσ(1) − x|2) . . .Π(|yσ(2n) − yσ(2n−1)|2)

We recall the following definitions (from the proof of Theorem 3): N1 = {1},
N2 = {i = 2, . . . , 2n : σ(i) ∈ {1, 2, . . . , n}, σ(i− 1) ∈ {n+ 1, n+ 2, . . . , 2n}},

N3 = {i = 2, . . . , 2n : σ(i) ∈ {1, 2, . . . , n}, σ(i− 1) ∈ {1, 2, . . . , n}},
N4 = {i = 2, . . . , 2n : σ(i) ∈ {n+ 1, n+ 2, . . . , 2n}, σ(i− 1) ∈ {1, 2, . . . , n}},

N5 = {i = 2, . . . , 2n : σ(i) ∈ {n+ 1, n+ 2, . . . , 2n}, σ(i− 1) ∈ {n+ 1, n+ 2, . . . , 2n}}.
The expressions for yi give us for i ∈ N3:

yσ(i) − yσ(i−1) = ε1S̃
u
i ,

where S̃ui are linear combinations of uj with coefficients 1, −1 or 0 (depending on σ), for
i ∈ N5:

yσ(i) − yσ(i−1) = ε2S̃
v
i ,

where S̃vi are linear combinations of vj with coefficients 1, −1 or 0, and for i ∈ N2 ∪N4:

yσ(i) − yσ(i−1) = w2 + ε1S̃
u
i + ε2S̃

v
i

where S̃ui , S̃vi have the same meaning as above. Also we have similar formula for i = 1,
for example supposing that σ(1) ∈ {1, 2, . . . , n} (the other case is analogous):

yσ(1) − x = w1 + ε1S̃
u
1

From this we can conclude that for i ∈ N3 we have

Π(|yσ(i+1) − yσ(i)|2) ∼ −2 ln ε1

and for i ∈ N5:
Π(|yσ(i+1) − yσ(i)|2) ∼ −2 ln ε2

as (ε1, ε2) → 0+. For i ∈ N1 ∪ N2 ∪ N4 and under condition w1 6= 0 and w2 6= 0 we
have that Π(|yσ(i+1) − yσ(i)|2) is bounded for small (ε1, ε2). But it is clear that the size
of each N3 and N5 is less or equal n− 1 so if either |N3| < n− 1 or |N5| < n− 1, then:

lim
(ε1,ε2)→0+

q2n(x, yσ(1), . . . , yσ(2n), [0, 1]n)(ln ε1)−(n−1)(ln ε2)−(n−1) = 0

for almost all u, v, w1, w2 (we have to assume that w1 6= 0 and w2 6= 0). It means that
we have the convergence of the function under integral to 0 unless |N3| = n − 1 and
|N5| = n − 1. For such cases we have that N3 = {2, . . . , n}, N5 = {n + 2, . . . , 2n} or
N5 = {2, . . . , n}, N3 = {n+2, . . . , 2n}. Assuming the first situation (the second situation
is similar due to symmetry) we choose k = n, so that w2 = yσ(n+1)−yσ(n) and find more
precise upper and lower bounds for q2n.

We make a change of variables s1 = t1, s2 = t2 − t1, . . . , s2n = t2n − t2n−1 in the
integral for q2n and increase the domain of integral to s1 + sn+1 < 1, si < 1, i 6= 1, n+ 1,
si > 0, so it gives us the following upper bound:

q2n(x, yσ(1), . . . , yσ(2n), [0, 1]n) 6
n−1∏
i=1

Π(|yσ(i+1) − yσ(i)|2)

n−1∏
i=1

Π(|yσ(n+i+1) − yσ(n+i)|2)
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(2π)−2n
∫

s1+sn+1<1,s1>0,sn+1>0

s−11 e−
|w1|

2

2s1 s−1n+1e
− |w2|

2

2sn+1 ds1dsn+1

Taking into account that for i = 1, . . . , n

Π(|yσ(i+1) − yσ(i)|2) ∼ −2 ln ε1

Π(|yσ(n+i+1) − yσ(n+i)|2) ∼ −2 ln ε2

we see that the right hand side, multiplied by (ln ε1)−(n−1)(ln ε2)−(n−1), converges to

(2π)−2n22n−2
∫

s1+sn+1<1,s1>0,sn+1>0

s−11 e−
|w1|

2

2s1 s−1n+1e
− |w2|

2

2sn+1 ds1dsn+1

as (ε1, ε2)→ 0+.
But if we decrease the domain of integral to (2n− 2)si + s1 + sn+1 < 1, i 6= 1, n+ 1,

si > 0 we obtain for each δ > 0 the lower bound:

q2n(x, yσ(1), . . . , yσ(2n), [0, 1]n) >

(2π)−2n
∫

s1+sn+1<1,s1>0,sn+1>0

n−1∏
i=1

Π((2n− 2)
|yσ(i+1) − yσ(i)|2

1− s1 − sn+1
)·

·
n−1∏
i=1

Π((2n− 2)
|yσ(n+i+1) − yσ(n+i)|2

1− s1 − sn+1
)s−11 e−

|w1|
2

2s1 s−1n+1e
− |w2|

2

2sn+1 ds1dsn+1

Similarly as before we have for i = 1, . . . , n

Π((2n− 2)
|yσ(i+1) − yσ(i)|2

1− s1 − sn+1
) ∼ −2 ln ε1

Π((2n− 2)
|yσ(n+i+1) − yσ(n+i)|2

1− s1 − sn+1
) ∼ −2 ln ε2

and since Π(a) 6 C max(− ln a, 1) for some C (from the Lemma) the right hand side
converges multiplied by (ln ε1)−(n−1)(ln ε2)−(n−1) (by Lebesgue dominated covergence
Theorem), to

(2π)−2n22n−2
∫

s1+sn+1<1,s1>0,sn+1>0

s−11 e−
|w1|

2

2s1 s−1n+1e
− |w2|

2

2sn+1 ds1dsn+1

as (ε1, ε2)→ 0+. But then we deduce that in fact:

lim
(ε1,ε2)→0+

q2n(x, yσ(1), . . . , yσ(2n), [0, 1]n)(ln ε1)−(n−1)(ln ε2)−(n−1) =

(2π)−2n22n−2
∫

s1+sn+1<1,s1>0,sn+1>0

s−11 e−
|w1|

2

2s1 s−1n+1e
− |w2|

2

2sn+1 ds1dsn+1

In order to prove the bound for (10) we use (11) again with additional assumption
that k = min(N2∩N4) (it is the first moment i, when exactly one of the numbers σ(i+1)
and σ(i) is less or equal n). We gather multipliers in (11) as follows

q2n(x, yσ(1), . . . , yσ(2n), [0, 1]n) 6 (2π)−2nΠ(|w1|2)Π(|w2|2)∏
i∈N2∩N4\k

Π(|w2 + ε1S̃
u
i + ε2S̃

v
i |2)

∏
i∈N3∩N5

Π(|yσ(i+1) − yσ(i)|2)
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We may assume that u and v are bounded (since φm has bounded support) and therefore
for i ∈ N3:

Π(|yσ(i+1) − yσ(i)|2) 6 −C(ln ε1 + ln |Sui |)
and for i ∈ N5

Π(|yσ(i+1) − yσ(i)|2) 6 −C(ln ε1 + ln |Svi |)
For small enough ε1 we have ln |ε1uj | < −L < 0 and consequently for i ∈ N3:

Π(|yσ(i+1) − yσ(i)|2)

− ln |ε1uj |
6 −C ln ε1 + ln |Sui |

− ln |ε1uj |
6 C + C

| ln |Sui | − ln |uj ||
L

and similarly for i ∈ N5

Π(|yσ(i+1) − yσ(i)|2)

− ln |ε1vj |
6 C + C

| ln |Svi | − ln |vj ||
L

To find the bound on (10) we integrate the bound obtained above w.r.t. dw1dw2 and
use Cauchy inequality to separate integrals of powers of (1 + |w1|)(2+β)γΠ(|w1|2), (1 +

|w2|)(2+β)γΠ(|w2|2) and each Π(|w2+ε1S̃
u
i +ε2S̃

v
i |2). Then all these integrals are bounded

uniformly over u, v and small ε1, ε2. But the rest is already a function that does not
depend on ε1, ε2 and integrable w.r.t. u, v in any power and so the Theorem is proved. �

Remark 8. If we look carefully at the form of 9 we can see that in fact:

γ(ϕ) = (2π)−n2n−1n!

1∫
0

ϕ(W (t), . . . ,W (t))dt

It means that the weights we used are in fact “killing” self-intersections and what is left
in γ(ϕ) is just an additive functional of W (t). It seems that the same may happen in
Theorem 6 or more generally in Theorem 4, but unfortunately we can not provide more
details here. Such “killing” is clearly not happening in Theorems 3 and 5, since the limit
is still not zero if A does not contain the neighbourhood of the diagonal t1 = t2 = . . . = tn.

Clearly it is possible to consider many different Levy processes as X, since there are
a lot of known upper bounds for the density of Levy processes. Here we only study the
simplest case of symmetric stable processes.

Theorem 8. Let d > 2 and X(t) be a symmetric stable process in Rd of index α ∈ (0, 2).
Suppose that n = 2 or k < d. Let

ψ(y1, . . . , yn) =
∏
i 6=j

|yi − yj |d−αφM (y),

where φM is any continious non-negative bounded function with support inside M . If
k < αn

n−1 , then there is a limit of γε(ψ, F,A) in L2 for any Borel A ⊂ [0, 1]n. If φM (w) > 0
at some w ∈ H ∩M and A has non-zero Lebesgue measure then the limit is not zero.

Proof. From the well-known results for the density of symmetric stable processes we have
(see for example [1])

C1|x− y|α−d 6
1∫

0

p(t, x, y)dt 6 C|x− y|α−d

with some constants C1 > 0, C > 0. Therefore we can apply Theorem 3 with Q = 1
and pi = 1

d−α similarly as in Theorem 5 to prove this Theorem. For the case n = 2
we just have to use Theorem 4 instead and note, as before, that on a compact the

multiplier |y1−y2|d−α is equal to (
1∫
0

p(t, y1, y2)dt)−1 multiplied by a bounded continuous

function. �
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This result also leads to a new definition of self-intersection local time for symmetric
stable processes, as long as d < αn

n−1 . Note that it is well-known that under condition

d < αn
n−1 the symmetric stable process has n-fold intersections with probability 1 (see [8]),

which corresponds to our result perfectly, meaning that we are able to construct the
corresponding local times for all cases, where self-intersections are known to exist.

Let X(t) be a solution of the following SDE:

(12) dX(t) =

l∑
i=1

Li(X(t)) ◦ dWi(t), X(0) = x ∈ Rd

We fix the choice of L1, . . . , Lk such that they are a basis of the first level of stratification
of Lie algebra of left-invariant vectors fields of a Carnot group G = (Rd, •) (stratified Lie
group, obtained by introducing a specific group action • on Rd, see [2] for details). We
call this process a Brownian motion on Carnot group (by analogy with Brownian motions
on Lie group, introduced by Ito [7]). The framework of this paper was introduced with
the aim to deal with local times for such processes, and now we are ready to show that
our general theory is indeed applicable to this case. We will need the following notation:
ρ̃ is a natural distance on the given Carnot group G (Carnot-Caratheodory distance,
see [2]), p̃i are such that in a fixed coordinate system (x1, . . . , xd) 7→ (λp̃1xd, . . . , λ

p̃nxd)

is a group automorphism for all λ > 0 (dilations in G, see [2]), and Q̃ =
d∑
i=1

p̃i is a

homogeneous dimension of G. We will assume that Q̃ > 3, since for Q̃ 6 2 Carnot group
is just a Euclidean space with usual addition and we have standard Brownian motion as
X.

Theorem 9. Let X(t) be a Brownian motion on Carnot group defined as above. Suppose
that k < d. Let

ψ(y1, . . . , yn) =
∏
i6=j

ρ̃(yi, yj)
Q̃−2φM (y)

where φM is any continious non-negative bounded function with support inside M . If
mf (yi) 6 2 or mf (yi) = 3, n = 2 for all yi, i = 1, . . . , n such that (y1, . . . , yn) ∈ H ∩M ,
then there is a limit of γε(ψ, F,A) in L2 for any Borel A ⊂ [0, 1]n. If φM (w) > 0 at
some w ∈ H ∩M and A has non-zero Lebesgue measure then the limit is not zero.

Proof. The following well-known facts can be found in [2] (see also [13] for density esti-
mates and [10] for the comparison of pseudo-distances). There are positive constants C
and γ, such that for all x ∈ Rd, y ∈ Rd, t ∈ [0, 1]

p(t, x, y) 6 Ct−Q̃/2e−γρ̃(x,y)
2/t

and with obvious calculations we get: for all x ∈M1, y ∈M1

1∫
0

p(t, x, y)dt 6 Cρ̃(x, y)2−Q̃

Moreover the distance ρ̃ is locally equivalent to ρ in our definition with S(x, y) = x−1 • y
(x−1 is the inverse of x in G), Q = Q̃ and pi = p̃i and using the same coordinate
system in the definition of ρ, as the one in the definition of dilations. But since both
ρ̃ and ρ are bounded on compacts, they are equivalent on any compact. It means our
assumptions hold and Theorem 3 can be applied. Note, that since pi are positive integers,

the condition mf (yi) <
2n
n−1 (

d∑
l=1

pl −Q = 0 in this case) can be resolved as mf (yi) 6 2

or mf (yi) = 3, n = 2, which completes the proof of the Theorem. �
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This theorem leads to a new definition of self-intersection local times on Carnot group
(see [12] for a result related to this).

3. Local times for independent processes

3.1. n-fold local time on the surface for independent processes. We want to be
able to cover the classical case of intersection local time for two or more independent and
possibly different processes, but unfortunately Theorem 3 can not provide that. Moreover
to take the independence into account we are forced to go all the way back to the definition
of local time, change it to reflect the presence of independent processes and prove the
corresponding versions of Theorems 1, 2. We could also try to use Theorems 1, 2 directly
(since technically the case of the intersection of independent processes is still included
in our general formulation), but that seems to lead to some complications related to
the nature of our assumptions (for example in (5) the independence appears as some
complicated structural property of S and F ). Be aware that the notation in this section
will be slightly different from the previous section, meaning that we use the same letters
for objects that can be different (so we have to repeat all basic definitions).

Suppose that Y1(t), . . . , Yn(t) are n independent Markov processes, each taking values
in Rd and there are non-negative functions p(k, t, x, y), continuous for t > 0, which are
densities of the distribution of Yk(t) w.r.t. y, given that Yk(0) = x. Let m be a positive
integer, F : Rnd → Rm be an infinitely differentiable function, ψ : Rnd → R be a
non-negative bounded continuous function. We define approximations of local time as
follows

γε(ψ, F,A) =

∫
A

ψ(Y1(t1), . . . , Yn(tn))fm,ε(F (Y1(t1), . . . , Yn(tn)))dt1 . . . dtn

where A ⊂ [0, 1]n is a Borel set and fm,ε is as defined earlier.
We denote H = {z = (z1, . . . , zn) ∈ Rnd|F (z1, . . . , zn) = 0} and assume that the

matrix of derivatives F ′ of F at z has maximal rank for all z ∈ H. Since F is defined as
before, we also have similar definitions of θz and ν.

Define

q2n(x1, . . . , xn, z1, . . . , z2n, B) =

=

∫
B

n∏
k=1

1tk<tk+np(k, tk, xk, zk)p(k, tk+n − tk, zk, zk+n)dt1 . . . dt2n

for any Borel set B ⊂ [0, 1]2n. Note that there is an injection τσ of σ = (σ1, . . . , σn) ∈ Sn2
into S2n permuting j and j + n according to σj :

τσ(j) = j + n(σj(1)− 1), τσ(j + n) = j + n(σj(2)− 1); j = 1, . . . , n

which we will use in the following as a covenient abbreviation.

Theorem 10. Fix Yk(0) = xk ∈ Rd, k = 1, . . . , n and non-negative bounded continuous
function ψ on Rnd with suppψ ⊂M . If for all σ = (σ1, . . . , σn) ∈ Sn2 we have

q2n(x1, . . . , xn, yτσ(1), yτσ(2), . . . , yτσ(2n), Aσ)) < +∞

for almost all y ∈M2 w.r.t. Lebesgue measure, where

Aσ = {t : (tτσ(1), . . . , tτσ(n)) ∈ A; (tτσ(n+1), . . . , tτσ(2n)) ∈ A},

and there is a function hσ(x, y), which satisfies the equality

hσ(x, y) = ψ(y1, . . . , yn)ψ(yn+1, . . . , y2n)q2n(x1, . . . , xn, yτσ(1), yτσ(2), . . . , yτσ(2n), Aσ),
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for almost all y ∈ M2 w.r.t. Lebesgue measure, such that hσ(x, y) is continuous for
almost all y ∈ M2 w.r.t. ν(0, dy1 . . . dyn)ν(0, dyn+1 . . . dy2n) and there are such positive
numbers δ and β that

(13) sup
|u|<δ,|v|<δ

∑
σ∈Sn2

∫
M2

(hσ(x, y))1+βν(u, dy1 . . . dyn)ν(v, dyn+1 . . . dy2n) < +∞

then there is a limit of γε(ψ, F,A) in L2. If additionally hσ(x, y) > 0 for y in a neigh-
bourhood of some z ∈ (H ∩M)2, then the limit is not zero.

Proof. The proof is similar to the proof of Theorem 1, except for the formula for hσ,
which can be found as follows.

Eγε1(ψ, F,A)γε2(ψ, F,A) =

= E

∫
A

ψ(Y1(t1), . . . , Yn(tn))fm,ε1(F (Y1(t1), . . . , Yn(tn)))dt1 . . . dtn∫
A

ψ(Y1(tn+1), . . . , Yn(t2n))fm,ε1(F (Y1(tn+1), . . . , Yn(t2n)))dtn+1 . . . dt2n =

∑
σ∈Sn2

∫
A×A

n∏
k=1

1tτσ(k)<tτσ(k+n)
Eψ(Y1(t1), . . . , Yn(tn))fm,ε1(F (Y1(t1), . . . , Yn(tn)))

ψ(Y1(tn+1), . . . , Yn(t2n))fm,ε1(F (Y1(tn+1), . . . , Yn(t2n)))dt =

=
∑
σ∈Sn2

∫
Aσ

∫
R2nd

n∏
k=1

1tk<tk+np(k, tk, xk, yτσ(k))p(k, tk+n − tk, yτσ(k), yτσ(k+n))

ψ(y1, . . . , yn)ψ(yn+1, . . . , y2n)

fm,ε1(F (y1, . . . , yn))fm,ε2(F (yn+1, . . . , y2n))dydt =

=
∑
σ∈Sn2

∫
Rm

∫
Rm

∫
R2nd

hσ(x, y)fm,ε1(u)fm,ε2(v)ν(u, dy1 . . . dyn)ν(v, dyn+1 . . . dy2n)dudv

�

Let M1(j), j = 1, . . . , n be a family of bounded open sets such that M ⊂ M1(1) ×
. . .×M1(n). We make the same assumptions as before on p.

(1) Suppose that p(j, t, x, y) is continuous at (0, x, y) for all x 6= y and j = 1, . . . , n.
(2) Let a family of differentiable functions S(j, ·) : R2d → Rd, j = 1, . . . , n be

such that S(j, x, x) = 0 for all x, S(j, x, y) 6= 0 for x 6= y and the derivatives
of S(j, x, y) w.r.t. x and w.r.t. y are non-degenerate (as two separate d × d
matrices) for all x, y and j = 1, . . . , n. We suppose that for all j = 1, . . . , n there
are positive numbers pi(j) > 0, i = 1, . . . , d, Q(j) > 2 and C1 > 0, such that for
all x ∈M1(j), y ∈M1(j) with x 6= y:

(14)

1∫
0

p(j, t, x, y)dt 6 C1(ρ(j, x, y))2−Q(j).

where ρ(j, x, y) = max
i=1,...,d

|Si(j, x, y)|1/pi(j).

Note that we do not need pseudo-triangle inequality for ρ, which was needed for self-
intersection case.

Denote
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Rσ,x(y1, . . . , y2n) = (S(1, x1, yτσ(1)), S(1, yτσ(1), yτσ(n+1)), . . .

. . . , S(n, xn, yτσ(n)), S(n, yτσ(n), yτσ(2n))).

Let T (z) be any 2nd × (2nd − 2m) matrix composed of the vectors, forming a basis of
the tangent space at z of H ×H, written in columns.

Theorem 11. Fix σ ∈ Sn2 , z = (z1, z2, . . . , z2n) ∈ (H∩M)2 and real numbers k1, . . . , k2n.
If for all λ1 > 0, . . . , λ2n > 0 not all zero, but with λ2j = 0 if zτσ(j) 6= zτσ(j+n) for
j = 1, . . . , n, λ2j−1 = 0 if xj 6= zτσ(j) for j = 1, . . . , n and λj = 0 if kj > 0 for
j = 1, . . . , 2n (if all λ are forced to be zero the condition is trivially fulfilled), there exists
I = (i1, . . . , i2(nd−m)) ∈ N(R′σ,x(z)T (z)), such that

2n∑
j=1

λj(
∑

s:[is/d]=j

pismod d([j/2]) + kj) > 0

then there is an open neighbourhood Uz of z, δ > 0 and β > 0 such that

(15) sup
|u|<δ,|v|<δ

∫
Uz

n∏
j=1

(ρ(j, xj , yτσ(j))
k2j−1ρ(j, yτσ(j), yτσ(j+n))

k2j )1+β

ν(u, dy1 . . . dyn)ν(v, dyn+1 . . . dy2n) < +∞

Proof. The proof is the same as the proof of Theorem 2 with natural adjustments for the
different form of Rσ,x. �

3.2. Intersection local time for independent processes. We consider the following
case

F (y1, . . . , yn) = (f1(y1)− f2(y2), . . . , fn−1(yn−1)− fn(yn))

where fi : Rd → Rk, i = 1, . . . , n (k 6 d is fixed) are continuously differentiable functions
with derivative of maximal rank at all points.

Denote as DS(z1, . . . , zn) the matrix of the derivatives w.r.t. (y1, y2, . . . , yn) of the
function (S(z1, y1), . . . , S(zn, yn)) at (y1, . . . , yn) = (z1, . . . , zn), which have d× d blocks
equal to S′2(z1, z1), . . . , S′2(zn, zn) on diagonal, and zeros elsewhere. Let TH(z1, . . . , zn)
be any nd×(nd−k(n−1)) matrix composed of the vectors, forming a basis of the tangent
space at z1, . . . , zn of H, written in columns.

Theorem 12. Let ψ(y1, . . . , yn) = φM (y), where φM is any continious non-negative
bounded function with support inside M . Suppose that for all (z1, . . . , zn) ∈ H ∩M and
for all non-negative λ1, . . . , λn, not all equal to zero, there is a multiindex

I ∈ N(DS(z1, . . . , zn)TH(z1, . . . , zn)),

such that

(16)

n∑
j=1

λj(
∑

s:[is/d]=j

pismod d(j) + 2−Q(j)) > 0

Then there is a limit of γε(ψ, F,A) in L2 for any Borel A ⊂ [0, 1]n. If φM (w) > 0 at
some w ∈ H ∩M and for some σ ∈ S2n we can find z ∈ (H ∩M)2 in any neighbourhood
of (w,w), such that q2n(x1, . . . , xn, zτσ(1), . . . , zτσ(2n), Aσ) > 0 and xj 6= zτσ(j), zτσ(j) 6=
zτσ(j+n) for all j = 1, . . . , n, then the limit is not zero (xi = Yi(0)).

Proof. We can define hσ(x, y) exactly as in the equality in Theorem 10 if

q2n(x1, . . . , xn, yτσ(1), . . . , yτσ(2n), Aσ) < +∞
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and zero otherwise. By Proposition 2 such hσ(x, ·) is continuous at y if xj 6= yτσ(j) and
yτσ(j) 6= yτσ(j+n) for all j = 1, . . . , n. Since under our assumptions ν(0, dy1 . . . dyn) is
zero on any set {y|yj = a} we obtain that the set

{y|∃j ∈ {1, . . . , n} : xj = yτσ(j)} ∪ {y|∃j ∈ {1, . . . , n} : yτσ(j) = yτσ(j+n)}
have zero measure w.r.t. ν(0, dy1 . . . dyn)ν(0, dyn+1 . . . dy2n) and therefore such hσ sat-
isfies the continuity condition of Theorem 10. To check the integrability condition (13)
of Theorem 10 it is enough to check the condition (15) in Theorem 11 for a fixed
z ∈ (H ∩M)2. Note that if the limit exists it is non-zero, since by our construction
there is a point z ∈ (H ∩M)2 (in a neigbourhood of (w,w)), such that hσ(x, z) > 0 and
hσ(x, ·) is continuous in a neighbourhood of z. Therefore in the following we can fix z
and σ ∈ Sn2 and focus on proving (15) using Theorem 11. We assume that the starting
points of the processes Yj(0) = xj are also fixed.

Let us describe the structure of R′σ,x(z)T (z) in our special case. The matrix R′σ,x(z)
can be seen to have the following structure in the column basis where y1, . . . , y2n has
coordinates yτσ(1), yτσ(2), . . . , yτσ(2n): only non-zero elements are in 2d × 2d diagonal
blocks constructed as shown:(

S′2(j, xj , yτσ(j)) 0
S′1(j, yτσ(j), yτσ(j+n)) S′2(j, yτσ(j), yτσ(j+n))

)
where j is an index of the 2d× 2d block.

To describe T (z) we split rows in 2n blocks of size d, and we split columns into two
blocks of size k and 2n blocks of size d − k. Denote Gj(z) = f ′j(z)

T (f ′j(z)f
′
j(z)

T )−1. In
the first block of columns row blocks 1, 2 . . . , n are equal to G1(z1), . . . , Gn(zn) corre-
spondingly. In the second block of columns row blocks n + 1, n + 2, . . . , 2n are equal to
G1(zn+1), . . . , Gn(z2n) correspondingly. In the column block i+ 2, i = 1, . . . , 2n the row
block i is equal to Li(zi), where Li(a) be any d× (d− k) matrix consisting from vectors,
giving basis of tangent space of {u ∈ Rd : fi(u) = fi(a)} at a, written in columns (those
vectors are orthogonal to column vectors of Gi(a)). The rest of the blocks contain only
zeros. It is easy to see that all column vectors are such that directional derivatives of
(F (z1, . . . , zn), F (zn+1, . . . , z2n)) along them are zero and they are linearly independent,
so we have a basis in the tangent space of H ×H at z.

We split the set of indices {1, . . . , n} into two disjoint sets N1, N2 according to σ:

N1 = {j = 1, . . . , n : σj(1) = 1}, N2 = {j = 1, . . . , n : σj(1) = 2}
Denote for j ∈ N1

Aj(x, y) =

(
S′2(j, xj , yτσ(j))Gj(yτσ(j)) 0

S′1(j, yτσ(j), yτσ(j+n))Gj(yτσ(j)) S′2(j, yτσ(j), yτσ(j+n))Gj(yτσ(j+n))

)
and for j ∈ N2

Aj(x, y) =

(
0 S′2(j, xj , yτσ(j))Gj(yτσ(j))

S′2(j, yτσ(j), yτσ(j+n))Gj(yτσ(j+n)) S′1(j, yτσ(j), yτσ(j+n))Gj(yτσ(j))

)
Also for all j = 1, . . . , n

Cj(x, y) =

(
S′2(j, xj , yτσ(j))Lj(yτσ(j)) 0

S′1(j, yτσ(j), yτσ(j+n))Lj(yτσ(j)) S′2(j, yτσ(j), yτσ(j+n))Lj(yτσ(j+n))

)
Then it easy to see that R′σ,x(z)T (z) is equal to (we changed the order of d×d column

blocks starting from the third according to τσ for convenience)
A1(x, z) C1(x, z) 0 . . . 0
A2(x, z) 0 C2(x, z) . . . 0
. . .

An(x, z) 0 0 . . . Cn(x, z)


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We recall that we need to prove that for all λj > 0, not all zero, we can select linearly
independent rows from this matrix according to multiindex I, such that

2n∑
j=1

λj(
∑

s:[is/d]=j

pismod d([j/2]) + 2−Q(j)) > 0,

where λ2j−1 = 0 if xj 6= yτσ(j) and λ2j = 0 if yτσ(j) 6= yτσ(j+n). Note that if yτσ(j) =
yτσ(j+n) we have that S′1 = −S′2 in the same row block of Aj and Cj . So for such j we can
transform matrix to eliminate S′1 inside Cj (by adding second column block to the first
inside Cj , which does not change the rest of the matrix). Moreover we can add the first
column block to the second, and obtain that if yτσ(j) = yτσ(j+n), then we have zeros in the
second column block intersecting second row block inside Aj . This allows us to separate
all second row blocks inside Aj for such j from the rest of the matrix: we may choose to
select l(d − k) + k linearly independent rows from these column blocks separately from
the rest, where l is the numbers of such blocks. Note that those blocks, after we drop zero
columns, will join into matrix DS(z1, . . . , zn)TH(z1, . . . , zn), if TH is bulit similarly to T
using matrices G and L, with some row blocks skipped and zero columns removed (some
rows in Aj may have different sign, but it can be changed easily, without impacting
the linear independence of the selection). It means that according to our assumption
we may select rows from it to get that the part of sum that corresponds to λ2j , with
j taken from the selection, is positive (we can set all other λj in the assumption (16)
to zero). In the remainder of the matrix only one column block remain in Aj , and it
contains S′2(j, xj , yτσ(j))Gj(yτσ(j)) in its first row block for all j. So now we can consider
all first rows blocks from all Aj such that xj = yτσ(j), and determine that the selection
from such blocks can also be done separately if we choose to select l(d − k) + k rows
from these l blocks. Moreover the submatrix for such selection is again has the form of
DS(z1, . . . , zn)TH(z1, . . . , zn), with some row blocks skipped and zero columns removed.
It means that the part of the sum that corresponds to λ2j−1 for such j is also positive.
But the remainder of the sum is zero and the remainder of the selection of linearly
independent rows is always possible, so the Theorem is proved.

�

Remark 9. Note that the sufficient condition in Theorem 12 is much more complicated,
then it was in Theorem 3. This is because we wanted to take advantage of possible
interactions between fj in the applications, so such interaction had to be present in
our condition. It is possible to give a more simple sufficient condition with interaction
removed:

(17)
∑
j 6=i

mfj (yj) <

n∑
j=1

(

d∑
l=1

pl(j) + 2−Q(j)), i = 1, . . . , n

for all (y1, . . . , yn) ∈ H ∩M , which provides the condition (16) in Theorem 12 and is
similar to the condition (6) in Theorem 3.

Remark 10. In Theorem 12 the starting point of the process and the choice of ψ do
not play any role, in the sense that our conditions provide the existence for any starting
points and any suitable ψ. We do not know if it is possible to find weaker assumptions
than (16) such that they provide existence, but only for some starting points and/or for
a special choice of ψ.

3.3. Applications. Some applications we presented for self-intersection local times,
namely Theorems 5, 8, 9 has their counterparts for intersection local times of inde-
pendent process, if we assume that all Yi have the same transition density. We will not
provide the details, only note that the condition (17) gives exactly the same conditions in
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all cases (except the conditions related to the multiplier ψ, which are not needed) for the
existence of intersection local times of independent process, as we had for self-intersection
local times.

Here we provide an interesting application for interaction between fi in the condi-
tion (16) of Theorem 12 in the case of Brownian motion on Carnot group.

Theorem 13. Let n = 2, d = 3 and processes Y1, Y2 are Brownian motions on Carnot
group as defined by (12) with l = 2 and L1(x) = (1, 0, x2), L2(x) = (0, 1,−x1) for both
processes. If k = d = 3 and at some point z = (z1, z2) ∈ R3 such that f1(z1) = f2(z2) the
vectors L1f1(z1), L2f1(z1), L1f2(z2), L1f2(z2) span the whole R3, then there is δ > 0,
such that for any ψ with suppψ ⊂ {(y1, y2) : |y1−z1| < δ, |y2−z2| < δ} and ψ(z1, z2) > 0
there is a nonzero limit of γε(ψ, F, [0, 1]2) in L2.

Proof. Using Theorem 12 we can see that we only need to show that our conditions
provide the condition (16). We take S(x, y) = x−1 • y, where • is a group action on R3

and x−1 = −x is the inverse element to x in this group:

x•y = (x1+y1, x2+y2, x3+y3+x2y1−x1y2), x−1•y = (y1−x1, y2−x2, y3−x3+x1y2−x2y1),

Then the results of [13] show that the inequality (14) holds with such S and p1 = p2 = 1,
p3 = 2, Q = 4. But for this S we obtain

DS(z1, z2) =


1 0 0 0 0 0
0 1 0 0 0 0

−(z1)2 (z1)1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 −(z2)2 (z2)1 1


and since we can also define (in terms of 3× 3 blocks)

TH(z1, z2) =

(
f ′1(z1)−1

f ′2(z2)−1

)
then (again in terms of 3× 3 blocks)

DS(z1, z2)TH(z1, z2) =

(
Λ−1(z1)f ′1(z1)−1

Λ−1(z2)f ′2(z2)−1

)
where we denoted

Λ(zi) =

 1 0 0
0 1 0

(zi)2 −(zi)1 1

 ,Λ−1(zi) =

 1 0 0
0 1 0

−(zi)2 (zi)1 1


Note that L1f1(z1), L2f1(z1) are two first columns of f ′1(z1)Λ(z1) and L1f2(z2), L1f2(z2)
are two first columns of f ′2(z2)Λ(z2). Consequently the row 3 of DS(z1, z2)TH(z1, z2) is
orthogonal to both L1f1(z1), L2f1(z1) and the row 6 of DS(z1, z2)TH(z1, z2) is orthogonal
to both L1f2(z2), L2f2(z2), meaning that these two rows are linearly independent under
the conditions of the Theorem.

It follows that we can choose rows 3, 6 and one of the rows 1, 2 of DS(z1, z2)TH(z1, z2),
that they are linearly independent (if both rows 1 and 2 can be written as a linear combi-
nation of rows 3, 6, then the rows 1, 2, 3 are linearly dependent, which is a contradiction).
This gives us coefficients 1, 0 near λ1, λ2 correspondingly in the condition (16) (the sum
of pi equal to 3 and 2 correspondingly). Similarly choosing rows 3, 6 and one of the
rows 4, 5 we obtain coefficients 0, 1 near λ1, λ2 correspondingly, which proves the con-
dition (16). �
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