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O. ARYASOVA AND A. PILIPENKO

ON EXPONENTIAL DECAY OF A DISTANCE BETWEEN
SOLUTIONS OF AN SDE WITH NON-REGULAR DRIFT

To the memory of our colleague Sergey Makhno

‘We consider a multidimensional stochastic differential equation with a Gaussian noise
and a drift vector having a jump discontinuity along a hyperplane. The large time
behavior of the distance between two solutions starting from different points is stud-
ied. We find a sufficient condition for the exponential decay of the distance if the
drift does not satisfy a dissipative condition on a given hyperplane.

1. INTRODUCTION

Consider a d-dimensional stochastic differential equation (SDE)

W dioi(x) = (=hpe(x) + alpe(2))) dt + ) onlr(@))dwi(t),t > 0,
k=1

vo(r) = ,

where z = (z!,...,2%) € R4 X\ > 0, (w(t))i>0 = (wi1(t),...,wm(t))i>o0 is a standard
m-dimensional Wiener process, a : R — R? and o = (01,...,0,,) : RY = R? x R™ are
measurable functions.

It is well known that if «, o) are Lipschitz continuous and A is large enough, then the
distance between solutions (1) and ¢:(x2) to (1), which starting from two different
points x1 and 2, converges to 0 in L,(Q, F,P) as t — oo, (e.g., [8], [12]). Moreover,
the solutions converge themselves to a stationary solution of (1). Lipschitz continuity
of a may be relaxed; it can be replaced, for example, by dissipative assumption. It
worth noting a recent work by Flandoli et al. [6]. The authors consider an SDE with
drift belonging to C! and being dissipative out of some bounded set U and a diffusion
coefficient o being constant. They prove the synchronization of the flow for large enough
0. Despite the drift is not supposed to be globally dissipative, the technique of their
paper does not allow to consider a discontinuous drift.

In one-dimensional case, results on exponential decay of a distance between solutions
to an SDE with non-regular drift were obtained in [2, 3].

We discuss a similar problem if o), are Lipschitz continuous but o may have a jump
discontinuity at a hyperplane. We do not assume that coefficients of the equation satisfy
dissipative conditions, and the results on convergence of solutions to zero are new. As
a corollary of our results on convergence of distance between solutions, we get existence
and uniqueness of a stationary solution of

t m t
0 = s +/ (=Apu + alpu))du + Z/ o (pu)dwi(u), s < t.
s h—1Vs
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Note that all our results concern strong solutions to SDEs, i.e., all solutions are de-
fined on the given probability space and expectations are taken with respect to the given
probability measure. If one is interested in weak solutions and a distance between distri-
butions of y;(x) and ¢;(y), then assumptions on coeflicients may be relaxed essentially,
see for example [10, 11].

2. LARGE TIME BEHAVIOR OF THE DISTANCE BETWEEN TWO SOLUTIONS
We consider the SDE (1). Denote
S={zxecR?: 2¢=0},
RY ={zeR?: 2% > 0},R? = {z e R? : 27 < 0}.
In what follows we assume that coefficients of (1) satisfy the following conditions.
(A1) The function « is bounded.
(A2) Lipschitz continuity on RY: There exists K, > 0 such that for all z,y € R% or
z,y € RY,
a(z) — a(y)] < Kalz —y.
It follows from (A2) that for all Z € S, there exist limits
at(Z) = lim a(z),a_(2) := lim ax).
T—T, T—T,
a:ERi zeR?
(B1) The function o is bounded. .
(B2) Lipschitz continuity on R%: There exists K, > 0 such that for all z,y € R,
jo(2) = o(y)| < Kolz —yl.

(B3) Uniform ellipticity: There exists a constant B, > 0 such that for all 2 € R?,
6 € R?,

(2) 0*o(z)o*(2)0 > B,|0]>.
Under these assumptions there exists a unique strong solution to (1) (see, for example,

[16]).
Remark 2.1. Note that since o is uniformly elliptic, the solution to equation (1) spends
zero time on S. So we can redefine the function « on S in an arbitrary way.

The main result of the paper is following:

Theorem 2.1. Let conditions (A1), (A2), (B1), (B2), (B3) hold. Then for anyp >1:
JA = Ala,0) >0 VA > A 30, = C1 (N, a,0) >0 3Cy = Ca(N\,a,0) > 0: Va,y € RY,

1 .
3) (Elpe(y) — @e(@))7 < Cre” 'y — .
Here pi(x) is a solution to equation (1) starting at the point x.
Remark 2.2. The values of A, C7, Cy will be defined in the proof.

Proof. Tt can be checked (see [1], Theorem 4 and (51)) that @;(-) is Gateaux differentiable
in L,(Q,F,P), p>0, ie., for all z € R? there exists V() such that for all v € R,
t >0,

P

pilz+ev) = pile) —Vpi(z)v] =0, e = 0.

(4) E -
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Moreover, the process (Vi (x))i>0 is continuous in z in L,(Q2, F,P), p > 0. This imply
that for z,y € R,

(5) %@w—%mwaé(v%@+f@—x»y—xwa

where Vi, (+) is the derivative.
Using (5) we get

1
(6) EW%@)*@AwW’SEKA Kvw4x+£@*xbdrﬂﬂwﬂpﬁ\y*xP~2£}mV¢AZH“

So to obtain (3) we need to get an estimate for sup,cga E|Vp:(2)[P. We consider the
case p = 1 only. The general case can be considered similarly.
If ay(z) = a_(z),z € S, then Y;(x) := V() is a solution to the SDE

a4 A = A+ Vala) V@) + 3 Vou(au (o) Vla)dun (0t 2 0,
k=1

Yo(z) = E,
where E is a d x d-identity matrix. This formula is well known when o, o € C'(R¢). For

Lipschitz continuous functions a and o the result can be found in [4], Th. 3.3.1.

Remark 2.3. It follows from Rademacher’s theorem that the Lipschitz continuous func-
tions a and o are differentiable almost everywhere with respect to the Lebesgue measure.
We define Va(pi(z)), Vo(pe(x)) in an arbitrary way at the points where they do not
exist. Since o is non-degenerate, the distribution of ¢;(x) is absolutely continuous. So
Va(pi(x)), Vo(pi(x)) are defined uniquely up to the set of probability zero.

If g () # a_(z),x € S, then the distributional derivative of « is equal to
Va(z) + D(z)dg, z € RY.

Here dg is the standard surface measure on S (if d = 1, dg(z) is the Dirac delta function),

and
0 -+ 0 al(z)—al(z)

D@)=1: - : ,z€eS.
0 -+ 0 a%(z)—a’(x)

Formally, in this case the integral form of equation (7) becomes
t
(®) E@%=E+/[A+VM%(MK@MH

/ D(ps(x (2)0s(ps(x ds—i—Z/ Vo (ps(x))Ys(x)dwi(s).

It was proved in [1] that Y;(z) is a solution to equation (8), where by

/Dws ()55 (105 () ds

we mean the integral with respect to the local time of the process (¢¢(x))¢>0 on the
hyperplane S:

/D% ()AL (p(x)),

where

. I
L (o) = Lign 5o [ Biespeaiseds, ca = (0.0,0..,0,1).
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Note that the local time of the process (¢¢(x));>0 on the hyperplane S coincides with

the local time of the d-th coordinate of the process (¢;(z)):>0 at the point 0, which is
defined by the formula

R A
) L9 @) = i 52 [ Vet

Then equation (8) can be rewritten as follows
t
(10) Yile)= B+ [ A+ Va(au (@)Y (e)ds+
0

/ D{a(@)Y ()L (p%(x) + 3 / Vo (s () Ya(@)du (s).
0 k=1 0

It is known that there exists a unique strong solution to equation (10) (see, for example,
[13], Ch. V, Th. 7).

Set
(11) K, :=ess sup |Va(x)],
z€R?
(12) K, :=ess sup [Vo(x)|.
z€R?
Here and below we denote by | - | both the Euclidean norm of vectors and the Hilbert-

Schmidt norm of matrices. Note that (A2), (B2) are satisfied with K, = Ko, K, = K,
respectively. Put

ID]|oc = sup [D(z)].
€S

Define
h(t) = (2X — 2Ko — K))t — 2| D] LY (¢ (2)).

Lemma 2.1. For all T > 0,

sup Ee"D|v;(x)? < d.
te[0,7]

The proof of Lemma follows from Ito’s formula. For details, see Appendix.

Using the Holder inequality we obtain

1/2 1/2
(13) Ei@)] < (BOyi(@)?) " (B ) <
dL/2e(A Kot 3K2)t (Ee2|\anL2<w<z>>>”2 ,

Lemma 2.2. For each t > 0,

(14) sup ELO(¢(x)) < 2.
rERA BO’

where

p(t, \) = ||a?|sot + 1+g)\t %ﬂw? t
’ o 3 2\ o

and ||a|lec = sup,cpa |a(2)], ||o]lc = SUpyepa |0(2)|, By is the uniform ellipticity con-
stant from equation (2).



ON EXPONENTIAL DECAY OF A DISTANCE 5

To prove the Lemma we use Tanaka’s formula. See Appendix for details.

It is well known that L (p(z)) is a W-functional of the Markov process (¢4 ()):>0 (see
[5], Ch. 6-8 for theory and terminology). Then the following estimates on the moments
of L¥(p(x)) are true.

Proposition 2.1 ([7], Ch. II, §6, Lemma 3). For alln >1,¢> 0,
S n | . ELS "
sup B (Ly (¢(x))) " < n!( sup ELY (p(2)) ) -

z€R4 z€R4

Since LY(¢%(x)) = L7 (¢(x)), then using Proposition 2.1 and Lemma 2.2 we obtain
the following modification of Khas'minskii’s Lemma (see [9] or [15], Ch.1 Lemma 2.1).

Lemma 2.3. Let ty > 0 be such that %{M < 1 and (14) hold. Then for allt < to,

0(,,d 1
(15) sup Ee2IPll=Li(e" (@) < '
reR 1- %P(tm A)

Using the inequality (15) we can estimate the right-hand side of (13) for small ¢.
Consider now an arbitrary ¢ > 0. Put n = [%} + 1, and

80:0,81 :to,...,sk:kjto,...,sn,1 :(n—1>t0,8n:t.

We have

n—1
Ee2IPlL (@) — R H 2Pl (Lngrl(%@d(x))*Lgk (¢ (@)

k=0
E (E

n—2
E { 11 2Dl (L8, (¢ @)=L, (")) (eannoo(Lf:n(sod(z))Lf:“(wd(x))) ,f%l) } .
k=0

It is not hard to see that
(16) P{L}, J(¢(2)) = L (p(x)) + 0, L7 (p(x)), s >0,t >0} =1,

where 6 is the shift operator.
Using (16) and Lemma 2.3 we get for k =1,...,n,

E <e2||D|oo(L2k<w<l(x>>—L2kl(so%x))) !fs,”) _E (eannwe%,lLi’ki%,l(w%)) |f5k71) <

H €2||D||oo (Lgkﬂ(Sod(z))—LSk(sad(w))) |F5n—1] ) —

k=0

sup 2Pl Ll o (#7(2)) < sup Ee2IPlloe L2, (#7(2)) < 1 s,
TRy
Then
(17)
Ee2IPl= L8 (@) < 2|\D|\1 B T 6210 (B (1 @)=28, (@) o o
1= =5=p(to, A) o
! _ (- 2Eh=p00.0) _ = ([d5]41) 1n(1- 251000,

(1 - %P(toa )\))n
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The right-hand side of (17) does not depend on z. So we have

(18) sup Be2IPlwLi(e @) < o (5] 1) m(1= 215t p(a0.0))
z€R

Substituting this inequality into (13) we get the following inequality for any ¢t > 0 :

1/2

(19)  sup E|Y;(z)| < d/2e(ATKaF3 L) gyp (EemanmL?(wd(x)))
zeR4 r€Rd

g1 /26 (Kt B2 )t=3 (35 +1) In(1- 21512 p(t0.0))

dl/z\/ 2HD1H (A Eat 3 KE =5t (1= 2Bl (20, 3)) )¢
| — 2Dl g0y
B, 5

First, assume that A > 1/2. Then for all A > A and ¢t > 0,

2
plt. ) < (14 33¢) el FTlol )+ oot

From (19) we obtain

(20) sup B|Yi(z)| < C1 (A a,0) ( MK = gk In (1=K ty/* — Kato— Kj,\tz/z))t,
z€R4
where
1
(21) Ci(\ a,0) =d'/?

N eIy

1
K:Ka+§K§,

2||D||so 21| oo
K= W0 a4 ol 1 = 220 oy,

4HD||oo

VUllad]12, + [la]2,).
If we show that
A >1/2VA> A Ttg =1to(A\) > 0:0 2to(—A+K)—In(1— KM 2 — Koto— Kstl/?) <0,

then (3) will follow from (6) and (20).
Note that for all A > %K,

(22) 2t0(-A + K) < —%.

Further, it is easy to see that there exist § > 0 such that

1
(23) —5—n (1 — Ky — (K1 + K3)51/2> <0.

Put A = max {4, 3K, 3}. Now for each A > A we can choose tg = to(A) > 0, which
satisfies conditions of Lemma 2.3 and such that ¢y < 5. In particular, this implies that
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to < 0. Then using (22), (23) we get

2o(—A+ K) — In(1 — Ky M3? — Kot — Kst)/?) <
Ao

— 7 — ln(l — Kl()\to)té/2 — tho — Kg,t[l)/2) S

1
-5 (- Kitd/* — Koto — Kstl/?) <

1
—5-In (1 K50 — (K + K3)51/2) <0.

Hence, if A > A, tg satisfies the conditions of Lemma 2.3, and g < %, then there exist

Cy = C1(\,a,0) > 0 defined by (21) and
Cy = Co(M a,0) = 2t (A — K) + In(1 — K1>\t3/2 — Koty — th(l)/2) >0

such that the inequality
sup IB|Y;(z)| < Cre” @2
z€R4
holds.
Similarly we can get the estimate
(24) sup E|Y;(x)[” < Cy(p)e” 2@
z€R4

for any p > 1.
Substituting (24) into (6) we get (3). O

3. STATIONARY SOLUTION

Let (w01(t),..., Wm(t))t>0 and (W1(t),...,wn(t))i>0 be standard independent m-di-
mensional Wiener processes. For 1 < k < m define two-sided Brownian motions:

wel®) = {wk(t)nt >0,

UA}k(—t),t < 0.

Let F; be the augmentation of o-algebra generated by {wg(s), s <t, 1 <k < m}.

Consider a d-dimensional SDE
m

(25) dpr = (—Apr + alpr)) dt + Zak(%)dwk(t)a teR,
k=1
where A, «, o satisfy the conditions of Theorem 2.1.

Definition 3.1. We say that F;-adapted continuous process (¢i)ier is a stationary
solution to equation (25) if for all s,¢ € R such that s <,

t m t
P / (—Apu+alpn) du+ S / o () duwn () 2.5,
S k/'::l S

and the process (¢;)tcr is strictly stationary.

Theorem 3.1. Let A\, «,0 satisfy the conditions of Theorem 2.1. Then there exists a
unique stationary solution to equation (25).

Proof. The proof of this theorem is quite standard, see [12]. So we outline only the main
steps without technical details. Existence. Denote by ¢, (), t € [s,00), a solution to
the SDE

dips () = [~Apa (@) + alpa ()] dt + D on(psr(x))dwi(t), t > s,

(26) 1

vs.s(z) = .
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A stationary solution is looked as a limit in Ly of ¢, .(0) as s — —o0.
Lemma 3.1. For all s € R and x € R?,
(27) sup Elps(2)])? < oo.

t€[s,00)

Proof. Let f € C*(R?) and A be the infinitesimal generator of the process (ps.¢(z))¢>0:
d d
of . _O°f

= Y (Al @) S @)+ Y ()o@ g g ),

=1 i,j=1
It is well known (e.g. [11], §3.2) that to prove (27) it is enough to verify that there exist
K1, Ky > 0 such that for all z € R,
(28) Alz|* < Ky — Kolz)?.
We have

Alz|* = —2Mz? + 2(a(z), z) + ||

2
It is easy to see that (28) is satisfied with, for example, K; = % +loll%, K2 = A
Recall that [|or]|cc = €S8 SUp,cpa |a(x)]. O

Let t € R, s < t. It follows from the uniqueness of the strong solution to (26) that
@s—p,t(o) = Sﬁs,t(@s—p,S(O)) a.s.
By Theorem 2.1 and Lemma 3.1,
sup E|ps—p,1(0) = @54 (0)] = sup Elps ¢ (9s-p,s(0)) — @5, (0)] <
p=>0 p=>0

sup C1e“2CE[p, , (0) — 0] < C3e%2C7D 50, 5 — —o0.
p=>0

Here 4, Cy are constants from Theorem 2.1, C'5 is some positive constant that comes
from Lemma 3.1.
Therefore there exists a limit

(1) 7= Ly _lim _5,4(0).

Stationarity of ¢ (t) follows from the construction.
Theorem 2.1 and the construction of ¢ (t) yield that for any s <t :

U(t) = st (1(s)) as.

It follows easily from the last equation that (¢) has a continuous modification.
Uniqueness. Let (1(t))ter be another stationary solution, possibly without finite
moments. We have for any s <t :

(20) B (1) = v A1) = E (Ieua($(5)) = pua () A1) <
E (B (Isa(d(5) — pos@()| A1) |F,) = ( (¢s4(2) = pu(y) A1) M(S),)é
y=1(s)

A M) <Ix—ycle R P 1) B
y= y=1(s)

<|1/) ) (s)|Cre~C2(t=2) /\1)
E [[9(s)|Cre= (=) n 1] + B [[§(s)[Cre == A1 =

E ((EWSJ(&U) — ps.t(y)

E [\¢<o)\cle—02<t—s> A 1} +E [|z/3(o>|cle—c2<t—s) A 1} .
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Here C1, Cs are constants from (3). By Lebesgue’s dominated convergence theorem, the
right-hand side of (29) tends to zero as s — —oo. Hence E|i)(t) — ¢(t)] A1 = 0. This
and continuity of (1(t)), (¥(t)) yield

P(j(t) = o(t), te R) =1

4. APPENDIX

Proof of Lemma 2.1. Put
t
—int{e> 03¢+ [ Vi) Pds + L' (@) 2 V).
0

By It6’s formula,
N

tAT
Y, x (@) = [Yo(o))® + / e"Ya(@) 22X — 2K — K7)ds—
0

AT

2 [ O P 2 [ O S Yy s

0 0 i1

eh() (ZVO’ x)) Y (2 )) ds =

Yo ()| + /0 " "O|Y, (2) [ (2) — 2Ko — K2)ds—
2/ " MY, (@) P D (o) AL (o))
0

N d

tAT AT
2)\/ ") N (Vi (2)) ds+2/ M) Z Y (2)Vat (g, (x) Y (x)ds+
0

ij=1 0 i.j,q=1

2 /0 "o Z Y (2) D (104 (2)) Y (2)d L (9% () +

1,7,9=1

2/0 : HOy Z Y (@)Y (ps(2) Y () duw (5)+

k=114,j,q=1

AT

2
eh(®) (Zva )Y (2 )> ds.

Using the Cauchy-Schwarz inequality we get that for each ¢ > 0,

Sy

k=114,j=1

d
> YU (@)Va (i (@)Y ()] < [Yi(@)P[Valpi(a).

4,9,q=1

Then taking into account Remark 2.1 we obtain

o [T weveneeyee| sk [ meks

1,5,q=1

where K, is defined by (11).
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Similarly,

N d

B [ PO Y V@D )Y o) L) <

tAT
1D]loc / M)V, () PALO (0% ().
0

Further, for ¢t > 0,

k=114,j=1 \r=1
m d d d
> > (Z (vO?«ot(x))f) (Z W(w)f) < Vo (@) PYi(@)? < K2[Yi(a) P,
k=14,j=1 \r=1 r=1

where K, is defined by (12).
Taking into account (30)—(32) we get

N

tA
MY, @ = Yoo + (A= 2o~ K2) [ PO () s
0
t/\TN tArY N
2 [ PO @PIDlwdle@) =2 [ )P
t/\'rN
20K, / PO @)ds +2 [ D el(e) PALY )+
0
t
K? / "y, (z)Pds+
0

2/0 : 0y Z Y (2) Vol (04 ()Y (5)duwn(s) < |Yo(@)[2 + M(EATY),

k=114,5,q=1
where
tArN m d ) )
M(EATY) =2 / S ST VI (@) Vo (o, (2) Y (@)duwg (5), > 0,
0 k=14,j,q=1

is a square integrable martingale. Then for all ¢ > 0,
B Y, on ()2 < [Yo(o)? = |E]* = d
Passing to the limit as N — oo and applying Fatou’s lemma we get that for all T' > 0,

sup Ee"D|v;(x)? < d.
t€[0,T]

O

Proof of Lemma 2.2. The process (¢¢(x))i>0 is a multidimensional semimartingale. Set

(33) LY (¢"(2)) = 2o ()" = 2(2")* — 2/0 Lea()>0del (@), 2 0.



ON EXPONENTIAL DECAY OF A DISTANCE 11

This process is also called a local time of the process (¢%(x));>0 at zero and satisfies the
equality (see [14], Ch. VI, Corollary (1.9) and Th. (1.7))

L") =lim 5 [ Lo (et@)dte(a). (@), =
0

el0 2¢

which holds almost surely.
Using (9) and (B3) in which we put 8* = (0,0,...,0,1) we get that, almost surely,

L0(p%(x)) > B, lim — / 1 (e (92(2))ds = By LO(4(2)) = BoL(p(x)).

el0 2¢
So

(34) Li(¢" () < 5~ Li(#"(2)).

o

Consequently, to estimate EL?(¢(z)) it is enough to get an estimation for ELY (o%(x)).

Since the local time L?(p%(x)) = L7 (p(z)) does not increase until the first time
when the process (¢:(z));>0 reaches the hyperplane S, it follows from the strong Markov
property of the process (¢¢(z))¢>0 that

(35) EL? (¢%(x)) < sup ELY(p%(2)).

To estimate the expectation of the local time let us estimate each term in the right-
hand side of Tanaka’s formula (33). Note that for all ¢ > 0,

(36) Bl (7)) < Blol(@)] < /B(pl(@)".

By Ito’s formula, for any z € .S

(37) (g(@)? = ol(@)* +2 / SRTEDS / (o1 (a(2))) ds =
/0 [mo ()2 + 20%(p +Z ol
/ ZO’ T))dwy(s).

k=1

Consider the expression in the square brackets. We have

ds+

—27(0d(2))? + 208 (04 (2))02(E) + S (01 (0s(2)))” < F(2(3)),
k=1

where f(z) = —2\z? + 2||a?||2 z + ||o||%,- The function f attains the global maximum

d2
at Tpar = 18 and f(2mae) = 1251= 1 |jo]|2.. Substituting the maximum value of

f into (37) we get

Oéd2
(ol(@))* < (' e 1) ||2)t+22/ (B0 (paE))dun (5).

Here we use the fact that pd(Z) = 0. Note that >, , fo 04(2)od(ps(F))dwy(s) is a local
square integrable martingale.
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Using localization and Fatou’s lemma we obtain

[l ?ll3

Bet@) < (1505 + o2, )«
Hence, by (36)

(38) B(p(2)* < \/ (153 4 oz, )

Further,

¢
—/0 1¢g(i)>od@g(j) =

t t m t
)\/0 ]l@g(fz)>o<ﬂ?(i”)d8—/0 1¢g(i)>oad(@s(5))d8—2/o La(z)>000 (s (E))dwp (s).

k=1
Using (38) we get

t

t
(39) —E / 105002 (F) < [0t + B / (¢4(@))ds <
0 0

d 0 2 3
« oot o (AR
Taking into account (38), (39) we obtain

ELY (¢'(2)) < p(t,A),

ot N) = lladllmt + (14 2x¢) /(10 o2 ) ¢
' > 3 2\ <)

Then (35) implies that for each z € R4,
ELY (9%(x)) < p(t, ),

where

and
sup ELY(p%(2)) < p(t, A).
r€R?

By (34),

£\
sup BLY(p(@) < ZEY),
reR? o
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