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ON EXPONENTIAL DECAY OF A DISTANCE BETWEEN

SOLUTIONS OF AN SDE WITH NON-REGULAR DRIFT

To the memory of our colleague Sergey Makhno

We consider a multidimensional stochastic differential equation with a Gaussian noise

and a drift vector having a jump discontinuity along a hyperplane. The large time
behavior of the distance between two solutions starting from different points is stud-

ied. We find a sufficient condition for the exponential decay of the distance if the

drift does not satisfy a dissipative condition on a given hyperplane.

1. Introduction

Consider a d-dimensional stochastic differential equation (SDE)

(1)

 dϕt(x) = (−λϕt(x) + α(ϕt(x))) dt+

m∑
k=1

σk(ϕt(x))dwk(t), t ≥ 0,

ϕ0(x) = x,

where x = (x1, . . . , xd) ∈ Rd, λ > 0, (w(t))t≥0 = (w1(t), . . . , wm(t))t≥0 is a standard
m-dimensional Wiener process, α : Rd → Rd and σ = (σ1, . . . , σm) : Rd → Rd ×Rm are
measurable functions.

It is well known that if α, σk are Lipschitz continuous and λ is large enough, then the
distance between solutions ϕt(x1) and ϕt(x2) to (1), which starting from two different
points x1 and x2, converges to 0 in Lp(Ω,F ,P) as t → ∞, (e.g., [8], [12]). Moreover,
the solutions converge themselves to a stationary solution of (1). Lipschitz continuity
of α may be relaxed; it can be replaced, for example, by dissipative assumption. It
worth noting a recent work by Flandoli et al. [6]. The authors consider an SDE with
drift belonging to C1 and being dissipative out of some bounded set U and a diffusion
coefficient σ being constant. They prove the synchronization of the flow for large enough
σ. Despite the drift is not supposed to be globally dissipative, the technique of their
paper does not allow to consider a discontinuous drift.

In one-dimensional case, results on exponential decay of a distance between solutions
to an SDE with non-regular drift were obtained in [2, 3].

We discuss a similar problem if σk are Lipschitz continuous but α may have a jump
discontinuity at a hyperplane. We do not assume that coefficients of the equation satisfy
dissipative conditions, and the results on convergence of solutions to zero are new. As
a corollary of our results on convergence of distance between solutions, we get existence
and uniqueness of a stationary solution of

ϕt = ϕs +

∫ t

s

(−λϕu + α(ϕu))du+

m∑
k=1

∫ t

s

σk(ϕu)dwk(u), s ≤ t.
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Note that all our results concern strong solutions to SDEs, i.e., all solutions are de-
fined on the given probability space and expectations are taken with respect to the given
probability measure. If one is interested in weak solutions and a distance between distri-
butions of ϕt(x) and ϕt(y), then assumptions on coefficients may be relaxed essentially,
see for example [10, 11].

2. Large time behavior of the distance between two solutions

We consider the SDE (1). Denote

S = {x ∈ Rd : xd = 0},

Rd+ = {x ∈ Rd : xd > 0},Rd− = {x ∈ Rd : xd < 0}.
In what follows we assume that coefficients of (1) satisfy the following conditions.

(A1) The function α is bounded.

(A2) Lipschitz continuity on Rd±: There exists K̃α > 0 such that for all x, y ∈ Rd+ or

x, y ∈ Rd−,

|α(x)− α(y)| ≤ K̃α|x− y|.
It follows from (A2) that for all x̃ ∈ S, there exist limits

α+(x̃) := lim
x→x̃,
x∈Rd+

α(x), α−(x̃) := lim
x→x̃,
x∈Rd−

α(x).

(B1) The function σ is bounded.

(B2) Lipschitz continuity on Rd: There exists K̃σ > 0 such that for all x, y ∈ Rd,

|σ(x)− σ(y)| ≤ K̃σ|x− y|.

(B3) Uniform ellipticity: There exists a constant Bσ > 0 such that for all x ∈ Rd,
θ ∈ Rd,

(2) θ∗σ(x)σ∗(x)θ ≥ Bσ|θ|2.

Under these assumptions there exists a unique strong solution to (1) (see, for example,
[16]).

Remark 2.1. Note that since σ is uniformly elliptic, the solution to equation (1) spends
zero time on S. So we can redefine the function α on S in an arbitrary way.

The main result of the paper is following:

Theorem 2.1. Let conditions (A1), (A2), (B1), (B2), (B3) hold. Then for any p ≥ 1 :

∃Λ = Λ(α, σ) > 0 ∀λ > Λ ∃C1 = C1(λ, α, σ) > 0 ∃C2 = C2(λ, α, σ) > 0 : ∀x, y ∈ Rd,

(3) (E|ϕt(y)− ϕt(x)|p)
1
p ≤ C1e

−C2t|y − x|.

Here ϕt(x) is a solution to equation (1) starting at the point x.

Remark 2.2. The values of Λ, C1, C2 will be defined in the proof.

Proof. It can be checked (see [1], Theorem 4 and (51)) that ϕt(·) is Gâteaux differentiable
in Lp(Ω,F ,P), p > 0, i.e., for all x ∈ Rd there exists ∇ϕt(x) such that for all v ∈ Rd,
t ≥ 0,

(4) E

∣∣∣∣ϕt(x+ εv)− ϕt(x)

ε
−∇ϕt(x)v

∣∣∣∣p → 0, ε→ 0.



ON EXPONENTIAL DECAY OF A DISTANCE 3

Moreover, the process (∇ϕt(x))t≥0 is continuous in x in Lp(Ω,F ,P), p > 0. This imply
that for x, y ∈ Rd,

(5) ϕt(y)− ϕt(x) =

∫ 1

0

(
∇ϕt(x+ ξ(y − x)), y − x

)
dξ,

where ∇ϕt(·) is the derivative.
Using (5) we get

(6) E|ϕt(y)−ϕt(x)|p ≤ E(

∫ 1

0

∣∣(∇ϕt(x+ξ(y−x)), y−x)
∣∣dξ)p ≤ |y−x|p· sup

z∈Rd
E|∇ϕt(z)|p.

So to obtain (3) we need to get an estimate for supz∈Rd E|∇ϕt(z)|p. We consider the
case p = 1 only. The general case can be considered similarly.

If α+(x) = α−(x), x ∈ S, then Yt(x) := ∇ϕt(x) is a solution to the SDE

(7)

 dYt(x) = [−λ+∇α(ϕt(x))]Yt(x)dt+

m∑
k=1

∇σk(ϕt(x))Yt(x)dwk(t), t ≥ 0,

Y0(x) = E,

where E is a d×d-identity matrix. This formula is well known when α, σ ∈ C1(Rd). For
Lipschitz continuous functions α and σ the result can be found in [4], Th. 3.3.1.

Remark 2.3. It follows from Rademacher’s theorem that the Lipschitz continuous func-
tions α and σ are differentiable almost everywhere with respect to the Lebesgue measure.
We define ∇α(ϕt(x)), ∇σ(ϕt(x)) in an arbitrary way at the points where they do not
exist. Since σ is non-degenerate, the distribution of ϕt(x) is absolutely continuous. So
∇α(ϕt(x)), ∇σ(ϕt(x)) are defined uniquely up to the set of probability zero.

If α+(x) 6= α−(x), x ∈ S, then the distributional derivative of α is equal to

∇α(x) +D(x)δS , x ∈ Rd.
Here δS is the standard surface measure on S (if d = 1, δS(x) is the Dirac delta function),
and

D(x) =

0 · · · 0 α1
+(x)− α1

−(x)
...

. . .
...

...
0 · · · 0 αd+(x)− αd−(x)

 , x ∈ S.

Formally, in this case the integral form of equation (7) becomes

(8) Yt(x) = E +

∫ t

0

[−λ+∇α(ϕs(x))]Ys(x)ds+∫ t

0

D(ϕs(x))Ys(x)δS(ϕs(x))ds+

m∑
k=1

∫ t

0

∇σk(ϕs(x))Ys(x)dwk(s).

It was proved in [1] that Yt(x) is a solution to equation (8), where by∫ t

0

D(ϕs(x))Ys(x)δS(ϕs(x))ds

we mean the integral with respect to the local time of the process (ϕt(x))t≥0 on the
hyperplane S: ∫ t

0

D(ϕs(x))Ys(x)dLSs (ϕ(x)),

where

LSt (ϕ(x)) := l.i.m.
ε↓0

1

2ε

∫ t

0

1|〈ϕs(x),ed〉|≤εds, ed = (0, 0, . . . , 0, 1).
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Note that the local time of the process (ϕt(x))t≥0 on the hyperplane S coincides with
the local time of the d-th coordinate of the process (ϕt(x))t≥0 at the point 0, which is
defined by the formula

(9) L0
t (ϕ

d(x)) = l.i.m.
ε↓0

1

2ε

∫ t

0

1|ϕds(x)|≤εds.

Then equation (8) can be rewritten as follows

(10) Yt(x) = E +

∫ t

0

[−λ+∇α(ϕs(x))]Ys(x)ds+∫ t

0

D(ϕs(x))Ys(x)dL0
s(ϕ

d(x)) +

m∑
k=1

∫ t

0

∇σk(ϕs(x))Ys(x)dwk(s).

It is known that there exists a unique strong solution to equation (10) (see, for example,
[13], Ch. V, Th. 7).

Set

(11) Kα := ess sup
x∈Rd

|∇α(x)|,

(12) Kσ := ess sup
x∈Rd

|∇σ(x)|.

Here and below we denote by | · | both the Euclidean norm of vectors and the Hilbert-

Schmidt norm of matrices. Note that (A2), (B2) are satisfied with K̃α = Kα, K̃σ = Kσ,
respectively. Put

‖D‖∞ = sup
x∈S
|D(x)|.

Define

h(t) = (2λ− 2Kα −K2
σ)t− 2‖D‖∞L0

t (ϕ
d(x)).

Lemma 2.1. For all T > 0,

sup
t∈[0,T ]

Eeh(t)|Yt(x)|2 ≤ d.

The proof of Lemma follows from Itô’s formula. For details, see Appendix.

Using the Hölder inequality we obtain

(13) E|Yt(x)| ≤
(
Eeh(t)|Yt(x)|2

)1/2 (
Ee−h(t)

)1/2
≤

d1/2e(−λ+Kα+
1
2K

2
σ)t
(
Ee2‖D‖∞L

0
t (ϕ

d(x))
)1/2

.

Lemma 2.2. For each t > 0,

(14) sup
x∈Rd

EL0
t (ϕ

d(x)) ≤ ρ(t, λ)

Bσ
,

where

ρ(t, λ) = ‖αd‖∞t+

(
1 +

2

3
λt

)√(
‖αd‖2∞

2λ
+ ‖σ‖2∞

)
t

and ‖α‖∞ = supx∈Rd |α(x)|, ‖σ‖∞ = supx∈Rd |σ(x)|, Bσ is the uniform ellipticity con-
stant from equation (2).
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To prove the Lemma we use Tanaka’s formula. See Appendix for details.

It is well known that LSt (ϕ(x)) is a W-functional of the Markov process (ϕt(x))t≥0 (see
[5], Ch. 6–8 for theory and terminology). Then the following estimates on the moments
of LSt (ϕ(x)) are true.

Proposition 2.1 ([7], Ch. II, §6, Lemma 3). For all n ≥ 1, t > 0,

sup
x∈Rd

E
(
LSt (ϕ(x))

)n ≤ n!

(
sup
x∈Rd

ELSt (ϕ(x))

)n
.

Since L0
t (ϕ

d(x)) = LSt (ϕ(x)), then using Proposition 2.1 and Lemma 2.2 we obtain
the following modification of Khas’minskii’s Lemma (see [9] or [15], Ch.1 Lemma 2.1).

Lemma 2.3. Let t0 > 0 be such that 2‖D‖∞ρ(t0,λ)
Bσ

< 1 and (14) hold. Then for all t ≤ t0,

(15) sup
x∈Rd

Ee2‖D‖∞L
0
t (ϕ

d(x)) ≤ 1

1− 2‖D‖∞
Bσ

ρ(t0, λ)
.

Using the inequality (15) we can estimate the right-hand side of (13) for small t.

Consider now an arbitrary t > 0. Put n =
[
t
t0

]
+ 1, and

s0 = 0, s1 = t0, . . . , sk = kt0, . . . , sn−1 = (n− 1)t0, sn = t.

We have

Ee2‖D‖∞L
0
t (ϕ

d(x)) = E

n−1∏
k=0

e
2‖D‖∞

(
L0
sk+1

(ϕd(x))−L0
sk

(ϕd(x))
)

=

E

(
E

[
n−1∏
k=0

e
2‖D‖∞

(
L0
sk+1

(ϕd(x))−L0
sk

(ϕd(x))
)∣∣Fsn−1

])
=

E

{
n−2∏
k=0

e
2‖D‖∞

(
L0
sk+1

(ϕd(x))−L0
sk

(ϕd(x))
)
E

(
e
2‖D‖∞

(
L0
sn

(ϕd(x))−L0
sn−1

(ϕd(x))
)∣∣Fsn−1

)}
.

It is not hard to see that

(16) P{LSt+s(ϕ(x)) = LSs (ϕ(x)) + θsL
S
t (ϕ(x)), s ≥ 0, t ≥ 0} = 1,

where θ is the shift operator.
Using (16) and Lemma 2.3 we get for k = 1, . . . , n,

E

(
e
2‖D‖∞

(
L0
sk

(ϕd(x))−L0
sk−1

(ϕd(x))
)∣∣Fsk−1

)
= E

(
e
2‖D‖∞θsk−1

L0
sk−sk−1

(ϕd(x))∣∣Fsk−1

)
≤

sup
z∈Rd

Ee
2‖D‖∞L0

sk−sk−1
(ϕd(z)) ≤ sup

z∈Rd
Ee2‖D‖∞L

0
t0

(ϕd(z)) ≤ 1

1− 2‖D‖∞
Bσ

ρ(t0, λ)
a.s.

Then

(17)

Ee2‖D‖∞L
0
t (ϕ

d(x)) ≤ 1

1− 2‖D‖∞
Bσ

ρ(t0, λ)
E

n−2∏
k=0

e
2‖D‖∞

(
L0
sk+1

(ϕd(x))−L0
sk

(ϕd(x))
)
≤ · · · ≤

1(
1− 2‖D‖∞

Bσ
ρ(t0, λ)

)n = e−n ln(1− 2‖D‖∞
Bσ

ρ(t0,λ)) = e
−
([

t
t0

]
+1
)
ln(1− 2‖D‖∞

Bσ
ρ(t0,λ)).
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The right-hand side of (17) does not depend on x. So we have

(18) sup
x∈Rd

Ee2‖D‖∞L
0
t (ϕ

d(x)) ≤ e−
([

t
t0

]
+1
)
ln(1− 2‖D‖∞

Bσ
ρ(t0,λ)).

Substituting this inequality into (13) we get the following inequality for any t > 0 :

(19) sup
x∈Rd

E|Yt(x)| ≤ d1/2e(−λ+Kα+
1
2K

2
σ)t sup

x∈Rd

(
Ee2‖D‖∞L

0
t (ϕ

d(x))
)1/2

≤

d1/2e(
−λ+Kα+ 1

2K
2
σ)t− 1

2

(
t
t0

+1
)
ln(1− 2‖D‖∞

Bσ
ρ(t0,λ)) =

d1/2
1√

1− 2‖D‖∞
Bσ

ρ(t0, λ)
e

(
−λ+Kα+ 1

2K
2
σ− 1

2t0
ln(1− 2‖D‖∞

Bσ
ρ(t0,λ))

)
t
.

First, assume that Λ ≥ 1/2. Then for all λ > Λ and t ≥ 0,

ρ(t, λ) ≤
(

1 +
2

3
λt

)√
(||αd||2∞ + ||σ||2∞) t+ ||αd||∞t.

From (19) we obtain

(20) sup
x∈Rd

E|Yt(x)| ≤ C1(λ, α, σ)e

(
−λ+K− 1

2t0
ln
(
1−K1t

1/2
0 −K2t0−K3λt

3/2
0

))
t
,

where

(21) C1(λ, α, σ) = d1/2
1√

1− 2‖D‖∞
Bσ

ρ(t0, λ)
,

K = Kα +
1

2
K2
σ,

K1 =
2‖D‖∞
Bσ

√
(||αd||2∞ + ||σ||2∞); K2 =

2‖D‖∞
Bσ

||αd||∞;

K3 =
4‖D‖∞

3Bσ

√
(||αd||2∞ + ||σ||2∞).

If we show that

∃Λ ≥ 1/2 ∀λ > Λ ∃t0 = t0(λ) > 0 : 0 2t0(−λ+K)−ln(1−K1λt
3/2
0 −K2t0−K3t

1/2
0 ) < 0,

then (3) will follow from (6) and (20).
Note that for all λ ≥ 4

3K,

(22) 2t0(−λ+K) ≤ −λt0
2
.

Further, it is easy to see that there exist δ > 0 such that

(23) −1

2
− ln

(
1−K2δ − (K1 +K3)δ1/2

)
< 0.

Put Λ = max
{

1
2 ,

4
3K,

1
δ

}
. Now for each λ > Λ we can choose t0 = t0(λ) > 0, which

satisfies conditions of Lemma 2.3 and such that t0 <
1
λ . In particular, this implies that
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t0 < δ. Then using (22), (23) we get

2t0(−λ+K)− ln(1−K1λt
3/2
0 −K2t0 −K3t

1/2
0 ) ≤

− λt0
2
− ln(1−K1(λt0)t

1/2
0 −K2t0 −K3t

1/2
0 ) ≤

− 1

2
− ln(1−K1t

1/2
0 −K2t0 −K3t

1/2
0 ) ≤

− 1

2
− ln

(
1−K2δ − (K1 +K3)δ1/2

)
< 0.

Hence, if λ > Λ, t0 satisfies the conditions of Lemma 2.3, and t0 <
1
λ , then there exist

C1 = C1(λ, α, σ) > 0 defined by (21) and

C2 = C2(λ, α, σ) = 2t0(λ−K) + ln(1−K1λt
3/2
0 −K2t0 −K3t

1/2
0 ) > 0

such that the inequality
sup
x∈Rd

E|Yt(x)| ≤ C1e
−C2t

holds.
Similarly we can get the estimate

(24) sup
x∈Rd

E|Yt(x)|p ≤ C1(p)e−C2(p)t

for any p ≥ 1.
Substituting (24) into (6) we get (3). �

3. Stationary solution

Let (w̃1(t), . . . , w̃m(t))t≥0 and (ŵ1(t), . . . , ŵm(t))t≥0 be standard independent m-di-
mensional Wiener processes. For 1 ≤ k ≤ m define two-sided Brownian motions:

wk(t) =

{
w̃k(t), t ≥ 0,

ŵk(−t), t < 0.

Let Ft be the augmentation of σ-algebra generated by {wk(s), s ≤ t, 1 ≤ k ≤ m}.
Consider a d-dimensional SDE

(25) dϕt = (−λϕt + α(ϕt)) dt+

m∑
k=1

σk(ϕt)dwk(t), t ∈ R,

where λ, α, σ satisfy the conditions of Theorem 2.1.

Definition 3.1. We say that Ft-adapted continuous process (ϕt)t∈R is a stationary
solution to equation (25) if for all s, t ∈ R such that s ≤ t,

ϕt = ϕs +

∫ t

s

(−λϕu + α(ϕu)) du+

m∑
k=1

∫ t

s

σk(ϕu)dwk(u) a.s.,

and the process (ϕt)t∈R is strictly stationary.

Theorem 3.1. Let λ, α, σ satisfy the conditions of Theorem 2.1. Then there exists a
unique stationary solution to equation (25).

Proof. The proof of this theorem is quite standard, see [12]. So we outline only the main
steps without technical details. Existence. Denote by ϕs,t(x), t ∈ [s,∞), a solution to
the SDE

(26)

 dϕs,t(x) = [−λϕs,t(x) + α(ϕs,t(x))] dt+

m∑
k=1

σk(ϕs,t(x))dwk(t), t ≥ s,

ϕs,s(x) = x.
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A stationary solution is looked as a limit in L2 of ϕs,t(0) as s→ −∞.

Lemma 3.1. For all s ∈ R and x ∈ Rd,
(27) sup

t∈[s,∞)

E|ϕs,t(x)|2 <∞.

Proof. Let f ∈ C2(Rd) and A be the infinitesimal generator of the process (ϕs,t(x))t≥0:

Af(x) =

d∑
i=1

(−λxi + αi(x))
∂f

∂xi
(x) +

d∑
i,j=1

(σ(x)σ(x)T )i,j
∂2f

∂xi∂xj
(x).

It is well known (e.g. [11], §3.2) that to prove (27) it is enough to verify that there exist
K1,K2 > 0 such that for all x ∈ Rd,
(28) A|x|2 ≤ K1 −K2|x|2.
We have

A|x|2 = −2λ|x|2 + 2(α(x), x) + |σ|2.
It is easy to see that (28) is satisfied with, for example, K1 =

‖α‖2∞
λ + ‖σ‖2∞, K2 = λ.

Recall that ‖α‖∞ = ess supx∈Rd |α(x)|. �

Let t ∈ R, s ≤ t. It follows from the uniqueness of the strong solution to (26) that

ϕs−p,t(0) = ϕs,t(ϕs−p,s(0)) a.s.

By Theorem 2.1 and Lemma 3.1,

sup
p≥0

E|ϕs−p,t(0)− ϕs,t(0)| = sup
p≥0

E|ϕs,t(ϕs−p,s(0))− ϕs,t(0)| ≤

sup
p≥0

C1e
C2(s−t)E|ϕs−p,s(0)− 0| ≤ C3e

C2(s−t) → 0, s→ −∞.

Here C1, C2 are constants from Theorem 2.1, C3 is some positive constant that comes
from Lemma 3.1.

Therefore there exists a limit

ψ(t) := L2 lim
s→−∞

ϕs,t(0).

Stationarity of ψ(t) follows from the construction.
Theorem 2.1 and the construction of ψ(t) yield that for any s ≤ t :

ψ(t) = ϕs,t(ψ(s)) a.s.

It follows easily from the last equation that ψ(t) has a continuous modification.

Uniqueness. Let (ψ̃(t))t∈R be another stationary solution, possibly without finite
moments. We have for any s ≤ t :

(29) E
(
|ψ̃(t)− ψ(t)| ∧ 1

)
= E

(
|ϕs,t(ψ̃(s))− ϕs,t(ψ(s))| ∧ 1

)
≤

E
(
E
(
|ϕs,t(ψ̃(s))− ϕs,t(ψ(s))| ∧ 1

) ∣∣Fs) = E

(
E (|ϕs,t(x)− ϕs,t(y)| ∧ 1)

∣∣∣x=ψ̃(s),
y=ψ(s)

)
≤

E

(
(E|ϕs,t(x)− ϕs,t(y)|)

∣∣∣x=ψ̃(s),
y=ψ(s)

∧ 1

)
≤ E

(
|x− y|C1e

−C2(t−s)
∣∣∣x=ψ̃(s),
y=ψ(s)

∧ 1

)
=

E
(
|ψ̃(s)− ψ(s)|C1e

−C2(t−s) ∧ 1
)
≤

E
[
|ψ(s)|C1e

−C2(t−s) ∧ 1
]

+ E
[
|ψ̃(s)|C1e

−C2(t−s) ∧ 1
]

=

E
[
|ψ(0)|C1e

−C2(t−s) ∧ 1
]

+ E
[
|ψ̃(0)|C1e

−C2(t−s) ∧ 1
]
.
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Here C1, C2 are constants from (3). By Lebesgue’s dominated convergence theorem, the

right-hand side of (29) tends to zero as s → −∞. Hence E|ψ̃(t) − ψ(t)| ∧ 1 = 0. This

and continuity of (ψ̃(t)), (ψ(t)) yield

P(ψ̃(t) = ψ(t), t ∈ R) = 1.

�

4. Appendix

Proof of Lemma 2.1. Put

τN = inf{t ≥ 0 : t+

∫ t

0

|Ys(x)|2ds+ L0
t (ϕ

d(x)) ≥ N}.

By Itô’s formula,

eh(t∧τ
N )|Yt∧τN (x)|2 = |Y0(x)|2 +

∫ t∧τN

0

eh(s)|Ys(x)|2(2λ− 2Kα −K2
σ)ds−

2

∫ t∧τN

0

eh(s)|Ys(x)|2|D(ϕs(x))|dL0
s(ϕ(x)) + 2

∫ t∧τN

0

eh(s)
d∑

i,j=1

Y ijs (x)dY ijs (x)ds+

m∑
k=1

d∑
i,j=1

∫ t∧τN

0

eh(s)

(
d∑
r=1

∇σirk (ϕs(x))Y rjs (x)

)2

ds =

|Y0(x)|2 +

∫ t∧τN

0

eh(s)|Ys(x)|2
(
2λ− 2Kα −K2

σ)ds−

2

∫ t∧τN

0

eh(s)|Ys(x)|2|D(ϕs(x))|dL0
s(ϕ(x))−

2λ

∫ t∧τN

0

eh(s)
d∑

i,j=1

(Y ijs (x))2ds+ 2

∫ t∧τN

0

eh(s)
d∑

i,j,q=1

Y ijs (x)∇αiq(ϕs(x))Y qjs (x)ds+

2

∫ t∧τN

0

eh(s)
d∑

i,j,q=1

Y ijs (x)Diq(ϕs(x))Y qjs (x)dL0
s(ϕ

d(x))+

2

∫ t∧τN

0

eh(s)
m∑
k=1

d∑
i,j,q=1

Y ijs (x)∇σiqk (ϕs(x))Y qjs (x)dwk(s)+

m∑
k=1

d∑
i,j=1

∫ t∧τN

0

eh(s)

(
d∑
r=1

∇σirk (ϕs(x))Y rjs (x)

)2

ds.

Using the Cauchy-Schwarz inequality we get that for each t > 0,∣∣∣∣∣∣
d∑

i,j,q=1

Y ijt (x)∇αiq(ϕt(x))Y qjt (x)

∣∣∣∣∣∣ ≤ |Yt(x)|2|∇α(ϕt(x))|.

Then taking into account Remark 2.1 we obtain

(30)

∫ t∧τN

0

∣∣∣∣∣∣
d∑

i,j,q=1

Y ijs (x)∇αiq(ϕs(x))Y qjs (x)

∣∣∣∣∣∣ ds ≤ Kα

∫ t∧τN

0

|Ys(x)|2ds,

where Kα is defined by (11).
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Similarly,

(31)

∫ t∧τN

0

eh(s)

∣∣∣∣∣∣
d∑

i,j,q=1

Y ijs (x)Diq(ϕs(x))Y qjs (x)

∣∣∣∣∣∣ dL0
s(ϕ

d(x)) ≤

‖D‖∞
∫ t∧τN

0

eh(s)|Ys(x)|2dL0
s(ϕ

d(x)).

Further, for t > 0,

(32)

m∑
k=1

d∑
i,j=1

(
d∑
r=1

∇σirk (ϕt(x))Y rjt (x)

)2

≤

m∑
k=1

d∑
i,j=1

(
d∑
r=1

(
∇σirk (ϕt(x))

)2)( d∑
r=1

(
Y rjt (x)

)2) ≤ |∇σ(x)|2|Yt(x)|2 ≤ K2
σ|Yt(x)|2,

where Kσ is defined by (12).
Taking into account (30)–(32) we get

eh(t∧τ
N )|Yt∧τN (x)|2 = |Y0(x)|2 + (2λ− 2Kα −K2

σ)

∫ t∧τN

0

eh(s)|Ys(x)|2ds−

2

∫ t∧τN

0

eh(s)|Ys(x)|2‖D‖∞dL0
s(ϕ(x))− 2λ

∫ t∧τN

0

eh(s)|Ys(x)|2ds+

2dKα

∫ t∧τN

0

eh(s)|Ys(x)|2ds+ 2

∫ t∧τN

0

eh(s)‖D‖∞|Ys(x)|2dL0
s(ϕ

d(x))+

K2
σ

∫ t

0

eh(s)|Ys(x)|2ds+

2

∫ t∧τN

0

eh(s)
m∑
k=1

d∑
i,j,q=1

Y ijs (x)∇σiqk (ϕs(x))Y qjs (x)dwk(s) ≤ |Y0(x)|2 +M(t ∧ τN ),

where

M(t ∧ τN ) = 2

∫ t∧τN

0

eh(s)
m∑
k=1

d∑
i,j,q=1

Y ijs (x)∇σiqk (ϕs(x))Y qjs (x)dwk(s), t ≥ 0,

is a square integrable martingale. Then for all t ≥ 0,

Eeh(t∧τ
N )|Yt∧τN (x)|2 ≤ |Y0(x)|2 = |E|2 = d.

Passing to the limit as N →∞ and applying Fatou’s lemma we get that for all T > 0,

sup
t∈[0,T ]

Eeh(t)|Yt(x)|2 ≤ d.

�

Proof of Lemma 2.2. The process (ϕt(x))t≥0 is a multidimensional semimartingale. Set

(33) L̃0
t (ϕ

d(x)) = 2(ϕdt (x))+ − 2(xd)+ − 2

∫ t

0

1ϕds(x)>0dϕ
d
s(x), t ≥ 0.
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This process is also called a local time of the process (ϕdt (x))t≥0 at zero and satisfies the
equality (see [14], Ch. VI, Corollary (1.9) and Th. (1.7))

L̃0
t (ϕ

d(x)) = lim
ε↓0

1

2ε

∫ t

0

1(−ε,ε)(ϕ
d
s(x))d〈ϕd(x), ϕd(x)〉s =

= lim
ε↓0

1

2ε

∫ t

0

1(−ε,ε)(ϕ
d
s(x))

d∑
k=1

(
σdk(ϕs(x))

)2
ds,

which holds almost surely.
Using (9) and (B3) in which we put θ∗ = (0, 0, . . . , 0, 1) we get that, almost surely,

L̃0
t (ϕ

d(x)) ≥ Bσ lim
ε↓0

1

2ε

∫ t

0

1(−ε,ε)(ϕ
d
s(x))ds = BσL

0
t (ϕ

d(x)) = BσL
0
t (ϕ(x)).

So

(34) L0
t (ϕ

d(x)) ≤ 1

Bσ
L̃0
t (ϕ

d(x)).

Consequently, to estimate EL0
t (ϕ(x)) it is enough to get an estimation for EL̃0

t (ϕ
d(x)).

Since the local time L0
t (ϕ

d(x)) = LSt (ϕ(x)) does not increase until the first time
when the process (ϕt(x))t≥0 reaches the hyperplane S, it follows from the strong Markov
property of the process (ϕt(x))t≥0 that

(35) EL0
t (ϕ

d(x)) ≤ sup
x̃∈S

EL0
t (ϕ

d(x̃)).

To estimate the expectation of the local time let us estimate each term in the right-
hand side of Tanaka’s formula (33). Note that for all t ≥ 0,

(36) E(ϕdt (x̃))+ ≤ E|ϕdt (x̃)| ≤
√
E
(
ϕdt (x̃)

)2
.

By Itô’s formula, for any x̃ ∈ S

(37) (ϕdt (x̃))2 = ϕd0(x̃))2 + 2

∫ t

0

ϕds(x̃)dϕds(x̃) +

m∑
k=1

∫ t

0

(
σdk(ϕs(x̃))

)2
ds =

∫ t

0

[
−2λ(ϕds(x̃))2 + 2αd(ϕs(x̃))ϕds(x̃) +

m∑
k=1

(
σdk(ϕs(x̃))

)2]
ds+

2

∫ t

0

ϕds(x̃)

m∑
k=1

σdk(ϕs(x̃))dwk(s).

Consider the expression in the square brackets. We have

−2λ(ϕds(x̃))2 + 2αd(ϕs(x̃))ϕds(x̃) +

m∑
k=1

(
σdk(ϕs(x̃))

)2 ≤ f(ϕds(x̃)),

where f(x) = −2λx2 + 2||αd||2∞x+ ||σ||2∞. The function f attains the global maximum

at xmax =
||αd||2∞

2λ , and f(xmax) =
||αd||2∞

2λ + ||σ||2∞. Substituting the maximum value of
f into (37) we get

(ϕdt (x̃))2 ≤
(
||αd||2∞

2λ
+ ||σ||2∞

)
t+ 2

m∑
k=1

∫ t

0

ϕds(x̃)σdk(ϕs(x̃))dwk(s).

Here we use the fact that ϕd0(x̃) = 0. Note that
∑m
k=1

∫ t
0
ϕds(x̃)σdk(ϕs(x̃))dwk(s) is a local

square integrable martingale.
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Using localization and Fatou’s lemma we obtain

E(ϕdt (x̃))2 ≤
(
||αd||2∞

2λ
+ ||σ||2∞

)
t.

Hence, by (36)

(38) E(ϕdt (x̃))+ ≤

√(
||αd||2∞

2λ
+ ||σ||2∞

)
t.

Further,

−
∫ t

0

1ϕds(x̃)>0dϕ
d
s(x̃) =

λ

∫ t

0

1ϕds(x̃)>0ϕ
d
s(x̃)ds−

∫ t

0

1ϕds(x̃)>0α
d(ϕs(x̃))ds−

m∑
k=1

∫ t

0

1ϕds(x̃)>0σ
d
k(ϕs(x̃))dwk(s).

Using (38) we get

(39) − E
∫ t

0

1ϕds(x̃)>0dϕ
d
s(x̃) ≤ ‖αd‖∞t+ λE

∫ t

0

(ϕds(x̃))+ds ≤

‖αd‖∞t+
2λ

3

√(
||αd||2∞

2λ
+ ‖σ‖2∞

)
t3.

Taking into account (38), (39) we obtain

EL̃0
t (ϕ

d(x̃)) ≤ ρ(t, λ),

where

ρ(t, λ) = ||αd||∞t+

(
1 +

2

3
λt

)√(
||αd||2∞

2λ
+ ‖σ‖2∞

)
t.

Then (35) implies that for each x ∈ Rd,

EL̃0
t (ϕ

d(x)) ≤ ρ(t, λ),

and

sup
x∈Rd

EL̃0
t (ϕ

d(x)) ≤ ρ(t, λ).

By (34),

sup
x∈Rd

EL0
t (ϕ

d(x)) ≤ ρ(t, λ)

Bσ
.

�
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8. K. Itô and M. Nisio, On stationary solutions of a stochastic differential equation, J. Math.

Kyoto Univ. 4 (1964), no. 1, 1–75.

9. R. Z. Khasminskii. On positive solutions of the equation Au + vu = 0, Theory of Probability
and Its Applications 4 (1959), no. 3, 309–318.

10. R.Z. Khasminskii, Stochastic Stability of Differential Equations, Springer, Berlin, Heidelberg,

2012. [Originally published in Russian, by Nauka, Moskow 1969. 1st English ed. published 1980
under R.Z. Has’minski in the series Mechanics: Analysis by Sijthoff & Noordhoff.].

11. A. Kulik, Ergodic Behavior of Markov Processes: With Applications to Limit Theorems. De

Gruyter Studies in Mathematics Series. Walter de Gruyter GmbH, 2017.
12. G. Da Prato and Z. Zabczyk, Ergodicity for Infinite-Dimensional Systems, Probability theory

and mathematical statistics. Cambridge University Press, Cambridge, 1996.

13. P. E. Protter, Stochastic Integration and Differential Equations, Springer-Verlag, Berlin, 2004.
14. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin,

1999.

15. A.-S. Sznitman, Brownian Motion, Obstacles and Random Media, Springer Monographs in
Mathematics, Berlin: Springer, 1998.

16. A. Y. Veretennikov, On strong solutions and explicit formulas for solutions of stochastic integral
equations, Math. USSR Sborn. 39 (1981), no. 3, 387–403.

Institute of Geophysics, National Academy of Sciences of Ukraine, 32 Palladin ave., 03142,

Kyiv, Ukraine; National Technical University of Ukraine “Igor Sikorsky Kyiv Politechnic

Institute”, Kyiv, Ukraine
E-mail address: oaryasova@gmail.com

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivska
str., 01601, Kyiv, Ukraine; National Technical University of Ukraine “Igor Sikorsky Kyiv

Politechnic Institute”, Kyiv, Ukraine

E-mail address: pilipenko.ay@gmail.com


