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A.A. DOROGOVTSEV AND N.B. VOVCHANSKII

REPRESENTATIONS OF THE FINITE-DIMENSIONAL POINT
DENSITIES IN ARRATIA FLOWS WITH DRIFT

‘We derive representations for finite-dimensional densities of the point process asso-
ciated with an Arratia flow with drift in terms of conditional expectations of the
stochastic exponentials appearing in the analog of the Girsanov theorem for the Ar-
ratia flow.

1. INTRODUCTION

The study of the point process associated with an Arratia flow {X%(u,t)|u € [0;1],t €
[0; T} with drift a [1, Section 7] is carried out in the present paper by means of special
(n, k)-point densities p?’"’k, k < n. Such densities constitute a generalization of those
discussed in [9, 11, 12] and are informally defined via the formula

k
P(¥i=Tm Xus,t) € Ulysiws +dyl, ¥ =Tk

j=1
T a,n,k
(X t) [ 1= T} 0 [yzsy; + dys) # @) = pi ™ (ws y)dys ..y,
the strict definition to be provided later in the text.
We find the Radon-Nikodym representation for p{"™* in terms of p)"™*. It is known
[1, p. 194] that that the distribution of the random process (X*(u1,-), ..., X*(un,-)) is

absolutely continuous in (C([0;77]))"™ w.r.t. the distribution of (X%(uy,-),..., X%(un,"))
with density

~ B n Th 1 n e ,
(1) ET’n(u)—exp{’;/o a(Xo(uk,t))dXO(uk,t)—2I;/0 a(XO(uk,t))dt}7

where 71 = T and

k—1

T = inf {t \ H (XO(us,t) — XOuy, 1)) = 0} AT, k=1,n,
j=1

where inf ) = +oo by definition. Moreover, the distribution of an Arratia flow with a

bounded Lipschitz continuous drift a as a random element in D([0; 1], C([0; T])) is abso-

lutely continuous w.r.t. the distribution of the Arratia flow with zero drift [1, Theorem

7.3.1].

Since the definition of the densities p?"™* contains the condition for the flow to hit
the neighborhoods of certain points at time ¢, we firstly investigate the distribution of
(1) conditional on (X°(uy,T),..., X%(u,,T)).

Hereinafter the superscript a = 0 is dropped in the case of zero drift, and a is always
assumed to be bounded and Lipschitz continuous. We write = (z1,...,,) for points
in R”,n € N.

2020 Mathematics Subject Classification. Primary 60H10; Secondary 60K35, 60G57, 60G55.
Key words and phrases. Brownian web, Arratia flow, random measure, stochastic flow, Brownian
bridge, point process.
25



26 A.A. DOROGOVTSEV AND N.B. VOVCHANSKII

2. ON BROWNIAN BRIDGES AND RELATED CONDITIONAL DISTRIBUTIONS

Put A, ={u € R" | us < ... < u,}, n € N. The following constructive scheme is
used. Assume W = (w1,...,w,) to be a standard Wiener process in R™ started at 0.
Put wy = wq, 61 (u) =T and define

Ok (u) = inf {t | Wp—1(t) + ug—1 = wi(t) + ux} AT,
Bu(t) = —ui + (wn + W)Lt < Op(w) + (wpor + Doos (D)t > Op(w)), k=27,

where u € A,. Denote W = (W1,...,Wy). Then one can easily verify the following
statement.

Lemma 2.1. In (C([0;T]))"
(X (u1,)s s X (U, ) L u+ W,

and the expression g%n(u) in (1) has the same distribution as

n

O (u) 1 0 (u)
Z/O a(ukerk(t))dwk(t)Q;/O a2(uk+wk(t))dt}.

k=1

Ef (W, u) = exp {

The It6 stochastic integrals that participate in the definition of E%n(I/V, u) can be
expressed in terms of stochastic integrals w.r.t. the Brownian bridges n = (n1,...,7,)
associated with W:

(2) wrlt) = Zwn(T) — (1), t€ ;7] k =Tom

We refer to [6, §5.6.B][10, pp. 299-300] for the general exposition of the theory of
Brownian bridges.
Define the filtration

Ft:o(nk(s),sgt,k:ﬁ), t €10; 7],

which is further supposed to be augmented in a standard way. Each n; is the solution
of the SDE

dn(t) = dBe(t) —
(3) nk(0) =0,

where every (. is a (F)iejo;r)— Wiener process and (7)) = 0. At the same time, every
7, admits the representation

= tdt, te[0;T),

t

4 = — - .

(@ ) =@~ (=g ) € 5T,

with bq,...,b, being independent standard Wiener processes.

Since
T T 2(4))1/2 T 1/2
m(1)] / (Ent ()" / t
E < AN < -
(5) /0 TS| o< | (Goer) A<+

each Brownian bridge 7y is a semimartingale w.r.t its own filtration and the stochastic
integrals w.r.t. the coordinates of 7 are defined in a usual way, at least for bounded
progressively measurable integrands (see [4] for the full characterization of possible inte-
grands).

For any u € A",y € R™ define the following random process n*¥ = (n}"¥,...,n%Y) in
R™:

00 =)+ (1= 3 Jut g 1€ 6T
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and put
0ij(u) = inf {t [ wi(t) + u; = w;(t) +u;} AT,
0ij(u,y) = inf {t | /" (t) = i ()} AT,
j=1i—1,i=2,n,y € R™.

Additionally, put

ekk(u) = ejj(uvy) = Ta ka] = 13”'
Then a.s.

Hij(u) = QZJ(U,W(T) + u), j=1141=1,n.

Lemma 2.2. For allu € A,, with probability 1 all 8;;(u) that are less than T are distinct.
For allu € A, and y € R™ with probability 1 all 0;;(u,y) that are less than T are distinct.

Proof. The first assertion is trivial. The second one can be deduced from (4). O

To describe sequences of collisions in finite-dimensional motions of an Arratia flow,
we use the following construction that was introduced in [3, Definition 1.2] and is a
reformulation of the one presented in [2, pp. 433-434]. Put

Sh’mk:{(.j]m7]k)‘]le{1aan_z}7lzlak}a kzlana
Shn={2}U |J Shnk, neN

k=1,n—1

Recall W +u = (w; +uy,...,W, + uy,) to be coalescing Wiener processes constructed
from the process W + u. Let n — > be the number of distinct values in the sequence
{w;(T) +u; | i =1,n}, » ranging in {0,...,n —1}. Let ; < 72 < ... < 7,, be random
moments such that

{71, o Toe} = {Qk(u) | Op(u) < T,k = 1,7} )
By virtue of Lemma 2.2, such 7, ..., 7, exist a.s.. Put j1 = min{i | 3j # ¢ w;(n) +u; =
w;(7T1) + u;} and define the process Wn=1 by excluding the j;-th coordinate from the
vector w + u. Then put jo = min{é | 3 j # ¢ 117?71(7'2) = w" (1)}, define Wn=2 by
excluding the js-th coordinate from the process W1 and repeat the procedure until a
random collection S(W + w) = (j1,. .., Jx) € Shy, . appears. We will call S(W + u) the

coalescing scheme for the process W + u.
Moreover, there exist nonrandom numbers {\;;(s) | i = 1,2, j = 1,n} such that a.s.

Ok (WL (S(W 4 u) = 5) = Ox, (s)ron(s) (WL (S(W +u) =5), k=1,n.

The collection {X\;;(s) | i = 1,2,j = 1,n} is completely determined by the value of

the coalescence scheme s and can be restored from the latter directly, though, due to

cumbersomeness of the corresponding relations, we omit giving an explicit representation.
For ease of the further presentation, put

ak(t,uvy’ 5) =1 (t < 9)\1k(5))\2k(3) (’U,, y)) -a (Ug’y(t)) ,
tel0;T], k=1,n, y € R", s € Shy;

n

T
& (1,1, 5) = exp { > [ty sdai+
k=170

n T
E ye —ur  ne(t) 1
t T 55 5kl d
+k_1/0 ak( 7u7y75) ( T T _¢ 2ak( 7u’y,s) s ?,

y € R", s € Shy,.
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Lemma 2.3. VC >0V k=1,n

CIT Mk(f)\dt < too.

Proof. By (5) the process t — Z’Jﬁtt) is a Gaussian random element in L;([0; T]), therefore
the claim follows from the Fernique theorem [8, Theorem 3.1]. g

Lemma 2.4. Vu € A, VyER" YV s € Sh, V¥p >0
E (e%,n(u7 y, 3))? S OleC2Hy”,
where

2 1/2 | (t)\ n/2
Cy = eP12p=1T el oy +pn 2wl llall o ) (Eezpuau%(m Jo dt) :

Cy = pn'"?al| L, m)-
Proof. By the Cauchy inequality,

(E (¢4, (u,9.9)")” <
n T 1 n T
- lEexp{Z/o 2paclts)iit) =3 | <2pak<t,y,s>>2dtH .
EeXp{Z/ p(2p — 1)di(t,y,s) — w+

T—1t
+ 72]0(?;1}— uk)ak(t, Y, s))dt}] <

< exp {251yl + 2np|2p = UT - lall}_ ) + 2pn*/ 2|l - all ey |

] " ol
x Eexp 2P||a||Loe(R)Z T—t b
k=170

thus the application of Lemma 2.3 finishes the proof. ([l

In parallel to S(W + u) one defines S(n*¥),y € R™, by applying the same recursive
procedure to the process n**¥ and the times 0;;(u,y),j = 1,4 — 1,i = 2,n.

Theorem 2.1. Yu € A, Vy € R" Vs € Sh,
E ((S(W + u) = $)E¢,,(W,u)/W(T) = y —u) = EI(S(n"Y) = s)e5,, (u,y, ).

Proof. Suppose u is fixed. Define, for k = 1, n,

m—1

ap(t,y,s) = Z I(te (L LT, mT])ak (%T,u,ghs), t€[0;T],m € N.
§=0

Note that on the set {S(W + u) = s} for s € Sh,
a(wg(t) +up) T (¢t < Ok(w) = ap(t,u, W(T) +u,s), k=1,n,te|0;T].

Due to the representation (2)

T m _ wk(T) T m
/0 ap' (t,w(T) + u, s)dwy(t) = T /0 ap' (6, w(T) + u, s)dt+
m—1
(6) +2_ o Ty s) (o (55 T) = (57)) -
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Since W(T') and n are independent, the application of the disintegration theorem gives,
due to (6), that
(1) E(IS(W +u) = s)an(u)/W(T) =y —u) = EL(SH"Y) = s)em(u,y,s),

where

n_oeT
am (1) = exp {,;/0 ap' (6, W(T') + u, s)dwy (t)—

1 n T m 2
_2;1/0 (ai*(t, W(T) + u, s)) dt},

em(uayv S) = exp { Qg (%Tvua Y, S) (nk (%T) — Nk (%T)) +
1 1

T
yr —up 1
ay'(t,y,s) < - am(t,y,s)> dt 3.

Since the functions ay, k = 1, n, are piecewise continuous a.s., there exists a set )’ of full
probability such that Vw € €' for almost all ¢ in [0; T

(8) ap' (&, W(T) + u, s) — ar(t,u, W(T) + u,s) in R.
m o0

3

£l
Il

.
I

+

M=

S
Il

1

It holds due to (8) and the boundedness of the function a that, for k = 1, n,

E/ <(a}€"(t, W(T) + u,s) — ar(t,u, W(T) + u, s))2+
0

t
+ [ (8 W(T) + 1w, 5) — ax(t,u, W(T) +u, S>|M>dtm?oo’

hence
P a
(9) log e (u, y, s)|y:W(T)+u T log e, (u, s)|y:W(T)+u.
and
(10) log v (1) = log &, (W, u).

Repeating the reasoning of Lemma 2.4 one checks that given y,s the estimate of
Lemma 2.4 holds for each e, (u,y, s), so the sequence

{ues6r) = e, .9, cav iy

is uniformly integrable. The boundedness of the function a implies the uniform inte-
grability of the sequence {II(S(W + u) = s)m (u) }men. Thus the claim of the theorem
follows from (9), (10) and (7). O

meN

Lemma 2.5. Vu € A, Vy € R" Vs € Sh,,
W(Sevm) =s) &% wWSH“Y) = s),

m—00
whenever Yp,, — Yy, m — oo.
Proof. We assume that u and y are fixed throughout the proof. Due to Lemma 2.2 it is

sufficient to check that a particular ordering of the moments 6;;(u,y) is preserved in a
sufficiently small random neighborhood of the point y.
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The representation (4) implies that, with f(s) = T:';isl,
aij (U, y) = f (Sij(y)) ’
. U; — Uj
sij(y) =inf 95> 0] bi(s) —b;(s) +s(yi —y;) + =0,

j=1i—-1,i=2n,y e R",

where the convention f(oo) =T is adopted. Since n*¥(T) = y, the probability

P (3 # 3 me¥(0) £ 0 (1), € [0:T), () = (1))

can be greater than 0 only if y; = y, for some k, j, k # j. However, in that case

P (m¥ () # (), € [0:7), i (T) = nfV(T)) =

U — Uy
:P(VSEObk(S)—bj(s)—FTJ#O) = 0.
Therefore with probability 1 for each (k, j) either 0y, (u,y) < T or
11 inf DY) — Y (t 0.
(11) tel[%;T]’nk (t) —n(t)] >

From now on, only a set of full probability which the condition (11) or its counterpart
holds for is considered.

Fix a pair (k,j) and some positive ¢ < 1. Suppose 6i;(u,y) < T. Obviously, there
exists random r > 0 such that the condition ||y —¢'|| < r implies O;(u,y’) > Or;(u,y)—e.
The moment 0, (u,y) is a Markov time w.r.t. the filtration generated by the process 7,
therefore it follows from the iterated logarithm law for the Wiener process that there
exist random e1,e5 : 0 < €1,€9 < € such that

Mk (Orj (w,y) +€1) = 105(0k; (uw, y) + 1) + (wr — “J‘)(l - W) + (e - yj)ij
(12) +51(yk;yj+uj;uk)>0

and

Mk (Orj (u,y) + €2) — 1j(Ok;j(u,y) +€2) + (uk — “J')(l - W) + k- yj)w+
) e S <o

Thus in order to have 8x;(u, y’) < 0;(u,y)+¢& when ||y —y’|| < 4 it is sufficient to choose
d in such a way that the signs in (12) and (13) do not change when y;, and y; are replaced
with y and y}, respectively. O

By using Lemmas 2.4 and 2.5 one can establish the following result.

Lemma 2.6. Vu € A, Vs € Shy, the function R" 5 y — EL(S(n"Y) = s)ef.,, (u,y, s) is
continuous.

3. FINITE-DIMENSIONAL DENSITIES FOR THE POINT PROCESS IN THE ARRATIA FLOW

The section is devoted to the study of the connection between the finite-dimensional
densities for the Arratia flow and the stochastic exponentials that arise when addressing
the Girsanov theorem for Arratia flows with drift [1, Section 7]. We start with the
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corresponding results from [1, §§7.2-7.3]. Consider a dense subset of [0;1], U = {uy | k €
N}. Given an Arratia flow X define

7'1:T

7 = inf {s | H (uss) = X(uj,5) = 0f AT, k=2,
and put, for u(™ = (uy,...,uy,)

(n) Z/ uk7 dX(Uk, )7
n) Z/ X (ug,t))dt, neN.

The integrals in the expression for I,, are ordinary It6 integrals w.r.t. the Wiener pro-
cesses X (uj,-),j € N. Note I,, and J,, are well defined as functions on R™. There exist
limits
I =Ly lim I, (u(")> ,
n—oo

J = Lo- lim J, (u(“>

n—oo

which do not depend on the set U. The distribution of an Arratia flow with drift a as
a random element in the Skorokhod space D([0;1],C([0;T7])) is absolutely continuous
w.r.t. the distribution of X with density

. 1
E%Zexp{l—2J}.

Recall that 5%n(u(”)) = exp{L,(u™) — J,,(u™)},n € N.
Lemma 3.1. Vn € N
E (g%m (u(m)) /X (u1,),y oy X (tn, )) = g%n (u(”)) , m>n,
B (E/X () X (tny ) = &y (u)

Proof. The random variables {g%n (u(”))}neN form a uniformly integrable sequence (see
[1, the proof of Theorem 7.3.1, pp. 268-270]), therefore it is sufficient to prove

E (g%m (u(m)> /Qn) = g%n (u(")) , m>n,
where G,, = o(X (u1,-),..., X (tn,-)). Suppose n and m > n are fixed. Put
t 1 t
rt) =expd [ a(X(u o)X (wn,) ~ 5 [ (X (uns)dsp, e 0TLEEN,
0 0
then, using the It6 formula one can verify that, for k € N,

ek(Tk) =1 + /OTk ek(t)a(X(uk,t))dX(uk,t),



32 A.A. DOROGOVTSEV AND N.B. VOVCHANSKII

since every 7 is a stopping time w.r.t. the filtration generated by the processes X (u;, -),
j € N. Therefore

B 6t (40~ ()2 T o) -

j=n-+1

&, () [1+E (Y Y e ).

k=1 j1<...<Jg

where
koo,
A =T aXstes (00 ()
=1
Rewriting the multipliers in every A;, ;. as

T
| ataxtu.o. 1=
0

for some progressively measurable w.r.t. the filtration generated by X(uj,-),j € N,
processes

17 k7

az, (t) = Wt < 75,)a(X (u;,, t))e;, (1),
applying the same approximation scheme as the one used in the proof of Theorem 2.1
and utilizing the fact that the joint covariance of X (u;,-) and X (u;,-) equals

(t —inf {s | X(u;,s) = X(uj,8)}),, t>0,4,j€N,
one proves via standard reasoning that
E (4.5 /Gn) =0,
which concludes the proof. O

The following notation will be used further. Let {X*(u,t) | u € [0;1],¢ € [0;T]} be an

Arratia flow with drift a. Define
X (u) = {X*(ux, 1) | k= 1,n},

Xo(u,-) = Xu) = (X%(ur, )y X (tn, ), 4= (u,...,un) € R n € N.
Analogously to the case of coalescing Wiener processes in Section 2 one defines the
coalescence scheme S(X *(u)) for the family (X*(u1,-),..., X%(un,")).

Given a set K = {ky,...,ky,} C {1,...,n} and a point z € R"” we denote by z~¥ the
vector obtained by removing in the vector z all the coordinates whose numbers are in
K by 2%, the vector obtained by removing all coordinates except those in K. We write
SKLEKS for (pK0)ERz

The following definitions of the finite-dimensional densities were introduced in [3] and
represent a further development of the notions used in [9, 11].

Given an Arratia flow X, a starting point v € A, and a coalescence scheme s € Sh,, j
for some k the corresponding (n — j)-point density p%™*™ 7 (u;-),5 > k, is a measurable
function on R"~7 such that for any bounded nonnegative measurable f : R*~7 — R

B S U @) =9 = [ )y
V1, Un—j €EXY (1), :

V1,...,0n—; are distinct

. 0 i . . L. .
The existence of p,”"*" "7 (u;-) is shown in [3, Lemma 3.1] whereas an explicit expression

in the particular case k = j is obtained in [3, Theorem 3.1].

a,n,s,]

Lemma 3.2. For all s € Shy,, u € A, and j < n —k the density p; (u;-) exists.
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Proof. Let A be a Borel subset of Aj;. By the Girsanov theorem for the Arratia flow

E > Ly (v, o) T (S(X () = ) =

v1,...,0; €EXY (u),
v1,...,0; are distinct

—E S WA (vr,...,0;) 10 (S(Y(u)) =5) &, (w) <

V1,005 €EXy (u),
v1,...,v; are distinct

< 3 E 1, (?(UL, t)) E (Egﬂ,n (w) /X (u?, t)) <
l; e{?z{l;—k}lj };;1,j

< Y [ (B /Xt =) d
L={l1,...1;}, A
Lie{l,...n—k}, i=1,;

The case when A is not a subset of A; is treated similarly. O

Fix some u € R™ and k € {0,...,n—1}. Following [2, pp. 433-434], we associate with
a coalescence scheme s = (j1, ..., ji) a partition of the set {1,...,n} as follows. Starting
from the partition consisting of singletons, at each step i = 1,...,k proceed by merging
two subsequent blocks in the current partition with the numbers j; and j; 4+ 1, the blocks
being listed in ascending order of their minimal elements. Let the blocks of the final
partition be 7y, ..., . We define the set I(s) = {minn; | i = 1,n — k}. As a result,

{X(ui, T) i€ I(s)} =n—k

on {S (Y“(u)) = s}. Obviously, the coalescence scheme deterministically and uniquely
defines I(s), which does not depend on u and a specific realization of the flow X®.

Denote by ¢%'(u;-) the m-dimensional Gaussian density with mean u and variance
T 1d,,,xm, where Id,,, x, is the unit square matrix of size m, m € N.

Theorem 3.1 (cf. [7]). Assume uw € A,, and s € Shy, n—_i for some k € {0,...,n —1}.
Then for each j € {1,...,k} for ally € Ay

p(jl“’n’s,j (u; y) = Z g% (ul(s)’l‘; ZI(S)’L) / . dz](s),ng,;C:j (ul(s),fL; ZI(S)’iL)
L={l,..l;}C Rk~
(1, kY
/ dZ_I(s)gg—k(u—I(S); Z—I(s)) (E H(S(’ﬂu’z) = S)Q‘%n(u’ z, S)) ern
Rt ’ ZI(S),L:y

Proof. Fix u and take W and W as in Section 2. Define
Bf (v) =[v;v+6), veR, §>0,

e= (W) +u)"”,
W= {@1(T) +u1a---a{[)n(T) +un}

We have, due to the Lebesgue differentiation theorem and [1, Theorem 7.3.1], for
almost all y

PR (usy) = SJm, 57 EH | By (yi) N X7 (u)| - I(S(X*(u) = ) =

J
: —J +(a- . £a —
im0 EE\B(; () VW] - €8, (W, ) I(S(W +u) = 5),
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since by Lemma 2.1 Y(u) L W + u. The reasoning of [9, Appendix B], combined with
Lemma 2.4, allows one to replace | By (y;) N\ W)| with 1[(|Bf (y;) N\W| = 1) for all i in the
previous formula, so that

" (usy) =
J
= Jim 67 > T1 105 ) (&) €2 (W, ) I(S(W + 1) = ).

L:{ll ..... lj}C{l ,,,,, k} 1=1

Consider a separate term
J
As =B ][ Upr ) (6 ER (W) I(S(W +u) = ).
i=1

Since on the set {S(W + u) = s} by the definition of I(s)
W={w;(T)+u; | i €I(s)},
Theorem 2.1 implies that

Ay —EE (H Lyt (6) WSOV + ) = )8, (W, u>/W(T>> -

i=1

J
_E 1:[1 s () ((W(T) +u)! <S>7L) (BU(S(") = s)ehnluzs) | —_

The vectors W (T)! )L W(T) (=)= and W (T)~!(®) being independent given fixed s,
the local property of conditional expectation [5, Lemma 6.2] implies that

J
a8, (00 — 1 —Jj I(s),L
iy = fm 5VE Y [, (W@ + 0 x
L={l1,...,.l;}C{1,....k} i=1

X (E H(S(n’mz) = 5)2%)n(u, z, 5)) ZIES;’L:(W(T)+U)I<S)’L,
ZI 8),—L

=«

27 1)=p,

where W (T)!(*):L and the Gaussian random variables a ~ N (u!(*)— L, T-1d(k—j)x (k—j))5
B~ N(u‘l(s),TId(n_k)X(n_k)) are jointly independent. With Lemma 2.6, the rest of
the proof follows by standard reasoning. We omit the details. [

)

Given an Arratia flow X° a starting point v € A,, and k € {1,...,n} the corre-
sponding (n, k)-point density is a measurable function p%’”’k(u; -) on R* such that for

any bounded nonnegative measurable f : R¥ — R

i By F(or o) (X2 ()] > &) = / DS (s ) f () dy.
Rk‘
v1,..., 0k €XY (u),
v1,...,v; are distinct

The next consequence of the formula of total probability gives a relation between p%”k

k
and p7"".

Lemma 3.3. For anyn € Nyu € A,, and k € {1,...,n} a.e.

n—k
p%n7k(u; N = Z Z p%n,s,k(u; ).

1=0 s€Shy,
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The k—point density p%*(-) (cf. [9, 11]) is defined as a measurable function on R* such
that the analog of (14) holds with X% (u) replaced with the set {X*(v,T") | v € [0;1]} and
the condition |X¢(u)| > k dropped. The result of [3, Theorem 3.2] admits the following
extension, the proof being the same with some minor changes having been made.

Theorem 3.2. Let u(™ = (ugn)7...7u51n)) € A,,n € N, be such that u:(ln) = O,ugln) =
1,n €N,

{uﬁ"),...,u;")} C {u(lnﬂ),...,u?(ﬁﬁl)}, n €N,
and

) _ (.”))
(0 =) 20

Then for all k € N a.e.
Py (u("); ) oyt n— oo,

Due to Lemma 3.3, Theorem 3.1 provides an explicit expression for the densities
paT’k(u; -) in terms of conditional expectations of certain stochastic exponentials discussed
in Section 2.

Consider u € A,,. Suppose that elements of the set X7 (u) are listed in ascending order.
Let sc be the cemetery state. Given a set L = {l1,...,lx},l; € N,i = 1,k, for some k,
put the random vector XL (u) to be equal to

(15) (X (u),....,(Xr(w),)
if max,_y31i < |Xr(u)|, and s, otherwise. We denote the density of Xf(u) in R* by
gk (u;-). Note that always

/ ar(u; y)dy < 1.
Rk

Theorem 3.3 (cf. [7]). For any u € A, and any k € {1,...,n} a.e.

a,n,k

Py () = > aF(ui ) B (& () /X () = y)

L={l1,...,ls}, LiEN, i=1k

Proof. Proceeding similarly to the proof of Theorem 3.1, one obtains a.e.

k
P y) = lim 078y BERw(XE (u) # ) [[ Wpe,,) (X7 (w)):) =
L={l1,...,lx}, =1

l;EN, i=1k

_ 513& 5k Z E1(XF(u) # ) x 1L (Xqé(u) € i;’il B;(yi)> X

< B (& (w)/Xf ().
The application of the Lebesgue differentiation theorem finishes the proof. (|

Replacing in (15) the set X7 (u) with the set {X(v,T) | v € [0;1]} one defines, anal-
ogously to XL (u), the random vector X% with values in R*¥ U {5c}. The corresponding
density being denoted by ¢k(-), the following result holds.

Theorem 3.4. For any k € N a.e.
a,k ~a,
P (y) = > aF ) E (E/XF = ).
L={ly,...,lx}, LEN, i=1,k

The arguments are repetitive and thus omitted.
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