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A.A. DOROGOVTSEV AND N.B. VOVCHANSKII

REPRESENTATIONS OF THE FINITE-DIMENSIONAL POINT

DENSITIES IN ARRATIA FLOWS WITH DRIFT

We derive representations for finite-dimensional densities of the point process asso-

ciated with an Arratia flow with drift in terms of conditional expectations of the
stochastic exponentials appearing in the analog of the Girsanov theorem for the Ar-

ratia flow.

1. Introduction

The study of the point process associated with an Arratia flow {Xa(u, t)|u ∈ [0; 1], t ∈
[0;T ]} with drift a [1, Section 7] is carried out in the present paper by means of special

(n, k)-point densities pa,n,kt , k ≤ n. Such densities constitute a generalization of those
discussed in [9, 11, 12] and are informally defined via the formula

P
(
∀ i = 1, n Xa(ui, t) ∈

k⋃
j=1

[yj ; yj + dyj ], ∀ j = 1, k

{Xa(ul, t) | l = 1, n} ∩ [yj ; yj + dyj ] 6= ∅
)

= pa,n,kt (u; y)dy1 . . . dyk,

the strict definition to be provided later in the text.

We find the Radon–Nikodym representation for pa,n,kt in terms of p0,n,kt . It is known
[1, p. 194] that that the distribution of the random process (Xa(u1, ·), . . . , Xa(un, ·)) is
absolutely continuous in (C([0;T ]))n w.r.t. the distribution of (X0(u1, ·), . . . , X0(un, ·))
with density

(1) ẼaT,n(u) = exp

{
n∑
k=1

∫ τk

0

a(X0(uk, t))dX
0(uk, t)−

1

2

n∑
k=1

∫ τk

0

a2(X0(uk, t))dt

}
,

where τ1 = T and

τk = inf

{
t |

k−1∏
j=1

(
X0(uj , t)−X0(uk, t)

)
= 0

}
∧ T, k = 1, n,

where inf ∅ = +∞ by definition. Moreover, the distribution of an Arratia flow with a
bounded Lipschitz continuous drift a as a random element in D([0; 1], C([0;T ])) is abso-
lutely continuous w.r.t. the distribution of the Arratia flow with zero drift [1, Theorem
7.3.1].

Since the definition of the densities pa,n,kt contains the condition for the flow to hit
the neighborhoods of certain points at time t, we firstly investigate the distribution of
(1) conditional on (X0(u1, T ), . . . , X0(un, T )).

Hereinafter the superscript a = 0 is dropped in the case of zero drift, and a is always
assumed to be bounded and Lipschitz continuous. We write x = (x1, . . . , xn) for points
in Rn, n ∈ N.
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2. On Brownian bridges and related conditional distributions

Put ∆n = {u ∈ Rn | u1 < . . . < un}, n ∈ N. The following constructive scheme is
used. Assume W = (w1, . . . , wn) to be a standard Wiener process in Rn started at 0.
Put w̃1 = w1, θ1(u) = T and define

θk(u) = inf {t | w̃k−1(t) + uk−1 = wk(t) + uk} ∧ T,
w̃k(t) = −uk + (uk + wk(t))1I(t < θk(u)) + (uk−1 + w̃k−1(t))1I(t ≥ θk(u)), k = 2, n,

where u ∈ ∆n. Denote W̃ = (w̃1, . . . , w̃n). Then one can easily verify the following
statement.

Lemma 2.1. In (C([0;T ]))
n

(X(u1, ·), . . . , X(un, ·))
d
= u+ W̃ ,

and the expression ẼaT,n(u) in (1) has the same distribution as

EaT,n(W,u) = exp

{
n∑
k=1

∫ θk(u)

0

a(uk + wk(t))dwk(t)− 1

2

n∑
k=1

∫ θk(u)

0

a2(uk + wk(t))dt

}
.

The Itô stochastic integrals that participate in the definition of EaT,n(W,u) can be

expressed in terms of stochastic integrals w.r.t. the Brownian bridges η = (η1, . . . , ηn)
associated with W :

(2) wk(t) =
t

T
wk(T )− ηk(t), t ∈ [0;T ], k = 1, n.

We refer to [6, §5.6.B][10, pp. 299-300] for the general exposition of the theory of
Brownian bridges.

Define the filtration

Ft = σ
(
ηk(s), s ≤ t, k = 1, n

)
, t ∈ [0;T ],

which is further supposed to be augmented in a standard way. Each ηk is the solution
of the SDE

dηk(t) = dβk(t)− ηk(t)

T − t
dt, t ∈ [0;T ),

ηk(0) = 0,(3)

where every βk is a (Ft)t∈[0;T ]−Wiener process and ηk(T ) = 0. At the same time, every
ηk admits the representation

(4) ηk(t) = (T − t)bk
(

t

T (T − t)

)
, t ∈ [0;T ),

with b1, . . . , bn being independent standard Wiener processes.
Since

E

∫ T

0

|η1(t)|
T − t

dt ≤
∫ T

0

(E η21(t))1/2

T − t
dt ≤

∫ T

0

(
t

(T − t)T

)1/2

dt < +∞,(5)

each Brownian bridge ηk is a semimartingale w.r.t its own filtration and the stochastic
integrals w.r.t. the coordinates of η are defined in a usual way, at least for bounded
progressively measurable integrands (see [4] for the full characterization of possible inte-
grands).

For any u ∈ ∆n, y ∈ Rn define the following random process ηu,y = (ηu,y1 , . . . , ηu,yn ) in
Rn :

ηu,y(t) = η(t) +

(
1− t

T

)
u+

t

T
y, t ∈ [0;T ],
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and put

θij(u) = inf {t | wi(t) + ui = wj(t) + uj} ∧ T,
θij(u, y) = inf

{
t | ηu,yi (t) = ηu,yj (t)

}
∧ T,

j = 1, i− 1, i = 2, n, y ∈ Rn.

Additionally, put

θkk(u) = θjj(u, y) = T, k, j = 1, n.

Then a.s.

θij(u) = θij(u,W (T ) + u), j = 1, i, i = 1, n.

Lemma 2.2. For all u ∈ ∆n with probability 1 all θij(u) that are less than T are distinct.
For all u ∈ ∆n and y ∈ Rn with probability 1 all θij(u, y) that are less than T are distinct.

Proof. The first assertion is trivial. The second one can be deduced from (4). �

To describe sequences of collisions in finite-dimensional motions of an Arratia flow,
we use the following construction that was introduced in [3, Definition 1.2] and is a
reformulation of the one presented in [2, pp. 433-434]. Put

Shn,k = {(j1, . . . , jk) | ji ∈ {1, . . . , n− i} , i = 1, k}, k = 1, n,

Shn = {∅} ∪
⋃

k=1,n−1

Shn,k, n ∈ N.

Recall W̃ + u = (w̃1 + u1, . . . , w̃n + un) to be coalescing Wiener processes constructed
from the process W + u. Let n − κ be the number of distinct values in the sequence
{w̃i(T ) + ui | i = 1, n}, κ ranging in {0, . . . , n − 1}. Let τ1 < τ2 < . . . < τκ be random
moments such that

{τ1, . . . , τκ} =
{
θk(u) | θk(u) < T, k = 1, n

}
.

By virtue of Lemma 2.2, such τ1, . . . , τκ exist a.s.. Put j1 = min{i | ∃j 6= i w̃j(τ1) +uj =

w̃i(τ1) + ui} and define the process W̃n−1 by excluding the j1-th coordinate from the

vector w̃ + u. Then put j2 = min{i | ∃ j 6= i w̃n−1j (τ2) = w̃n−1i (τ2)}, define W̃n−2 by

excluding the j2-th coordinate from the process W̃n−1 and repeat the procedure until a
random collection S(W + u) = (j1, . . . , jκ) ∈ Shn,κ appears. We will call S(W + u) the
coalescing scheme for the process W + u.

Moreover, there exist nonrandom numbers {λij(s) | i = 1, 2, j = 1, n} such that a.s.

θk(u)1I (S(W + u) = s) = θλ1k(s)λ2k(s)(u)1I (S(W + u) = s) , k = 1, n.

The collection {λij(s) | i = 1, 2, j = 1, n} is completely determined by the value of
the coalescence scheme s and can be restored from the latter directly, though, due to
cumbersomeness of the corresponding relations, we omit giving an explicit representation.

For ease of the further presentation, put

ak(t, u, y, s) = 1I
(
t ≤ θλ1k(s)λ2k(s)(u, y)

)
· a (ηu,yk (t)) ,

t ∈ [0;T ], k = 1, n, y ∈ Rn, s ∈ Shn;

eaT,n(u, y, s) = exp

{
n∑
k=1

∫ T

0

ak(t, y, s)dβk(t)+

+

n∑
k=1

∫ T

0

ak(t, u, y, s)

(
yk − uk
T

− ηk(t)

T − t
− 1

2
ak(t, u, y, s)

)
ds

}
,

y ∈ Rn, s ∈ Shn.
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Lemma 2.3. ∀ C > 0 ∀ k = 1, n

E eC
∫ T
0

|ηk(t)|
T−t dt < +∞.

Proof. By (5) the process t 7→ ηk(t)
T−t is a Gaussian random element in L1([0;T ]), therefore

the claim follows from the Fernique theorem [8, Theorem 3.1]. �

Lemma 2.4. ∀u ∈ ∆n ∀ y ∈ Rn ∀ s ∈ Shn ∀p ≥ 0

E
(
eaT,n(u, y, s)

)p ≤ C1e
C2‖y‖,

where

C1 = enp|2p−1|T ·‖a‖
2
L∞(R)+pn

1/2‖u‖·‖a‖L∞(R)
(

E e2p‖a‖L∞(R)
∫ T
0

|η1(t)|
T−t dt

)n/2
,

C2 = pn1/2‖a‖L∞(R).

Proof. By the Cauchy inequality,(
E
(
eaT,n(u, y, s)

)p)2 ≤
≤

[
E exp

{
n∑
k=1

∫ T

0

2pak(t, y, s)dβk(t)− 1

2

n∑
k=1

∫ T

0

(2pak(t, y, s))
2
dt

}]
×

×

[
E exp

{
n∑
k=1

∫ T

0

(
p(2p− 1)a2k(t, y, s)− 2pak(t, y, s)ηk(t)

T − t
+

+
2p(yk − uk)

T
ak(t, y, s)

)
dt

}]
≤

≤ exp
{

2C2‖y‖+ 2np|2p− 1|T · ‖a‖2L∞(R) + 2pn1/2‖u‖ · ‖a‖L∞(R)

}
×

× E exp

{
2p‖a‖L∞(R)

n∑
k=1

∫ T

0

|ηk(t)|
T − t

dt

}
,

thus the application of Lemma 2.3 finishes the proof. �

In parallel to S(W + u) one defines S(ηu,y), y ∈ Rn, by applying the same recursive
procedure to the process ηu,y and the times θij(u, y), j = 1, i− 1, i = 2, n.

Theorem 2.1. ∀u ∈ ∆n ∀ y ∈ Rn ∀s ∈ Shn
E
(
1I(S(W + u) = s)EaT,n(W,u)/W (T ) = y − u

)
= E 1I(S(ηu,y) = s)eaT,n(u, y, s).

Proof. Suppose u is fixed. Define, for k = 1, n,

amk (t, y, s) =

m−1∑
j=0

1I
(
t ∈
(
j
mT ; j+1

m T
])
ak
(
j
mT, u, y, s

)
, t ∈ [0;T ],m ∈ N.

Note that on the set {S(W + u) = s} for s ∈ Shn
a(wk(t) + uk)1I (t ≤ θk(u)) = ak(t, u,W (T ) + u, s), k = 1, n, t ∈ [0;T ].

Due to the representation (2)∫ T

0

amk (t, w(T ) + u, s)dwk(t) =
wk(T )

T

∫ T

0

amk (t, w(T ) + u, s)dt+

+

m−1∑
j=1

ak
(
j
mT, u, y, s

) (
ηk
(
j+1
m T

)
− ηk

(
j
mT
))
.(6)
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Since W (T ) and η are independent, the application of the disintegration theorem gives,
due to (6), that

E
(
1I(S(W + u) = s)αm(u)/W (T ) = y − u

)
= E 1I(S(ηu,y) = s)em(u, y, s),(7)

where

αm(u) = exp

{
n∑
k=1

∫ T

0

amk (t,W (T ) + u, s)dwk(t)−

−1

2

n∑
k=1

∫ T

0

(amk (t,W (T ) + u, s))
2
dt

}
,

em(u, y, s) = exp

{
n∑
k=1

m−1∑
j=1

ak
(
j
mT, u, y, s

) (
ηk
(
j+1
m T

)
− ηk

(
j
mT
))

+

+

n∑
k=1

∫ T

0

amk (t, y, s)

(
yk − uk
T

− 1

2
amk (t, y, s)

)
dt

}
.

Since the functions ak, k = 1, n, are piecewise continuous a.s., there exists a set Ω′ of full
probability such that ∀ω ∈ Ω′ for almost all t in [0;T ]

(8) amk (t,W (T ) + u, s) −→
m→∞

ak(t, u,W (T ) + u, s) in R.

It holds due to (8) and the boundedness of the function a that, for k = 1, n,

E

∫ T

0

((
amk (t,W (T ) + u, s)− ak(t, u,W (T ) + u, s)

)2
+

+
∣∣amk (t,W (T ) + u, s)− ak(t, u,W (T ) + u, s)

∣∣ |ηk(t)|
T − t

)
dt −→
m→∞

0,

hence

(9) log em(u, y, s)
∣∣
y=W (T )+u

P−→
m→∞

log eaT,n(u, y, s)
∣∣
y=W (T )+u

.

and

(10) logαm(u)
P−→

m→∞
log EaT,n(W,u).

Repeating the reasoning of Lemma 2.4 one checks that given y, s the estimate of
Lemma 2.4 holds for each em(u, y, s), so the sequence{

1I(S(ηu,y) = s)em(u, y, s)
∣∣
y=W (T )+u

}
m∈N

is uniformly integrable. The boundedness of the function a implies the uniform inte-
grability of the sequence {1I(S(W + u) = s)αm(u)}m∈N. Thus the claim of the theorem
follows from (9), (10) and (7). �

Lemma 2.5. ∀u ∈ ∆n ∀y ∈ Rn ∀s ∈ Shn

1I(S(ηu,ym) = s)
a.s.−→
m→∞

1I(S(ηu,y) = s),

whenever ym → y,m→∞.

Proof. We assume that u and y are fixed throughout the proof. Due to Lemma 2.2 it is
sufficient to check that a particular ordering of the moments θij(u, y) is preserved in a
sufficiently small random neighborhood of the point y.
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The representation (4) implies that, with f(s) = T 2s
Ts+1 ,

θij(u, y) = f (sij(y)) ,

sij(y) = inf

{
s ≥ 0 | bi(s)− bj(s) + s(yi − yj) +

ui − uj
T

= 0

}
,

j = 1, i− 1, i = 2, n, y ∈ Rn,

where the convention f(∞) = T is adopted. Since ηu,y(T ) = y, the probability

P
(
∃k 6= j : ηu,yk (t) 6= ηu,yj (t), t ∈ [0;T ), ηu,yk (T ) = ηu,yj (T )

)
can be greater than 0 only if yj = yk for some k, j, k 6= j. However, in that case

P
(
ηu,yk (t) 6= ηu,yj (t), t ∈ [0;T ), ηu,yk (T ) = ηu,yj (T )

)
=

= P
(
∀s ≥ 0 bk(s)− bj(s) +

uk − uj
T

6= 0
)

= 0.

Therefore with probability 1 for each (k, j) either θkj(u, y) < T or

(11) inf
t∈[0;T ]

∣∣ηu,yk (t)− ηu,yj (t)
∣∣ > 0.

From now on, only a set of full probability which the condition (11) or its counterpart
holds for is considered.

Fix a pair (k, j) and some positive ε � 1. Suppose θkj(u, y) < T. Obviously, there
exists random r > 0 such that the condition ‖y−y′‖ < r implies θkj(u, y

′) ≥ θkj(u, y)−ε.
The moment θkj (u, y) is a Markov time w.r.t. the filtration generated by the process η,
therefore it follows from the iterated logarithm law for the Wiener process that there
exist random ε1, ε2 : 0 < ε1, ε2 < ε such that

ηk(θkj(u, y) + ε1)− ηj(θkj(u, y) + ε1) + (uk − uj)
(

1− θkj(u, y)

T

)
+ (yk − yj)

θkj(u, y)

T
+

+ ε1

(yk − yj
T

+
uj − uk
T

)
> 0(12)

and

ηk(θkj(u, y) + ε2)− ηj(θkj(u, y) + ε2) + (uk − uj)
(

1− θkj(u, y)

T

)
+ (yk − yj)

θkj(u, y)

T
+

+ ε2

(yk − yj
T

+
uj − uk
T

)
< 0.(13)

Thus in order to have θkj(u, y
′) ≤ θkj(u, y)+ε when ‖y−y′‖ ≤ δ it is sufficient to choose

δ in such a way that the signs in (12) and (13) do not change when yk and yj are replaced
with y′k and y′j , respectively. �

By using Lemmas 2.4 and 2.5 one can establish the following result.

Lemma 2.6. ∀u ∈ ∆n ∀s ∈ Shn the function Rn 3 y 7→ E 1I(S(ηu,y) = s)eaT,n(u, y, s) is
continuous.

3. Finite-dimensional densities for the point process in the Arratia flow

The section is devoted to the study of the connection between the finite-dimensional
densities for the Arratia flow and the stochastic exponentials that arise when addressing
the Girsanov theorem for Arratia flows with drift [1, Section 7]. We start with the
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corresponding results from [1, §§7.2-7.3]. Consider a dense subset of [0; 1], U = {uk | k ∈
N}. Given an Arratia flow X define

τ1 = T,

τk = inf
{
s |

k−1∏
j=1

(X(uk, s)−X(uj , s)) = 0
}
∧ T, k ≥ 2,

and put, for u(n) = (u1, . . . , un),

In

(
u(n)

)
=

n∑
k=1

∫ τk

0

a(X(uk, t))dX(uk, t),

Jn

(
u(n)

)
=

n∑
k=1

∫ τk

0

a2(X(uk, t))dt, n ∈ N.

The integrals in the expression for In are ordinary Itô integrals w.r.t. the Wiener pro-
cesses X(uj , ·), j ∈ N. Note In and Jn are well defined as functions on Rn. There exist
limits

I = L2- lim
n→∞

In

(
u(u)

)
,

J = L2- lim
n→∞

Jn

(
u(u)

)
,

which do not depend on the set U. The distribution of an Arratia flow with drift a as
a random element in the Skorokhod space D([0; 1], C([0;T ])) is absolutely continuous
w.r.t. the distribution of X with density

ẼaT = exp

{
I − 1

2
J

}
.

Recall that ẼaT,n(u(n)) = exp{In(u(n))− Jn(u(n))}, n ∈ N.

Lemma 3.1. ∀n ∈ N

E
(
ẼaT,m

(
u(m)

)
/X(u1, ·), . . . , X(un, ·)

)
= ẼaT,n

(
u(n)

)
, m ≥ n,

E
(
ẼaT /X(u1, ·), . . . , X(un, ·)

)
= ẼaT,n

(
u(n)

)
.

Proof. The random variables {ẼaT,n
(
u(n)

)
}n∈N form a uniformly integrable sequence (see

[1, the proof of Theorem 7.3.1, pp. 268-270]), therefore it is sufficient to prove

E
(
ẼaT,m

(
u(m)

)
/Gn

)
= ẼaT,n

(
u(n)

)
, m ≥ n,

where Gn = σ(X(u1, ·), . . . , X(un, ·)). Suppose n and m > n are fixed. Put

ek(t) = exp

{∫ t

0

a(X(uk, s))dX(uk, s)−
1

2

∫ t

0

a2(X(uk, s))ds

}
, t ∈ [0;T ], k ∈ N,

then, using the Itô formula one can verify that, for k ∈ N,

ek(τk) = 1 +

∫ τk

0

ek(t)a(X(uk, t))dX(uk, t),
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since every τk is a stopping time w.r.t. the filtration generated by the processes X(uj , ·),
j ∈ N. Therefore

E
(
ẼaT,m

(
u(m)

)
/Gn

)
= ẼaT,n

(
u(n)

)
E

(
m∏

j=n+1

ej/Gn

)
=

= ẼaT,n
(
u(n)

)1 + E

m−n∑
k=1

∑
j1<...<jk

Aj1...jk/Gn

 ,

where

Aj1...jk =

k∏
l=1

∫ τjl

0

a(X(ujl , t))ejl(t)dX(ujl , t).

Rewriting the multipliers in every Aj1...jk as∫ T

0

ajl(t)dX(ujl , t), l = 1, k,

for some progressively measurable w.r.t. the filtration generated by X(uj , ·), j ∈ N,
processes

ajl(t) = 1I(t ≤ τjl)a(X(ujl , t))ejl(t),

applying the same approximation scheme as the one used in the proof of Theorem 2.1
and utilizing the fact that the joint covariance of X(ui, ·) and X(uj , ·) equals

(t− inf {s | X(ui, s) = X(uj , s)})+ , t ≥ 0, i, j ∈ N,

one proves via standard reasoning that

E (Aj1...jk/Gn) = 0,

which concludes the proof. �

The following notation will be used further. Let {Xa(u, t) | u ∈ [0; 1], t ∈ [0;T ]} be an
Arratia flow with drift a. Define

Xat (u) = {Xa(uk, t) | k = 1, n},
−→
Xa(u, ·) ≡

−→
Xa(u) = (Xa(u1, ·), . . . , Xa(un, ·)) , u = (u1, . . . , un) ∈ Rn, n ∈ N.

Analogously to the case of coalescing Wiener processes in Section 2 one defines the

coalescence scheme S(
−→
Xa(u)) for the family (Xa(u1, ·), . . . , Xa(un, ·)).

Given a set K = {k1, . . . , km} ⊂ {1, . . . , n} and a point z ∈ Rn we denote by z−K the
vector obtained by removing in the vector z all the coordinates whose numbers are in
K; by zK , the vector obtained by removing all coordinates except those in K. We write
zK1,±K2 for (zK1)±K2 .

The following definitions of the finite-dimensional densities were introduced in [3] and
represent a further development of the notions used in [9, 11].

Given an Arratia flow Xa, a starting point u ∈ ∆n and a coalescence scheme s ∈ Shn,k
for some k the corresponding (n− j)-point density pa,n,s,n−jT (u; ·), j ≥ k, is a measurable
function on Rn−j such that for any bounded nonnegative measurable f : Rn−j → R

E
∑

v1,...,vn−j∈Xat (u),
v1,...,vn−j are distinct

f(v1, . . . , vn−j)1I(S(
−→
Xa(u)) = s) =

∫
Rn−j

pa,n,s,n−jt (u; y)f(y)dy.

The existence of p0,n,s,n−jt (u; ·) is shown in [3, Lemma 3.1] whereas an explicit expression
in the particular case k = j is obtained in [3, Theorem 3.1].

Lemma 3.2. For all s ∈ Shn,k, u ∈ ∆n and j ≤ n− k the density pa,n,s,jt (u; ·) exists.
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Proof. Let A be a Borel subset of ∆j . By the Girsanov theorem for the Arratia flow

E
∑

v1,...,vj∈Xat (u),
v1,...,vj are distinct

1IA (v1, . . . , vj) 1I
(
S(
−→
Xa(u)) = s

)
=

= E
∑

v1,...,vj∈Xt(u),
v1,...,vj are distinct

1IA (v1, . . . , vj) 1I
(
S(
−→
X (u)) = s

)
ẼaT,n (u) ≤

≤
∑

L={l1,...,lj},
li∈{1,...,n−k}, i=1,j

E 1IA

(−→
X (uL, t)

)
E
(
ẼaT,n (u) /

−→
X (uL, t)

)
≤

≤
∑

L={l1,...,lj},
li∈{1,...,n−k}, i=1,j

∫
A

p0,j,jt (uL; y) E
(
ẼaT,n (u) /

−→
X (uL, t) = y

)
dy.

The case when A is not a subset of ∆j is treated similarly. �

Fix some u ∈ Rn and k ∈ {0, . . . , n− 1}. Following [2, pp. 433-434], we associate with
a coalescence scheme s = (j1, . . . , jk) a partition of the set {1, . . . , n} as follows. Starting
from the partition consisting of singletons, at each step i = 1, . . . , k proceed by merging
two subsequent blocks in the current partition with the numbers ji and ji+ 1, the blocks
being listed in ascending order of their minimal elements. Let the blocks of the final
partition be π1, . . . , πk. We define the set I(s) = {minπi | i = 1, n− k}. As a result,

|{Xa(ui, T ) | i ∈ I(s)}| = n− k

on {S(
−→
Xa(u)) = s}. Obviously, the coalescence scheme deterministically and uniquely

defines I(s), which does not depend on u and a specific realization of the flow Xa.
Denote by gmT (u; ·) the m-dimensional Gaussian density with mean u and variance

T Idm×m, where Idm×m is the unit square matrix of size m, m ∈ N.

Theorem 3.1 (cf. [7]). Assume u ∈ ∆n and s ∈ Shn,n−k for some k ∈ {0, . . . , n − 1}.
Then for each j ∈ {1, . . . , k} for all y ∈ ∆k

pa,n,s,jT (u; y) =
∑

L={l1,...,lj}⊂
{1,...,k}

gjT

(
uI(s),L; zI(s),L

)∫
Rk−j

dzI(s),−Lgk−jT

(
uI(s),−L; zI(s),−L

)
∫
Rn−k

dz−I(s)gn−kT (u−I(s); z−I(s))
(
E 1I(S(ηu,z) = s)eaT,n(u, z, s)

) ∣∣∣z∈Rn,
zI(s),L=y

.

Proof. Fix u and take W and W̃ as in Section 2. Define

B+
δ (v) = [v; v + δ), v ∈ R, δ > 0,

ξ =
(
W̃ (T ) + u

)I(s)
,

W = {w̃1(T ) + u1, . . . , w̃n(T ) + un} .
We have, due to the Lebesgue differentiation theorem and [1, Theorem 7.3.1], for

almost all y

pa,n,s,jT (u; y) = lim
δ→0+

δ−j E

j∏
i=1

∣∣B+
δ (yi) ∩ XaT (u)

∣∣ · 1I(S(
−→
Xa(u)) = s) =

= lim
δ→0+

δ−j E

j∏
i=1

∣∣B+
δ (yi) ∩W

∣∣ · EaT,n(W,u)1I(S(W + u) = s),
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since by Lemma 2.1
−→
X (u)

d
= W̃ + u. The reasoning of [9, Appendix B], combined with

Lemma 2.4, allows one to replace |B+
δ (yi)∩W| with 1I(|B+

δ (yi)∩W| = 1) for all i in the
previous formula, so that

pa,n,s,jT (u; y) =

= lim
δ→0+

δ−j E
∑

L={l1,...,lj}⊂{1,...,k}

j∏
i=1

1IB+
δ (yi)

(ξli) EaT,n(W,u)1I(S(W + u) = s).

Consider a separate term

Aδ,L = E

j∏
i=1

1IB+
δ (yi)

(ξli) EaT,n(W,u)1I(S(W + u) = s).

Since on the set {S(W + u) = s} by the definition of I(s)

W = {wi(T ) + ui | i ∈ I(s)},

Theorem 2.1 implies that

Aδ,L = E E

(
j∏
i=1

1IB+
δ (yi)

(ξli) 1I(S(W + u) = s)EaT,n(W,u)/W (T )

)
=

= E

j∏
i=1

1IB+
δ (yi)

(
(W (T ) + u)

I(s),L
i

) (
E 1I(S(ηu,z) = s)eaT,n(u, z, s)

) ∣∣∣
z=W (T )+u

.

The vectors W (T )I(s),L,W (T )I(s),−L and W (T )−I(s) being independent given fixed s,
the local property of conditional expectation [5, Lemma 6.2] implies that

pa,n,s,jT (u; y) = lim
δ→0+

δ−j E
∑

L={l1,...,lj}⊂{1,...,k}

j∏
i=1

1IB+
δ (yi)

(
(W (T ) + u)

I(s),L
i

)
×

×
(
E 1I(S(ηu,z) = s)eaT,n(u, z, s)

) ∣∣∣∣∣zI(s),L=(W (T )+u)I(s),L,

zI(s),−L=α,

z−I(s)=β,

where W (T )I(s),L and the Gaussian random variables α ∼ N (uI(s),−L, T · Id(k−j)×(k−j)),

β ∼ N (u−I(s), T Id(n−k)×(n−k)) are jointly independent. With Lemma 2.6, the rest of
the proof follows by standard reasoning. We omit the details. �

Given an Arratia flow Xa, a starting point u ∈ ∆n and k ∈ {1, . . . , n} the corre-

sponding (n, k)-point density is a measurable function pa,n,kT (u; ·) on Rk such that for
any bounded nonnegative measurable f : Rk → R

(14) E
∑

v1,...,vk∈Xat (u),
v1,...,vk are distinct

f(v1, . . . , vk)1I (|Xat (u)| ≥ k) =

∫
Rk
pa,n,kT (u; y)f(y)dy.

The next consequence of the formula of total probability gives a relation between pa,n,kT

and pa,n,s,kT .

Lemma 3.3. For any n ∈ N, u ∈ ∆n and k ∈ {1, . . . , n} a.e.

pa,n,kT (u; ·) =

n−k∑
l=0

∑
s∈Shn,l

pa,n,s,kT (u; ·).
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The k−point density pa,kT (·) (cf. [9, 11]) is defined as a measurable function on Rk such
that the analog of (14) holds with XaT (u) replaced with the set {Xa(v, T ) | v ∈ [0; 1]} and
the condition |Xat (u)| ≥ k dropped. The result of [3, Theorem 3.2] admits the following
extension, the proof being the same with some minor changes having been made.

Theorem 3.2. Let u(n) = (u
(n)
1 , . . . , u

(n)
n ) ∈ ∆n, n ∈ N, be such that u

(n)
1 = 0, u

(n)
n =

1, n ∈ N, {
u
(n)
1 , . . . , u(n)n

}
⊂
{
u
(n+1)
1 , . . . , u

(n+1)
n+1

}
, n ∈ N,

and

max
j=0,n−1

(
u
(n)
j+1 − u

(n)
j

)
−→
n→∞

0.

Then for all k ∈ N a.e.

pa,n,kT

(
u(n); ·

)
↗ pa,kT , n→∞.

Due to Lemma 3.3, Theorem 3.1 provides an explicit expression for the densities

pa,kT (u; ·) in terms of conditional expectations of certain stochastic exponentials discussed
in Section 2.

Consider u ∈ ∆n. Suppose that elements of the set XT (u) are listed in ascending order.
Let κ be the cemetery state. Given a set L = {l1, . . . , lk}, li ∈ N, i = 1, k, for some k,
put the random vector XLT (u) to be equal to

(15) ((XT (u))l1,...,(XT (u))lk) ,

if maxi=1,k li ≤ |XT (u)|, and κ, otherwise. We denote the density of XLT (u) in Rk by

qLT (u; ·). Note that always ∫
Rk
qLT (u; y)dy < 1.

Theorem 3.3 (cf. [7]). For any u ∈ ∆n and any k ∈ {1, . . . , n} a.e.

pa,n,kT (u; y) =
∑

L={l1,...,lk}, li∈N, i=1,k

qLT (u; y) E
(
ẼaT,n(u)/XLT (u) = y

)
.

Proof. Proceeding similarly to the proof of Theorem 3.1, one obtains a.e.

pa,n,kT (u; y) = lim
δ→0+

δ−k
∑

L={l1,...,lk},
li∈N, i=1,k

E ẼaT (u)1I
(
XLT (u) 6= κ

) k∏
i=1

1IB+
δ (yi)

(
(XLT (u))i

)
=

= lim
δ→0+

δ−k
∑

L={l1,...,lk},
li∈N, i=1,k

E 1I
(
XLT (u) 6= κ

)
× 1I

(
XLT (u) ∈

k
×
i=1

B+
δ (yi)

)
×

× E
(
ẼaT (u)/XLT (u)

)
.

The application of the Lebesgue differentiation theorem finishes the proof. �

Replacing in (15) the set XT (u) with the set {X(v, T ) | v ∈ [0; 1]} one defines, anal-
ogously to XLT (u), the random vector XLT with values in Rk ∪ {κ}. The corresponding
density being denoted by qLT (·), the following result holds.

Theorem 3.4. For any k ∈ N a.e.

pa,kT (y) =
∑

L={l1,...,lk}, li∈N, i=1,k

qLT (y) E
(
ẼaT /XLT = y

)
.

The arguments are repetitive and thus omitted.
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