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V. MANDREKAR AND U. V. NAIK-NIMBALKAR

WEAK UNIQUENESS OF MARTINGALE SOLUTIONS TO

STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS IN HILBERT

SPACES

We prove the uniqueness of martingale solutions for stochastic partial differential

equations generalizing the work in Mandrekar and Skorokhod (1998). The main idea

used is to reduce this problem to the case in Mandrekar and Skorokhod using the
techniques introduced in Filipović et al. (2010).

1. Introduction

The main purpose of the paper is to prove uniqueness of martingale solutions for
stochastic partial differential equations (SPDE). We observe that for the finite dimen-
sional case, the result for stochastic differential equations was first proved by Stroock
and Varadhan (1969). Gikhman and Skorokhod (1979), in their book, give a proof based
on a method from Harmonic Analysis using the Fourier transform of the infinitesimal
generator. In Mandrekar and Skorokhod (1998), a generalization of the Stroock and
Varadhan (1969) result to the infinite dimensional Hilbert space is given using the tech-
nique in Gikhman and Skorokhod (1979). However, this does not give the uniqueness of
the martingale solution of a SPDE.

We use the idea in Filipović et al. (2010), which is to transform the SPDE to a SDE
in a larger Hilbert space associated with the problem using Nagy’s Theorem ((2010),
Chapter I, Thm. 8.1). See also Tappe (2013). However the coefficients of the SDE are
time-dependent and we need to generalize the Mandrekar and Skorokhod (1998) result
to include this case. In Section 3, we show that this can be done using the ideas in
Gikhman and Skorokhod (1979).

In Section 2, we state some preliminaries and definitions. In Section 4, we consider the
martingale solution of the SPDE. Using Filipović et al. (2010) and the result in Section
3, we get as in Mandrekar and Skorokhod (1998), the uniqueness of the solution to the
martingale problem for the transformed SDE in the larger Hilbert space. Finally, we
combine this result with ideas from Filipović et al. (2010) to obtain the weak uniqueness
of the Martingale solution to the SPDE.

2. Preliminaries and Definitions

Let (Ω,F , {Ft, t ≥ 0}, P ) be a filtered probability space with the filtration satisfying
the usual conditions. Let K be a real separable Hilbert space with inner product 〈·, ·〉K
and norm ‖ · ‖K . Let L(K) denote the space of bounded linear operators from K to K
and L+

1 (K), the subspace of non-negative operators with finite trace. Let Q ∈ L+
1 (K)
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be a symmetric, self-adjoint operator and {fj , 1, 2, · · · } be a complete orthonormal basis
(ONB) in K diagonalizing Q, and let the corresponding eigenvalues be {λj , j = 1, 2, · · · }.
We assume that λj > 0 for all j. Let {wj(t), t ≥ 0}, j = 1, 2, · · · , be a sequence of
independent standard real-valued Wiener processes defined on (Ω,F , {Ft, t ≥ 0}, P ).
The process

W (t) =

∞∑
j=1

λ
1/2
j wj(t)fj

is called a Q-Wiener process in K (Gawarecki and Mandrekar (2011, p. 20, 21)). The
processes {wj(t)} are assumed to be continuous and hence the process {W (t)} is con-
tinuous. Further, E[W (t)] = 0, and E[〈W (t), u〉K〈W (s), v〉K ] = min{t, s}〈Qu, v〉K for
every u, v ∈ K, t, s ≥ 0.

Next we consider Itô’s integral with respect to a Q-Wiener process following Gawarecki
and Mandrekar (2011, Section 2.2). Let KQ = Q1/2K. Then KQ equipped with the scalar
product

〈u, v〉KQ =

∞∑
j=1

λ−1
j 〈u, fj〉K〈v, fj〉K

is a separable Hilbert space with an ONB {λ1/2
j fj , j = 1, 2, · · · }. Let H be another real

separable Hilbert space and L2(KQ, H) the space of Hilbert-Schmidt operators from KQ

to H, which is separable with respect to the Hilbert-Schmidt norm. Let Λ2(KQ, H)
be a class of L2(KQ, H)-valued processes {Φ}, which are measurable as mappings from
([0, T ] × Ω,B([0, T ]) ⊗ F) to (L2(KQ, H),B(L2(KQ, H))), are adapted to the filtration
{Ft, t ≤ T} and satisfy the condition

E

∫ T

0

‖Φ(t)‖2L2(KQ,H)dt <∞,

where B denotes the Borel σ-field.

Definition 2.1. The stochastic integral of a process Φ ∈ Λ2(KQ, H) with respect to
a K-valued Q-Wiener process {W (t)} is the unique isometric linear extension of the
mapping

Φ(·)→
∫ T

0

Φ(s)dW (s)

from the class of bounded elementary processes to L2(Ω, H), to a mapping from Λ2(KQ, H)

to L2(Ω, H), such that the image of Φ(t) = φI{0}(t) +
∑n−1
j=0 φjI(tj ,tj+1](t) is∑n−1

j=0 φj(W (tj+1)−W (tj)). The stochastic integral process
∫ t

0
Φ(s)(s)dW (s), 0 ≤ t ≤ T

is defined by ∫ t

0

Φ(s)(s)dW (s) =

∫ T

0

Φ(s)I[0,t](s)dW (s).

We give below the definition of a martingale solution for a SPDE and a SDE (Gawarecki
and Mandrekar (2011, p. 75)).

Let H be a separable Hilbert space and A : D(A) ⊂ H → H be the generator of a
strongly continuous semigroup (St, t ≥ 0) on H. General forms of a SPDE and a SDE,
respectively are

dX(t) = (AX(t) + α(t,X(t)))dt+ σ(t,X(t))dW (t), X(0) = x ∈ H,(2.1)

dX(t) = α(t,X(t))dt+ σ(t,X(t))dW (t), X(0) = x ∈ H,(2.2)

where α : Ω × [0, T ] × C([0, T ], H) → H, σ : Ω × [0, T ] × C([0, T ], H) → L2(KQ, H) are
specified continuous functions, and {W (t), t ≥ 0} is a Q- Wiener process in K.
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Definition 2.2. A process {X(t)} is said to be a martingale solution of the SPDE in (2.1)
if there exists a filtered probability space (Ω,F , {Ft, t ≥ 0}, P ) and, on this probability
space, a Q-Wiener process {W (t)}, relative to the filtration {Ft} , such that

(2.3) P

(∫ ∞
0

‖X(t)‖Hdt <∞
)

= 1,

(2.4)

∫ t

0

{‖α(u,X(u)))‖H + ‖σ(u,X(u))‖2L2(KQ,H)}du <∞ for all, t, P − a.s,

and

X(t) = St−t0x+

∫ t

t0

St−t0α(u,X(u)))du+

∫ t

t0

St−t0σ(u,X(u))dW (u), for all, t, P − a.s.

Definition 2.3. A process {X(t)} is said to be a martingale solution of the equation in
(2.2) if (2.3) and (2.4) hold and if there exists a filtered probability space (Ω,F , {Ft, t ≥
0}, P ) and, on this probability space, a Q-Wiener process {W (t)} relative to the filtration
{Ft} , such that

X(t) = x+

∫ t

t0

α(u,X(u))du+

∫ t

t0

σ(u,X(u))dW (u), for all, t, P − a.s.

The martingale solution of a SDE is also called a weak solution.

Definition 2.4. Weak uniqueness of solutions of a SPDE ( SDE) means that if for
solutions X1(t) and X2(t) of the SPDE ( SDE) on [s,∞) with initial values X1(s) and
X2(s), the distributions of X1(s) and X2(s) coincide, then the distributions of X1(t) and
X2(t) coincide for all t ≥ s.

3. Weak uniqueness of martingale solutions of SDE

In this section we extend the results of Mandrekar and Skorokhod (1998) to SDEs
with time dependent coefficients.

Let K and H be real separable Hilbert spaces and {W (t)} be a K−valued Q-Wiener
process on a complete filtered probability space (Ω,F , {Ft, t ≥ 0}, P ) with the filtration
satisfying the usual conditions. Let < ·, · > and ‖ · ‖ denote the inner product and the
norm, respectively. Let KQ = Q1/2(K) and L2(KQ, H) denote the space of Hilbert-
Schmidt operators from KQ to H,

Consider the stochastic differential equation (SDE)

dX(t) = a(t,X(t))dt+B(t,X(t))dW (t), t ≥ s(3.1)

X(s) = x,

where a : Ω × [0, T ] × C([0, T ], H) → H, B : Ω × [0, T ] × C([0, T ], H) → L2(KQ, H) are
specified continuous functions.

Let B0 be a bounded linear operator from K to H, such that (B0QB
∗
0)−1 exists, where

A∗ denotes the adjoint of the operator A. Set

B1(t, x) = B(t, x)QB∗(t, x)−B0QB
∗
0

and a1(t, x) = B0B
∗
0a(t, x). We note that B∗1(t, x) = B1(t, x), for all t and x.

Let µ0 denote the measure on H induced by B0(W (1)) and let Fλ denote the func-
tion which induces a measure on [0,∞) with Radon-Nikodym derivative dFλ/dm(t) =
exp(−λt), λ > 0, with respect to the Lebesgue measure m. We note that µ0 is a Gaussian
measure on H with mean zero and covariance Q1 = B0QB

∗
0 . Let L2(Fλ×µ0) denote the

space of functions g : [0,∞) × H → R (= (−∞,∞)) for which
∫∞

0

∫
H
|g(t, x)|2d(Fλ ×
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µ0)(t, x) < ∞. Consider a basis in L2(Fλ × µ0) which consists of polynomial functions

{φk(t, x), k = 1, 2, · · · }. Denote by L̂2 the space of functions of the form

f(t, x) = e−
1
4‖Q

−1/2
1 x‖2H− 1

2λt
∑
k

ckφk(t, x).

The norm of f(t, x) ∈ L̂2 is defined by

‖f‖2 =

∫ ∞
0

∫
H

e
1
2‖Q

−1/2
1 x‖2H+λt|f(t, x)|2d(Fλ × µ0)(t, x).

We state below the conditions required for existence and uniqueness of a martingale
solution.
Assumptions A: The coefficients satisfy the following:

(A.1) The functions a(t, x) and B(t, x) are jointly adapted and continuous functions.
(A.2) For every t ≤ T and x ∈ C([0, T ], H), there exits a KT such that

‖a(t, x)‖H + ‖B(t, x)‖L2(KQ,H) ≤ KT (1 + sup
0≤t≤T

‖x(t)‖H).

(A.3) There exists a Hilbert space H0 such that the embedding J : H0 → H is a
compact operator with representation

J(x) =

∞∑
i=1

λn < x, en >H0 hn, λn > 0, n = 1, 2, · · · ,

where {en, n = 1, 2, · · · } and {hn, n = 1, 2, · · · } are orthonormal basis of H0 and H
respectively. We identify H0 with J(H0). In particular en = λnhn and λn < x, en >H0

=
< x, hn >H .

(A.4) The functions a(t, x) and B(t, x) restricted to H0 satisfy

a : [0, T ]× C([0, T ], H0)→ H0, B : [0, T ]× C([0, T ], H0)→ L2(KQ, H0).

and for every t ≤ T and x ∈ C([0, T ], H0), there exits a K ′T such that

‖a(t, x)‖H0 + ‖B(t, x)‖L2(KQ,H0) ≤ K ′T (1 + sup
0≤t≤T

‖x(t)‖H0).

(A.5) The functions a1(s, x) and B1(s, x) satisfy

sup
s,x

[‖a1(s, x)‖2H + Trace(B1(s, x)2) = q2
1 <∞.

(A′.5) The functions a1(s, x) and B1(s, x) satisfy

sup
s,x

[‖a1(s, x)‖2H + (TraceB1(s, x))2 = q2
2 <∞.

Remark 3.1. The assumption A.5 can be replaced by the following: For all s0 ∈ [0,∞)

sup
s∈{s:|s−s0|<ρ},x

[‖a1(s, x)‖2H + Trace(B1(s, x)2) = q2
3 <∞,

for some ρ > 0. (For a proof of the above statement, we refer to the proof of Theorem 6
in Gikhman and Skorokhod ((1979), Chapter 3, Section 3, page 298.)

Remark 3.2. If assumptions A.1, A.2, A.3 and A.4 hold, then a Martingale (weak) solu-
tion of equation (3.1) exists. For a proof we refer to Gawarecki and Mandrekar (2011)
(Theorem 3.12, pp.131).

Below, following the techniques in Mandrekar and Skorokhod (1998), we show that a
martingale solution of (3.1) is weakly unique.

Define

Rλ(f(s, x)) = E

∫ ∞
s

e−λ(t−s)f(t, x+B0(W (t)−W (s)))dt.
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Then

Rλ(f(s, x)) =

∫
f(v + s, x+

√
vu)d(Fλ × µ0)(v, u),

where the integration is over [0,∞)×H.

Lemma 3.1. Let q(s, x) be a polynomial function on [0,∞)×H and

Vλ(s, x) = Rλe
− 1

4‖Q
−1/2
1 x‖2H−λs2 q(s, x). Then Vλ(s, x) ∈ L̂2.

Proof.

Vλ(s, x) = e−
1
4‖Q

−1/2
1 x‖2H−λs2

∫ {
e−

1
2 〈Q

−1/2
1 x,

√
vQ
−1/2
1 u〉− 1

4‖
√
vQ
−1/2
1 u)‖2H−λv2(3.2)

×q(v + s, x+
√
vu)
}
d(Fλ × µ0)(v, u).

Therefore ∫
(e

1
4‖Q

−1/2
1 x‖2H+λs

2 Vλ(s, x))2d(Fλ × µ0)(s, x) =∫ ∫ ∫ {
e−

1
2 〈Q

−1/2
1 x,Q

−1/2
1 (

√
vu+
√
v′u′〉×

e−
1
4‖
√
vQ
−1/2
1 u)‖2H− 1

4‖
√
v′Q
−1/2
1 u′‖2−λ(v+v

′)
2 q(v + s, x+

√
vu)×

q(v′ + s, x+
√
v′u′)

}
d(Fλ × µ0)(v, u)d(Fλ × µ0)(v′, u′)d(Fλ × µ0)(s, x).

If h(s) is a polynomial on [0,∞) then∫ ∞
0

h(s1/2)dFλ(s) ≤ C,

for some constant C. Further if g(x) is a polynomial of degree p on H, since µ0 is a zero
mean Gaussian measure on H, we have

|
∫
e〈Q

−1/2
1 x,z〉g(x)dµ0(x)| ≤ C1(1 + ‖z‖H)pe

1
2 〈z,z〉,

where C1 is some constant. Using the above two inequalities and that q(s, x) is a poly-
nomial of degree p, we obtain ∫

(e
1
4‖Q

−1/2
1 x‖2H+λs

2 Vλ(s, x))2d(Fλ × µ0)(s, x)(3.3)

≤ C2

∫ ∫ {
e−

1
8‖Q

−1/2
1 (

√
vu−
√
v′u′)‖2H

(1 + ‖
√
vu)‖H + ‖

√
v′u′‖H)2m

}
d(Fλ × µ0)(v, u)d(Fλ × µ0)(v′, u′),

where C2 is some constant. Now, using the properties of the measures dFλ and µ0, it
can be shown that the right hand side of the inequality in (3.3) is finite. �

Consider a function u(t, x) defined on [0,∞) × H with continuous bounded partial
derivatives u′t (a R-valued function ), u′x (a H-valued function), u′xx (a L(H)-valued
function). Let

L1u(t, x) = 〈a1(t, x), u′x(t, x)〉+
1

2
TraceB1(t, x)u′′xx(t, x).

Lemma 3.2. For λ > 0, L1Vλ(s, x) ∈ L̂2.
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Proof. (We give the proof assuming a(t, x) = 0 for the sake of convenience of the notation.
Proof for a(t, x) 6= 0 follows by similar arguments.)
L1Vλ(s, x) = 1

2TraceB1(s, x)(Vλ)′′xx(s, x). From (3.2)

2L1Vλ(s, x) = e−
1
4‖Q

−1/2
1 x‖2H−λs2

∫
e−

1
2 〈Q

−1/2
1 x,Q

−1/2
1

√
vu〉− 1

4‖Q
−1/2
1

√
vu)‖2H

× [q(v + s, x+
√
vu)

(
−1

2
Trace(B1(s, x)Q−1

1 )

+
1

4
〈Q−1

1 (x+
√
vu)(·)B1(s, x), Q−1

1 (x+
√
vu)(·)〉

)
− 〈Q−1

1 (x+
√
vu)(·), qx(v + s, x+

√
vu)B1(s, x)〉

+ TraceB1(s, x)qxx(v + s, x+
√
vu)]d(Fλ × µ)(v, u),

where Q−1
1 (x+

√
vu)(·) denotes a linear map from H to R defined by Q−1

1 (x+
√
vu)(h) =

〈Q−1
1 (x+

√
vu), h〉.

Using the boundedness of Trace(B1(s, x))2, of Q−1
1 and of the derivatives qx, and qxx

in the ball {x|‖x‖ ≤ 1} and arguing as in the proof of Lemma3.1, we obtain∫
(e

1
4‖Q

−1/2
1 x‖2H+λs

2 L1Vλ(s, x))2d(Fλ × µ0)(s, x) <∞.

�

The following Lemma is from Gikhman and Skorokhod ((1979), Lemma 1, Chapter 3,
Section 3, page 281) for finite dimensional Euclidean spaces.

Lemma 3.3. Let {w̃(t)} be a Wiener process on Rd and g(s, u) a square integrable
function on [0,∞)×Rd w.r.t the Lebesgue measure. Let

R̃λf(s, u) = E

∫ ∞
s

e−λ(t−s)f(t, u+ w̃(t)− w̃(s))dt

and

Lg(s, u) = 〈(s, u), g′u〉+ TraceC(s, u)g′′′uu

be a differential operator with coefficients b(s, u) and C(s, u), defined on [0,∞) × Rd,
taking values in Rd and L(Rd) (space of linear operators on Rd), respectively, being
measurable, and satisfying the inequalities

‖b(s, u)‖Rd ≤ δ and Trace(C(s,u)C∗(s,u) ≤ θ2.

Then for each ε > 0 and all sufficiently large λ > 0,∫ ∫
(LR̃λg(s, u))2dsdu ≤ (θ2 + ε)

∫ ∫
g2(s, u)dsdu.

We note that the choice of λ in the above Lemma does not depend on the dimension
d. Using the above three Lemmas, we can prove the following Theorem.

Theorem 3.1. Suppose Assumptions A.1, A.2, and A.5, given above, hold. Then for
sufficiently large λ > 0, the operator L1Rλ is defined on the space L̂2 and

‖L1Rλ‖ ≤ q0.

Proof. For the sake of convenience of notation we assume a(s, x) = 0. Let Πn denote a
projection on a (finite) n-dimensional subspace of H.
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Consider a function f(s, x) such that f(s,Πnx) is square integrable with respect to the
Lebesgue measure m×mn on [0,∞)×ΠnH. Then Lemma 3.3 implies, for all sufficiently
large λ > 0,∫ ∫

(L1Rλf(s,Πnx))2dm(s)dmn(Πnx) ≤ q2
0

∫ ∫
f2(s,Πnx)dm(s)dmn(Πnx),

which from the definition of Fλ and µ0 implies∫
(e

1
4‖Q

−1/2
1 Πnx‖2H+λs

2 L1Rλf(s,Πnx))2d(Fλ × µ0)(s, x)(3.4)

≤ q2
0

∫
(e

1
4‖Q

−1/2
1 Πnx‖2H+λs

2 f(s,Πnx))2d(Fλ × µ0)(s, x).

Let the sequence Πn converge to I, the identity operator and let

f(s, x) = e−
1
4‖Q

−1/2
1 x‖2−λs2 q(s, x),

where q(s, x) is a polynomial on [0,∞) × H. Using an argument similar to proofs of
Lemma 3.1 and Lemma 3.2 to show boundedness, we obtain

lim
n→∞

∫
(e

1
4‖Q

−1/2
1 Πnx‖2H+λs

2 L1Rλf(s,Πnx))2d(Fλ × µ0)(s, x)

=

∫
(e

1
4‖Q

−1/2
1 x‖2H+λs

2 L1Rλf(s, x))2d(Fλ × µ0)(s, x),(3.5)

and

lim
n→∞

∫
(e

1
4‖Q

−1/2
1 Πnx‖2H+λs

2 f(s,Πnx))2d(Fλ × µ0)(s, x)

=

∫
(e

1
4‖Q

−1/2
1 x‖2H+λs

2 f(s, x))2d(Fλ × µ0)(s, x).(3.6)

Thus the inequality (3.4) holds for all functions of the form

f(s, x) = e−
1
4‖x‖

2
H−λs/2q(s, x),

with q(s, x) a polynomial. This class of functions is dense in L̂2. Thus we conclude that

‖L1Rλ‖ ≤ q0.

�

Corollary 3.1. If ‖L1Rλ‖ < 1, then for f ∈ L̂2, the solution of gλ(s, x)−L1Rλgλ(s, x) =
f(s, x) is given by

gλ(s, x) = (I − L1Rλ)−1f(s, x).

Suppose X(t) is a solution of (3.1) on [s,∞). Let

(3.7) RXλ f(s, x) = Es,x

∫ ∞
s

e−λ(t−s)f(t,X(t))dt.

Let f(t, x) be a function with continuous bounded derivatives f ′t , f
′
x and f ′′xx, and let

(3.8) LXf(t, x) = f ′t(t, x) + (a(t, x), f ′x(t, x))) +
1

2
TraceB(t, x)QB∗(t, x)f ′′xx(t, x).

From Itô’s formula, we obtain

Es,xf(t,X(t)) = f(s, x) + Es,x

∫ t

s

[f ′u(u,X(u)) + (a1(u,X(u)), f ′x(u,X(u)))(3.9)

+
1

2
TraceB(t, x)QB∗(t, x)f ′′xx(u,X(u))]du.
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From (3.7), (3.8) and (3.9) we get,

RXλ f(s, x) =
1

λ
f(s, x) +

1

λ
Es,x

∫ ∞
s

e−λ(t−s)LXf(t,X(t))dt.

That is,

(3.10) f(s, x) = RXλ [λf − LXf ](s, x).

The following lemma and its proof is similar to Lemma 2 (with its proof) of Gikhman
and Skorokhod ((1979), Chapter 3, Section 3, page 283.

Lemma 3.4. Suppose there exists a c > 0 such that for all x ∈ H and s ∈ [0,∞) the
following inequalities hold:

‖(a(s, x)‖ ≤ 1

c
, T race(B1(s, x)B∗1(s, x)) ≤ 1− c.

Then for λ sufficiently large,

RXλ f(s, x) = Rλ(I − L1Rλ)−1f(s, x).

There exits constants λ0 and M depending on c only such that for λ > λ0,

‖RXλ ‖ ≤M.

Proof. In (3.10), substitute f = Rλg for g ∈ L̂2. Then we obtain

(3.11) Rλg(s, x) = RXλ [λRλg − LXRλg](s, x).

Using the form of Rλg and Itô’s Lemma,

∂

∂s
Rλg +

1

2
TraceB0QB

∗
0Rλg

′′
xx = Rλ

[
∂g

∂s
+

1

2
TraceB0QB

∗
0g
′′
xx

]
= −g + λRλg.

Thus

LXRλg − L1Rλg = −g + λRλg.

Using the above equality and (3.11) we get

(3.12) Rλg = RXλ (g − L1Rλg).

Under the conditions of the theorem and from Corollary(3.1), we get for f ∈ L2 and for
sufficiently large λ, the equation

g − L1Rλg = f

has a solution given by

g = (I − L1Rλ)−1f.

Substituting this g in (3.12), we get

RXλ f(s, x) = Rλ(I − L1Rλ)−1f(s, x).

�

The above results are used to prove that a solution of equation (3.1) is weakly unique
in Gikhman and Skorokhod ((1979), Theorem 6, Chapter 3, Section 3, page 298) for finite
dimensional diffusion processes. The proof extends to Hilbert space valued processes and
is given below.

Theorem 3.2. Under the assumptions A.1, A.2,and A.5 a martingale solution of equa-
tion (3.1) on [0,∞) with the initial condition X(0) is weakly unique for any X(0).
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Proof. Suppose Xs,x(t) is a solution of equation (3.1) on [s,∞) with the initial condition
Xs,x(s) = x and

Ps,x(t,D) = P [Xs,x(t) ∈ D].

Let FXt denote the σ-algebra generated by {X(u), 0 ≤ u ≤ t}. The Laplace transform∫ ∞
s

e−λ(t−s)Ps,x(t,D)dt = Es,x

∫ ∞
s

e−λ(t−s)ID(X(t))dt

= eδsEs,x

∫ ∞
s

e−(λ−δ)(t−s)e−δtID(X(t))dt

= eδsRXλ−δ(e
−δsID(x)),(3.13)

where ID(x) denotes the indicator function of the set D.
Next we show that, with probability 1,

(3.14) E[ID(X(t))|FXs ] = Ps,X(s)(t,D)

by showing that both have the same Laplace transform. That is,∫ ∞
0

e−λtE[ID(X(t))|FXs ]dt =

∫ ∞
0

e−λtPs,X(s)(t,D)dt,

equivalently

(3.15) E[

∫ ∞
0

e−λtID(X(t))dt|FXs ] =

∫ ∞
0

e−λtPs,X(s)(t,D)dt.

Now from (3.13) and Lemma 3.4 and since W (t) −W (s) is independent of FXs , for
A ∈ FXs ,

(3.16)

E[IA

∫ ∞
s

e−λ(t−s)Ps,X(s)(t,D)dt] = E[IAe
δsRλ−δ(I − L1Rλ−δ)

−1(e−δsID(X(s)))]

= E[IAe
δsEs,X(s){

∫ ∞
s

e−(λ−δ)(t−s)(I−L1Rλ−δ)
−1(e−δtID(X(s)+B0(W (t)−W (s))))dt}]

= E[IAe
δsEs,x{

∫ ∞
s

e−(λ−δ)(t−s)(I−L1Rλ−δ)
−1(e−δtID(x+B0(W (t)−W (s))))dt|FXs }]

= E[Es,x{IAeδs
∫ ∞
s

e−(λ−δ)(t−s)(I−L1Rλ−δ)
−1(e−δtID(x+B0(W (t)−W (s))))dt|FXs }]

= E[IAe
δs

∫ ∞
s

e−(λ−δ)(t−s)(I − L1Rλ−δ)
−1(e−δtID(x+B0(W (t)−W (s))))dt]

= eδsRλ−δ(I − L1Rλ−δ)
−1(e−δsIAID(x))

Further, from Lemma 3.4

E[IA

∫ ∞
0

e−λtID(X(t))dt] = Es,x[

∫ ∞
s

e−λ(t−s)IAID(X(t))dt]](3.17)

= eδsRλ−δ(I − L1Rλ−δ)
−1(e−δsIAID(x)).

From (3.16) and (3.17) we obtain (3.15) and thus (3.14). From (3.14), we conclude that
each solution of equation (3.1) is a Markov process with transition probability Ps,x(t,D).
From (3.16), it can be seen that Ps,x(t,D) depends only on the coefficients of equation
(3.1). Thus the measure associated with X(t) is uniquely determined by the distribution
of X(0). Thus the theorem is proved.. �
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4. Stochastic partial differential equation and martingale solution

Let H be a separable Hilbert space and A the generator of a strongly continuous
semigroup (St, t ≥ 0) on H. We note that D(A), domain of A is dense in H. Consider
the stochastic partial differential equation (SPDE)

(4.1) dr(t) = (Ar(t) + α(t, r(t)))dt+ σ(t, r(t))dW (t), r(0) = h,

where α : Ω× [0,∞)× C([0,∞), H) → H, σ : Ω× [0,∞)× C([0,∞), H) → L2(KQ, H),
are specified functions satisfying assumptions A.1 to A.4 and A′.5 (with a(s, x) replaced
by α(s, x) and B(s, x) by σ(s, x).)

In the approach suggested by Filipović et al. (2010), the SPDE is transformed to a SDE
by using a time-dependent transformation r → S−tr, where the semigroup is extended by
S−t := St for t ≥ 0. The SDE is solved and the solution process is transformed by r → Str
in order to obtain a martingale solution of the original SPDE. In order to transform the
above SPDE to a SDE, Filipović et al. (2010) make the following assumption.
Assumption B There exist another separable Hilbert space H, a C0-semigroup (Ut)t∈R
on H and continuous linear operators l : H → H and π : H → H such that for every
t ∈ [0,∞),

πUtl = St.

In particular, πl = I (the identity operator).
Filipović et al. (2010) show that if the semigroup {St, t ≥ 0} is pseudo-contractive,

then the Assumption B holds. Moreover l : H → H is an isometric embedding and
π = l∗ : H → H is the orthogonal projection from H to H.

Consider the transformed SDE for a H valued process {Y (t)}:

dY (t) = α̃(t, Y (t))dt+ σ̃(t, Y (t))dW (t)(4.2)

Y (0) = lh,

where α̃(t, Y (t)) = U−tlα(t, πUtY (t)), σ̃(t, Y (t)) = U−tlσ(t, πUtY (t)) and lh ∈ H. Let
σ̃1(t, x) = σ̃(t, x)Qσ̃∗(t, x) − B0QB

∗
0 , where B0 is a bounded linear operator from K to

H. Now to prove the weak uniqueness of the solution to the martingale problem for
the transformed SDE, we use results of Section 3 with arguments similar to the ones in
Mandrekar and Skorokhod (1998).

Theorem 4.1. Suppose Assumption A.3 and Assumption B hold and the coefficients of
the SPDE in (4.1) satisfy Assumptions A.1, A.2, A.4 and A′.5. Then the equation (4.1)
has a weakly unique martingale solution.

Proof: For the SDE (4.2), the Assumption A.3 holds with the compact operator J re-
placed by the compact operator lJ . Its coefficients satisfy A.1, A.2 and A.4 since Uth is
continuous, ‖Uth‖ ≤ eβ|t| for some real number β, and π is a projection (see Filipović
et al. (2010)). Assumption A.5 follows from Assumption A′.5 , the trace inequalities
Trace(σ̃2

1(t, x)) ≤ (Trace(σ̃1(t, x)))2 ≤ (‖U−tl‖trace(σ(t, πUtx)))2, ‖Uth‖ ≤ eβ|t|, and
Remark 3.1.

Hence a martingale solution to SDE (4.2) exists (Gawarecki and Mandrekar (2011),
Theorem 3.12, pp.131). Let Y (t) denote this solution with Y (0) = lh with {W (t)}
the corresponding Q-Wiener process. Then arguing as in the proof of Theorem 8.8 of
Filipović et al. (2010) ( using only (8.1)), we get that r(t) = πUtY (t) is a solution for
the SPDE (4.1). This can be seen from the following argument. Since Y (t) is a solution
of the SDE in (4.2 ),

(4.3) Y (t) = lh+

∫ t

0

U−slα(s, πUsY (s))ds+

∫ t

0

U−slσ(s, πUsY (s))dW (s).
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Let r(t) = πUtY (t). Then from (4.3),

r(t) = πUt

(
lx+

∫ t

0

U−slα(s, πU t0t Y (s))ds+

∫ t

0

U−slσ(s, πU t0t Y (s))dW (s)

)
= Sth+

∫ t

0

St−sα(s, r(s))ds+

∫ t

0

St−sσ(s, r(s))dW (s),

which shows that r(t) is a martingale solution of (4.1) and thus a weak solution also
(Filipović et al. (2010)).

This shows that {r(t)} is a martingale solution with respect to the filtration {FYt },
where FYt denotes the σ − field generated by {Y (s), 0 ≤ s ≤ t}. However using Stroock
and Varadhan (1969), we get that for θ ∈ H

exp

(
〈θ, r(t)− Sth〉 −

∫ t

0

〈θ, St−sα(s, r(s))〉ds(4.4)

−1

2

∫ t

0

〈θ, (St−sσ(s, r(s))∗QSt−sσ(s, r(s))θ〉ds
)

is a martingale with respect to {FYt }. Since {Frt , t ≥ 0} ⊆ {FYt , t ≥ 0} we get that the
expression (4.4) is a martingale with respect to {Frt , t ≥ 0}. Thus {r(t)} is a martingale
solution with respect to the filtration {Frt }.

Now suppose that r(t) is a martingale solution of the SPDE (4.1). Then

(4.5) r(t) = Sth+

∫ t

0

St−sα(s, r(s))ds+

∫ t

0

St−sσ(s, r(s))dW (s).

From Assumption B,

r(t) = πUt

(
lh+

∫ t

0

U−slα(s, r(s))ds+

∫ t

0

U−slσ(s, r(s))dW (s)

)
,

For t ≥ 0, let

X(t) = lh+

∫ t

0

U−slα(s, r(s))ds+

∫ t

0

U−slσ(s, r(s))dW (s)

and X(0) = lh. Thus r(t) = πUt(X(t)) up to indistinguishability. Therefore we have,

X(t) = lh+

∫ t

0

U−slα(s, r(s))ds+

∫ t

0

U−slσ(s, r(s))dW (s)

= lh+

∫ t

0

U−slα(s, πUs(X(s)))ds+

∫ t

0

U−slσ(s, πUs(X(s)))dW (s)

= lh+

∫ t

0

α̃(s, (X(s)))ds+

∫ t

0

σ̃(s, (X(s)))dW (s),

That is, X(t) is a martingale solution of (4.2) with X(0) = lh.
From the Theorem 3.2 above, we conclude that that X(t) is the weakly unique solution

of the SDE, which implies that r(t) is a weakly unique solution of the SPDE.
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