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V. MANDREKAR AND U. V. NAIK-NIMBALKAR

WEAK UNIQUENESS OF MARTINGALE SOLUTIONS TO
STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS IN HILBERT
SPACES

We prove the uniqueness of martingale solutions for stochastic partial differential
equations generalizing the work in Mandrekar and Skorokhod (1998). The main idea
used is to reduce this problem to the case in Mandrekar and Skorokhod using the
techniques introduced in Filipovié et al. (2010).

1. INTRODUCTION

The main purpose of the paper is to prove uniqueness of martingale solutions for
stochastic partial differential equations (SPDE). We observe that for the finite dimen-
sional case, the result for stochastic differential equations was first proved by Stroock
and Varadhan (1969). Gikhman and Skorokhod (1979), in their book, give a proof based
on a method from Harmonic Analysis using the Fourier transform of the infinitesimal
generator. In Mandrekar and Skorokhod (1998), a generalization of the Stroock and
Varadhan (1969) result to the infinite dimensional Hilbert space is given using the tech-
nique in Gikhman and Skorokhod (1979). However, this does not give the uniqueness of
the martingale solution of a SPDE.

We use the idea in Filipovié et al. (2010), which is to transform the SPDE to a SDE
in a larger Hilbert space associated with the problem using Nagy’s Theorem ((2010),
Chapter I, Thm. 8.1). See also Tappe (2013). However the coefficients of the SDE are
time-dependent and we need to generalize the Mandrekar and Skorokhod (1998) result
to include this case. In Section 3, we show that this can be done using the ideas in
Gikhman and Skorokhod (1979).

In Section 2, we state some preliminaries and definitions. In Section 4, we consider the
martingale solution of the SPDE. Using Filipovié et al. (2010) and the result in Section
3, we get as in Mandrekar and Skorokhod (1998), the uniqueness of the solution to the
martingale problem for the transformed SDE in the larger Hilbert space. Finally, we
combine this result with ideas from Filipovié¢ et al. (2010) to obtain the weak uniqueness
of the Martingale solution to the SPDE.

2. PRELIMINARIES AND DEFINITIONS

Let (Q,F,{F:,t > 0}, P) be a filtered probability space with the filtration satisfying
the usual conditions. Let K be a real separable Hilbert space with inner product (-, )
and norm || - ||x. Let L(K) denote the space of bounded linear operators from K to K
and L] (K), the subspace of non-negative operators with finite trace. Let Q € L (K)
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be a symmetric, self-adjoint operator and {f;,1,2,---} be a complete orthonormal basis
(ONB) in K diagonalizing @), and let the corresponding eigenvalues be {\;,j =1,2,---}.
We assume that A; > 0 for all j. Let {w;(t),t > 0}, j = 1,2,---, be a sequence of
independent standard real-valued Wiener processes defined on (Q,F,{F,t > 0}, P).
The process

W(t) = > N w;(b)f;
j=1

is called a Q-Wiener process in K (Gawarecki and Mandrekar (2011, p. 20, 21)). The
processes {w;(t)} are assumed to be continuous and hence the process {W(¢)} is con-
tinuous. Further, E[W (t)] = 0, and E[(W(t),u)x (W (s),v) k] = min{t, s}(Qu,v)k for
every u, v € K, t,s > 0.

Next we consider It6’s integral with respect to a Q-Wiener process following Gawarecki
and Mandrekar (2011, Section 2.2). Let Ko = Q'/?2K. Then K¢ equipped with the scalar
product

(W, v) kg = DA u, £) K (v, fi) i
j=1

is a separable Hilbert space with an ONB {)\}/2fj,j =1,2,---}. Let H be another real
separable Hilbert space and Lo (K, H) the space of Hilbert-Schmidt operators from K¢
to H, which is separable with respect to the Hilbert-Schmidt norm. Let Aq(Kg, H)
be a class of Lo(Kg, H)-valued processes {®}, which are measurable as mappings from
([0,T] x ,B([0,T)) @ F) to (La(Kq, H),B(L2(Kg, H))), are adapted to the filtration
{Ft,t < T} and satisfy the condition

T
B [ 1RO acq it < .
where B denotes the Borel o-field.

Definition 2.1. The stochastic integral of a process ® € Aq(Kg, H) with respect to
a K-valued Q-Wiener process {W(t)} is the unique isometric linear extension of the

mapping
T
() - / B(s)dW (s)
0
from the class of bounded elementary processes to L2(£2, H), to a mapping from Ay (Kg, H)
to L?(Q, H), such that the image of ®(t) = oy (t) + Z;l;ol Gilis; 1,0 () is
Z?:_Ol ¢;(W(tj41) — W (t;)). The stochastic integral process f(f D(s)(s)dW(s), 0<t<T
is defined by
t T
/ B(s)(s)dW (s) = / B(s) I, (5)dVV (5).
0 0

We give below the definition of a martingale solution for a SPDE and a SDE (Gawarecki
and Mandrekar (2011, p. 75)).

Let H be a separable Hilbert space and A : D(A) C H — H be the generator of a
strongly continuous semigroup (S;,t > 0) on H. General forms of a SPDE and a SDE,
respectively are

(2.1)  dX(t) = (AX(t) + at, X(£))dt + o (t, X (£))dW (t), X(0) =z € H,

(2.2) dX(t) = a(t, X (t))dt + o(t, X (£))dW (1), X(0) =z € H,

where o : Q x [0,T] x C([0,T],H) = H, 0 : Q@ x [0,T] x C([0,T],H) — Lo(Kq, H) are
specified continuous functions, and {W(t),t > 0} is a Q- Wiener process in K.
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Definition 2.2. A process { X (¢)} is said to be a martingale solution of the SPDE in (2.1)
if there exists a filtered probability space (Q, F,{F;,t > 0}, P) and, on this probability
space, a Q-Wiener process {W(t)}, relative to the filtration {#;} , such that

(23 P([ 1@l < o) =1,

¢
(2.4) / {lle(u, X ()|l + HU(u,X(u))H%Q(KQ,H)}du < ooforall, t, P — a.s,
0
and
¢ ¢
X(t)=Si—tox+ | Si—ga(u, X(u)))du+ [ Si—t,o(u, X(u))dW (u), forall, t, P — a.s.
t() t()

Definition 2.3. A process {X(t)} is said to be a martingale solution of the equation in
(2.2) if (2.3) and (2.4) hold and if there exists a filtered probability space (2, F, {Fz, ¢ >
0}, P) and, on this probability space, a Q-Wiener process {W (¢)} relative to the filtration
{F:} , such that

Xt)=z+ /t au, X (u))du + /t o(u, X (u))dW (u), forall, t, P —a.s.

to to

The martingale solution of a SDE is also called a weak solution.

Definition 2.4. Weak uniqueness of solutions of a SPDE ( SDE) means that if for
solutions X7 (¢) and X5(t) of the SPDE ( SDE) on [s,00) with initial values X;(s) and
X (s), the distributions of X;(s) and X5(s) coincide, then the distributions of X (¢) and
Xo(t) coincide for all ¢ > s.

3. WEAK UNIQUENESS OF MARTINGALE SOLUTIONS OF SDE

In this section we extend the results of Mandrekar and Skorokhod (1998) to SDEs
with time dependent coefficients.

Let K and H be real separable Hilbert spaces and {W (t)} be a K —valued Q-Wiener
process on a complete filtered probability space (Q, F,{F:,t > 0}, P) with the filtration
satisfying the usual conditions. Let < -,- > and || - || denote the inner product and the
norm, respectively. Let Ko = QY?(K) and Ly(Kq,H) denote the space of Hilbert-
Schmidt operators from K¢ to H,

Consider the stochastic differential equation (SDE)

(3.1) dX(t) = a(t,X(t))dt+ B(t, X (t)dW (t), t > s
X(s) = =,

where a : Q x [0,T] x C([0,T],H) — H, B: Q x [0,T] x C([0,T],H) — La(Kq, H) are
specified continuous functions.

Let By be a bounded linear operator from K to H, such that (BoQBg) ! exists, where
A* denotes the adjoint of the operator A. Set

Bi(t,z) = B(t,.’)ﬁ)QB*(t,x) — BoQBg

and ay(t,x) = BoBja(t, ). We note that B (t,z) = By (t,z), for all ¢ and z.

Let p19 denote the measure on H induced by Bo(W (1)) and let F) denote the func-
tion which induces a measure on [0,00) with Radon-Nikodym derivative dFy/dm(t) =
exp(—At), A > 0, with respect to the Lebesgue measure m. We note that g is a Gaussian
measure on H with mean zero and covariance Q1 = BoQB. Let Lo(F) X o) denote the
space of functions g : [0,00) x H — R (= (—00,00)) for which [;* [, lg(t,z)[2d(Fy x
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1o)(t, ) < oo. Consider a basis in Lo(F)\ X o) which consists of polynomial functions
{¢r(t,x),k =1,2,---}. Denote by Lo the space of functions of the form

—1/2

f(t7m) — 6_%HQ1 w”?{_%)‘tzckgﬁk(t’x).
k
The norm of f(t,z) € Ly is defined by

o0 1 —1/2$2
1] = / /H HIQ N £ (1 ) 2d(Fy x uo) ().

We state below the conditions required for existence and uniqueness of a martingale
solution.
Assumptions A: The coefficients satisfy the following:
(A.1) The functions a(t,x) and B(¢,z) are jointly adapted and continuous functions.
(A.2) For every t < T and x € C([0,T], H), there exits a Kr such that

la(t, z)|g + | B @) || Ly (kg,m < Kr(1+ sup |[z(t)|[n).
0<t<T

(A.3) There exists a Hilbert space Hy such that the embedding J : Hy — H is a
compact operator with representation

J(l‘) = Z)‘n <z en >Ho hna )\n > Oan: 1727"' )
i=1
where {e,,n = 1,2,---} and {h,,n = 1,2,---} are orthonormal basis of Hy and H
respectively. We identify Hy with J(Hp). In particular e, = Ay hy and A, < z, €y >p,=
<z h,>g.
(A.4) The functions a(t,z) and B(t, x) restricted to Hy satisfy

a:[0,7] x C([0,T),Hy) — Hy, B:[0,T] x C([0,T],Hy) — La(Kg, Hp).
and for every t < T and = € C([0,T], Hy), there exits a K/, such that
la(t,2)lmy + [1B(t, )| Lo(rq o) < Kp(L+ sup |[lz(t)| m,)-
0<t<T

(A.5) The functions a4 (s, z) and Bj(s,x) satisfy
sup|||a1 (s, z)||% + Trace(Bi (s, z)?) = ¢} < 0.

(A’.5) The functions a1 (s, z) and Bj(s,x) satisfy
sup|||a1 (s, 2)||% + (TraceB; (s, x))* = ¢3 < oo.

$,x
Remark 3.1. The assumption A.5 can be replaced by the following: For all sy € [0, 00)

sup [||a1(s,x)||%, + Trace(Bi (s, J:)z) = q§ < 00,
se{s:|s—so|<p},x

for some p > 0. (For a proof of the above statement, we refer to the proof of Theorem 6
in Gikhman and Skorokhod ((1979), Chapter 3, Section 3, page 298.)

Remark 3.2. If assumptions A.1, A.2, A.3 and A.4 hold, then a Martingale (weak) solu-
tion of equation (3.1) exists. For a proof we refer to Gawarecki and Mandrekar (2011)
(Theorem 3.12, pp.131).

Below, following the techniques in Mandrekar and Skorokhod (1998), we show that a
martingale solution of (3.1) is weakly unique.
Define

Ry(f(s,x)) = E/Oo e N £tz + Bo(W(t) — W(s)))dt.
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Then
Ra(f(s,0)) = [ F0-+ 8,0+ Vowd(E % po) 020,
where the integration is over [0, 00) x H.

Lemma 3.1. Let q(s,x) be a polynomial function on [0,00) x H and
W(s,x) = Rxe_i|‘Q;1/2r|‘%1_%q(s,x). Then Vy(s,x) € Lo.

Proof.
(3.2) V)\(S,x):e—iHQIme%—%/{e—%<QI1/2z7\/5QI1/2U>—iHﬁQI”zu)H%—%

xg(v+ 8,2+ v/ou)} d(Fy % p10) (v, ).

Therefore

L0~ Y25)12 4 As
/(64HQ1 ”H+>\2 V/\(S,.Z’))Qd(F)\ X ,U,())(S,l') =

e~ HIVRQT A~ IVIQT YA P2 L e
qv’ + s,z + Wu')} d(F)\ x po)(v,u)d(Fy % o) (v, u")d(Fx X o) (s, ).

If h(s) is a polynomial on [0, c0) then

/OO h(s*/?)dF\(s) < C,
0

for some constant C. Further if g(z) is a polynomial of degree p on H, since py is a zero
mean Gaussian measure on H, we have

-1/2 2{z,z
I/e@l ™) () dpo ()| < C1(1+ [|2]|)Pe? =,

where C is some constant. Using the above two inequalities and that ¢(s, ) is a poly-
nomial of degree p, we obtain

(3.3) /wﬂ@”%%+%www»%wxxmxam
< 02//{e—élle”Z(ﬁu—Wu/)HZ

(14 Vol + IV (1>} d(Fy x o) (v, w)d(Fy x po) (o),

where C5 is some constant. Now, using the properties of the measures dF) and pg, it
can be shown that the right hand side of the inequality in (3.3) is finite. O

Consider a function u(t,z) defined on [0,00) x H with continuous bounded partial
derivatives u; (a R-valued function ), u}, (a H-valued function), u,, (a L(H)-valued
function). Let

1
Liu(t,z) = (a1 (t,z),u’(t, z)) + §TraceB1(t,x)u;’I(t,:c).

Lemma 3.2. For A >0, L1V)(s,x) € Ls.
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Proof. (We give the proof assuming a(t, ) = 0 for the sake of convenience of the notation.
Proof for a(t,z) # 0 follows by similar arguments.)
LiVi(s,x) = $TraceBi (s, z)(Vx), (s, ). From (3.2)

2L Va(s,z) = ef%HQf”QmHiﬁ%/e*%(Qf”zz,Qf”Zﬁu%iHQI”zx/EU)Hf{

X [qv+ s,z +Vou) (—;Tmce(Bl(s, 2)QTY)

b e VIO B (0). Q7 e+ VL) )
- (Ql_l(x—i—ﬁu)(),qw(v—&-s,x—l—ﬁu)Bl(s,x»
+ TraceBi(s,2)qes(v+ 5,2 + Vou)ld(Fy x p)(v,u),

where Q7 ' (++/vu)(-) denotes a linear map from H to R defined by Q1" (z++/vu)(h) =

(Qr' (z + vou), h).
Using the boundedness of Trace(Bj (s, r))?, of Q7" and of the derivatives ¢, and gy
in the ball {z|||z|| < 1} and arguing as in the proof of Lemma3.1, we obtain

/ (ex 195 eli 5 [V, (5,2))2d(Fy % po) (s, ) < ov.
O

The following Lemma is from Gikhman and Skorokhod ((1979), Lemma 1, Chapter 3,
Section 3, page 281) for finite dimensional Euclidean spaces.

Lemma 3.3. Let {w(t)} be a Wiener process on R? and g(s,u) a square integrable
function on [0,00) x RY w.r.t the Lebesgue measure. Let

Raf(s,u) = E/OO e NS £t u+ W (t) — w(s))dt
and

Lg(sﬂ U) = <(57 u)a glﬂ.> + TraceC(s, u)g;/;

be a differential operator with coefficients b(s,u) and C(s,u), defined on [0,00) x R,
taking values in R* and L(R®) (space of linear operators on R%), respectively, being
measurable, and satisfying the inequalities

|6(s,u)|| ge < 0 and Trace(C(s,u)C*(s,u) < 6%
Then for each € > 0 and all sufficiently large X > 0,

//(LRAg(s,u))stdu < (#? +e)//g2(3,u)dsdu,

We note that the choice of A in the above Lemma does not depend on the dimension
d. Using the above three Lemmas, we can prove the following Theorem.

Theorem 3.1. Suppose Assumptions A.1, A.2, and A.5, given above, hold. Then for
sufficiently large A > 0, the operator L1 Ry is defined on the space Lo and

| L1 RA|l < qo-

Proof. For the sake of convenience of notation we assume a(s,z) = 0. Let II,, denote a
projection on a (finite) n-dimensional subspace of H.
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Consider a function f(s, ) such that f(s,II,x) is square integrable with respect to the
Lebesgue measure m X m,, on [0,00) x II,, H. Then Lemma 3.3 implies, for all sufficiently
large A > 0,

[ @arasto i) 2am(s)am, (1,0) < [ [ 526 ) dm(s)dm, (1,0)

which from the definition of F\ and pg implies

1 —1/2 2 s
(3.4) /(eZ”Ql Mozl 425 1) Ry f (s, o)) 2d(Fy X p10)(s, @)

- /2 s
< g /(eﬂQll el 455 f (s, T,2)) 2d(Fy % pio) (s, ).
Let the sequence II,, converge to I, the identity operator and let

- / S
Fls,a) = el ol = g ),

where ¢(s,x) is a polynomial on [0,00) x H. Using an argument similar to proofs of
Lemma 3.1 and Lemma 3.2 to show boundedness, we obtain

Tim [ (ed1Q el Ly Ry f (s, T)) 2 (P o) (5, )
(3.5) = / (190 P25t 1 Ry f(s,2))%d(Fy X o) (s, ),
and
Tim [ (eF 1 el B (s T,2))2d(Fy X ro) (5, 2)
(3.6) = [ s 0l o))

Thus the inequality (3.4) holds for all functions of the form
fs,z) = e—il\rl\%—k8/2q(8, z),
with ¢(s,z) a polynomial. This class of functions is dense in L. Thus we conclude that
L1 RAll < qo-
O
Corollary 3.1. If||LiRy|| < 1, then for f € Ly, the solution of gz (s, z)— L1 Rxga (s, z) =
f(s,x) is given by
gr(s,x) = (I — L1R\) " f(s, ).
Suppose X (¢) is a solution of (3.1) on [s,00). Let
oo
(3.7) R f(s,2) = Bon / e==5) £(1, X (1)) dt.

S

Let f(t,z) be a function with continuous bounded derivatives f{, f. and f/ , and let

(3.8)  Lxf(t,z)= f{(t,z) + (a(t,z), fi(t,x))) + %TraceB(t, r)QB*(t,x)fr.(t, ).

From Ité’s formula, we obtain
t

(B9 Eof(t, X(1) = f(s,2) + Eoa [ [fu(u, X(w)) + (a1(u, X(w)), f;(u, X (w)))

S

+ %TmceB(t,:c)QB*(t:c)f;’z(wX(W)]dU-
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From (3.7), (3.8) and (3.9) we get,

RY f(s,2) = %f (s,2) + %EJU h e M) L f(t, X (t))dt.
That is,
(3.10) f(s,2) = RYNf — Lx f](s, ).

The following lemma and its proof is similar to Lemma 2 (with its proof) of Gikhman
and Skorokhod ((1979), Chapter 3, Section 3, page 283.

Lemma 3.4. Suppose there exists a ¢ > 0 such that for all x € H and s € [0,00) the
following inequalities hold:

I(a(s, z)|| <
Then for X\ sufficiently large,
RS f(s,2) = RA(I = LiRy) ™" f (s, 2).

ol

, Trace(By(s,z)Bj(s,z)) <1—c.

There exits constants Ao and M depending on ¢ only such that for A > Aq,
IR < M.

Proof. In (3.10), substitute f = Ryg for g € L. Then we obtain

(3.11) Ryg(s,z) = Rf\([)\RAg — LxRyg](s,x).
Using the form of R)g and It6’s Lemma,
a 1 * 1 ag 1 x 1
%RAQ + §TraceBoQBOR>\gm = Ry 75 + iTraceBOQBOgm = —g+ AR)g.

Thus
LxRxg— L1Ryg = —g+ ARxg.

Using the above equality and (3.11) we get
(3.12) Rng = R (9 — LiR»g).

Under the conditions of the theorem and from Corollary(3.1), we get for f € Lo and for
sufficiently large A, the equation

g—LiRxg=f
has a solution given by
g=(I—LiR\)'f.
Substituting this ¢ in (3.12), we get
Rf\(f(S, l’) = R)\(I - LIR)\)_lf(va)'
O
The above results are used to prove that a solution of equation (3.1) is weakly unique
in Gikhman and Skorokhod ((1979), Theorem 6, Chapter 3, Section 3, page 298) for finite

dimensional diffusion processes. The proof extends to Hilbert space valued processes and
is given below.

Theorem 3.2. Under the assumptions A.1, A.2,and A.5 a martingale solution of equa-
tion (3.1) on [0, 00) with the initial condition X (0) is weakly unique for any X (0).
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Proof. Suppose X, () is a solution of equation (3.1) on [s, co) with the initial condition
Xs2(s) =z and

P, ,(t,D) = P[X; ,(t) € D].
Let F;¥ denote the o-algebra generated by {X (u),0 < u < t}. The Laplace transform

/ eiA(tis)Psw(t,D)dt _ Es,a; e*)\(t*S)ID(X(t))dt

S S

= e‘ssEs@ e_(A_‘S)(t_S)e_&ID(X(t))dt

S

(3.13) = e"RY (e %Ip(x)),

where Ip(z) denotes the indicator function of the set D.
Next we show that, with probability 1,

(3.14) BlIp(X(t)|F] = Psx(5(t, D)

by showing that both have the same Laplace transform. That is,

oo

| B ONF = [P o D
equivalently
oo oo
(3.15) E[/O e—”ID(X(t))dﬂf;f]:/O e NP, x(5)(t, D)dt.

Now from (3.13) and Lemma 3.4 and since W (t) — W(s) is independent of FX, for
Ae FX,

(3.16)
E[l4 / e MNP (o (t, D)dt] = B[14e’* Ry_s(I — LiRy—s) " (e " In(X(s)))]

S

— E[I1¢* E, x(5{ / ) e~ A== (T Ry )~ (e I p (X (s)+Bo (W (t)—W (s))))dt}]
= B[I4€" E, .{ / O (1 Ly Ry ) (e I (a+ Bo(W (1) — W (5))) bl FX )]

— E[E, {Ise® / O (1 Ly Ry )M e It Bo(W (1)~ W (5)))) | FX )]

= E[l4€% /00 e~ A== (1 _ [ Ry ) e O p(x + Bo(W(t) — W(s))))dt]
=e"Ry_s(I — LiRy_5) (e % I4Ip(x))

Further, from Lemma 3.4

(3.17) E[IA/OOOe—”ID(X(t))dt] = EM[/OOe"\(t_s)IAID(X(t))dt]]
= BBSR)\E(;(I—LlR,\_(;)_l(e_ESIAID(Z‘)).

From (3.16) and (3.17) we obtain (3.15) and thus (3.14). From (3.14), we conclude that
each solution of equation (3.1) is a Markov process with transition probability P; ,(t, D).
From (3.16), it can be seen that P, , (¢, D) depends only on the coefficients of equation
(3.1). Thus the measure associated with X (¢) is uniquely determined by the distribution
of X(0). Thus the theorem is proved.. O
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4. STOCHASTIC PARTIAL DIFFERENTIAL EQUATION AND MARTINGALE SOLUTION

Let H be a separable Hilbert space and A the generator of a strongly continuous
semigroup (S¢,t > 0) on H. We note that D(A), domain of A is dense in H. Consider
the stochastic partial differential equation (SPDE)

(4.1) dr(t) = (Ar(t) + alt, r(t)))dt + o(t,r(£))dW (t), 7(0) = h,

where a : © x [0,00) x C([0,00), H) = H, 0 : Q x [0,00) x C([0,00),H) = Lo(Kq, H),
are specified functions satisfying assumptions A.1 to A.4 and A’.5 (with a(s, z) replaced
by a(s,z) and B(s,z) by o(s,x).)

In the approach suggested by Filipovié et al. (2010), the SPDE is transformed to a SDE
by using a time-dependent transformation r — S_;r, where the semigroup is extended by
S_; := 5, fort > 0. The SDE is solved and the solution process is transformed by r — Syr
in order to obtain a martingale solution of the original SPDE. In order to transform the
above SPDE to a SDE, Filipovié et al. (2010) make the following assumption.
Assumption B There exist another separable Hilbert space H, a Cy-semigroup (Uy;)ier
on ‘H and continuous linear operators [ : H — H and 7 : H — H such that for every
t € [0, 00),

7TUtl = St.

In particular, 7l = I (the identity operator).

Filipovié et al. (2010) show that if the semigroup {S, ¢t > 0} is pseudo-contractive,
then the Assumption B holds. Moreover [ : H — H is an isometric embedding and
m=1*:H — H is the orthogonal projection from H to H.

Consider the transformed SDE for a ‘H valued process {Y (¢)}:

(4.2) AY () = a(t,Y(t)dt+ &t Y (t)dW ()
Y(0) = i,

where a(t,Y (t)) = U_ila(t,7U:Y (1)), 6(t,Y(t)) = U_tlo(t,7U;Y (t)) and lh € H. Let
G1(t,x) = 6(t, 2)Q5*(t, ) — BoQBg, where By is a bounded linear operator from K to
H. Now to prove the weak uniqueness of the solution to the martingale problem for

the transformed SDE, we use results of Section 3 with arguments similar to the ones in
Mandrekar and Skorokhod (1998).

Theorem 4.1. Suppose Assumption A.3 and Assumption B hold and the coefficients of
the SPDE in (4.1) satisfy Assumptions A.1, A.2, A.4 and A'.5. Then the equation (4.1)
has a weakly unique martingale solution.

Proof: For the SDE (4.2), the Assumption A.3 holds with the compact operator J re-
placed by the compact operator [J. Its coefficients satisfy A.1, A.2 and A.4 since U;h is
continuous, ||Ush| < eIl for some real number §, and 7 is a projection (see Filipovié
et al. (2010)). Assumption A.5 follows from Assumption A’.5 | the trace inequalities
Trace(53(t,z)) < (Trace(51(t,z)))? < (JU_d|trace(o(t, nUx)))2, |Ush| < €At and
Remark 3.1.

Hence a martingale solution to SDE (4.2) exists (Gawarecki and Mandrekar (2011),
Theorem 3.12, pp.131). Let Y (¢) denote this solution with Y(0) = lh with {W(¢)}
the corresponding Q-Wiener process. Then arguing as in the proof of Theorem 8.8 of
Filipovié et al. (2010) ( using only (8.1)), we get that r(t) = 7U;Y (t) is a solution for
the SPDE (4.1). This can be seen from the following argument. Since Y (¢) is a solution
of the SDE in (4.2 ),

@3)  Y({)=ih+ / U (s, xULY (s))ds + / U o (s, U () AW (5).
0 0
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Let r(t) = nU;Y (t). Then from (4.3),

r(t) = wU; <lw+/0t U_sla(s,ﬂUfOY(s))ds+/Ot U_sla(s,wUon(s))dW(s))

= Stth/O St_sa(s,r(s))der/O Si_so(s,7r(s)dW(s),

which shows that r(¢) is a martingale solution of (4.1) and thus a weak solution also
(Filipovié et al. (2010)).

This shows that {r(¢)} is a martingale solution with respect to the filtration {FY },
where FY denotes the o — field generated by {Y (s),0 < s < t}. However using Stroock
and Varadhan (1969), we get that for § € H

(44)  exp ((9,T(t) — Sih) — /0 (0, Si—sa(s,r(s)))ds

1t .
—3 /0<9, (St—so(s,7(s)) QStSU(s,r(s))G)ds>

is a martingale with respect to {F} }. Since {F},t > 0} C {F},t > 0} we get that the
expression (4.4) is a martingale with respect to {F,¢ > 0}. Thus {r(¢)} is a martingale

solution with respect to the filtration {F7 }.
Now suppose that r(t) is a martingale solution of the SPDE (4.1). Then

(4.5) r(t) = Sih + /O Si_sals, r(s))ds + /O Sy so(s, ()W (s).

From Assumption B,
r(t) = =l (lh + /t U_sla(s,r(s))ds + /t U_sla(s,r(s))dW(s)) ,
For t > 0, let ’ ’
X(t)=1lh+ /Ot U_sla(s,r(s))ds + /Ot U_gslo(s,r(s))dW (s)

and X (0) = lh. Thus r(t) = #Uy(X (t)) up to indistinguishability. Therefore we have,

X(t) = Ih+t /O U_da(s, r(s))ds + /0 U_lo(s,r(s))dW (s)

lh+/0 U_sla(s,wUs(X(s)))ds+/0 U_slo(s,mUs(X(s)))dW (s)

= lh+/0 d(s,(X(s)))ds—i—/o a(s,(X(s)))dW (s),

That is, X (¢) is a martingale solution of (4.2) with X (0) = lh.
From the Theorem 3.2 above, we conclude that that X (¢) is the weakly unique solution
of the SDE, which implies that r(t) is a weakly unique solution of the SPDE.
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