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M. A. BELOZEROVA

ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO STOCHASTIC

DIFFERENTIAL EQUATIONS WITH INTERACTION

Two-dimensional stochastic differential equation with interaction is considered. The

large time behavior of the distance between two solutions starting from different
points is studied. A nonzero limit that characterize this distance together with the

analogue of the triangle inequality for the map that characterize the limit distance
are obtained.

1. Introduction

The aim of the paper is to establish the asymptotic behavior of distribution of mass
of interacting particles in the stochastic flow. The interest in such objects is caused in
particular by the phenomena of intermittency. In short, intermittency represents the
contrast between the realization and the mean characteristic of speed or density in a
turbulent flow. The article [14] is one of the first articles devoted to the phenomena. An
important case of intermittency is represented by the behavior of passive tracer, carried
by a random field [15]. A stochastic differential equation for a random flow F based on
a space time martingale U has the form

(1)

 Fst(x) = x+
t∫
s

U (Fsr, dr) , t ≥ s,

µt(D) = µ0

(
{x ∈ Rd : F0t(x) ∈ D}

)
, D ⊆ B

(
Rd
)
,

x ∈ Rd, t ∈ R+, U is a Gaussian random vector-field on Rd,

EU i(x, t) =

t∫
0

ui(x, r)dr, ui(x, t) ∈ R, i = 1, ..., d,

Cov
(
U i(x, s), U j(y, t)

)
= aij(x, y) min{s, t}, i, j = 1, ..., d; x, y ∈ Rd,

µ0 is some finite measure that characterize the distribution of mass at the time 0. Sup-
pose, that

|u(x, t)| ≤ K1(1+ |x|), |u(x, t)−u(y, t)| ≤ K2|x−y|, |aij(x, y)| ≤ K3(1+ |x|)(1+ |y|),

|aij(x, y)− aij(x′, y)− aij(x, y′) + aij(x′, y′)| ≤ K4|x− x′||y − y′|
for all x, x′, y, y′ ∈ Rd and t ∈ R+, where K1, K2, K3, K4 are finite constants. Then by
Theorem 4.2.5 from [12] there exists a flow F = {Fst; 0 ≤ s ≤ t < ∞} of homeomor-
phisms satisfying (1), such that the mapping (x, t) → Ft(x) is continuous almost surely
and Ft1t2 ,...,Ftn−1tn are independent for all t1 ≤ t2,≤ ... ≤ tn. Due to the last property,
F is called a Brownian flow.

A class of problems for such an equation (see, for example, [1]-[4],[9], [10], [15]-[18])
were formed by the investigation of the transition of mass in the isotropic Brownian
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flows. A Brownian flow F based on a Brownian motion U with drift u and covariance a
is isotropic if and only if

u ≡ 0 a(x, y) = b(x− y); x, y ∈ Rd,

where b is such isotropic covariance tensor that OT b(Oz)O = b(z) for every orthogonal
matrix O and every z ∈ Rd. The behavior of the distance between particles in such a
flow, started from two different points, was obtained in [1].

The concentration of mass and its spreading out can be described in terms of centroid
Ct = (Cit) and dispersion matrix Dt = (Dij

t ) that are defined by

Cit =
1

µ0(Rd)

∫
Rd

xiµt(dx),

Dij
t =

1

µ0(Rd)

∫
Rd

(xi − Cit)(xj − C
j
t )µt(dx).

For isotropic Brownian flows the limit behavior on infinity of Cov(Cit , C
j
t ), Dij

t , V ar(Ct)
can be found in [17, 18].

It is useful to study the limit behavior of µt on infinity to describe the evolution of
mass distribution in a Brownian flow. In Theorems 4.3.9 and 4.3.10 from [12] the case,
where the matrix a(x, x) is strictly positive definite, is considered. If the one-point motion
under F has an invariant distribution π with π(Rd) = 1, the following limit relation was
obtained for each Borel subset R of Rd

lim
t→∞

1

t

t∫
0

µs(R)ds = π(R) almost surely.

In the case, where the one-point motion does not have a finite invariant measure, it was
proved, that for each Borel subset R of Rd

lim
t→∞

Eµt(R) = 0.

It is also useful to consider the process Mtf =
∫
f(x)µt(dx), t ≥ 0 for various choices

of f . The expression for joint quadratic variation of Mtf and Mtg was described in
[15]. In the case, where µ0 has compact support and a(x, x) is uniformly elliptic with
bounded second partial derivatives, it was proved in paper [16] that µt has the density
mt ∈ C2,1

(
Rd × (0,∞)

)
. The advection-diffusion equation for mt also was obtained in

the same paper.
The particles can move and at the same time interact with each other. In this case

the coefficients of the corresponding stochastic differential equation (SDE) depend on
some characteristic of positions of another particles. The following stochastic differential
equation with interaction that describe such situation was introduced in [5]

(2)


dx(u, t) = a(x(u, t), µt, t)dt+

∫
Rd

b(x(u, t), µt, t, q)W (dt, dq)

x(u, 0) = u, µt = µ0 ◦ x(·, t)−1.

Here W is a Brownian sheet, µ0 is a probability measure, that plays a role of the distri-
bution of mass of particles, x(u, ·) is the trajectory of the particle, that left the point u
at time zero, µt characterize the distribution of mass of particles at time t.

Definition 1.1. The random Rd-valued x(u, t), u ∈ Rd, t ∈ [0,+∞) is called a (strong)
solution to equation (2) with the coefficients a, b and initial measure µ0 if the following
conditions take place
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• for all t ≥ 0 the restriction of x to the interval [0; t] is Bd
⊗
B[0,t]

⊗
Ft-measurable,

where Ft = σ (W (s,∆)), ∆ ∈ Bd, s ≤ t;
• for fixed u ∈ Rd for all t ≥ 0 the integral form of (2) takes place with probability 1;
• x(u, 0) = u with probability 1 and all u ∈ Rd.

In section 2 of [7] the conditions of existence and uniqueness of solutions to equation
(2) were obtained, the properties of solutions were established.

The limit behavior of solutions to SDE with interaction in one-dimensional case was
studied in [13]. The aim of the paper is to investigate the two-dimensional case.

Thus, the main object of the investigation in the paper is two-dimentional stochastic
differential equation with interaction

(3)


dx(u, t) =

∫
R2

ϕ(x(u, t)− v)µt(dv)dt+ b(x(u, t), µt)dw(t)

x(u, 0) = u,
µt = µ0 ◦ x(·, t)−1.

The existence a. s. of a nonzero limit as t tends to infinity of the function, that char-
acterize the distance between x(u, t) and x(v, t) for all u, v ∈ R2, is proved. Also the
analogue of the triangle inequality for the limit map is obtained.

2. Main results

Let M2 be a subspace of the space of all probability measures on R2 such that

∀µ ∈M2 ∀u ∈ R2 :

∫
R2

||u− v||2µ(dv) < +∞.

For µ, ν ∈M2 the Wasserstein distance γ2(µ, ν) [6] is defined by the formula

γ2(µ, ν) =

√√√√ inf
Q∈C(µ,ν)

∫ ∫
R2

||u− v||2Q(du, dv),

where C(µ, ν) is the set of all probability measures on R2 which have µ and ν as their
marginal projections.

Consider SDE (3) with µ0 ∈M2,

w =

(
w1

w2

)
,

where wk are one-dimensional independent Wiener processes,

ϕ =

(
ϕ1

ϕ2

)
, ϕk : R2 → R, b =

(
b1
b2

)
,

bk : R2 ×M2 → R (k = 1, 2) being globally Lipschitz and for some α1, α2, B1, B2 > 0
and for all u, v ∈ R2, t > 0, µt ∈M2

(4) −α1‖u− v‖2 ≤ (u− v, ϕ(u)− ϕ(v)) ≤ −α2‖u− v‖2;

(5) B1‖u− v‖2 ≤ (u− v, b(u, µt)− b(v, µt)); ‖b(u, µt)− b(v, µt)‖ ≤ B2‖u− v‖;

where

(6) αk −B2
k ≥ 0 (k = 1, 2).

Then by Theorems 2.1.1 and 2.1.2 from [7] there exists a unique strong solution of (3)
such that x is a flow of homeomorphisms. Moreover, we have from (3) the following
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representation

(7)

||x(u, t)− x(v, t)|| = ||u− v||+
t∫
0

Φ (x(v, s), x(u, s), µs) ds+

+
2∑
k=1

t∫
0

Pk (x(v, s), x(u, s), µs) dwk(s),

where

Φ (r, q, µs) =
1

||q − r||

∫
R2

(q − r, ϕ(q − v)− ϕ(r − v))µs(dv)+

+
||b(q, µs)− b(r, µs)||2

2||q − r||
− (q − r, b(q, µs)− b(r, µs))2

2||q − r||3
,

Pk(r, q, µs) =
(qk − rk)(bk(q, µs)− bk(r, µs))

||q − r||
, q =

(
q1
q2

)
, r =

(
r1
r2

)
, k = 1, 2.

Due to Lemma 1 from [13] we obtain, that the martingale part in equalities of the
type (7) may have the limit.

The following result also characterizes the distance between trajectories of different
particles on infinity.

Theorem 2.1. For all u, v ∈ R2 there exists

(8) lim
t→∞

||x(u, t)− x(v, t)|| −
t∫

0

Φ (x(v, s), x(u, s), µs) ds

 a.e.

Proof. At the beginning let us consider the sum

2∑
k=1

t∫
0

Pk (x(v, s), x(u, s), µs) dwk(s).

If we put

Ik(t) =

t∫
0

Pk (x(v, s), x(u, s), µs) dwk(s), k ∈ {1, 2},

then we have from the mutual independence of w1 and w2 that I1, I2 are continuous
martingales with quadric variation

〈I1 + I2〉t =

2∑
k=1

t∫
0

P 2
k (x(v, s), x(u, s), µs) ds.

Hence by Theorem 18.4 from [11]

(9) I1(t) + I2(t) = wu,v

 t∫
0

(
P 2
1 (x(v, s), x(u, s), µs) + P 2

2 (x(v, s), x(u, s), µs)
)
ds

 ,

where wu,v is a Wiener process. By conditions (4) and (5) we have for all t ≥ 0 the
following inequality

(10)

t∫
0

Φ (x(v, s), x(u, s), µs) ds ≤
(
−α2 +

1

2

(
B2

2 −B2
1

)) t∫
0

||x(u, s)− x(v, s)||ds;

As constants α2, B2 satisfy the condition (6), we have, that

(11) −α2 +
1

2

(
B2

2 −B2
1

)
< 0,
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and then by (10) the following inequality takes place for all t ≥ 0

(12) ||x(u, t)− x(v, t)|| −
t∫

0

Φ (x(v, s), x(u, s), µs) ds ≥ 0.

The functions x(u, ·) and x(v, ·) are continuous and for u 6= v we have, that ||x(u, t) −

x(v, t)|| > 0 for small t. So, for t > 0, u, v ∈ R2, u 6= v,
t∫
0

||x(u, s) − x(v, s)||ds > 0 and

taking into account (10) and (12) we have, that for all t ≥ 0

(13) ||x(u, t)− x(v, t)|| −
t∫

0

Φ (x(v, s), x(u, s), µs) ds > 0.

Then, because of (9), we have that the equality

||x(u, t)− x(v, t)|| −
t∫

0

Φ (x(v, s), x(u, s), µs) ds = ||u− v||+ I1(t) + I2(t) =

= ||u− v||+ wu,v

 t∫
0

(
P 2
1 (x(v, s), x(u, s), µs) + P 2

2 (x(0, s), x(u, s), µs)
)
ds

 ,

and the following inequality takes place

(14)

+∞∫
0

(
P 2
1 (x(v, s), x(u, s), µs) + P 2

2 (x(v, s), x(u, s), µs)
)
ds ≤ τu,v < +∞,

where τu,v is the time of the first hitting of ||u − v|| by wu,v. So, the following equality
is valid with probability 1

(15)

lim
t→∞

(
||x(u, t)− x(v, t)|| −

t∫
0

Φ (x(v, s), x(u, s), µs) ds

)
= ||u− v||+

+wu,v

(
+∞∫
0

(
P 2
1 (x(v, s), x(u, s), µs) + P 2

2 (x(v, s), x(u, s), µs)
)
ds

)
.

The Theorem is proved. �

Lemma 2.1. For all u, v ∈ R2, u 6= v

(16) lim
t→∞

||x(u, t)− x(v, t)|| −
t∫

0

Φ (x(v, s), x(u, s), µs) ds

 > 0 a.e.

Proof. According to the proof of Theorem 2.1, we have, that for all u, v ∈ R2, u 6= v

(17) lim
t→∞

||x(u, t)− x(v, t)|| −
t∫

0

Φ (x(v, s), x(u, s), µs) ds

 ≥ 0 a.e.

Now let us suppose that the opposite of (16) is true, that is for some u, v ∈ R2, u 6= v
there exists some set A ∈ F, P (A) > 0 such that

(18) ∀ω ∈ A : lim
t→∞

||x(u, t)− x(v, t)|| −
t∫

0

Φ (x(v, s), x(u, s), µs) ds

 = 0.
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By (10), (11) and (6) both terms in the above limit are nonnegative, therefore it follows
from (18), that

(19) ∀ω ∈ A : lim
t→∞

||x(u, t)− x(v, t)|| = 0 and lim
t→∞

t∫
0

Φ (x(v, s), x(u, s), µs) ds = 0.

But then, from the second equality of (19), (10) and (11), we have, that

∀ω ∈ A : lim
t→∞

t∫
0

||x(u, s)− x(v, s)||ds = 0.

Here we have a contradiction, because u 6= v, x(u, 0) = u and x(v, 0) = v. The Lemma
is proved. �

Let us now consider the function

(20) F (u, v) = lim
t→∞

||x(u, t)− x(v, t)|| −
t∫

0

Φ (x(v, s), x(u, s), µs) ds

 .

It follows from Lemma 2.1, that for all u, v ∈ R2, u 6= v

F (u, v) > 0.

The next result gives us the analogue of triangle inequality.

Lemma 2.2. For all u1, u2, u3 ∈ R2

(21) F (u1, u2) + F (u2, u3) ≥ 2α2 −B2
2 +B2

1

2α1 −B2
1 +B2

2

F (u1, u3) a.e.

Proof. Using the Cauchy-Schwarz inequality and (5) we obtain the inequalities

B2‖u− v‖2 ≥ |(u− v, b(u, µt)− b(v, µt))|; ‖b(u, µt)− b(v, µt)‖ ≥ B1‖u− v‖.

It follows from this inequalities and (5) that for all t ≥ 0

(22)

t∫
0

Φ (x(v, s), x(u, s), µs) ds ≥
(
−α1 +

1

2

(
B2

1 −B2
2

)) t∫
0

||x(u, s)− x(v, s)||ds.

Then by (10) we have, that

0 < α2 −
1

2

(
B2

2 −B2
1

)
≤ α1 −

1

2

(
B2

1 −B2
2

)
.

Taking into account (20), (10) and (22) we obtain, that for all u1, u2, u3 ∈ R2 and all
t > 0

F (u1, u2) + F (u2, u3) ≥ ||x(u1, t)− x(u2, t)||+

+

(
α2 −

1

2

(
B2

2 −B2
1

)) t∫
0

||x(u1, s)− x(u2, s)||ds+

+||x(u2, t)− x(u3, t)||+
(
α2 −

1

2

(
B2

2 −B2
1

)) t∫
0

||x(u2, s)− x(u3, s)||ds.

Then we use the triangle inequality for the norm and (22)

F (u1, u2) + F (u2, u3) ≥ ||x(u1, t)− x(u3, t)||+
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+

(
α2 −

1

2

(
B2

2 −B2
1

)) t∫
0

||x(u1, s)− x(u3, s)||ds ≥

≥ ||x(u1, t)− x(u3, t)|| −
2α2 −B2

2 +B2
1

2α1 −B2
1 +B2

2

t∫
0

Φ (x(u1, s), x(u3, s), µs) ds.

The Lemma is proved. �

The next example shows the situation for the linear case.

Example 2.1. Let

ϕ(u) =

(
q q12
−q12 q

)∫
R2

(u− v)µt(dv), b(u, µt) =

(
p −p
p p

)∫
R2

(u− v)µt(dv),

p > 0, q + 2p2 ≤ 0.

Then, (u−v, ϕ(u)−ϕ(v)) = q||u−v||2, (u−v, b(u, µt)− b(v, µt)) = p||u−v||, ‖b(u, µt)−
b(v, µt)‖ = p

√
2‖u− v‖ and therefore α1 = α2 = −q, B1 = p, B2 =

√
2p. So, by Lemma

2.2, in this case the inequality (16) becomes

F (u1, u2) + F (u2, u3) ≥ −2q − p2

−2q + p2
F (u1, u3).
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