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A.A. DOROGOVTSEV AND L.I. NISHCHENKO

LOOP-ERASED RANDOM WALKS ASSOCIATED WITH MARKOV
PROCESSES

A new class of loop-erased random walks (LERW) on a finite set, defined as func-
tionals from a Markov chain is presented. We propose a scheme in which, in contrast
to the general settings of LERW, the loop-erasure is performed on a non-markovian
sequence and moreover, not all loops are erased with necessity. We start with a spe-
cial example of a random walk with loops, the number of which at every moment of
time does not exceed a given fixed number. Further we consider loop-erased random
walks, for which loops are erased at random moments of time that are hitting times
for a Markov chain. The asymptotics of the normalized length of such loop-erased
walks is established. We estimate also the speed of convergence of the normalized
length of the loop-erased random walk on a finite group to the Rayleigh distribution.

1. INTRODUCTION

In this article we propose and discuss new constructions of loop-erased random walks
on a finite set. These walks are defined as functionals from a Markov chain on an
enlarged set. This Markov chain defines not only the elements of the walk, but also the
rule, in accordance to which the loops that appear in the walk are erased. This makes
the difference with the original loop-erased random walk defined in [1], where any loop
is erased as soon as it appear.

We present two constructions. The first one is based on a multi-dimensional Ehrenfest
model, which is a Markov chain {v,, = (i,...,i%),n > 0} on the set {0,1,...,m}" with
the transition probabilities
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The evolution of this Markov chain can be described as follows. At every step we uni-
formly choose one coordinate of the vector Z, say 21. Then change it as in the lazy
Ehrenfest’s urn model: considering i; and m — i; as the number of particles in two
boxes, we first randomly choose a particle and then either move it to another box with
probability m/(m + 1), or leave it in its box with probability 1/(m + 1).

Now we construct a random walk on the set {1,..., N} according to the following
algorithm: if for the multiple Ehrenfest chain the k-th coordinate is chosen and iZ"H =
iy 4+ 1, then we add to the trajectory of the random walk the element k£ € {1,...,N};
if iZ‘H = i} — 1, then we erase the part of the trajectory that starts from the latest
occurrence of k in the trajectory; if il = f”, then the trajectory of the walk is not
changed.
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16 A.A. DOROGOVTSEV AND II. NISHCHENKO

The random walk constructed in the proposed way admits loops. Note, however, that
each element of the set {1,..., N} can occur in the walk trajectory no more than m
times. Moreover, the probability of erasing loops increases with the number of repeated
occurrences of the elements in the path. For such a random walk we establish the
asymptotic behavior of the length of the walk trajectory as both n and m tend to infinity.

In the second model proposed in the paper, we allow a finite but not bounded number
of loops in the walk trajectory. We start from a Markov chain {v,;n > 0} on the set
{0,1} x {1,..., N} and construct a random walk on {1,..., N} as follows. If v,41 =
(1,k), we add the element k to the trajectory of the walk; if v,y; = (0,k), we erase
the part of the trajectory that starts from the first entry of k£ to the trajectory. The
asymptotics of the normalized length of such loop-erased walk is investigated.

In the last part of the article we consider loop-erased random walks on a finite group.
It is known [3], that the normalized length of such a walk converges to the Rayleigh
distribution. We estimate the speed of the convergence using coupling arguments.

2. LOOP-ERASED RANDOM WALK ASSOCIATED WITH THE EHRENFEST MULTIPLE
MODEL

Let {vn;n > 0} be a Markov chain on the phase space D = {0,1,...,m}®! where
E={1,2...,N},m>1,ie. D= {(i1,l2,...,in),% =0,...,m,j = 1,...,N}. Define
the transition matrix of {v,;n > 1} as follows. From the state (ij,...,iy) one-step
transitions are allowed only to the states (ji,...,7n), such that

N
> ik — jil € {0,1},
k=1

and
1
D(iv,.in), (i1, in) = ma
1 m—1
Pirseesingsnsin) s (in5esing +1oein) = NWIO’ ko=1,...,N,
1 i
Plirsesing seesin)s(i15sing =Lensin) = 7 _E 1’ ko=1,...,N.

When N =1 the corresponding Markov chain is the well-known Ehrenfest chain,which
is known to have the unique invariant distribution

o1
7T7;:C7zn27m, Z:O,,m

The multi-dimensional chain {v,;n > 1} on D has the unique invariant distribution of
the form

N N
1 ; . .
T(iy,enin) — Hﬂ_ik = W ' HC;;LC’ (Zla"'alN) eD.
k=1 k=1

Now let us construct a loop-erased random walk {I'7*;n > 0}, using multi-dimensional
Ehrenfest chain {v,;n > 1}. We will start from vy = (0,...,0) and put I'j* = 0, I* =

ITH*| = 0. The next elements of {I'";n > 1} are constructed inductively as follows.
Suppose I'l' = (1,...,x,) has been already defined. If v,,41 = vy, then set I']', ; = I'J".
If
Vp = (i17...,ik07...,iN) and Vn+1 = (il,...,iko + 1,...,iN),
then set
ZTry1 = ko, F?—i—l = (.131, . ,1‘7.+1), l;n_i_l = l;n + 1.

Otherwise, if

VUp = (’il,...7ik0,...,i]\]), Vn+1 :(i17...,ik0 —1,...,iN> and ]{?0 ¢ (.1?17...,IT)7
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then put
2,1-5-1 = F?a l?f+1 = ZZL-
In the case
Vp = (il,...7ik0,...,iN), Unt1l = (il,...,iko — 1,...,iN) and kg € (wl,...,xr),
define

F;nJrl = (.1717 - ,J)ifl), l;n+1 = Z — 1,
where ¢ = max{j : ko = z;}.

In this way we obtain a random walk {I'"";n > 0} on E, such that for every n > 1 the
sequence I contains no more than m entries of every element of the set E. Moreover,
at every moment of time, the erasure of a loop associated with the element ¢ € F, occurs
with probability that is proportional to the current number of entries of ¢ in I'"™.

Clearly, the maximal length of I']* does not exceed m - N

Yn>1: = <m-N.

It is easy to check, that the sequence {I'";n > 0} is a Markov chain in the space of finite
sequences with elements from E of length at most mN.

We will study the asymptotics of the length I as m,n tend to infinity. The following
statement holds.

Theorem 1. For any a > 0 there exist mg > 0, C > 0, such that for all m > my

1
P{Ie < o = 5/ a)mlnm} < C - 0F/2,

Proof. For every n > 1 the state v,, of the N-dimensional Ehrenfest chain can be written

as vy, = (vL....,v)). It can be easily checked by induction, that for every n > 1

I™ > min v,
J=1,N
Consequently, in order to prove the theorem, it is enough to proove the statement of the
theorem for v/ .., as m tends to infinity.
Note, that for a fixed j the sequence {v/;n > 1} is the lazy Ehrenfest chain with the

transition probability matrix

1 1

il 1-— —

N @+ N
where @ is the transition matrix of the one-dimensional Ehrenfest chain and I is the iden-
tity matrix. It is known, that for probability distributions Q™dg the following relations
hold.

)M,

Theorem 2. [2] For an arbitrary ¢ > 0
Hlenm—&-cm(so _ 7Tm|| < e~ ¢.

Here m,, is the invariant distribution of the Ehrenfest chain - the binomial distribution

with parameters m and %, and || - || is the variation distance.

Now take a > 0. Consider mg such that
Ym>mg:

1
1 < —mlte,
mlnm < 3Nm
Then for m > my

e4

1Q™ " 8o — 7| < e~ (A= 5)m”

Consequently,
1

1 1+a
i _ m _ <
H @+ (1= D)™ "8 = 7| <
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mlnm+ ﬁmpro‘

1 1. ite 2\, «a
k k ko —(1—22
- ; Crava() - (L= )™ T e (mamm,
In the last inequality the upper bound of summation is chosen in such a way that Theorem
2 can be applied for other summands.
In order to estimate the first summand, consider a sequence {&,;n > 1} of independent
random variables taking values zero and one with probabilities 1 — % and % respectively.

Define .
Sn = Z£k7 n > 1.
k=1

Then
mlnm+ﬁm1+”
1 1 1+a
k k mite g
> Crra () (1= 57) =
k=0
1
= P{S 1+« <mlnm+ gml"’o‘} =
1 1 1
=P Ifa 1 (Spr+a — *mH_a) <
mFfra-d)
1 1 1
< — - (mInm — ——m!T¥) § <
m-z i(l _ i) 2N
VN N
< 1 mlnm—ﬁml"’a ‘e
- L1-—4) m m
N N

due to the Berry-Esseen inequality. Here @ is the distribution function of the standard
normal law and the constant C' depends on N. Finally,
||(%Q +(1- %)f)m”“éo — | < Cym ™57
Recall that m,, is binomial distribution with parameters m and % In order to make
the estimation for v/, it is enough to make the estimation for the Gaussian distribution
and use the Berry-Esseen inequality for m,,. Hence, we get

1
P{l7 o < % - 5\/(1 +a)ymlnm} < Cym~ /2,

The theorem is proved. (I

3. LOOP-ERASED RANDOM WALKS ASSOCIATED WITH A RENEWAL PROCESS

Let {v,, = (2,0 );n > 1} be a Markov chain on the phase space F' = {1,2,..., N} X
{0,1}. We define a loop-erased sequence {I'y,;n > 1} inductively as follows. Let I'g = 0.
If o1 =1, set &1 = 21 and I'y = (z1). Otherwise, if o1 = 0, set 'y = I’y = 0. Inductively,
if T',, = (%1, ..., ) has been defined, then:

if o1 =1, set

Tk+1 = Rn+1; Fn+1 = (331, e ,xk,a:k+1),
otherwise, if 0,41 = 0, then start the loop-erasing procedure:
if zp41 & (21,...,2k), then set

1_‘n-‘rl =Ty,
otherwise, if z,41 € (z1,...,k), define

Ty = (21,...,2i-1),
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where ¢ = min{m : z,4+1 = %, }. By this procedure loops are erased at random moments,
at which the second component of the chain {v,;n > 1} equals zero.

The asymptotics of the normalized length |I',,| as n — oo is described in the following
theorem.

Theorem 3. Suppose, that the matriz of transition probabilities of the Markov chain
{vn;n > 1} consists of positive numbers. Then there exists a positive constant co such,
that

P{lim —2 = =1.
{n1—>Holo Inn CO}

Proof. Let us define two sequences of moments of time {m,;n > 1} and {r,;n > 1} as
follows:
my =min{k > 1: 0, =1}; 71 = min{k > my : vy = (21n,,0)}
and for n > 2
my, =min{k > 7,1+ 1: 0, =1}; 7, = min{k > m,, : v = (2m,,,0)}.

It follows from this definition and the construction of {I',;;n > 1} that m; is the first
moment for which Ty, # (), while 7; is the first moment after m; such that 'y, = 0; mq
is the first moment after 7 for which T';,, # 0, while 72 is the first moment after ms
such that I';, = () and so on.

Define a probability kernel K (z,y) on E as follows. For each starting point (x,0) of
the chain {v,;n > 1} let 5’ be the first moment when v,, € E x {1}. If v, = (y,1)
then let s/ > 3¢ be the first moment for which v,.» = (y,0). Define

K(z,y) = P(vsr = (y,0)).
Assuming that the transition probabilities of the Markov chain {v,;n > 1} are positive,
the transition matrix K also has positive elements. Hence, the sequence of the blocks
{Ty,..., T}, {Try41,-.-, T}, ... forms a Markov chain which satisfies the exponential
mixing condition.

Note, that in the k-th block {I';, _,+1,...,+, } the maximal length of I'-s is at most
T, — 1 — my, and is at least 7} — 1 — my, where 7 = min{m;, <r <7y : 0, = 0} is the
first moment in [1x_1 4+ 1,...,7%], when the loop-erasing procedure starts.

In view of the ergodic theorem

Tn ~nC, n — oo a.s.,
where C' is the expectation of 71 under the stationary distribution of the chain

{{lr41,---. 7, }sm > 0}. Consequently, in order to obtain an upper estimation of
r —

| "|, it is enough to consider lim —, where o, = max{|[;| : 7, +1 < 7 < 7,11 }-
Inn n—oo Inn

is the maximal length of I'-s in the block {T's, 41,...,T'+ ., }. Since, as has been already

noted, o, < Tpqp1 —My41 — 1 and the transition probabilities of {v,;n > 1} are assumed
to be positive, we get
P{a, > N} <"
for some g € (0;1). From this inequality and the Borel-Cantelli lemma it follows that
with probability one
— Qp
lim — < 4o0.
n—oo Inn
From the other side, o, > 8, = 75,1 — 1 — My 1, where
Top1 = min{m, 1 <r < 7pq1 0 =0}
is the first moment in [, +1, ..., T, 41], at which the loop-erasing procedure is performed.
Since the transition probabilities of {v,,;n > 1} are positive, we have

P{B, >N} >p"
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for some p > 0. Note, that {8,;n > 1} satisfy the exponential mixing condition. Hence,
the Borel-Cantelli lemma for weakly dependent random events can be applied [4], and
we get that with probability one

T > 0,
n—oo Inn
Now the statement of the theorem follows from the zero-one law for stationary mixing

sequences. [l

4. SIMPLE LOOP-ERASED RANDOM WALK ON A FINITE GROUP

Consider a finite group G of order m = |G| with multiplication f - g for elements
fyg € G and the identity element e. Construct a loop-erased random walk {T',,,n > 0}
on G as follows. Let {&,,n > 1} be independent uniformly distributed random elements

in G. Put g = e and 'y = (x9). By induction, if T',, = (zo, z1,...,2k) and x - &1 &
(zo,21,...,2k), then put xp41 = zg - {1 and
Thy1 = (o, @1, -y Thoy T 1)-
Otherwise, if xy, - £,41 = x; for some i =0, ..., k, then put
Lhy1 = (o, 21, .., ;).

By this procedure loops are erased in the order they appear and we get a trajectory
of random walk on G without loops.

We assume that the length |T'| of the path T = (xq, 21, ..., 2}) equals k, and the length
of T' = (e) equals zero.

The following two lemmas can easily be proved.

Lemma 1. The sequence {I'y;n > 0} is a Markov chain in GICl which has a unique
tnvariant distribution.

Denote by 7 the invariant distribution of {T';;n > 0}. By symmetry, due to the
uniform distribution of {&,,n > 1}, the following statement holds.

Lemma 2. For arbitrary A C G\{e} such that |A|=1<m —1,

Px(To = (e,A)[|To| =1) = W

Here Pz denotes probability with respect to the invariant distribution 7.
To find 7 exactly it remains to find
P:{|To| =k}, k=0,...,m—1.

Note, that {|T'y|,n > 1} is a homogeneous Markov chain with the state space {0, ..., m—
1} and transition probabilities

Loo<ji<i
Pij = —%,jzﬂ—l

0, otherwise.
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It can be checked straightforwardly that the unique invariant distribution of {|T',,|,n > 1}
is given by

_ 1
T 2
m

) s

nk:(1—%)...(1—§)ﬂ,

Tm-1=(1— 1) . (1- =),
Hence, the invariant distribution 7 for a trajectory of LERW is
~ 1 k. k+1 —1-k)! k+1
1) Fernm)=(1- by - HELL oD

m m’ m (m—1)!  mktl’

From now on we will denote by I'™ a random element in G with the distribution 7.
The next theorem about the limiting distribution of [I'™| as m = |G| — oo is an
analogue of the result stated in [3] for LERW on finite graphs.

Theorem 4.
Fm
u =17, m — +00

vm

where 1 has the Rayleigh distribution with the density xeiIQ/z, z > 0.

Proof. Using the expression for the distribution of || one can check, that for x > 0

[zv/m]+1 k

Pl - I a-3)
k=1

and then
| Lk
In P{— N >z} = ; In(1 — E)
Using the inequality In(1 — y) < —y, y € (—o0; 1), we obtain
il [zv/m]+1 k 22
mlgnoolnP{T >z} < —n}gnoo kzﬂ — =

To estimate the lower limit, let us note, that for an arbitrary € > 0 there exists § > 0
such that

Yy e[0;0]:
In(1 —y) > —(1+¢)y.
Hence
I
lim InP{— >z} >
S PS> o)
[w\/ﬂﬂﬂk 22
> lim —(1 — =1 —.
> lim (1+e¢) ; - (1+e)5

Since € > 0 is arbitrary, the theorem is proved.

In the next theorem we present the estimation on the Lévy distance
d(F Fy) =inf{e >0: Ve e R: F'(z) < Fy(x +¢)+¢e,Fy(z) < F'(x+e)+ e}
between the distribution functions F* and F;, of \/%|Fm| and 7 respectively.
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Theorem 5. For every € € (0; 1) there exists C > 0 such, that

1
d(F™, F,) < C-——.

m4
Proof. In order to estimate the Lévy distance between the distribution F* of the nor-
malized length of LERW trajectory and the Rayleigh distribution function F},, we will
introduce a Markov chain {I'/,,n > 0}, constructed using the same sequence of indepen-
dent random elements {£,;n > 1} in G, which was used to construct {I',,n > 0}, as
follows. Fix A € (0;1) such, that Am is integer. Put z({, = e and I'{; = z(. By induction,

if T, = (xg, 27, ..., 23,) and @ - &1 & (20,24, ..., @), then put @) | = 27 - §, 41 and
;o aw ), k< Am
A (@, xh,...,x}), k= Am.
Otherwise, if and ), - &,+1 = 2 for some ¢ = 0,...,k, then put
1 = (xo, @, .. ).

It can be checked, that {I"/,,n > 0} is a Markov chain. Moreover {|I'/,|,n > 0} is also

n?
a Markov chain with the transition matrix

1 . .
TnvOSJSZ
(2) pij = —%,j=i+1

0, otherwise,

for 0 <i<j < Am, and

o %,j<x\m
Pami =1 am 5 am
m :

We can construct {I',,,n > 0} and {I'},,n > 0} simultaneously on the same probability
space by letting ) = (2},) "' #x&nt1 on every step k > 0, as it follows from the lemma
below. Define

FS=0(&,....&), n>1.

Lemma 3. Suppose, that a random element z in G is measurable with respect to FS.
Then the sequence &1,...,&n, 2€n41 @S equidistributed with &1, ..., &En41.

Proof. For any ¢1,...,9, € G we have
P{fl =01,y n = gn, 26nt1 = gn+1} =

n
=FE H kazgk ’ ]I£n+1:Z_1gn+1 =
k=1

e 1
= E{H Hﬁk:ng(H§n+1=Z*19n+1 /]:751)} = mn+1 =
k=1

= P{& =01, ,6n = gn7£n+1 = gn+1}~

O

Such coupling of z and 2’ helps us to estimate the Lévy distance between the invariant
distributions of the lengths of T' and I'. Due to (2) the invariant distribution 7/, of |T|
is such, that
Vk=0,...,.Am—1:

k+1
P (T > k)= J(1-
1

+

),

J
m

<.
Il
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Vk=Mn,....m—1:
Pﬂn(\F’| >k)=0.
Note that

T/ 22 22 @/ j
sup | Prr { Il >at—e 2| < maux{e_’\zm/Q7 sup  Je” T — X5 ]+11“(1_#)|}.
x>0

\/> 0<z<Ay/m

For j7 < Am we have

J —, j 1 J 2 J2 = A
n(l—dy= S Lyss_L 0 I A
n( m> ;(m)l_ m  m? m2;l

__J_ ﬁ(1_1n(1—>\))
m  m?2

Hence, for 0 < z < Ay/m
1 F4M m- )

<——+ (x\FH)(wW )

T 1)(x 2)(2x 3
(vt X g{; ey +8) ()

Consequently, there exist constants C, Co that do not depend on A and m, such that

[zv/m]+1
_ 22 22 k Cl Csy
sup e 2 (—— — Inl—-—))<—=—-—=In(1l -X\).
0<z<AV/m 2 ; m vm.ovm
Finally, the Kolmogorov distance between the normalized length of the abridged version
of LERW and the Rayleigh distribution is less or equal to

_aZm Oy Cy
max{e” 2 ,— — —=In(1 -\
{ T (1-=N}

Let us estimate the Lévy distance between the normalized lengths of LERW and the
abridged LERW, using the already constructed coupling. Consider = > | [I;,—1}|, where
I and [}, are the lengths of the corresponding sequences on k-th step. Note that the set
of numbers, for which I # [}, has the following structure. It is the union of disjoint
intervals I, j > 1. Here |I;],j > 1 are independent geometrically distributed random
variables with parameter 1 — X. Note also that I}, = Am when k € I,;. Consequently,

1 1-N(2-\)
E — | < ZE|L]? = — L2
el < 5E 5

IN

From the ergodic theorem it follows that

lim — E 1 =7 .
n—oo N ke OLj I; Am
k=1 g=1

Thus,
1l o (1=X)(2-N)
lim =Y |l — 1] < 2m. =
nggon;Ik i< B 2
A (1=XN2-X 2—A 1
:ﬂ—g\ml DY A2 = ﬂ—g\mT < 27T3\mx
Finally, the estimation
Am—+1 ]{) N +1 .
Fm T 0Ky =emmmit o
k=1

Am+1 k 1 (Am41)(Am+2)

k 2
< e Lik=1 m = e m <e_>‘m

Nl
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gives the desired result after optimization with respect to A. ([l
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