
Theory of Stochastic Processes
Vol. 25 (41), no. 2, 2020, pp. 15–24

A.A. DOROGOVTSEV AND I.I. NISHCHENKO

LOOP-ERASED RANDOM WALKS ASSOCIATED WITH MARKOV

PROCESSES

A new class of loop-erased random walks (LERW) on a finite set, defined as func-
tionals from a Markov chain is presented. We propose a scheme in which, in contrast

to the general settings of LERW, the loop-erasure is performed on a non-markovian

sequence and moreover, not all loops are erased with necessity. We start with a spe-
cial example of a random walk with loops, the number of which at every moment of

time does not exceed a given fixed number. Further we consider loop-erased random

walks, for which loops are erased at random moments of time that are hitting times
for a Markov chain. The asymptotics of the normalized length of such loop-erased

walks is established. We estimate also the speed of convergence of the normalized

length of the loop-erased random walk on a finite group to the Rayleigh distribution.

1. Introduction

In this article we propose and discuss new constructions of loop-erased random walks
on a finite set. These walks are defined as functionals from a Markov chain on an
enlarged set. This Markov chain defines not only the elements of the walk, but also the
rule, in accordance to which the loops that appear in the walk are erased. This makes
the difference with the original loop-erased random walk defined in [1], where any loop
is erased as soon as it appear.

We present two constructions. The first one is based on a multi-dimensional Ehrenfest
model, which is a Markov chain {νn = (in1 , . . . , i

n
N ), n ≥ 0} on the set {0, 1, . . . ,m}N with

the transition probabilities

p~i,~j =



0, if
N∑
k=1

|ik − jk| > 1,

1
m+1 , if

N∑
k=1

|ik − jk| = 0,

1
N

ik
m+1 , if jk = ik − 1,

1
N
m−ik
m+1 , if jk = ik + 1.

The evolution of this Markov chain can be described as follows. At every step we uni-
formly choose one coordinate of the vector ~i, say i1. Then change it as in the lazy
Ehrenfest’s urn model: considering i1 and m − i1 as the number of particles in two
boxes, we first randomly choose a particle and then either move it to another box with
probability m/(m+ 1), or leave it in its box with probability 1/(m+ 1).

Now we construct a random walk on the set {1, . . . , N} according to the following
algorithm: if for the multiple Ehrenfest chain the k-th coordinate is chosen and in+1

k =
ink + 1, then we add to the trajectory of the random walk the element k ∈ {1, . . . , N};
if in+1

k = ink − 1, then we erase the part of the trajectory that starts from the latest

occurrence of k in the trajectory; if ~in+1 = ~in, then the trajectory of the walk is not
changed.
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The random walk constructed in the proposed way admits loops. Note, however, that
each element of the set {1, . . . , N} can occur in the walk trajectory no more than m
times. Moreover, the probability of erasing loops increases with the number of repeated
occurrences of the elements in the path. For such a random walk we establish the
asymptotic behavior of the length of the walk trajectory as both n and m tend to infinity.

In the second model proposed in the paper, we allow a finite but not bounded number
of loops in the walk trajectory. We start from a Markov chain {νn;n ≥ 0} on the set
{0, 1} × {1, . . . , N} and construct a random walk on {1, . . . , N} as follows. If νn+1 =
(1, k), we add the element k to the trajectory of the walk; if νn+1 = (0, k), we erase
the part of the trajectory that starts from the first entry of k to the trajectory. The
asymptotics of the normalized length of such loop-erased walk is investigated.

In the last part of the article we consider loop-erased random walks on a finite group.
It is known [3], that the normalized length of such a walk converges to the Rayleigh
distribution. We estimate the speed of the convergence using coupling arguments.

2. Loop-erased random walk associated with the Ehrenfest multiple
model

Let {νn;n ≥ 0} be a Markov chain on the phase space D = {0, 1, . . . ,m}|E|, where
E = {1, 2 . . . , N}, m ≥ 1, i.e. D = {(i1, i2, . . . , iN ), ij = 0, . . . ,m, j = 1, . . . , N}. Define
the transition matrix of {νn;n ≥ 1} as follows. From the state (i1, . . . , iN ) one-step
transitions are allowed only to the states (j1, . . . , jN ), such that

N∑
k=1

|ik − jk| ∈ {0, 1},

and

p(i1,...,iN ),(i1,...,iN ) =
1

m+ 1
,

p(i1,...,ik0 ,...,iN ),(i1,...,ik0+1,...,iN ) =
1

N

m− ik0
m+ 1

, k0 = 1, . . . , N,

p(i1,...,ik0 ,...,iN ),(i1,...,ik0−1,...,iN ) =
1

N

ik0
m+ 1

, k0 = 1, . . . , N.

When N = 1 the corresponding Markov chain is the well-known Ehrenfest chain,which
is known to have the unique invariant distribution

πi = Cim
1

2m
, i = 0, . . . ,m.

The multi-dimensional chain {νn;n ≥ 1} on D has the unique invariant distribution of
the form

π(i1,...,iN ) =

N∏
k=1

πik =
1

2mN
·
N∏
k=1

Cikm , (i1, . . . , iN ) ∈ D.

Now let us construct a loop-erased random walk {Γmn ;n ≥ 0}, using multi-dimensional
Ehrenfest chain {νn;n ≥ 1}. We will start from ν0 = (0, . . . , 0) and put Γm0 = ∅, lm0 =
|Γm0 | = 0. The next elements of {Γmn ;n ≥ 1} are constructed inductively as follows.
Suppose Γmn = (x1, . . . , xr) has been already defined. If νn+1 = νn, then set Γmn+1 = Γmn .
If

νn = (i1, . . . , ik0 , . . . , iN ) and νn+1 = (i1, . . . , ik0 + 1, . . . , iN ),

then set

xr+1 = k0, Γmn+1 = (x1, . . . , xr+1), lmn+1 = lmn + 1.

Otherwise, if

νn = (i1, . . . , ik0 , . . . , iN ), νn+1 = (i1, . . . , ik0 − 1, . . . , iN ) and k0 /∈ (x1, . . . , xr),
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then put

Γmn+1 = Γmn , l
m
n+1 = lmn .

In the case

νn = (i1, . . . , ik0 , . . . , iN ), νn+1 = (i1, . . . , ik0 − 1, . . . , iN ) and k0 ∈ (x1, . . . , xr),

define

Γmn+1 = (x1, . . . , xi−1), lmn+1 = i− 1,

where i = max{j : k0 = xj}.
In this way we obtain a random walk {Γmn ;n ≥ 0} on E, such that for every n ≥ 1 the

sequence Γmn contains no more than m entries of every element of the set E. Moreover,
at every moment of time, the erasure of a loop associated with the element i ∈ E, occurs
with probability that is proportional to the current number of entries of i in Γm.

Clearly, the maximal length of Γmn does not exceed m ·N

∀n ≥ 1 : lmn = |Γmn | ≤ m ·N.

It is easy to check, that the sequence {Γmn ;n ≥ 0} is a Markov chain in the space of finite
sequences with elements from E of length at most mN .

We will study the asymptotics of the length lmn as m,n tend to infinity. The following
statement holds.

Theorem 1. For any α > 0 there exist m0 > 0, C > 0, such that for all m > m0

P{lmm1+α <
m

2
− 1

2

√
(1 + α)m lnm} ≤ Cm−(1+α)/2.

Proof. For every n ≥ 1 the state νn of the N-dimensional Ehrenfest chain can be written
as νn = (ν1n. . . . , ν

N
n ). It can be easily checked by induction, that for every n ≥ 1

lmn ≥ min
j=1,N

νjn.

Consequently, in order to prove the theorem, it is enough to proove the statement of the
theorem for νjm1+α as m tends to infinity.

Note, that for a fixed j the sequence {νjn;n ≥ 1} is the lazy Ehrenfest chain with the
transition probability matrix

1

N
Q+ (1− 1

N
)I,

where Q is the transition matrix of the one-dimensional Ehrenfest chain and I is the iden-
tity matrix. It is known, that for probability distributions Qnδ0 the following relations
hold.

Theorem 2. [2] For an arbitrary c > 0

‖Qm lnm+cmδ0 − πm‖ ≤ e−c.

Here πm is the invariant distribution of the Ehrenfest chain - the binomial distribution
with parameters m and 1

2 , and ‖ · ‖ is the variation distance.

Now take α > 0. Consider m0 such that
∀ m ≥ m0 :

m lnm ≤ 1

3N
m1+α.

Then for m ≥ m0

‖Qm
1+α

δ0 − πm‖ ≤ e−(1−
2

3N )mα .

Consequently,

‖( 1

N
Q+ (1− 1

N
)I)m

1+α

δ0 − πm‖ ≤



18 A.A. DOROGOVTSEV AND I.I. NISHCHENKO

≤ 2

m lnm+ 1
2Nm

1+α∑
k=0

Ckm1+α(
1

N
)k · (1− 1

N
)m

1+α−k + e−(1−
2

3N )mα .

In the last inequality the upper bound of summation is chosen in such a way that Theorem
2 can be applied for other summands.

In order to estimate the first summand, consider a sequence {ξn;n ≥ 1} of independent
random variables taking values zero and one with probabilities 1− 1

N and 1
N respectively.

Define

Sn =

n∑
k=1

ξk, n ≥ 1.

Then
m lnm+ 1

2Nm
1+α∑

k=0

Ckm1+α(
1

N
)k(1− 1

N
)m

1+α−k =

= P{Sm1+α ≤ m lnm+
1

3
m1+α} =

= P

 1

m
1+α
2

· 1√
1
N (1− 1

N )
(Sm1+α − 1

N
m1+α) ≤

≤ 1

m
1+α
2

· 1√
1
N (1− 1

N )
(m lnm− 1

2N
m1+α)

 ≤
≤ Φ

 1√
1
N (1− 1

N )
·
m lnm− 1

2Nm
1+α

m
1+α
2

 + C
1

m
1+α
2

due to the Berry-Esseen inequality. Here Φ is the distribution function of the standard
normal law and the constant C depends on N. Finally,

‖( 1

N
Q+ (1− 1

N
)I)m

1+α

δ0 − πm‖ ≤ C1m
− 1+α

2 .

Recall that πm is binomial distribution with parameters m and 1
2 . In order to make

the estimation for νjn, it is enough to make the estimation for the Gaussian distribution
and use the Berry-Esseen inequality for πm. Hence, we get

P{lmm1+α <
m

2
− 1

2

√
(1 + α)m lnm} ≤ C2m

−(1+α)/2.

The theorem is proved. �

3. Loop-erased random walks associated with a renewal process

Let {νn = (zn, σn);n ≥ 1} be a Markov chain on the phase space F = {1, 2, . . . , N}×
{0, 1}. We define a loop-erased sequence {Γn;n ≥ 1} inductively as follows. Let Γ0 = ∅.
If σ1 = 1, set x1 = z1 and Γ1 = (x1). Otherwise, if σ1 = 0, set Γ1 = Γ0 = ∅. Inductively,
if Γn = (x1, . . . , xk) has been defined, then:

if σn+1 = 1, set
xk+1 = zn+1, Γn+1 = (x1, . . . , xk, xk+1),

otherwise, if σn+1 = 0, then start the loop-erasing procedure:
if zn+1 6∈ (x1, . . . , xk), then set

Γn+1 = Γn,

otherwise, if zn+1 ∈ (x1, . . . , xk), define

Γn+1 = (x1, . . . , xi−1),
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where i = min{m : zn+1 = xm}. By this procedure loops are erased at random moments,
at which the second component of the chain {νn;n ≥ 1} equals zero.

The asymptotics of the normalized length |Γn| as n→∞ is described in the following
theorem.

Theorem 3. Suppose, that the matrix of transition probabilities of the Markov chain
{νn;n ≥ 1} consists of positive numbers. Then there exists a positive constant c0 such,
that

P{ lim
n→∞

|Γn|
lnn

= c0} = 1.

Proof. Let us define two sequences of moments of time {mn;n ≥ 1} and {τn;n ≥ 1} as
follows:

m1 = min{k ≥ 1 : σk = 1}; τ1 = min{k > m1 : νk = (zm1
, 0)}

and for n ≥ 2

mn = min{k ≥ τn−1 + 1 : σk = 1}; τn = min{k > mn : νk = (zmn , 0)}.
It follows from this definition and the construction of {Γn;n ≥ 1} that m1 is the first
moment for which Γm1 6= ∅, while τ1 is the first moment after m1 such that Γτ1 = ∅; m2

is the first moment after τ1 for which Γm2
6= ∅, while τ2 is the first moment after m2

such that Γτ2 = ∅ and so on.
Define a probability kernel K(x, y) on E as follows. For each starting point (x, 0) of

the chain {νn;n ≥ 1} let κ′ be the first moment when νκ′ ∈ E × {1}. If νκ′ = (y, 1)
then let κ′′ > κ′ be the first moment for which νκ′′ = (y, 0). Define

K(x, y) = P (νκ′′ = (y, 0)).

Assuming that the transition probabilities of the Markov chain {νn;n ≥ 1} are positive,
the transition matrix K also has positive elements. Hence, the sequence of the blocks
{Γ1, . . . ,Γτ1}, {Γτ1+1, . . . ,Γτ2}, . . . forms a Markov chain which satisfies the exponential
mixing condition.

Note, that in the k-th block {Γτk−1+1, . . . ,Γτk} the maximal length of Γ-s is at most
τk − 1−mk, and is at least τ∗k − 1−mk, where τ∗k = min{mk < r ≤ τk : σr = 0} is the
first moment in [τk−1 + 1, . . . , τk], when the loop-erasing procedure starts.

In view of the ergodic theorem

τn ∼ nC, n→∞ a.s.,

where C is the expectation of τ1 under the stationary distribution of the chain
{{Γτn+1, . . . ,Γτn+1};n ≥ 0}. Consequently, in order to obtain an upper estimation of
|Γn|
lnn

, it is enough to consider lim
n→∞

αn
lnn

, where αn = max{|Γr| : τn + 1 ≤ r < τn+1}-
is the maximal length of Γ-s in the block {Γτn+1, . . . ,Γτn+1}. Since, as has been already
noted, αn ≤ τn+1−mn+1− 1 and the transition probabilities of {νn;n ≥ 1} are assumed
to be positive, we get

P{αn > N} ≤ qN

for some q ∈ (0; 1). From this inequality and the Borel-Cantelli lemma it follows that
with probability one

lim
n→∞

αn
lnn

< +∞.
From the other side, αn ≥ βn = τ∗n+1 − 1−mn+1, where

τ∗n+1 = min{mn+1 < r ≤ τn+1 : σr = 0}
is the first moment in [τn+1, . . . , τn+1], at which the loop-erasing procedure is performed.
Since the transition probabilities of {νn;n ≥ 1} are positive, we have

P{βn ≥ N} ≥ pN
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for some p > 0. Note, that {βn;n ≥ 1} satisfy the exponential mixing condition. Hence,
the Borel-Cantelli lemma for weakly dependent random events can be applied [4], and
we get that with probability one

lim
n→∞

βn
lnn

> 0.

Now the statement of the theorem follows from the zero-one law for stationary mixing
sequences. �

4. Simple loop-erased random walk on a finite group

Consider a finite group G of order m = |G| with multiplication f · g for elements
f, g ∈ G and the identity element e. Construct a loop-erased random walk {Γn, n ≥ 0}
on G as follows. Let {ξn, n ≥ 1} be independent uniformly distributed random elements
in G. Put x0 = e and Γ0 = (x0). By induction, if Γn = (x0, x1, . . . , xk) and xk · ξn+1 6∈
(x0, x1, . . . , xk), then put xk+1 = xk · ξn+1 and

Γn+1 = (x0, x1, . . . , xk, xk+1).

Otherwise, if xk · ξn+1 = xi for some i = 0, . . . , k, then put

Γn+1 = (x0, x1, . . . , xi).

By this procedure loops are erased in the order they appear and we get a trajectory
of random walk on G without loops.

We assume that the length |Γ| of the path Γ = (x0, x1, . . . , xk) equals k, and the length
of Γ = (e) equals zero.

The following two lemmas can easily be proved.

Lemma 1. The sequence {Γn;n ≥ 0} is a Markov chain in G|G| which has a unique
invariant distribution.

Denote by π̃ the invariant distribution of {Γn;n ≥ 0}. By symmetry, due to the
uniform distribution of {ξn, n ≥ 1}, the following statement holds.

Lemma 2. For arbitrary ∆ ⊂ G\{e} such that |∆| = l ≤ m− 1,

Pπ̃( Γ0 = (e,∆) | |Γ0| = l) =
(m− 1− l)!

(m− 1)!
.

Here Pπ̃ denotes probability with respect to the invariant distribution π̃.

To find π̃ exactly it remains to find

Pπ̃{|Γ0| = k}, k = 0, . . . ,m− 1.

Note, that {|Γn|, n ≥ 1} is a homogeneous Markov chain with the state space {0, . . . ,m−
1} and transition probabilities

pij =


1
m , 0 ≤ j ≤ i
1− i+1

m , j = i+ 1

0, otherwise.
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It can be checked straightforwardly that the unique invariant distribution of {|Γn|, n ≥ 1}
is given by

π0 = 1
m ,

π1 = (1− 1
m ) 2

m ,
...

πk = (1− 1
m ) . . . (1− k

m )k+1
m ,

...
πm−1 = (1− 1

m ) . . . (1− m−1
m ).

Hence, the invariant distribution π̃ for a trajectory of LERW is

(1) π̃(e, x1, . . . , xk) = (1− 1

m
) . . . (1− k

m
)
k + 1

m
· (m− 1− k)!

(m− 1)!
=
k + 1

mk+1
.

From now on we will denote by Γm a random element in G with the distribution π̃.
The next theorem about the limiting distribution of |Γm| as m = |G| → ∞ is an

analogue of the result stated in [3] for LERW on finite graphs.

Theorem 4.
|Γm|√
m
⇒ η, m→ +∞

where η has the Rayleigh distribution with the density xe−x
2/2, x ≥ 0.

Proof. Using the expression for the distribution of |Γm| one can check, that for x > 0

P{ |Γ
m|√
m

> x} =

[x
√
m]+1∏
k=1

(1− k

m
)

and then

lnP{ |Γ
m|√
m

> x} =

[x
√
m]+1∑
k=1

ln(1− k

m
).

Using the inequality ln(1− y) ≤ −y, y ∈ (−∞; 1), we obtain

lim
m→∞

lnP{ |Γ
m|√
m

> x} ≤ − lim
m→∞

[x
√
m]+1∑
k=1

k

m
= −x

2

2
.

To estimate the lower limit, let us note, that for an arbitrary ε > 0 there exists δ > 0
such that
∀ y ∈ [0; δ] :

ln(1− y) ≥ −(1 + ε)y.

Hence

lim
m→∞

lnP{ |Γ
m|√
m

> x} ≥

≥ lim
m→∞

−(1 + ε)

[x
√
m]+1∑
k=1

k

m
= −(1 + ε)

x2

2
.

Since ε > 0 is arbitrary, the theorem is proved.
�

In the next theorem we present the estimation on the Lévy distance
d(Fmπ , Fη) = inf{ε > 0 : ∀ x ∈ R : Fmπ (x) ≤ Fη(x+ ε) + ε, Fη(x) ≤ Fmπ (x+ ε) + ε}
between the distribution functions Fmπ and Fη of 1√

m
|Γm| and η respectively.
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Theorem 5. For every ε ∈ (0; 1
4 ) there exists C > 0 such, that

d(Fmπ , Fη) ≤ C · 1

m
1
4−ε

.

Proof. In order to estimate the Lévy distance between the distribution Fmπ of the nor-
malized length of LERW trajectory and the Rayleigh distribution function Fη, we will
introduce a Markov chain {Γ′n, n ≥ 0}, constructed using the same sequence of indepen-
dent random elements {ξn;n ≥ 1} in G, which was used to construct {Γn, n ≥ 0}, as
follows. Fix λ ∈ (0; 1) such, that λm is integer. Put x′0 = e and Γ′0 = x′0. By induction,
if Γ′n = (x′0, x

′
1, . . . , x

′
k) and x′k · ξn+1 6∈ (x′0, x

′
1, . . . , x

′
k), then put x′k+1 = x′k · ξn+1 and

Γ′n+1 =

{
(x′0, x

′
1, . . . , x

′
k, x
′
k+1), k < λm

(x′0, x
′
1, . . . , x

′
k), k = λm.

Otherwise, if and x′k · ξn+1 = x′i for some i = 0, . . . , k, then put

Γ′n+1 = (x′0, x
′
1, . . . , x

′
i).

It can be checked, that {Γ′n, n ≥ 0} is a Markov chain. Moreover {|Γ′n|, n ≥ 0} is also
a Markov chain with the transition matrix

(2) pij =


1
m , 0 ≤ j ≤ i
1− i+1

m , j = i+ 1

0, otherwise,

for 0 ≤ i ≤ j < λm, and

pλm,j =

{
1
m , j < λm

1− λm
m , j = λm.

.

We can construct {Γn, n ≥ 0} and {Γ′n, n ≥ 0} simultaneously on the same probability
space by letting x′k+1 = (x′k)−1xkξn+1 on every step k ≥ 0, as it follows from the lemma
below. Define

Fξn = σ(ξ1, . . . , ξn), n ≥ 1.

Lemma 3. Suppose, that a random element z in G is measurable with respect to Fξn.
Then the sequence ξ1, . . . , ξn, zξn+1 is equidistributed with ξ1, . . . , ξn+1.

Proof. For any g1, . . . , gn ∈ G we have

P{ξ1 = g1, . . . , ξn = gn, zξn+1 = gn+1} =

= E

n∏
k=1

1Iξk=gk · 1Iξn+1=z−1gn+1
=

= E{
n∏
k=1

1Iξk=gkE(1Iξn+1=z−1gn+1
/Fξn)} =

1

mn+1
=

= P{ξ1 = g1, . . . , ξn = gn, ξn+1 = gn+1}.
�

Such coupling of x and x′ helps us to estimate the Lévy distance between the invariant
distributions of the lengths of Γ and Γ′. Due to (2) the invariant distribution π′m of |Γ′|
is such, that
∀ k = 0, . . . , λm− 1 :

Pπ′m(|Γ′| > k) =

k+1∏
j=1

(1− j

m
),
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∀ k = λm, . . . ,m− 1 :
Pπ′m(|Γ′| > k) = 0.

Note that

sup
x≥0
|Pπ′m{

|Γ′|√
m
> x} − e− x

2

2 | ≤ max{e−λ
2m/2, sup

0≤x<λ
√
m

|e− x
2

2 − e
∑[x

√
m]+1

j=1 ln(1− j
m )|}.

For j ≤ λm we have

ln(1− j

m
) = −

∞∑
l=1

(
j

m
)l

1

l
≥ − j

m
− j2

m2
− j2

m2

∞∑
l=1

λl

l
=

= − j

m
− j2

m2
(1− ln(1− λ)).

Hence, for 0 ≤ x < λ
√
m

1− e
x2

2 +
∑[x

√
m]+1

j=1 ln(1− j
m ) ≤

≤ −x
2

2
+

1

2
(x
√
m+ 1)(x

√
m+ 2)

1

m
+

+
(x
√
m+ 1)(x

√
m+ 2)(2x

√
m+ 3)

6m2
· (1− ln(1− λ)).

Consequently, there exist constants C1, C2 that do not depend on λ and m, such that

sup
0≤x<λ

√
m

e−
x2

2 (−x
2

2
−

[x
√
m]+1∑
k=1

ln(1− k

m
)) ≤ C1√

m
− C2√

m
ln(1− λ).

Finally, the Kolmogorov distance between the normalized length of the abridged version
of LERW and the Rayleigh distribution is less or equal to

max{e−λ
2m
2 ,

C1√
m
− C2√

m
ln(1− λ)}.

Let us estimate the Lévy distance between the normalized lengths of LERW and the
abridged LERW, using the already constructed coupling. Consider 1

n

∑n
k=1 |lk−l′k|, where

lk and l′k are the lengths of the corresponding sequences on k-th step. Note that the set
of numbers, for which lk 6= l′k has the following structure. It is the union of disjoint
intervals Ij , j ≥ 1. Here |Ij |, j ≥ 1 are independent geometrically distributed random
variables with parameter 1− λ. Note also that l′k = λm when k ∈ Ij . Consequently,

E
∑
k∈Ii

|lk − l′k| ≤
1

2
E|Ii|2 =

(1− λ)(2− λ)

λ2
.

From the ergodic theorem it follows that

lim
n→∞

1

n

n∑
k=1

1I
k∈
∞
∪
j=1

Ij
= π′λm.

Thus,

lim
n→∞

1

n

n∑
k=1

|lk − l′k| ≤
π′λm
EI1

· (1− λ)(2− λ)

λ2
=

= π′λm
λ

1− λ
(1− λ)(2− λ)

λ2
= π′λm

2− λ
λ
≤ 2π′λm

1

λ
.

Finally, the estimation

π′λm =

λm+1∏
k=1

(1− k

m
) = e

∑λm+1
k=1 ln(1− k

m ) ≤

≤ e−
∑λm+1
k=1

k
m = e−

1
2

(λm+1)(λm+2)
m ≤ e− 1

2λ
2m



24 A.A. DOROGOVTSEV AND I.I. NISHCHENKO

gives the desired result after optimization with respect to λ. �
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