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V. KANISAUSKAS AND K. KANISAUSKIENE

ASYMPTOTICS OF ERROR PROBABILITIES OF OPTIMAL TESTS

We consider first and second error probabilities of asymptotically optimal tests (Neyman-
Pearson, minimax, Bayesian) when two simple hypotheses H} and H} parametrized
by time ¢ > 0 are tested under the observation X? of arbitrary nature. The paper
provides details on the conditions of asymptotic decrease of probabilities of optimal
criteria errors determined by o type Hellinger integral between measures P{ and P§,
demonstrating that in the case of minimax and Bayesian criteria it is sufficient to
investigate Hellinger integral, when a € (0,1), and in the case of Neyman-Pearson
criterion it is observed only in the environment of point @ = 1. Whereas Kullback-
Leibler information distance is always larger than Chernoff distance; we discover that,
in the case of Neyman-Pearson criterion, the probability of type II error decreases
faster than in the cases of minimax or Bayesian criteria. This is proven by the exam-
ples of marked point processes of the i.i.d. case, non-homogeneous Poisson process
and the geometric renewal process presented at the end of the paper.

1. INTRODUCTION

When testing the two simple hypotheses H* and HZ, for observation
X" =(X1,Xs,...,X,), where X1, Xs,..., X, are i.i.d., asymptotic investigation of the
asymptotic error probabilities started from the two formulas.

Lemma 1.1. [2]. 1) If I (P, P;) < oo, then
(1) lim inf n 'lnay (8") = —I(P,P);

n—00 §n€B, (a)
2) if J (P, Py) < 00, then
(2) lim n~' inf Inmax{a (6"), a2 (6")} = —J (P1, P2);

n— oo IneA™
where 6™ — statistical criterion-test, B, (a) = {0" € A" : a1 (0") < o, 0 < a < 1}, A" is
a set of the criteria, ay (0™), as (0™) denote the probabilities of 1st and 2nd type errors,
respectively for test 6™ € A™; I (P, Py) — Kullback-Leibler information of measures Py
and Py, J (P, Py) — Chernoff information of measures Py and Ps.

In formula (2), the constant J (Py, P») is defined through « type Hellinger integral
between measures P; and Ps:

_ . o . dPl « dP2 e
J(Pl,Pg)——0<12f<11nH(0é,P1aP2)—_Oégilln/<dQ> (dQ) 10

Natural generalisation of Lemma 1.1.2) under natural conditions formulated for o
type Hellinger integral H; (o, Pf, P%) is presented in V. KaniSauskas’ paper [7] (this is
also presented in Lemma 3.3 of this paper).

The proof of the formula (1) is based on the likelihood ratio In Z?: convergence in
1

probability, when Pj' < PJ*. For observations X' of arbitrary nature the proof of the
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analogical formula (1) is also based on the law of large numbers of the likelihood ratio

In 423, when P} < Pf, t € Ry, [9, 20]:
dP}
(3) Pl — lim ;' In ——= (X') = —I, 5 < o0,
1 t—o0 t dPlt ( )

where P} — lim; o, means the convergence in probability, and the function ¢, is such
that ¢y = co as t — oo.
dP;

For the likelihood ratio In 1P
1
deviations can be investigated to the normalized likelihood ratio measure p; (B) =

P} (cp; 'In Z—Eﬁ € B), B € B(R). For this measure generalized Cramer condition has

when the law of large numbers (3) is valid, large

the form

dP}
S 2
4) @(A):tliglogpt lnEiexp{)\lndPlt} <00, A€ (A, Ay)20.
When this formula is valid we can define a Legendre-Frenchel transformation I (y) =
sup (YA — ¢ (A\)) and get large deviations [5], which was used in the theory for testing
A

hypotheses.
It is easy to see that for P} < P}, t € R, the Hellinger integral of order a between
measures P} and P} has the form
¢
Hyo) = BY (20)° (2) " = B (7)™ = Bl exp {(1 — o)l jﬁ} ,
1
for which analogical (4) generalized Cramer conditions, under which the theory of large
deviations can be applied [5], can be formulated.

H. Chernoff was the first who applied large deviations in the theory for testing hy-
potheses for observations of i.i.d. random variables [3, 4]. He applied the large deviation
theorems to investigate the rate of decrease of Bayesian risk. The main result of this work
was traditionally called Chernoff theorem. In 1981, L. Birgé [1] continued application of
large deviations in problems on testing hypotheses and obtained the exponent of 2nd type
error probabilities for Neyman-Pearson tests. To a large extent, Yu. N. Lin’kov specifi-
cally applied the theory of large deviations in problems of testing hypotheses ([13]-[18],
[21]-[26]). In 1995, he formulated the general scheme of their application [19].

Similar problems in testing hypotheses have been dealt with by I. Vajda and F. Liese
who gave priority to applications of convex functions [11, 31, 32]. In Igor Vajda’s paper
[32], one can find generalization of Stein and Chernoff theorems in a classical (i.i.d.) case,
when no results from large deviation theory are used. The investigations started in these
papers were continued in other papers [12, 30].

The paper consists of the introduction and 3 chapters (Sections 2—4).

Section 2 defines the concepts and presents additional results. Other two sections
present new or corrected results.

Section 3 comprises 3 subsections.

Even though the result of Subsection 3.1 is similar to already available results, still it
must be compared within a complex containing other results of the paper. To be precise,
asymptotics of error probabilities of Neyman-Pearson and minimax as well as Bayesian
criteria are expressed through « € [0,1] type Hellinger integral which is normed by the
same increasing function in all cases.

Formulas of the first and the second type error probabilities of the minimax and
Bayesian criteria presented in Subsections 3.2 and 3.3 are a natural conclusion from
V. Kanisauskas’ [7] result and are more precise than analogical results provided by
V. Linkov [20] on the question under discussion.
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The results of the investigation are demonstrated in examples of marked point pro-
cesses of the i.i.d. case, non-homogeneous Poisson process and the geometric renewal
process provided in Section 4.

2. MAJOR CONCEPTS AND AUXILIARY RESULTS

Let (X', Ft,{P},Pi}), t > 0, be a family of statistical experiments with observations
Xt € X" and let H! and H) be two simple hypotheses according to which the distributions
of observations X* are defined by measures P} and P} respectively. Let 6 be a measurable
mapping from (X*, F*) into ([0, 1], B[0, 1]), which is called a test for testing the hypotheses
H! and HE under observation X*. Let A be a collection of all tests §%, oy (6) and ay (6%)
denote the probabilities of the 1st and 2nd type errors, respectively for test §¢ € Af,
namely

o (6%) =E(6" (X'), a2 (0") =E4(1-46" (X)),
where E! is an expectation with respect to P}.
The criterion 58’0‘ is called the most powerful of « level, if
02 (%) = i, 00 (7).
where K¢, = {6' : a; (6*) < a}, a € (0,1). According to I. Vajda (see [32]), such criterion
is called optimum a-tests.

In the case of Bayesian principle, initial hypotheses HY and HY are random events
whose probabilities 7t = 7t = P! (H!) and 7l = P% (HY) = 1 — 7t are known and called
a priori probabilities of the hypotheses H! and H}. In the Bayesian case, the property
of the criterion is reflected by the average error probability

ent (61) = mlas (8°) + (1 — ) az (7).
The criterion ¢ is called Bayesian criterion with respect to a priori distribution (7,1 — 7t),
if
(5) eqt (64) = n(ls'%n ext (6Y).

It is known (see [20]) that Bayesian criterion &% is the most powerful in the type
Kl = {0":a2(6") < ao}, when ag = ay (0%). In the case of minimax principle, the
quality of the criterion §* is indicated by the measure

() = maxas (5) = maxe ().

A criterion &} is called minimax if
e (05) = n(gne (6Y).

Lemma 2.1. (See [20], Theorem 1.2.5.) If there exists Bayesian criterion 8% with a
priori distribution (nt,1 — %) for which

o (04) = az (6)
then 6t is the minimaz criterion.

The distribution (7, 1 — 7*) which corresponds to Bayesian criterion 6% with a (61) =
as (6L) is treated at the worst because its average criterion probability e,: (6%) is the
highest:

MaxX et (68) = H;é}xngitne (6%).

The criterion ;. with parameters ¢ € [0,00) and € € [0,1] is called the likelihood
ratio criterion if
dP}

t
6C,E:]I(Zt>c)+5H(Zt:C), Zt:dipfﬂ

P! < P}t cR,.
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According to the fundamental Neyman-Pearson lemma (see [20], Theorem 1.1.1), the
likelihood ratio criterion of order o € (0, o) is the most powerful criterion of order «,
here g = P} (Z; > 0).

Minimax criterion df can be found in such a way.

Lemma 2.2. (See [20], Theorem 1.2.4.) There exists the likelihood ratio criterion 6, ,
with specific parameters ¢ and q = const., which is minimax; moreover, parameters ¢ and
q are found from equality oy (6% ) = as (8% ,), which is

Pl (Zy,>c)+ Py (Z5, >c)+q [P (Z5,=c)+ Py (Z5,=c)] =1,

t
where Z§ | = 3—1;?.
Let a measure Q' be defined on the measurable space (X!, F') such that P} < Q°,

i =1,2 for all t € Ry and let Z! = %‘:, 1 = 1,2, be versions of Radon-Nikodym

derivatives.
The Hellinger integral of order @ between measures P{ and P{ is defined by
) e EtQZEI[ (aZf > Cp_,a a=0;
Hy(a) =Bq (21)" (Z2) = EG(2D)"(25) ™", ae(0,1);
ESZI(Z4>0), a=1.
ap}
de/7
, a€[0,1], and H(0) = Hy(1) = 1.

If P! ~ Q' t € Ry, then Z! >0, Q' — as., Z! =

i = 1,2. Therefore

l—o

Hi(0) = B (4)° (4)
For P} ~ P! t € Ry, we have
Hy(e) = B (2 ,)" =B} (25,)"", ac[0,1],
j% 75, = j%

The Chernoff information between measures Pf and P} is denoted by [29)]:

J(PL,P) = ~In inf Hya)=~In inf Ef(Z})" (z5)' ™.

t
where Z] 5 =

The divergence

dP? .
00 otherwise

of arbitrary distributions P}, P¢ called Kullback-Leibler divergence-information [12]. It
is known that Kullback-Leibler information is positive because I (Py, P,) =0 < P, =
P, and because of the inequality In(1+ V) —V <0,

pi(z) / { pi(x) (pl(x) )]
I (P, P)= z)In dr = — In — —1 x)dx > 0.
( 1 2) /pl( ) pg(ﬂ?) p2($) pg(ﬂ?) pl( )
The following is known of the property for concave function f(x):

f(/M@M@M>Z/@@V@@DM7

where [ a(z)dz =1, a(z) > 0 with each z.
Then we use it for concave function f(z) = Inz, we get

oo () )2 from (52 o

q
= Z@J;——a T n@x
= a/q(x)lnq(x)d = /q()l pxd'

In H(«)
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From here

~InH(a) < a/q(x) In qugdx — ol (P, Py) < I(P1, Ps)
p\r
with each o € (0,1). Thus,

J(Pl,PQ):—O<ir01lf<11nH(a) <I(P17P2).

3. TESTING OF TWO SIMPLE HYPOTHESES. MAIN RESULTS

3.1. Neyman-Pearson test. Let & is @ € (0,1) Neyman-Pearson test. We study the
asymptotic decrease of error probabilities az (88).
We will formulate now the conditions A.
AO. P} < P}, t e R,.
Al. Pt~ PiteR,.
A2. There is a function ¢y, p; — 0o as t — oo, such that
Pl - lim o' 422 (X')=-Ls<o
L e e dp} 12 '
Lemma 3.1. Let conditions A0 and A2 be satisfied. Then

li inf ;11 5 = -1
t250 64 € By () ! naz (0%) b2

where B (o) = {§' € Al : a1 (6') < a,0 < a < 1}.
Proof. By the condition AQ exists
dPy .,
ap! (X7).
Further, we repeat the proof of the theorem from [9]. |

By definition of Neyman-Pearson test ¢ from Lemma 3.1 we get

. —1 £y _
tlggo w;  Inao ((50) =—I 9.

We will find out that
1 -1 t pt
I1,2—tli)f&% I(P11P2)v

dP}
I(P,P}) = /ln (dPlt> dP}.
2

For this purpose we will use Lemma 3.2.

Lemma 3.2. (See [5], Lemma IV.6.3.) Let {fn;n=1,2,...} be sequence of convex
functions on an open interval A of R, such that f(t) = lim, e frn(t) exists for each
t € A. If each f, and f are differentiable at some point to € A, then lim, . f, (to)
exists and equals f' (to).

Let Y;, t > 0, be a family of random variables which are defined on a probability space
(Q, F, P). A normalizing sequence ¢y, ¢r — 00, as t — oo, defines

¥e(A) = ¢ ' InEfexp (AY;)].
We introduce the following conditions C.
C1. Each function (A) is finite for all A € (A\_, ;) 20 and t € Ry.
C2. (A) = limy_, o0 ¥ (N) exists for all A € (A_, A1) and is finite.
C3. The function () is differentiable at point A = 0 and p = ¢'(0).

Theorem 3.1. Let conditions C be satisfied. Then
R -1 _ — o
P = lim oY, = p = ¢'(0).

If lim; oo o1 (Int) ™1 = 0o, then the convergence is with the probability 1.
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The proof is analogous to the proof of Theorem II.6.3 in [5].
It is easy to see that for P} ~ P, t € Ry, the Hellinger integral of order a between
measures P} and P¢ has the form

t
Hi(o) = Bl (20)° (Z5) " =B (25,)" = Bl exp {(1 o)l ;U;i} |
1

For H:(a) we can formulate generalized Cramer conditions B, analogical to conditions
C.
B1. Let ¢ > 0 exists such that H;(«) defined as a € U. (1) = (1 —¢,1+¢) and for
all a € Ug (1) the limit
. 1 _
A g In Hy(a) = ¢(a)
exists, where ¢; — 00 as t — oo, the function ¢ («) is a differentiable at the point 1.

B2. There is a function ¢;, p; — o0 as t — oo, and a strictly convex, differentiable
function ¢ («), such that for each @ € (0,1)

. -1 o
tl_l}rg) o InHi(a)=c(a).

B3. Let (7', 1 —nt) are a priori probabilities of the hypotheses Hi and HZ under
observation X?, such that

(6) lim ¢; 'Inz! =0,

t—o0

where a function ¢, is such that ¢; — 0o as t — oc.

Theorem 3.2. Let the conditions A0 and Bl be satisfied. Then

., dP}
1) there exists P

and

where I 5 = ¢/(1) = limy_,o0 o7 11 (PE, P) = limy_, o0 o7 'EL In jﬁjﬁ .

If limy o @:(Int)~! = oo, then the convergence is with the probability 1.
2) If 6§ is a € (0,1) Neyman-Pearson test, then

lim ;' Inas (58) = -1 o,

t—o00

where Iy 5 = ¢ (1) = limy_, ¢; T (P}, PY).

3.2. Minimax test. Let ¢} is a minimax test for testing the hypotheses H{ and H}
under observation X*.

Lemma 3.3. [7] Let the conditions A1 and B2 be satisfied. Then

(7) tlggo o7t 5%12‘ Inmax {o (6") ,00 (6")} = —J12 = 0<i£1(f<1 ¢(a) < oo.

By definition for a minimax risk eg (§3) for the minimax test 6 the (7) formula has a
form
- -1 AN
flggo w; Ineg (60) = —Ji 2.

From this connection and the fact that (see Lemma 2.1)

a1 (85) = az2 (85) = eo (d)
we obtain that

tl;rgo (pt_l In oy (66) = tlirgo <pt_1 In agy (56) =—Jio.

We get the second main result:
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Theorem 3.3. Let the conditions A1 and B2 be satisfied. Then
: -1 AREERT —1 ANt -1 AN
tl_l)rgo ¢; 'Inaq (85) = tlirrolo o; 'Inag (65) = tlggo o; 'Ineg (85) = —J1 2,

where 0 > —Jy 2 = ¢(ap) = 0<igf<16(a), cla) = tl;rgo o; "I Hy (@); 8% is a minimaz test

for testing the hypotheses HY and HY under observation X*t, and ey (68) is minimaz risk
for the test &§.

3.3. Bayesian test. Let 0’ is a Bayesian test for testing the hypotheses H and Hi,
(wt,1 — 7t) are a priori probabilities of the hypotheses HY and HJ.
We will formulate the third main result.

Theorem 3.4. Let the conditions A1 and B2, B3 be satisfied. Then
tlggo ¢; 'Inay (o) = tlirgo ¢y 'Inasy (o) = tlgrolo ¢; 'Iney (68) = —J1 2,

where 6 is Bayesian test for testing the hypotheses Hi and H}, (nt,1 — 7t) are a priori
probabilities of the hypotheses HY and H; e, (6L) is the risk of the test ot

Proof. Let (7,1 — x') are a priori probabilities of the hypotheses H! and H.. Then by
the definition of Bayesian and minimax tests we have (see proof of Theorem 2.3.7 in [20])

er (5;) = néitn er (5t) < Hé%n max {al (5t) , Qo (5t)} =e (66) ,

er ((ﬁ) > (min {ﬂt, 1-— wt}) max {a1 (5t) , Qo (5t)} > (min {ﬂt, 1-— ﬂ't}) e (56) .
Therefore, for arbitrary (zf,1 — 7t)
min {x',1— 7'} e (38) < ex (61) < e (61).
Then
tlggo ¢; ' ln min {m*,1- 7Tt}—|—tlig10 oy e (65) < tlirgo o ne, (6%) < tli>nolo o7 ' ne (65) -

By condition B3 and Theorem 3.3, it follows that
(8) tlgglo oy 'Ine, (61) = —J1 5.

The formula (8) is valid for each a priori probability 7! with (6), i.e. it does not
depend on (7t 1 — 7t).
Then by Lemma 2.1 and definition of Bayesian criterion (5)

tlggc ¢; 'Ine, (61) = tlggo ot lnrrgn eqt (6") = tlgglo ;' In rrﬁxrr;itne (6" =
= tlggo o Inay (68) = tlif& o Inas (68) = —J1 2.

O

We will formulated the condition O.
O. There exists an interval (a_, ) containing the interval [0, 1] and such that for
all a € (a—, a4 ) there exists a finite limit

. 1 o
Jim ;I H, (a) = e(a),

where ¢; — 00 as t — oo and ¢(a) is a strictly convex and differentiable function on
(a—, ay).
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Corollary 3.1. Let the condition O be satisfied. Then
1) if 8¢ is Neyman-Pearson criterion, then

9) tlgglo ¢y ' Inag (6") = —I ,
where I, = ¢/(1) = limy—yo0 97 T (P, P§) = limyo0 97 "B In 3745
2) if 8¢ is a minimaz or Bayesian (with condition B3) criterion, then
(10) tlgrolo got_l In ag (56) =—Ji9,
where Jy5 = tllrgowflJ(vapﬁ) = —c(ag) = —O<igf<lc(a), ag get from c (ap) = 0,

cla) = tlim ¢; ' In Hy (o). The normalizing function oy is the same in formulas (9) and
—00
(10).
4. EXAMPLES

4.1. Marked point processes of the i.i.d. case. Suppose we observe (X1, Xs,...,X,,),
n € N, where X, ..., X, are independent identically distributed random variables taking
values in the measurable space (E, £) with distribution Py,, where §; € ©, i = 1,2. The
marked point process associated with the sequence of observations is

p([0,8,B) =Y "I(j <tI(X; € B), BEeE.
Jj=1
Its (Py,, F') compensator is deterministic:
v (0,8, B) =) 1(j <t)Py(B), i =1,2; BEE.
i>1
Let
Py, (B) = / po,(x)dz, i=1,2; B €.
B

i

Then (see [6])

Foo [t
Hi(w) = Hi (0. P ) = | [ 05, (@ph (@)
Therefore,
+oo
[%im [t]™' In Hy(a) = In / Py, (m)pé;“(x)dx =InH (a, Py, , Py,) = c(a).
t]—oo

Let c(ar), a € [0,1], is strictly convex and differentiable. Then

Ji2=—clag) = 70<igf<10(a) <0, Lao=d()=1(Py,Pp,)=EpIn m.
Example 4.1. Let X; has exponential distribution:
po(z) = 0e=%% — density, z > 0,0 > 0.
Then
070,""

_ % _ j e
lET(oa,Pe“Paz):/(916 T (BT e =
0

cla) Zalrlg1 +In6s —Ina (61 — 62) + 62],
2
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c'(a)zlnﬁ_%
92 a(01—92)—|—927
) )
— / _— e — —_—
11’2 =cC (1) = 01 1 In 91,
() = 0, when ag = —4— — -1~ Then
1 [ 0y
Ox(y—1
Ji2=—c(ag) = lny-HHM—lnﬁz—l,
’ y—1 Iny

where y = %' From here we see that I o > Jq 2 (see Table 1).

TABLE 1. I > J in the case of marked point processes of the i.i.d. case

01 0.1 0.1 0.1 1 1 1 10| 10f 10| 100| 100| 100
02 1 10 100] 0.1 10/ 100f 0.1 1| 100{ 0.1 1 10
11 216.697(94.395|992.092{1.403|6.697|94.395|3.615|1.403|6.697|5.909|3.615|1.403
J1,2]0.619| 2.114| 3.981|0.619|0.619| 2.114|2.114|0.619|0.619|3.981|2.114|0.619

4.2. Non-homogeneous Poisson process. Let (Q, F,F, Py, 6 € O) be stochastic basis
on which a non-homogeneous Poisson process Ny, ¢ > 0, with intensity k:(0),t > 0, 0 € ©,
is given and F¥ =0 (N,,s <t), Pj = Py, |FN,i=1,2,01,6, € O, >0, 6 # 0.
Let the following condition be satisfied.
t
E. There exists a function ¢, such that [1),ds — oo as t — co and
0

T 07y (6) = K (6), i = L2, k(61) £ (62).
—00
Lemma 4.1. (See [7, 8]) Let the condition E be satisfied. Then

c(a) = — (ak (61) + (1 — @)k (62) — k* (61) gt (62))

¢
for oy = [sds, and
0

Lo =1(Py,,Pp,)=C(1) = k(02)—Fk(6h) - k(91)1nzggj§ =
B k(62)  (0)
- ’“(91)<k<oi>‘1‘1“kwf>>’
_ _ k(01) — k(02) k(61) —k(02)
o= (O 02) = R 0o) + 300G Tk ) {1“ RO (k(01) Jk (02) 1} '

¢
Example 4.2. Let k(0) = 0¢(s), 0 >0, s >0, ¢, = [ 1sds. Then
0

O
Ea
Jig =09 (1+y—1 [lny_1 —1]), wherey:g—1 and 61 > 65 > 0.
’ Iny Iny 0
We find that in this case I1 2 > Ji 2, too (see Table 2).
Moreover, in this case one can notice that when there is a stable meaning of #; and

the meaning f, increases, meanings of I; 2 and .J; o decrease. When there is a stable
meaning of , and the meaning #; increases, meanings of I; > and J; 2 increase.

Lo=01(x—1—1Inz), where z =
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TABLE 2. I > J in the case of non-homogeneous Poisson process

01 1 1 10 10, 10 50 50 50 100 100 100 100
02 0.1 09 0.1 1 9 0.1 1 10 0.1 1 10 99
1 2(1.403|0.005|36.152|14.026|0.054(260.83|146.601|40.472|590.876|361.517|140.259|0.005
J1,2/0.242/0.001] 4.546| 2.42|0.013|27.285| 20.136| 7.773| 57.574| 45.456| 24.196(0.001

4.3. The geometric renewal process. Consider a geometric renewal process N; =
o0
> I(T, <t), t >0, where random variables X,, = T,, — T,,—1 have geometric distribu-
n=1

tion:
Py(Xp(w)=k)=01-0" 1 0c0=(0,1), k=1,2,....
Then, according to [10, 27], when 6; # 6 and 61,0, € © = (0, 1),

P(N,=k)=Clio*1 -0 % k=0,12,...,

APy, 0\ (11—, \ 1N
apr; — \ 6 1-6, '

Hy(a) = Hy (o, P, Ph,) = [09057 + (1 01)" (1 - 02)' ]

[¢]

Then L
cla) = Jlim 0 Hyfa) =n [ageg-a F(1—6)"(1— ez)w} .
In the paper [28] it has been proven that
0< 0703+ (1—01)" (1—02)' " <1

with each 91,92 € (O7 1), 91 7é 92.

cla) =1In ((g;)at% + <1:Z;>“ (1 —92)> ,
B) e+ (155) 0o i
(8) 62+ (=2) (1 - 2)

0 1-6
Lo=1I(Py,,Ps,)=c(1)=6In—+(1—6)n L
0y 1— 6,

d(a)=0

6.\ 01 1—6\" 1—6;
(92> * Mo, <102> (=) Ing—gs
In(1—01)—In(1—0>3)
In |:(1 - é) ln51—1n92 : :|

91(1—02)
02(1701)

ag =
In

From here J; 2 = —c(ag).
Here, I1 2 > J1,2, too (see Table 3).

TABLE 3. I > J in the case of geometric renewal process

01 0.1} 0.1} 0.1} 02| 02| 02| 05| 05| 05| 09 09| 09
02 0.2] 05| 09| 01| 05| 09| 01| 02| 09| 01| 05| 08
I 5 10.037{0.368 | 1.758 | 0.044 | 0.193 | 1.363 | 0.511 | 0.223 | 0.511 | 1.758 | 0.368 | 0.037
Ji2| 0.01]0.112]0.511| 0.01]0.053]0.347|0.112]0.053|0.112]0.511|0.112| 0.01
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