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V. KANIŠAUSKAS AND K. KANIŠAUSKIENĖ

ASYMPTOTICS OF ERROR PROBABILITIES OF OPTIMAL TESTS

We consider first and second error probabilities of asymptotically optimal tests (Neyman-
Pearson, minimax, Bayesian) when two simple hypotheses Ht

1 and Ht
2 parametrized

by time t ≥ 0 are tested under the observation Xt of arbitrary nature. The paper

provides details on the conditions of asymptotic decrease of probabilities of optimal
criteria errors determined by α type Hellinger integral between measures P t

1 and P t
2 ,

demonstrating that in the case of minimax and Bayesian criteria it is sufficient to

investigate Hellinger integral, when α ∈ (0, 1), and in the case of Neyman-Pearson
criterion it is observed only in the environment of point α = 1. Whereas Kullback-

Leibler information distance is always larger than Chernoff distance; we discover that,

in the case of Neyman-Pearson criterion, the probability of type II error decreases
faster than in the cases of minimax or Bayesian criteria. This is proven by the exam-

ples of marked point processes of the i.i.d. case, non-homogeneous Poisson process
and the geometric renewal process presented at the end of the paper.

1. Introduction

When testing the two simple hypotheses Hn
1 and Hn

2 , for observation
Xn = (X1, X2, . . . , Xn), where X1, X2, . . . , Xn are i.i.d., asymptotic investigation of the
asymptotic error probabilities started from the two formulas.

Lemma 1.1. [2]. 1) If I (P1, P2) <∞, then

(1) lim
n→∞

inf
δn∈Bn(α)

n−1 lnα2 (δn) = −I (P1, P2) ;

2) if J (P1, P2) <∞, then

(2) lim
n→∞

n−1 inf
δn∈∆n

ln max {α1 (δn) , α2 (δn)} = −J (P1, P2) ;

where δn – statistical criterion-test, Bn (α) = {δn ∈ ∆n : α1 (δn) ≤ α, 0 < α < 1}, ∆n is
a set of the criteria, α1 (δn), α2 (δn) denote the probabilities of 1st and 2nd type errors,
respectively for test δn ∈ ∆n; I (P1, P2) – Kullback-Leibler information of measures P1

and P2, J (P1, P2) – Chernoff information of measures P1 and P2.

In formula (2), the constant J (P1, P2) is defined through α type Hellinger integral
between measures P1 and P2:

J (P1, P2) = − inf
0<α<1

lnH (α, P1, P2) = − inf
0<α<1

ln

∫ (
dP1

dQ

)α(
dP2

dQ

)1−α

dQ.

Natural generalisation of Lemma 1.1.2) under natural conditions formulated for α
type Hellinger integral Ht (α, P t1 , P

t
2) is presented in V. Kanǐsauskas’ paper [7] (this is

also presented in Lemma 3.3 of this paper).

The proof of the formula (1) is based on the likelihood ratio ln
dPn2
dPn1

convergence in

probability, when Pn2 � Pn1 . For observations Xt of arbitrary nature the proof of the
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analogical formula (1) is also based on the law of large numbers of the likelihood ratio

ln
dP t2
dP t1

, when P t2 � P t1 , t ∈ R+, [9, 20]:

(3) P t1 − lim
t→∞

ϕ−1
t ln

dP t2
dP t1

(
Xt
)

= −I1,2 <∞,

where P t1 − limt→∞ means the convergence in probability, and the function ϕt is such
that ϕt →∞ as t→∞.

For the likelihood ratio ln
dP t2
dP t1

, when the law of large numbers (3) is valid, large

deviations can be investigated to the normalized likelihood ratio measure µt (B) =

P t1

(
ϕ−1
t ln

dP t2
dP t1
∈ B

)
, B ∈ B (R). For this measure generalized Cramer condition has

the form

(4) ϕ (λ) = lim
t→∞

ϕ−1
t lnEt1 exp

{
λ ln

dP t2
dP t1

}
<∞, λ ∈ (λ−, λ+) 3 0.

When this formula is valid we can define a Legendre-Frenchel transformation I (γ) =
sup
λ

(γλ− ϕ (λ)) and get large deviations [5], which was used in the theory for testing

hypotheses.
It is easy to see that for P t2 � P t1 , t ∈ R+, the Hellinger integral of order α between

measures P t1 and P t2 has the form

Ht(α) = EtQ
(
Zt1
)α (

Zt2
)1−α

= Et1
(
Zt2,1

)1−α
= Et1 exp

{
(1− α) ln

dP t2
dP t1

}
,

for which analogical (4) generalized Cramer conditions, under which the theory of large
deviations can be applied [5], can be formulated.

H. Chernoff was the first who applied large deviations in the theory for testing hy-
potheses for observations of i.i.d. random variables [3, 4]. He applied the large deviation
theorems to investigate the rate of decrease of Bayesian risk. The main result of this work
was traditionally called Chernoff theorem. In 1981, L. Birgé [1] continued application of
large deviations in problems on testing hypotheses and obtained the exponent of 2nd type
error probabilities for Neyman-Pearson tests. To a large extent, Yu. N. Lin’kov specifi-
cally applied the theory of large deviations in problems of testing hypotheses ([13]–[18],
[21]–[26]). In 1995, he formulated the general scheme of their application [19].

Similar problems in testing hypotheses have been dealt with by I. Vajda and F. Liese
who gave priority to applications of convex functions [11, 31, 32]. In Igor Vajda’s paper
[32], one can find generalization of Stein and Chernoff theorems in a classical (i.i.d.) case,
when no results from large deviation theory are used. The investigations started in these
papers were continued in other papers [12, 30].

The paper consists of the introduction and 3 chapters (Sections 2–4).
Section 2 defines the concepts and presents additional results. Other two sections

present new or corrected results.
Section 3 comprises 3 subsections.
Even though the result of Subsection 3.1 is similar to already available results, still it

must be compared within a complex containing other results of the paper. To be precise,
asymptotics of error probabilities of Neyman-Pearson and minimax as well as Bayesian
criteria are expressed through α ∈ [0, 1] type Hellinger integral which is normed by the
same increasing function in all cases.

Formulas of the first and the second type error probabilities of the minimax and
Bayesian criteria presented in Subsections 3.2 and 3.3 are a natural conclusion from
V. Kanǐsauskas’ [7] result and are more precise than analogical results provided by
V. Linkov [20] on the question under discussion.
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The results of the investigation are demonstrated in examples of marked point pro-
cesses of the i.i.d. case, non-homogeneous Poisson process and the geometric renewal
process provided in Section 4.

2. Major concepts and auxiliary results

Let (Xt,F t, {P t1 , P t2}), t ≥ 0, be a family of statistical experiments with observations
Xt ∈ Xt and let Ht

1 and Ht
2 be two simple hypotheses according to which the distributions

of observationsXt are defined by measures P t1 and P t2 respectively. Let δt be a measurable
mapping from (Xt,F t) into ([0, 1],B[0, 1]), which is called a test for testing the hypotheses
Ht

1 and Ht
2 under observation Xt. Let ∆t be a collection of all tests δt, α1 (δt) and α2 (δt)

denote the probabilities of the 1st and 2nd type errors, respectively for test δt ∈ ∆t,
namely

α1

(
δt
)

= Et1δt
(
Xt
)
, α2

(
δt
)

= Et2
(
1− δt

(
Xt
))
,

where Eti is an expectation with respect to P ti .

The criterion δt,α0 is called the most powerful of α level, if

α2

(
δt,α0

)
= min
δt∈Kt

α

α2

(
δt
)
,

where Kt
α = {δt : α1 (δt) ≤ α}, α ∈ (0, 1). According to I. Vajda (see [32]), such criterion

is called optimum α-tests.
In the case of Bayesian principle, initial hypotheses Ht

1 and Ht
2 are random events

whose probabilities πt = πt1 = P t1 (Ht
1) and πt2 = P t2 (Ht

2) = 1− πt are known and called
a priori probabilities of the hypotheses Ht

1 and Ht
2. In the Bayesian case, the property

of the criterion is reflected by the average error probability

eπt
(
δt
)

= πtα1

(
δt
)

+
(
1− πt

)
α2

(
δt
)
.

The criterion δtπ is called Bayesian criterion with respect to a priori distribution (πt, 1− πt),
if

(5) eπt
(
δtπ
)

= min
δt

eπt
(
δt
)
.

It is known (see [20]) that Bayesian criterion δtπ is the most powerful in the type
Kt
α0

= {δt : α2 (δt) ≤ α0}, when α0 = α1 (δtπ). In the case of minimax principle, the
quality of the criterion δt is indicated by the measure

e
(
δt
)

= max
j
αj
(
δt
)

= max
πt

eπt
(
δt
)
.

A criterion δt0 is called minimax if

e
(
δt0
)

= min
δt

e
(
δt
)
.

Lemma 2.1. (See [20], Theorem 1.2.3.) If there exists Bayesian criterion δtπ with a
priori distribution (πt, 1− πt) for which

α1

(
δtπ
)

= α2

(
δtπ
)
,

then δtπ is the minimax criterion.

The distribution (πt, 1− πt) which corresponds to Bayesian criterion δtπ with α1 (δtπ) =
α2 (δtπ) is treated at the worst because its average criterion probability eπt (δtπ) is the
highest:

max
πt

eπt
(
δtπ
)

= max
πt

min
δt

e
(
δt
)
.

The criterion δtc,ε with parameters c ∈ [0,∞) and ε ∈ [0, 1] is called the likelihood
ratio criterion if

δtc,ε = I (Zt > c) + εI (Zt = c) , Zt =
dP t2
dP t1

, P t2 � P t1 , t ∈ R+.
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According to the fundamental Neyman-Pearson lemma (see [20], Theorem 1.1.1), the
likelihood ratio criterion of order α ∈ (0, α0) is the most powerful criterion of order α,
here α0 = P t1 (Zt > 0).

Minimax criterion δt0 can be found in such a way.

Lemma 2.2. (See [20], Theorem 1.2.4.) There exists the likelihood ratio criterion δtc,q
with specific parameters c and q = const., which is minimax; moreover, parameters c and
q are found from equality α1

(
δtc,q
)

= α2

(
δtc,q
)
, which is

P t1
(
Zt2,1 > c

)
+ P t2

(
Zt2,1 > c

)
+ q

[
P t1
(
Zt2,1 = c

)
+ P t2

(
Zt2,1 = c

)]
= 1,

where Zt2,1 =
dP t2
dP t1

.

Let a measure Qt be defined on the measurable space (Xt,F t) such that P ti � Qt,

i = 1, 2, for all t ∈ R+ and let Zti =
dP ti
dQt , i = 1, 2, be versions of Radon-Nikodym

derivatives.
The Hellinger integral of order α between measures P t1 and P t2 is defined by

Ht(α) = EtQ
(
Zt1
)α (

Zt2
)1−α

=


EtQZt2I (Zt1 > 0) , α = 0;

EtQ (Zt1)
α

(Zt2)
1−α

, α ∈ (0, 1);

EtQZt1I (Zt2 > 0) , α = 1.

If P ti ∼ Qt, t ∈ R+, then Zti > 0, Qt – a.s., Zti =
dP ti
dQt , i = 1, 2. Therefore

Ht(α) = EtQ
(
Zt1
)α (

Zt2
)1−α

, α ∈ [0, 1], and Ht(0) = Ht(1) = 1.

For P t1 ∼ P t2 , t ∈ R+, we have

Ht(α) = Et2
(
Zt1,2

)α
= Et1

(
Zt2,1

)1−α
, α ∈ [0, 1],

where Zt1,2 =
dP t1
dP t2

, Zt2,1 =
dP t2
dP t1

.

The Chernoff information between measures P t1 and P t2 is denoted by [29]:

J
(
P t1 , P

t
2

)
= − ln inf

0≤α≤1
Ht(α) = − ln inf

0≤α≤1
EtQ
(
Zt1
)α (

Zt2
)1−α

.

The divergence

I
(
P t1 , P

t
2

)
=

{ ∫
ln
(
dP t1
dP t2

)
dP t1 , if P t1 � P t2 ;

∞ otherwise

of arbitrary distributions P t1 , P
t
2 called Kullback-Leibler divergence-information [12]. It

is known that Kullback-Leibler information is positive because I (P1, P2) = 0 ⇐⇒ P1 =
P2 and because of the inequality ln(1 + V )− V ≤ 0,

I (P1, P2) =

∫
p1(x) ln

p1(x)

p2(x)
dx = −

∫ [
ln
p1(x)

p2(x)
−
(
p1(x)

p2(x)
− 1

)]
p1(x)dx ≥ 0.

The following is known of the property for concave function f(x):

f

(∫
α(x)y(x)dx

)
≥
∫
α(x)f (y(x)) dx,

where
∫
α(x)dx = 1, α(x) ≥ 0 with each x.

Then we use it for concave function f(x) = lnx, we get

lnH(α) = ln

(∫
q(x)

(
p(x)

q(x)

)α
dx

)
≥
∫
q(x) ln

(
p(x)

q(x)

)α
dx =

= α

∫
q(x) ln

p(x)

q(x)
dx = −α

∫
q(x) ln

q(x)

p(x)
dx.
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From here

− lnH(α) ≤ α
∫
q(x) ln

q(x)

p(x)
dx = αI (P1, P2) < I (P1, P2)

with each α ∈ (0, 1). Thus,

J (P1, P2) = − inf
0<α<1

lnH(α) < I (P1, P2) .

3. Testing of two simple hypotheses. Main results

3.1. Neyman-Pearson test. Let δt0 is α ∈ (0, 1) Neyman-Pearson test. We study the
asymptotic decrease of error probabilities α2 (δt0).

We will formulate now the conditions A.
A0. P t2 � P t1 , t ∈ R+.
A1. P t1 ∼ P t2 , t ∈ R+.
A2. There is a function ϕt, ϕt →∞ as t→∞, such that

P t1 − lim
t→∞

ϕ−1
t ln

dP t2
dP t1

(
Xt
)

= −I1,2 <∞.

Lemma 3.1. Let conditions A0 and A2 be satisfied. Then

lim
t→∞

inf
δt∈Bt(α)

ϕ−1
t lnα2

(
δt
)

= −I1,2,

where Bt (α) = {δt ∈ ∆t : α1 (δt) ≤ α, 0 < α < 1}.

Proof. By the condition A0 exists
dP t2
dP t1

(
Xt
)
.

Further, we repeat the proof of the theorem from [9]. �

By definition of Neyman-Pearson test δt0 from Lemma 3.1 we get

lim
t→∞

ϕ−1
t lnα2

(
δt0
)

= −I1,2.

We will find out that
I1,2 = lim

t→∞
ϕ−1
t I

(
P t1 , P

t
2

)
,

I
(
P t1 , P

t
2

)
=

∫
ln

(
dP t1
dP t2

)
dP t1 .

For this purpose we will use Lemma 3.2.

Lemma 3.2. (See [5], Lemma IV.6.3.) Let {fn;n = 1, 2, . . .} be sequence of convex
functions on an open interval A of R, such that f(t) = limn→∞ fn(t) exists for each
t ∈ A. If each fn and f are differentiable at some point t0 ∈ A, then limn→∞ f ′n (t0)
exists and equals f ′ (t0).

Let Yt, t ≥ 0, be a family of random variables which are defined on a probability space
(Ω,F , P ). A normalizing sequence ϕt, ϕt →∞, as t→∞, defines

ψt(λ) = ϕ−1
t lnE [exp (λYt)] .

We introduce the following conditions C.
C1. Each function ψt(λ) is finite for all λ ∈ (λ−, λ+) 3 0 and t ∈ R+.
C2. ψ(λ) = limt→∞ ψt(λ) exists for all λ ∈ (λ−, λ+) and is finite.
C3. The function ψ(λ) is differentiable at point λ = 0 and µ = ψ′(0).

Theorem 3.1. Let conditions C be satisfied. Then

P − lim
t→∞

ϕ−1
t Yt = µ = ψ′(0).

If limt→∞ ϕt(ln t)
−1 =∞, then the convergence is with the probability 1.
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The proof is analogous to the proof of Theorem II.6.3 in [5].
It is easy to see that for P t1 ∼ P t2 , t ∈ R+, the Hellinger integral of order α between

measures P t1 and P t2 has the form

Ht(α) = EtQ
(
Zt1
)α (

Zt2
)1−α

= Et1
(
Zt2,1

)1−α
= Et1 exp

{
(1− α) ln

dP t2
dP t1

}
.

For Ht(α) we can formulate generalized Cramer conditions B, analogical to conditions
C.

B1. Let ε > 0 exists such that Ht(α) defined as α ∈ Uε (1) = (1− ε, 1 + ε) and for
all α ∈ Uε (1) the limit

lim
t→∞

ϕ−1
t lnHt(α) = c (α)

exists, where ϕt →∞ as t→∞, the function c (α) is a differentiable at the point 1.
B2. There is a function ϕt, ϕt → ∞ as t → ∞, and a strictly convex, differentiable

function c (α), such that for each α ∈ (0, 1)

lim
t→∞

ϕ−1
t lnHt(α) = c (α) .

B3. Let (πt, 1− πt) are a priori probabilities of the hypotheses Ht
1 and Ht

2 under
observation Xt, such that

(6) lim
t→∞

ϕ−1
t lnπt = 0,

where a function ϕt is such that ϕt →∞ as t→∞.

Theorem 3.2. Let the conditions A0 and B1 be satisfied. Then

1) there exists
dP t2
dP t1

and

P t1 − lim
t→∞

ϕ−1
t ln

dP t2
dP t1

(
Xt
)

= −I1,2 <∞,

where I1,2 = c′(1) = limt→∞ ϕ−1
t I (P t1 , P

t
2) = limt→∞ ϕ−1

t Et1 ln
dP t2
dP t1

.

If limt→∞ ϕt(ln t)
−1 =∞, then the convergence is with the probability 1.

2) If δt0 is α ∈ (0, 1) Neyman-Pearson test, then

lim
t→∞

ϕ−1
t lnα2

(
δt0
)

= −I1,2,

where I1,2 = c′(1) = limt→∞ ϕ−1
t I (P t1 , P

t
2).

3.2. Minimax test. Let δt0 is a minimax test for testing the hypotheses Ht
1 and Ht

2

under observation Xt.

Lemma 3.3. [7] Let the conditions A1 and B2 be satisfied. Then

(7) lim
t→∞

ϕ−1
t inf

δt∈∆t
ln max

{
α1

(
δt
)
, α2

(
δt
)}

= −J1,2 = inf
0<α<1

c (α) <∞.

By definition for a minimax risk e0 (δt0) for the minimax test δt0 the (7) formula has a
form

lim
t→∞

ϕ−1
t ln e0

(
δt0
)

= −J1,2.

From this connection and the fact that (see Lemma 2.1)

α1

(
δt0
)

= α2

(
δt0
)

= e0

(
δt0
)

we obtain that

lim
t→∞

ϕ−1
t lnα1

(
δt0
)

= lim
t→∞

ϕ−1
t lnα2

(
δt0
)

= −J1,2.

We get the second main result:
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Theorem 3.3. Let the conditions A1 and B2 be satisfied. Then

lim
t→∞

ϕ−1
t lnα1

(
δt0
)

= lim
t→∞

ϕ−1
t lnα2

(
δt0
)

= lim
t→∞

ϕ−1
t ln e0

(
δt0
)

= −J1,2,

where 0 > −J1,2 = c (α0) = inf
0<α<1

c (α), c (α) = lim
t→∞

ϕ−1
t lnHt (α); δt0 is a minimax test

for testing the hypotheses Ht
1 and Ht

2 under observation Xt, and e0 (δt0) is minimax risk
for the test δt0.

3.3. Bayesian test. Let δtπ is a Bayesian test for testing the hypotheses Ht
1 and Ht

2,
(πt, 1− πt) are a priori probabilities of the hypotheses Ht

1 and Ht
2.

We will formulate the third main result.

Theorem 3.4. Let the conditions A1 and B2, B3 be satisfied. Then

lim
t→∞

ϕ−1
t lnα1

(
δtπ
)

= lim
t→∞

ϕ−1
t lnα2

(
δtπ
)

= lim
t→∞

ϕ−1
t ln eπ

(
δtπ
)

= −J1,2,

where δtπ is Bayesian test for testing the hypotheses Ht
1 and Ht

2, (πt, 1− πt) are a priori
probabilities of the hypotheses Ht

1 and Ht
2; eπ (δtπ) is the risk of the test δtπ.

Proof. Let (πt, 1− πt) are a priori probabilities of the hypotheses Ht
1 and Ht

2. Then by
the definition of Bayesian and minimax tests we have (see proof of Theorem 2.3.7 in [20])

eπ
(
δtπ
)

= min
δt

eπ
(
δt
)
≤ min

δt
max

{
α1

(
δt
)
, α2

(
δt
)}

= e
(
δt0
)
,

eπ
(
δtπ
)
≥
(
min

{
πt, 1− πt

})
max

{
α1

(
δt
)
, α2

(
δt
)}
≥
(
min

{
πt, 1− πt

})
e
(
δt0
)
.

Therefore, for arbitrary (πt, 1− πt)

min
{
πt, 1− πt

}
e
(
δt0
)
≤ eπ

(
δtπ
)
≤ e

(
δt0
)
.

Then

lim
t→∞

ϕ−1
t ln min

{
πt, 1− πt

}
+ lim
t→∞

ϕ−1
t ln e

(
δt0
)
≤ lim
t→∞

ϕ−1
t ln eπ

(
δtπ
)
≤ lim
t→∞

ϕ−1
t ln e

(
δt0
)
.

By condition B3 and Theorem 3.3, it follows that

(8) lim
t→∞

ϕ−1
t ln eπ

(
δtπ
)

= −J1,2.

The formula (8) is valid for each a priori probability πt with (6), i.e. it does not
depend on (πt, 1− πt).

Then by Lemma 2.1 and definition of Bayesian criterion (5)

lim
t→∞

ϕ−1
t ln eπ

(
δtπ
)

= lim
t→∞

ϕ−1
t ln min

δt
eπt
(
δt
)

= lim
t→∞

ϕ−1
t ln max

πt
min
δt

e
(
δt
)

=

= lim
t→∞

ϕ−1
t lnα1

(
δtπ
)

= lim
t→∞

ϕ−1
t lnα2

(
δtπ
)

= −J1,2.

�

We will formulated the condition O.
O. There exists an interval (α−, α+) containing the interval [0, 1] and such that for

all α ∈ (α−, α+) there exists a finite limit

lim
t→∞

ϕ−1
t lnHt (α) = c(α),

where ϕt → ∞ as t → ∞ and c(α) is a strictly convex and differentiable function on
(α−, α+).
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Corollary 3.1. Let the condition O be satisfied. Then
1) if δt is Neyman-Pearson criterion, then

(9) lim
t→∞

ϕ−1
t lnα2

(
δt
)

= −I1,2,

where I1,2 = c′(1) = limt→∞ ϕ−1
t I (P t1 , P

t
2) = limt→∞ ϕ−1

t Et1 ln
dP t1
dP t2

;

2) if δt0 is a minimax or Bayesian (with condition B3) criterion, then

(10) lim
t→∞

ϕ−1
t lnα2

(
δt0
)

= −J1,2,

where J1,2 = lim
t→∞

ϕ−1
t J (P t1 , P

t
2) = −c (α0) = − inf

0<α<1
c (α), α0 get from c′ (α0) = 0,

c (α) = lim
t→∞

ϕ−1
t lnHt (α). The normalizing function ϕt is the same in formulas (9) and

(10).

4. Examples

4.1. Marked point processes of the i.i.d. case. Suppose we observe (X1, X2, . . . , Xn),
n ∈ N, where X1, . . . , Xn are independent identically distributed random variables taking
values in the measurable space (E, E) with distribution Pθi , where θi ∈ Θ, i = 1, 2. The
marked point process associated with the sequence of observations is

µ ([0, t], B) =
∑
j≥1

I(j ≤ t)I (Xj ∈ B) , B ∈ E .

Its (Pθi , F ) compensator is deterministic:

ν ([0, t], B) =
∑
j≥1

I(j ≤ t)Pθi(B), i = 1, 2; B ∈ E .

Let

Pθi(B) =

∫
B

pθi(x)dx, i = 1, 2; B ∈ E .

Then (see [6])

Ht(α) = Ht

(
α, P tθ1 , P

t
θ2

)
=

 +∞∫
−∞

pαθ1(x)p1−α
θ2

(x)dx

[t]

.

Therefore,

lim
[t]→∞

[t]−1 lnHt(α) = ln

+∞∫
−∞

pαθ1(x)p1−α
θ2

(x)dx = lnH (α, Pθ1 , Pθ2) = c(α).

Let c(α), α ∈ [0, 1], is strictly convex and differentiable. Then

J1,2 = −c (α0) = − inf
0<α<1

c(α) < 0, I1,2 = c′(1) = I (Pθ1 , Pθ2) = Eθ1 ln
pθ1 (X1)

pθ2 (X1)
.

Example 4.1. Let Xi has exponential distribution:

pθ(x) = θe−θx – density, x ≥ 0, θ > 0.

Then

H (α, Pθ1 , Pθ2) =

∞∫
0

(
θ1e
−θ1t

)α (
θ2e
−θ2t

)1−α
dt =

θα1 θ
1−α
2

θ1α+ (1− α)θ2
,

c(α) = α ln
θ1

θ2
+ ln θ2 − ln [α (θ1 − θ2) + θ2] ,
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c′(α) = ln
θ1

θ2
− θ1 − θ2

α (θ1 − θ2) + θ2
,

I1,2 = c′(1) =
θ2

θ1
− 1− ln

θ2

θ1
,

c′ (α0) = 0, when α0 = 1

ln
θ1
θ2

− 1
θ1
θ2
−1

. Then

J1,2 = −c (α0) =
1

y − 1
ln y + ln

θ2(y − 1)

ln y
− ln θ2 − 1,

where y = θ1
θ2

. From here we see that I1,2 > J1,2 (see Table 1).

Table 1. I > J in the case of marked point processes of the i.i.d. case

θ1 0.1 0.1 0.1 1 1 1 10 10 10 100 100 100
θ2 1 10 100 0.1 10 100 0.1 1 100 0.1 1 10
I1,2 6.697 94.395 992.092 1.403 6.697 94.395 3.615 1.403 6.697 5.909 3.615 1.403
J1,2 0.619 2.114 3.981 0.619 0.619 2.114 2.114 0.619 0.619 3.981 2.114 0.619

4.2. Non-homogeneous Poisson process. Let (Ω,F ,F, Pθ, θ ∈ Θ) be stochastic basis
on which a non-homogeneous Poisson process Nt, t ≥ 0, with intensity kt(θ), t ≥ 0, θ ∈ Θ,
is given and FNt = σ (Ns, s ≤ t), P tθi = Pθi |FNt , i = 1, 2, θ1, θ2 ∈ Θ, t ≥ 0, θ1 6= θ2.

Let the following condition be satisfied.

E. There exists a function ψt such that
t∫

0

ψsds→∞ as t→∞ and

lim
t→∞

ψ−1
t kt (θi) = k (θi) , i = 1, 2, k (θ1) 6= k (θ2) .

Lemma 4.1. (See [7, 8]) Let the condition E be satisfied. Then

c(α) = −
(
αk (θ1) + (1− α)k (θ2)− kα (θ1) k1−α (θ2)

)
for ϕt =

t∫
0

ψsds, and

I1,2 = I (Pθ1 , Pθ2) = c′(1) = k (θ2)− k (θ1)− k (θ1) ln
k (θ2)

k (θ1)
=

= k (θ1)

(
k (θ2)

k (θ1)
− 1− ln

k (θ2)

k (θ1)

)
,

J1,2 = J (θ1, θ2) = k (θ2) +
k (θ1)− k (θ2)

ln (k (θ1) /k (θ2))

[
ln

k (θ1)− k (θ2)

k (θ2) ln (k (θ1) /k (θ2))
− 1

]
.

Example 4.2. Let ks(θ) = θψ(s), θ > 0, s ≥ 0, ϕt =
t∫

0

ψsds. Then

I1,2 = θ1(x− 1− lnx), where x =
θ2

θ1
;

J1,2 = θ2

(
1 +

y − 1

ln y

[
ln
y − 1

ln y
− 1

])
, where y =

θ1

θ2
and θ1 > θ2 > 0.

We find that in this case I1,2 > J1,2, too (see Table 2).
Moreover, in this case one can notice that when there is a stable meaning of θ1 and

the meaning θ2 increases, meanings of I1,2 and J1,2 decrease. When there is a stable
meaning of θ2 and the meaning θ1 increases, meanings of I1,2 and J1,2 increase.
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Table 2. I > J in the case of non-homogeneous Poisson process

θ1 1 1 10 10 10 50 50 50 100 100 100 100
θ2 0.1 0.9 0.1 1 9 0.1 1 10 0.1 1 10 99
I1,2 1.403 0.005 36.152 14.026 0.054 260.83 146.601 40.472 590.876 361.517 140.259 0.005
J1,2 0.242 0.001 4.546 2.42 0.013 27.285 20.136 7.773 57.574 45.456 24.196 0.001

4.3. The geometric renewal process. Consider a geometric renewal process Nt =
∞∑
n=1

I (Tn ≤ t), t ≥ 0, where random variables Xn = Tn − Tn−1 have geometric distribu-

tion:
Pθ (Xn(ω) = k) = θ(1− θ)k−1, θ ∈ Θ = (0, 1), k = 1, 2, . . . .

Then, according to [10, 27], when θ1 6= θ2 and θ1, θ2 ∈ Θ = (0, 1),

P (Nt = k) = Ck[t]θ
k(1− θ)[t]−k, k = 0, 1, 2, . . . ,

dP tθ2
dP tθ1

=

(
θ2

θ1

)Nt (1− θ2

1− θ1

)[t]−Nt
.

Ht(α) = Ht

(
α, P tθ1 , P

t
θ2

)
=
[
θα1 θ

1−α
2 + (1− θ1)

α
(1− θ2)

1−α
][t]

.

Then

c(α) = lim
t→∞

1

[t]
lnHt(α) = ln

[
θα1 θ

1−α
2 + (1− θ1)

α
(1− θ2)

1−α
]
.

In the paper [28] it has been proven that

0 < θα1 θ
1−α
2 + (1− θ1)

α
(1− θ2)

1−α
< 1

with each θ1, θ2 ∈ (0, 1), θ1 6= θ2.

c(α) = ln

((
θ1

θ2

)α
θ2 +

(
1− θ1

1− θ2

)α
(1− θ2)

)
,

c′(α) =

(
θ1
θ2

)α
θ2 ln θ1

θ2
+
(

1−θ1
1−θ2

)α
(1− θ2) ln 1−θ1

1−θ2(
θ1
θ2

)α
θ2 +

(
1−θ1
1−θ2

)α
(1− θ2)

.

I1,2 = I (Pθ1 , Pθ2) = c′(1) = θ1 ln
θ1

θ2
+ (1− θ1) ln

1− θ1

1− θ2
.

c′(α) = 0

=⇒
(
θ1

θ2

)α
θ2 ln

θ1

θ2
= −

(
1− θ1

1− θ2

)α
(1− θ2) ln

1− θ1

1− θ2
;

a0 =
ln
[(

1− 1
θ2

)
ln(1−θ1)−ln(1−θ2)

ln θ1−ln θ2

]
ln θ1(1−θ2)

θ2(1−θ1)

.

From here J1,2 = −c (α0).
Here, I1,2 > J1,2, too (see Table 3).

Table 3. I > J in the case of geometric renewal process

θ1 0.1 0.1 0.1 0.2 0.2 0.2 0.5 0.5 0.5 0.9 0.9 0.9
θ2 0.2 0.5 0.9 0.1 0.5 0.9 0.1 0.2 0.9 0.1 0.5 0.8
I1,2 0.037 0.368 1.758 0.044 0.193 1.363 0.511 0.223 0.511 1.758 0.368 0.037
J1,2 0.01 0.112 0.511 0.01 0.053 0.347 0.112 0.053 0.112 0.511 0.112 0.01



ASYMPTOTICS OF ERROR PROBABILITIES 35

References

1. Birgé, Vitesses maximales de décrvissance des erreurs et tests optimaux associés, Z. Wahrsch.
Verw. Geb. 55 (1981), no. 2, 261–273.

2. N. N. Chencov, Statistical decision rules and optimal inference, Nauka, Moscow, 1972 (in
Russian).

3. H. Chernoff, A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on a Sum of

Observations, Ann. Math. Stat. 23 (1952), 493–507.
4. H. Chernoff, Large sample theory: Parametric case, Ann. Math. Stat. 27 (1956), no. 1, 1–22.

5. S. Ellis, Entropy, Large Deviations and Statistical Mechanics, Springer-Verlag, Berlin–

Heidelberg–New York–Tokyo, 1985.
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25, LT-76351 Šiauliai, Lithuania

E-mail address: kanisauskasva@gmail.com

Institute of Regional Development, Vilnius University Šiauliai Academy, P. Vǐsinskio st.
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