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DESCRIPTION OF ALL LIMIT DISTRIBUTIONS OF SOME
MARKOV CHAINS WITH MEMORY 2

There are situations where the data sequence does not depend on past values. As can
be expected, the additional history of memory often has the advantage of offering a
more precise predictive value. By bringing more memory into the random process, one
can build a higher order Markov model. In this paper we consider 2-state Markov
chain with memory 2 generated by Hamiltonian with competing interactions and
describe its all limit distributions.

1. INTRODUCTION

A Markov chain is a stochastic process {X,,}>2 , over a finite state space S, where
the conditional probability distribution of future states in the process depends upon the
present or past states. The classical ”Markov property” specifies that the probability of
transition to the next state s,,11 depends only on the probability of the current state s,,.
That is,

PT(Xn+1 = 8n+1|Xn = Sp, " ,Xl = Sl,Xo = SQ) =

PT(Xn+1 = 3n+1|Xn = Sn)
A Markov chain with memory 2 is a process satisfying

Pr(Xny1 = snt1|Xn = 5p,- -+, X1 =51, X0 = 80) =

Pr(Xn+1 = Sn+1|Xn = Sn»anl = Snfl)
For simplicity, identify the states as S = {1,2,--- ,r} and assume that the chain is time
homogeneous. Then a transition probability matrix IT = [p;;] defined by

pij = P?”(Xn+1 = ]‘Xn = Z)

is independent of n and is row stochastic.
Assuming again time homogeneity, a Markov chain with memory 2 can be conveniently
represented via the order-3 tensor P = [p;,iyi,] [7],defined by

Divigiz = Pr(Xny1 = i3] Xn =12, Xpno1 = 11),

where P is called a transition probability tensor. Necessarily we have the properties
0 < piyisis <1 and that

T
Z Pivigis = 1
iz=1
for every fixed 2-tuple (i1, 2).
As shown in [5], the theory of finite Markov chains with positive transition probabilities
can be embedded into the theory of limit Gibbs distributions as a trivial particular case,
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and the Hamiltonians can be considered as a natural generalization of the transition
probabilities or, more exactly, of their logarithms.

2. HAMILTONIAN FOR FINITE MARKOV CHAIN

Let Q = S%+ be the sample space of a finite Markov chain with r states. That is,
the range space S consists of r elements and P is a measure on ) corresponding to
a homogeneous Markov chain with a stationary transition matrix II = (p;;) and with
stationary distribution # = (m,m2, -+, 7). We consider the case when all p;; > 0,
ie. II = (pi;) is the regular matrix, and there exists unique the limiting distribution
m = (71, T, , ).

For arbitrary A C Z; a configuration o on A is defined as o(A) : A — S. For Ay, =
{k,k+1,--- ,k+m}, the probability of an arbitrary configuration o(Agnm) = (o(k),o(k+
1),---,0(k +m)) is equal to

To(k) " Po(k)o(k+1) * Po(k+1)o(k+2) *°  Po(k+m—1)o(k+m)
k+m—1
= exp{ln 7,z + Z Inpo(iyoiv) )
i=k
Introducing the Hamiltonian

H(o) =~ Zlnpa(i)a(i+1)-
i=0

we see that only the interactions between neighbouring spins < 4,7 4+ 1 > are taken into
account.
Below we add one more interaction, namely interactions of second neighbours > i,i+2 < .

Let 112 = (pg)) and model specified by the following Hamiltonian

- S 12
(1) H(o) = - alnp"(i)o(wl) B 21%0(2‘)0(#2)7

Such model is called the model with competing interactions [6].

Consideration of models with competing interactions defined on Z? has proved to be
fruitful in many fields of physics, ranging from the determination of phase diagrams in
metallic alloys and exhibition of new types of phase transition, to site percolation. The
axial next-nearest neighbour Ising (ANNNI) model, originally introduced by Elliot [1] to
describe the sinusoidal magnetic structure of Erbirum, the chiral Potts model, introduced
by Ostlund [4] and Huse [2] in connection with monolayers adsorbed on rectangular
substrates, and others, attract much attention both from a purely theoretical point of
view because of their applications.

They have a rich phase diagram demonstrating a countable set of different modulated
structures. However, exact solutions for these models are unknown, and most of the
results are only obtained numerically.

In our paper we are considering model (1) defined on the set Z, of non-negative
integers. We suppose that the points of Z, are the vertices of the infinite graph I'}, =
(Z4,L), where L = {l =< 4,i+ 1 >:i € Z;} is set of edges. Note that this graph is
semi-infinite Cayley tree of first order, i.e. an infinite graph without cycles with 2 edges
issuing from each vertex except for vertex 0 which has only 1 edge.

In recent years models on a Cayley tree has been studied extensively because it turns
out that there are physically interesting solutions correspond to the attractors of the
mapping. This simplifies the numerical work considerably and detailed study of the
whole phase diagram becomes feasible. Apart from the intrinsic interest attached to the
study of models on trees, it is possible to argue that the results obtained on trees provide
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a useful guide to the more involved study of their counterparts on crystal lattices.

Note that statistical mechanics on trees involve nonlinear recursion equations and are
naturally connected to the rich world of dynamical systems, a world presently under
intense investigation.

3. RECURSION EQUATIONS

For '} = (Z4,L) let A, ={0,1,--- ,n} is a finite subset of Z; and L, is the set of
edges on A,,.
Note that Apy1 = A, U{n+1} and L, 1 = L}, U{< 0,1 >}, where L], is the set of edges
on A, ={1,2,--- ,n+1}.
We will apply this equality to produce recurrence equations.

Below we consider case with state space S = {1,2}, i.e. r =2.

We consider configurations o : Z; — {1,2}. The restriction of o on any subset A,, C
Z, is denoted by o(A,) = op.

Any configuration ¢ one can split into two sub-configurations o(A,) and o”(AS),
where AS = Z, \ A, is still infinite set.
Let us fix some configuration "™ (AS) : AS — {1,2} and call it boundary configuration.
Then we consider the set of all configurations that vary on A, but fixed on Af,. Note
that this set is finite. In the theory of random processes, every process is determined
by the family of its finite-dimensional probability distributions. In problems of classical
statistical mechanics we find ourselves faced with a different situation. Here the theory
is based upon a formal expression, called the Hamiltonian. By its help, all possible con-
ditional probability distributions of the random process or field inside any finite domain
can be found under the condition that its values outside the domain are fixed.

We define the conditional Hamiltonian with fixed boundary configuration "(A%) as
follows

n—1
(2)  H(onle") = - Z Inps, (Yo, (i+1) — N Po, (n)on (n+1)
i=0
n—2

- Z hlpf;?(i)anmm - lnpgri)(nfl)c’r"(nJrl) - 1np£i?(n)6"(n+2)
i=0

Then the conditional Gibbs state on finite subset A,, with boundary configuration " (AS)
to be the measure u,, given by

3) fin (0 (
for any configuration o(A,,) € 3(A,,), where

Zn(a_n) — Z e*ﬂH(U(An)‘&n(Arﬁ)).
U(An)EZ(An)

e_BH(‘Tn‘a'n)

Now we will define a limit Gibbs state on Q by the following way.

We will say that u is a limit Gibbs state on £, if for any finite subset A,, and for arbitrary
boundary configuration ™ (A \ A,) the conditional probability with respect to u given
that the configuration o € Qis 6" (A\ A,,) on A\ A, is the same as the conditional Gibbs
state on Q(A) given above:

o~ BH(l5")
(0 (An)|E" (A Ap)) = AR

The main problem of equilibrium statistical physics is to describe all limit Gibbs states
of given Hamiltonian, i.e. to investigate the existence and uniqueness of such measures.
Below we investigate the limit Gibbs measures corresponding to the Hamiltonian (3).
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Let us split a set of configurations 3(A,) into 4 subsets X1 (A,,) = {0, € X(A,) :
a(0) = ig; o(1) = i1} where 79,41 € {1,2}.

Assume
Zioi (G7) = Z e PH((An)Ia™(AL))
o(Ap)ETI01 (A,,)
and
z = Z}L’l(c?"), 29 = Z}L’Q(ﬁn), 23 = Zi’1(6”),24 = ZZ’2(5")
with
Zn(@") =21 + 22+ 23 + 24.
Let

1,1 /= 1,2 /= 2,1 /= 2,2
Zi = Zn+1(‘7n+1)»zé = Zn+1(‘7n+1)a Zé = Zn+1(0n+1)v Zzl; = Zn+1(0n+1)

Then we can produce the following recurrent equations

(4) 7 = pnpﬁ)zl + pnpg) Z2
(5) Zy = p12pg21)23 + plng) 24
(6) zy = pzlp(z21)21 + p21p§22) Z2
(7) Zy = pzzp(z? z3 + p22p§22) 24

Renormalizing as follows [0]

Z2 + 23 21 — 24 y Z2 — 23
5 1= 5 2 = 5
21+ 24 z1+ 24 21+ 24

one can produce the following recurrent equations

2 2 2 2
o = p12p§1) Z3 +p12p§2) Z4 +p21p51)2’1 +p21p52)2’2 _

2 2 2 2
pnpﬁl) z1 + pnpgz) z2 + p22p51) z3 + p22pé2) 24

p12p? (@ — y2) + propiy (1 — y1) + poansy (L + 1) + pauply) (@ +y2)

2 2 2 2 -
PP (14 y1) + pup'D (@ + y2) + p2aps) (& — ya) + paapsy (1 — y1)
2 2 2 2 2 2
(212032 + prpS)z + (p21pS) — prap’)wn + (2198 — prap’)ys + Dy
2 2 2 2 2 2 ?
(p110'2) + paopS )z + (p11pl?) — poapS)wn + (p119\Y — paap$)ys + D

where Dy = pupg) +p21p§21)7 D= pnpﬁ) + ngpézg)7

2 2 2 2
. p11p§1)21 + pupgg)zz - p22pg1) Z3 — p22p(22) 24
1= ) @) @ @,
P11P11 21 + P11P1g 22 + P22P51 23 + P22Das 24

PP (14 y1) + pupld (z + yo) — paspss) (x — yo) — Paspsy (1 — 1) B

pupty (L +y1) + pupls (x4 y2) + p2opss) (z — y2) + paoply (1 — y1)

2 2 2 2 2 2
(P120'2) = papS )z + (p1ap’? + porpS)wn + (p1202 + p21p$ )y + Do
2 2 2 2 2 2 )
(p110'2) + Pz + (p11pl?) = poapwn + (p119\2 — poap$)ys + D

where Dy = plzpﬁ) - 102119%22)7 D= pllpﬁ) + ]02227522)7
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2 2 2 2
r_ P12P§1)Z3 + plngg)% — p21p§1)21 - pzlpgg)ZQ _

Yo =
Pnpﬁ)zl + P11P(122) z9 + pzng) z3 + p22p§22) Z4
2 2 2 2
P12\ (@ — y2) + p12p’D (1 — 1) — poapS) (1 + 1) — PoapSs) (@ + y2) B

P10 (1+y1) + p1p'd (@ + v2) + p2apS) (7 — y2) + paapsy) (1 — 1)

2 2 2 2 2 2
(1207 = D210 w + (21pS) + p12p’ D)1 + (21053 + prap'? )y + Ds
2 2 2 2 2 2 ’
(p110\2 + poap)z + (p11p\Y — poapD s + (p110\2 — poap’S s + D

where D = pupg) - pz1p§21)7 D= pupﬁ) + P22Pé22)7

4. MARKOV CHAIN WITH DOUBLE-STOCHASTIC TRANSITION MATRIX

Assume r = 2 and a matrix II = [p;;] is a double-stochastic transition matrix, that is

St
q p
and
o | PP 2
2 P*H+¢ |’

where p+q=1with0<p<1
and the limiting distribution 7 = (71, 72) is a uniform distribution m; = w3 = 1/2.
Then

;0 +¢*)gx + 2pg®

- 2p%qz + p(p® + )

o a0+ Py + 2%y
2p%qx + p(p? + ¢?)

g, = 2Ly a0’ + )y
2p%qx +p(p? + ¢?)

Since ¢ = 1 — p, we have

, (1=p)(2p° —2p+ 1)z + 2p(1 — p)?
2(1 = p)p*x + p(2p* — 2p + 1)
g = =P =2+ Dy + 2p(1 — p)*ys
! 2(1 — p)p2x + p(2p% — 2p + 1)
g = 220 =)y + (1= p)2p° —2p + 1)y
2 2(1 — p)px + p(2p> — 2p+ 1)

Starting from random initial conditions (with y1,y2 # 0), one iterates the recurrence
relations and observes their behaviour after a large number of iterations. In the simplest
situation a fixed point (x*, y;,y3) is reached. In this case according the definition of con-
ditional Gibbs measure (3) and recurrent equations (4)-(7)one can see that the conditional
Gibbs measure and corresponding limit Gibbs measure will be the translation-invariant
measure. Then respectively the limit Gibbs measure is a measure on = S%+ corre-
sponding to a homogeneous Markov chain with a stationary transition matrix IT = [p;]
and with stationary distribution 7 = (1/2,1/2). Using terminology of statistical physics,
the set of stationary Markov measures is divided into two classes: paramagnetic phase
(P) if y7 = y3 = 0 or to a ferromagnetic phase (F) if y},y5 # 0.

A limit cycle with a period a multiple of the distance between sites corresponds to pe-
riodic Markov measure or modulated limit Gibbs measure (M). Finally, the system may
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remain aperiodic which corresponds aperiodic Markov measure or incommensurate phase
(M).
The resultant phase diagram is shown in the following figure.

FIGURE 1. Phase Diagram for Double Stochastic Matrix

In this phase diagram P and F mean stationary and M -non stationary Markov mea-
sure.
The transition lines may be obtained by linearising the system around the fixed point
(z*,0,0), where z* is given by

. (1=p)2p* = 2p+ )" + 2p(1 - p)*
2(1 - p)p*a* +p(2p* = 2p + 1)
Solving quadratic equation one can find
oo @D+ ) + V=0 + ) +16p°°
4p*(1 - p)

The variable z* is unaffected in y; and y2, and the linearized equations are, in matrix

form:
( " > _ < (1—p)(21::—2p+1) 210(11421))2 ) ( " )
yh 2p(1gp)2 (1—19)(21j4 —2p+1) Y2 )
where A = 2(1 — p)p?z* + p(2p? — 2p + 1).
The fixed point is linearly stable if the corresponding eigenvalues have moduli smaller

than one.
Computing eigenvalues we have

A\ = (1-p)
2(1 — p)pPa* 4+ p(2p* —2p+ 1)’
and
N = (1—p)(2p—1)2
=

2(1 — p)p?a* 4+ p(2p* —2p+ 1)’
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Substituting x* we have
A = 2(1-p)
2p2 —2p+ 1+ /(2p — 1)2(2p2 — 2p + 1)2 + 16p3(1 — p)?

and
2(1—p)(2p — 1)
22 —2p+1—/(2p—1)2(2p2 — 2p + 1)2 + 16p3(1 — p)3’
Plotting graphs of the functions A1 (p) and A2(p) one can see that A > 1 and A > 1
for p € (0,0.5) and Ay < 1 and Ay < 1 for p € (0.5,1).
Therefore the point p = 0.5 on segment [0, 1] is the stationary-non-stationary transi-
tion point. Thus we have proved the following statement.

Ay =

Theorem 4.1. For Markov chain with memory 2 generated by Hamiltonian (2) with
double stochastic matriz there exists stationary limit distribution for p € [0.5,1) and
non-stationary limit distribution for p € (0,0.5).

5. DYNAMICAL SYSTEM FOR GENERAL CASE

Now consider arbitrary stochastic matrix
- [ p 1-p }
I—q¢ ¢
and
o — [ P+-p1-q9 (1-p)p+q ]
1-qgp+a (A-p)A-a)+d* |’
where 0 < p,q < 1.
Then produce the following recurrent equations with parameters p, ¢ € (0, 1).
, A1z + Biyn + Cry2 + Dy
Az + By, +Cys+ D
; _ Asx+ Boyy + Caya + Do
N T Ar v By + Cyo + D
,  Azx+ Bayi + Csya + D3

2T T Ar v By + Cyo+ D
where
A=1-ppP’+1-p(1-gl+1-l1-p)(1-q) +¢
Bi=(¢-p)a+p—2)(p+9q)
Ci=@p+9P-9[-@+q9)]
Di=[1-p°+(1-a)°p+aq)
and
A =[1-p)?-(1-)°p+q)
By=(1-pp*+(1-p)1 -]+ 1 -1 —p)(1—q)+4’]
Co=[1-p)°+(1-a)°lp+q)
Dy=(1-p)p"+(1—-p)(1—q]—(1-q[1—-p)(1—q) +¢°
and

As=(1=-p)p*+(1=p)1—-q)]—(1—q)(1-p)(1—q)+q]

Bs=(q—p)g+p—2)(p+q)
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C3=p(l—p)p+q +q1—-q)(p+aq)

Ds=[1-p?—-(1-9%(p+q)
and

A=[p(l-p)+q1-9gl+q
B=plp’+(1-p(A—-q)]—ql-p)(1-q) +q]

C=[p1-p) +q1-q)]p+q)

D=[1-p?+1-¢*p+adl1-p)?®-1-a°Ip+q)
The resultant phase diagram is shown in the Fig.2. As one can see the phase diagram
consist of the same three phases, namely, ferromagnetic, paramagnetic and modulated
phases.

FIGURE 2. Phase Diagram for arbitrary transition matrix

According this phase diagram for (p, q) € I? corresponding Gibbs state is translation-
invariant if (p,q) € FUP. One can see that we have symmetry for plotted phase diagram.
On segment {(p,p) : p € (0.5,1)} we reach paramagnetic phase. The problem of describ-
ing F' — M transition line is rather difficult problem, since the problem of finding fixed
points also is difficult. Thus we have proved the following statement.

Theorem 5.1. For Markov chain with memory 2 generated by Hamiltonian (2) with
arbitrary stochastic matriz there exists stationary limit distribution for (p,q) € F U P
and non-stationary limit distribution for (p,q) € I?\ (F U P), where I* = (0,1) x (0,1).

6. MARKOV CHAINS WITH MEMORY 2

Recall that assuming time homogeneity, a Markov chain {o(n)} with memory 2 can
be conveniently represented via the order-3 tensor P = [p;,i,i5] [7], defined by

Divigiz -— Pr(o(n + ].) = 23|0(n) = ig,o(n — ].) = il),
where P is called a transition probability tensor. Necessarily we have the properties

0 < piyisis <1 and that
T
Z Pivigis = 1

iz3=1
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for every fixed 2-tuple (i1,1i2).
Note that
Pr(o(0) =ig,0(1) =i1,0(2) = ia)
Pr(c(0) = ig,0(1) =141) ’

Pr(o(2) =islo(1l) =i1,0(0) =ip) =

and
Pr(o(0) =ig,0(1) =41,0(2) = 212).

Pr(o(0) = iolo(1) = i1, 0(2) = i) = —p =S o

From these we have

PT’(O’(Q) = i2|0'(1) = il, O'(O) = io)
Pr(c(0) = iglo(1) = i1,0(2) = i2)Pr(c(1) = i1,0(2) = i2)
Pr(o(0) =ig,0(1) =11) '

By given Hamiltonian (2) we can find the conditional Gibbs measure Pr(Xy = ig| X1 =
i1, X2 = i2) [5]. Thus to specify the order-3 tensor P = [p;,i,is] We have to specify the
two dimensional distributions Pr(o(n) = i1,0(n+ 1) = is).

Since we are considering the case of time homogeneity it is enough to compute
Pr(c(0) =i1,0(1) = ia).

We consider the case 7 = 2. In the case of double stochastic matrix for fixed point
(z*,0,0) we have

Pr(o(0) = 1,0(1) = 1) = ﬁ
Pro(0) = 1,0(1) = 2) = ﬁ
Pr(c(0) =2,0(1) =1) = ﬁ
Pr(c(0) = 2,0(1) = 2) = ﬁ
In the general case for fixed point (z*,y7, ) we have
Pr(o(0) = 1,0(1) = 1) = %
Pr(o(0) = 1,0(1) = 2) = ;f“f)
Pr(o(0) = 2,0(1) = 1) = ﬁ
Pr(o(0) = 2,0(1) = 2) = 2(11+y$1>

In the case of double stochastic matrix we can find the conditional Gibbs measure
Pr(c(0) = iglo(1) = i1,0(2) = iz) as follows

Pray=Pr(o(0) =1[o(1) =1,0(2) =1) = p(pzpfq;;i)gpf

2pq°
P11 =P 0)=2c(1)=1,0(2)=1) =
2,11 r(c(0) o (1) o(2) ) p(P? + ¢%) + 2pg?
2

2pq
Pr1g = Pr(o(0) =1|o(1) =1,0(2) =2) = 2pq® 4 q(p? + ¢?)
ap® + %)

Py 12 = Pr(c(0) =2[o(1) =1,0(2) =2) = WE + 4% + )
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- a(r* + ¢%)
q(p* + ¢?) + 2p%q
B 2p%q
q(p? +¢%) + 2p*q
_ 2pq°
2pq® + p(p* + ¢?)
__ PP+
2pq® + p(p* + ¢*)

Pro1 = Pr(o(0) = 1|o(1) = 2,0(2) = 1

P5 91 = Pr(c(0) =2|0(1) =2,0(2) =1)

Pi 92 = Pr(c(0) =1|o(1) = 2,0(2) =2)

Pygg = Pr(o(0) = 2|o(1) = 2,0(2) = 2)

In the general case we can find the conditional Gibbs measure Pr(c(0) = iglo(1) =
i1,0(2) = i) as follows

2
plilpgii

2 2)°
plilpg_i; + p2i1péi;

Pr(c(0) =1lo(1) = i1,0(2) =i3) =

2
p2i1pgii

- 2 2)°
pulpﬁii + inlpéiZ

Pr(o(0) =2|o(1) = i1,0(2) = i)

Thus we have proved the following statement

Theorem 6.1. For Markov chain generated by Hamiltonian (2) with (p,q) € FUP one
can specify the order-3 tensor P = [pi,i,i,] using equalities (8) and (9).

7. CONCLUSION

In this paper we present Markov chains with memory 2 generated by Hamiltonian
with competing interactions and describe all limit distributions.
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