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CONSISTENT ESTIMATES OF THE PARAMETERS OF THE

MULTIPARAMETER FRACTIONAL BROWNIAN MOTION

The consistent estimators of the multiplicative parameter c and Hurst parameter
H of the covariance function of the multiparameter fractional Brownian motion are

constructed.

1. Introduction

The multiparameter fractional Brownian Motion (MFBM) is a multiparameter Gaus-
sian random process {XH(t), t = (t1, . . . , td)} with zero mean and covariance function

(1) r(t, s) =
c

2

(
∥t∥2H + ∥s∥2H − ∥t− s∥2H

)
, t, s ∈ Rd,

where ∥t∥ =
√
t21 + · · ·+ t2d is the Euclidean norm of vector t = (t1, . . . , td), H ∈ (0, 1) is

the Hurst parameter, c > 0 is a multiplicative parameter. In the case of d = 1, c = 1 this
is the fractional Brownian Motion with Hurst parameter H [5].

MFBM was studied by many authors. Thus the Hausdorff measure and multiple points
of the trajectories of MFBM are studied in the articles [6],[7]. The series expansion of
the MFBM is obtained in [4]. The problem of estimating the Hurst parameter arises in
applied models, is relevant and attracts the attention of many scientists in the field of
statistics. Thus, in the article [3] the strong consistent estimate of the Hurst parameter
H of the MFBM is constructed by using the Levy–Baxter theorems.

The problem of estimating the parameters c,H of fractional Brownian motion based
on observations with errors was studied in article [1].

2. Problem Statement

Observing fractional Brownian field
{
X(t1, t2), (t1, t2) ∈ R2

}
at the points

{(k, j) ∈ {0, 1, . . . , n}} , n ≥ 1,

we need to estimate the unknown parameters of the covariance function (1), such as the
multiplicative parameter c > 0 and Hurst parameter H ∈ (0, 1).

For k, j ≥ 1 we put

(2) ∆1X(k, j) = X(k, j)−X(k − 1, j),

(3) ∆X(k, j) = X(k − 1, j − 1)−X(k − 1, j)−X(k, j − 1) +X(k, j).

These increments of the stochastic field can be written as:

(4) ∆1X(k, j) =

1∑
α=0

(−1)αX(k − α, j),
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(5) ∆X(k, j) =

1∑
α,β=0

(−1)α+βX(k − α, j − β).

To obtain consistent estimates of the multiplicative parameter c and Hurst parameter
H of the covariance function of the multiparameter fractional Brownian motion, we use
the following statistics:

(6) S(1)
n =

1

n2

n∑
k,j=1

(∆1X(k, j))
2
,

(7) S(2)
n =

1

n2

n∑
k,j=1

(∆X(k, j))
2
.

3. Calculation of means and variances of statistics S
(1)
n , S

(2)
n

Lemma 3.1. The expected values of statistics S
(1)
n , S

(2)
n are equal to

(8) ES(1)
n = c,

(9) ES(2)
n = 2c

(
2− 2H

)
.

Proof. To calculate the means of the squares of the increments (4)–(5) we apply the
formula (1) for the covariance function. For every k, j ≥ 1 we get:

E (∆1X(k, j))
2
= E

(
1∑

α1,α2=0

(−1)α1+α2X(k − α1, j)X(k − α2, j)

)
=

= − c

2

1∑
α1,α2=0

(−1)α1+α2 |α1 − α2|2H = c;

E (∆X(k, j))
2
= E

( 1∑
α1,β1=0

(−1)α1+β1X(k − α1, j − β1)×

×
1∑

α2,β2=0

(−1)α2+β2X(k − α2, j − β2)
)
=

= − c

2

1∑
α1,β1=0

(−1)α1+β1

1∑
α2,β2=0

(−1)α2+β2
(
(α1 − α2)

2 + (β1 − β2)
2
)H

= 2c
(
2− 2H

)
.

Therefore, we obtain equalities (8)–(9). The Lemma is proved. □

Lemma 3.2. The variances of statistics S
(1)
n , S

(2)
n are equal to:

(10) V arS(1)
n =

2

n4

n∑
k1,j1=1

n∑
k2,j2=1

(E (∆1X(k1, j1)∆1X(k2, j2)))
2
,

(11) V arS(2)
n =

2

n4

n∑
k1,j1=1

n∑
k2,j2=1

(E (∆X(k1, j1)∆X(k2, j2)))
2
.
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Proof. For the expected value of the product of random variables η1, η2, η3, η4, which
have a compatible Gaussian distribution with zero mean the next formula holds true

Eη1η2η3η4 = E(η1η2)E(η3η4) + E(η1η3)E(η2η4) + E(η1η4)E(η2η3).

This formula is called the Isserlis formula. It is a partial case of the formula for the
expected value of the product of an even number of random variables with zero means
and jointly Gaussian distribution [2].

For the statistics S
(1)
n the variance is calculated as follows

V arS(1)
n = E

(
S(1)
n

)2
−
(
ES(1)

n

)2
=

=
1

n4

n∑
k1,j1=1

n∑
k2,j2=1

((
E
(
(∆1X(k1, j1))

2
)
(∆1X(k2, j2))

2
)
−

(12) −E (∆1X(k1, j1))
2
E (∆1X(k2, j2))

2
)
.

Since the multiparameter fractional Brownian motion is a Gaussian random field with
zero mean, then the random vector

(∆1X(k1, j1),∆1X(k1, j1),∆1X(k2, j2),∆1X(k2, j2))

has a jointly Gaussian distribution with zero mean. In the Isserlis formula, we put
η1 = η2 = ∆1X(k1, j1), η3 = η4 = ∆1X(k2, j2) and get an equality(

E
(
(∆1X(k1, j1))

2
)
(∆1X(k2, j2))

2
)
− E (∆1X(k1, j1))

2
E (∆1X(k2, j2))

2
=

= 2 (E (∆1X(k1, j1)∆1X(k2, j2)))
2
.

From this equality and equality (12) the equality (10) follows. Similarly, the equality
(11) is proved. The Lemma is proved.

□

Lemma 3.3. For the variance of the statistic S
(1)
n , the following upper estimate holds:

• for H ∈
(
0, 1

2

)
:

V arS(1)
n ≤ 8c2

n
+

16c2H2

n2

∞∑
p,q=1

1

(p2 + q2)
2−2H

;

• for H = 1
2 :

V arS(1)
n ≤ 8c2

n
+

16c2H2

n2

(
1 +

π

2
ln
(
n
√
2
))

;

• for H ∈
(
1
2 , 1
)
:

V arS(1)
n ≤ 8c2

n
+

16c2H2

n2

(
1 +

22H−2π

(4H − 2)n2−4H

)
.

Remark 3.1. A double series
∑∞

p,q=1
1

(p2+q2)γ converges for γ > 1.

Proof. Let us prove Lemma 3.3. For a natural number n, we put Cn = {1, 2, . . . , n}4,
An =

{
(k1, j1, k2, j2) ∈ Cn

∣∣|k2 − k1| ≤ 1 or |j2 − j1| = 0
}
,

Bn =
{
(k1, j1, k2, j2) ∈ Cn

∣∣|k2 − k1| ≥ 2 or |j2 − j1| ≥ 1
}
.

Note that An ∪ Bn = Cn, An ∩ Bn = ∅. Denote by card (M) the number of elements
of the finite set M . Let us count the number of elements of the set Bn. We have:

card
{
(k1, k2) ∈ {1, 2, . . . , n}2

∣∣ |k2 − k1| ≥ 2
}
= n2 − 3n+ 2,

card
{
(j1, j2) ∈ {1, 2, . . . , n}2

∣∣ |j2 − j1| ≥ 1
}
= n2 − n,
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hence
card (Bn) = (n2 − 3n+ 2)(n2 − n),

card (An) = n4 − card (Bn) = 4n3 − 5n2 + 2n ≤ 4n3, n ≥ 1.

Divide the amount on the right–hand side of equation (10) into two amounts. The
first sum will include terms with summation indexes (k1, j1, k2, j2) ∈ An, and the second
sum with summation indexes (k1, j1, k2, j2) ∈ Bn:

V arS(1)
n =

2

n4

∑
(k1,j1,k2,j2)∈An

(E (∆1X(k1, j1)∆1X(k2, j2)))
2
+

(13) +
2

n4

∑
(k1,j1,k2,j2)∈Bn

(E (∆1X(k1, j1)∆1X(k2, j2)))
2
.

Let us apply the Cauchy–Buniakovsky inequality to estimate the first sum for the
mathematical expectation E (∆1X(k1, j1)∆1X(k2, j2)):

(E (∆1X(k1, j1)∆1X(k2, j2)))
2 ≤ E (∆1X(k1, j1))

2
E (∆1X(k2, j2))

2
.

In the proof of Lemma 3.1, it was established for every k, j ≥ 1 that E (∆1X(k, j))
2
=

c. Then
(E (∆1X(k1, j1)∆1X(k2, j2)))

2 ≤ c2

and

(14)
2

n4

∑
(k1,j1,k2,j2)∈An

(E (∆1X(k1, j1)∆1X(k2, j2)))
2 ≤ 2c2

n4
card (An) ≤

8c2

n
.

Estimation of the second sum of equality (13) is more complicated. First, we calculate
the expectation of the product of random variables ∆1X(k1, j1),∆1X(k2, j2), k, j ≥ 1.
Using formula (1) for the covariance function, we obtain:

E (∆1X(k1, j1)∆1X(k2, j2)) =

1∑
α,β=0

(−1)α+βE (∆1X(k1 − α, j1)∆1X(k2 − β, j2)) =

=
c

2

1∑
α,β=0

(−1)α+β
( (

(k1 − α)2 + j21
)H

+
(
(k2 − β)2 + j22

)H −

−
(
(k1 − α− k2 + β)2 + (j1 − j2)

2
)H )

=

=
c

2

( (
(k1 − k2 − 1)2 + (j1 − j2)

2
)H − 2

(
(k1 − k2)

2 + (j1 − j2)
2
)H

+

+
(
(k1 − k2 + 1)2 + (j1 − j2)

2
)H )

.

Further, ∑
(k1,j1,k2,j2)∈Bn

(E (∆1X(k1, j1)∆1X(k2, j2)))
2
=

=
c2

4

∑
(k1,j1,k2,j2)∈Bn

( (
(k1 − k2 − 1)2 + (j1 − j2)

2
)H − 2

(
(k1 − k2)

2 + (j1 − j2)
2
)H

+

(15) +
(
(k1 − k2 + 1)2 + (j1 − j2)

2
)H )2

.

For (k1, j1, k2, j2) ∈ Bn, let us put p = k1 − k2, q = j1 − j2; 2 ≤ |p| ≤ n − 1,
1 ≤ |q| ≤ n− 1. The system of equations{

k1 − k2 = p,

j1 − j2 = q
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with respect to (k1, j1, k2, j2) ∈ Bn has (n− |p|) · (n− |q|) solutions. Therefore

ΣBn
:=

∑
(k1,j1,k2,j2)∈Bn

(E (∆1X(k1, j1)∆1X(k2, j2)))
2
=

=
c2

2

n−1∑
|p|=2

n−1∑
|q|=1

(n− |p|) (n− |q|)
( (

(p− 1)2 + q2
)H − 2(p2 + q2)H+

+
(
(p+ 1)2 + q2

)H )2
= 2c2

n−1∑
p=2

n−1∑
q=1

(n− p) (n− q)
( (

(p− 1)2 + q2
)H −

(16) −2(p2 + q2)H +
(
(p+ 1)2 + q2

)H )2
.

The expression (
(p− 1)2 + q2

)H − 2(p2 + q2)H +
(
(p+ 1)2 + q2

)H
is an increment of the second order of the function f(x) = (x2 + q2)2H , x ≥ 1 on the
interval [p− 1, p+ 1]. Thus, there is an intermediate point θp ∈ (p− 1, p+ 1) such that

f(p− 1)− 2f(p) + f(p+ 1) = f ′′(θp).

A second derivative of the function f

(17) f ′′(x) = 2H
(
(2H − 1)x2 + q2

) (
x2 + q2

)H−2
, x ≥ 1.

It follows from equalities (15), (16) that

(18) ΣBn
= 8c2H2

n−1∑
p=2

n−1∑
q=1

(n− p) (n− q)

(
(2H − 1)θ2p + q2

)2(
θ2p + q2

)4−2H
.

Since n− p < n, n− q < n,
∣∣(2H − 1)θ2p + q2

∣∣ ≤ θ2p + q2, then

ΣBn ≤ 8c2H2n2
n−1∑
p=2

n−1∑
q=1

1(
θ2p + q2

)2−2H

≤ 8c2H2n2
n−1∑
p=2

n−1∑
q=1

1

((p− 1)2 + q2)
2−2H

≤

(19) ≤ 8c2H2n2
n−2∑
p=1

n−1∑
q=1

1

(p2 + q2)
2−2H

.

For H ∈
(
0, 1

2

)
, the double series

∑∞
p,q=1

1
(p2+q2)2−2H converges, since 2− 2H > 1. So,

in this case

(20) ΣBn
≤ 8c2H2n2

∞∑
p,q=1

1

(p2 + q2)
2−2H

.

Now let H ∈
[
1
2 , 1
)
. Then we have:

n−1∑
p,q=1

1

(p2 + q2)
2−2H

=
1

22−2H
+

n−1∑
p,q=1,
p+q>2

1

(p2 + q2)
2−2H

.

The first term on the right–hand side of the last equality does not exceed 1. We estimate
the second term using a double integral. We have:
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(21)

n−1∑
p,q=1,
p+q>2

1

(p2 + q2)
2−2H

≤
∫∫

1≤x2+y2≤2n2,
x≥0,y≥0

dxdy

(x2 + y2)
2−2H

.

We calculate the double integral in the right–hand side of inequality (21) using the
transition to the polar coordinate system. For H = 1

2 :

(22)

∫∫
1≤x2+y2≤2n2,

x≥0,y≥0

dxdy

x2 + y2
=

π

2

∫ n
√
2

1

dr

r
=

π

2
ln(n

√
2).

If H ∈
(
1
2 , 1
)
, then

(23)

∫∫
1≤x2+y2≤2n2,

x≥0,y≥0

dxdy

(x2 + y2)
2−2H

=
π

2

∫ n
√
2

1

dr

r3−4H
<

π

2
· 22H−1

4H − 2
· 1

n2−4H
.

From the relations (13), (14), (20)–(23) it follows the statement of Lemma 3.3. The
Lemma is proved. □

Corollary 3.1. The following upper bounds for the rate of convergence of the sequence

V arS
(1)
n hold:

• for H ∈
(
0, 3

4

]
:

V arS(1)
n = O

(
1

n

)
, n → ∞;

• for H ∈
(
3
4 , 1
)
:

V arS(1)
n = O

(
1

n4−4H

)
, n → ∞.

Lemma 3.4. The variance V arS
(2)
n satisfies the following inequality:

(24) V arS(2)
n ≤ 48c2

n
+

2c2K2

n2

∞∑
p,q=1

1

(p2 + q2)
2 , n ≥ 1,

where
K = 4 max

H∈[0,1]

(
H(1−H)(H2 − 7H + 11)

)
.

Proof. At the beginning, let us put Cn = {1, 2, . . . , n}4, n ≥ 1;

An =
{
(k1, j1, k2, j2) ∈ Cn

∣∣ |k2 − k1| ≤ 1 or |j2 − j1| ≤ 1
}
,

Bn =
{
(k1, j1, k2, j2) ∈ Cn

∣∣ |k2 − k1| ≥ 2 or |j2 − j1| ≥ 2
}
.

Note that An ∪ Bn = Cn, An ∩ Bn = ∅. Let card (M) be the number of elements of
the finite set M . Let us count the number of elements of the set Bn. Since

card
{
(k1, k2) ∈ {1, 2, . . . , n}2

∣∣|k2 − k1| ≥ 2
}
= n2 − 3n+ 2,

then
card (Bn) = (n2 − 3n+ 2)2,

card (An) = n4 − card (Bn) = (3n− 2)(2n2 − 3n+ 2) ≤ 6n3, n ≥ 1.

Now, divide the amount on the right–hand side of equation (11) into two amounts.
The first sum will include terms with summation indexes (k1, j1, k2, j2) ∈ An, and the
second sum with summation indexes (k1, j1, k2, j2) ∈ Bn:

V arS(2)
n =

2

n4

∑
(k1,j1,k2,j2)∈An

(E (∆X(k1, j1)∆X(k2, j2)))
2
+
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(25) +
2

n4

∑
(k1,j1,k2,j2)∈Bn

(E (∆X(k1, j1)∆X(k2, j2)))
2
.

The first sum is estimated using the Cauchy–Buniakovsky inequality for mathematical
expectation E (∆X(k1, j1)∆X(k2, j2)):

(E (∆X(k1, j1)∆X(k2, j2)))
2 ≤ E (∆X(k1, j1))

2
E (∆X(k2, j2))

2
.

In the proof of Lemma 3.1, it was established that for every k, j ≥ 1:

E (∆X(k, j))
2
= 2c(2− 2H).

So
(E (∆X(k1, j1)∆X(k2, j2)))

2 ≤ 4c2(2− 2H)2

and

(26)
2

n4

∑
(k1,j1,k2,j2)∈An

(E (∆X(k1, j1)∆X(k2, j2)))
2 ≤ 8c2(2− 2H)2

n4
card (An) ≤

48c2

n
.

Let us proceed to the evaluation of the second sum of the right–hand side of equality
(25). First, let us calculate the mathematical expectation of the product of increments
∆X(k1, j1),∆X(k2, j2), k, j ≥ 1. We get:

E (∆X(k1, j1)∆X(k2, j2)) =

E

 1∑
α1,β1=0

(−1)α1+β1∆X(k1 − α1, j1 − β1)

1∑
α2,β2=0

(−1)α2+β2∆X(k2 − α2, j2 − β2)

 =

=
c

2

1∑
α1,β1=0

(−1)α1+β1

1∑
α2,β2=0

(−1)α2+β2

( (
(k1 − α1)

2 + (j1 − β1)
2
)H

+

+
(
(k2 − α2)

2 + (j2 − β2)
2
)H −

(
(k2 − k1 + α2 − α1)

2 + (j2 − j1 + β2 − β1)
2
)H )

=

= − c

2

1∑
α1,β1=0

(−1)α1+β1

1∑
α2,β2=0

(−1)α2+β2

((
(k2 − k1 + α2 − α1)

2+

+(j2 − j1 + β2 − β1)
2
)H)

.

Let us put p = k2 − k1, q = j2 − j1, 2 ≤ |p|, |q| ≤ n− 1. After summing similar terms
in the last expression for E (∆X(k1, j1)∆X(k2, j2)), we get:

E (∆X(k1, j1)∆X(k2, j2)) = − c

2

( (
(p− 1)2 + (q − 1)2

)H
+
(
(p− 1)2 + (q + 1)2

)H
+

+
(
(p+ 1)2 + (q − 1)2

)H
+
(
(p+ 1)2 + (q + 1)2

)H − 2
(
p2 + (q − 1)2

)H −

−2
(
p2 + (q + 1)2

)H − 2
(
(p− 1)2 + q2

)H − 2
(
(p+ 1)2 + q2

)H
+ 4

(
p2 + q2

)H )
.

Consider the function

f(x, y) =
(
x2 + y2

)H
, (x, y) ∈ [p− 1, p+ 1]× [q − 1, q + 1].

It is not difficult to verify by direct integration that

σ(p, q) :=

∫ q

q−1

dy

∫ y+1

y

dt

∫ p

p−1

dx

∫ x+1

x

∂4f(s, t)

∂s2∂t2
ds =

=
( (

(p− 1)2 + (q − 1)2
)H

+
(
(p− 1)2 + (q + 1)2

)H
+
(
(p+ 1)2 + (q − 1)2

)H
+

+
(
(p+ 1)2 + (q + 1)2

)H − 2
(
p2 + (q − 1)2

)H − 2
(
p2 + (q + 1)2

)H −

−2
(
(p− 1)2 + q2

)H − 2
(
(p+ 1)2 + q2

)H
+ 4

(
p2 + q2

)H )
.
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So,

E (∆X(k1, j1)∆X(k2, j2)) = − c

2

∫ q

q−1

dy

∫ y+1

y

dt

∫ p

p−1

dx

∫ x+1

x

∂4f(s, t)

∂s2∂t2
ds.

The partial derivative of the fourth order is equal to

∂4f(x, y)

∂x2∂y2
= 4H(H − 1)

(
x2 + y2

)H−2
+ 8H(H − 1)(H − 2)

(
x2 + y2

)H−2
+

+16x2y2H(H − 1)(H − 2)(H − 3)
(
x2 + y2

)H−4
.

To evaluate this partial derivative, we apply the inequality

x2y2 ≤ 1

4

(
x2 + y2

)2
, x, y ∈ R.

Then for p, q ≥ 2

max
(x,y)∈[p−1,p+1]×[q−1,q+1]

∣∣∣∣∂4f(x, y)

∂x2∂y2

∣∣∣∣ ≤
≤ 4H(1−H)(H2 − 7H + 11)

(
(p− 1)2 + (q − 1)2

)H−2 ≤

≤ K
(
(p− 1)2 + (q − 1)2

)H−2
,

where K = 4maxH∈[0,1]

(
H(1−H)(H2 − 7H + 11)

)
.

Therefore, for p, q ≥ 2

(σ(p, q))
2 ≤ K2

(
(p− 1)2 + (q − 1)2

)2H−4
.

Similarly as in the proof of Lemma 3.3, the next equality is justified∑
(k1,j1,k2,j2)∈Bn

(E (∆X(k1, j1)∆X(k2, j2)))
2
=

=
c2

4

n−1∑
|p|,|q|=2

(n− |p|) (n− |q|) (σ(p, q))2 .

Since the value σ(p, q) is invariant with respect to changing the signs of the variables
p, q, then ∑

(k1,j1,k2,j2)∈Bn

(E (∆X(k1, j1)∆X(k2, j2)))
2
=

= c2
n−1∑
p,q=2

(n− p) (n− q) (σ(p, q))
2
.

So,
2

n4

∑
(k1,j1,k2,j2)∈Bn

(E (∆X(k1, j1)∆X(k2, j2)))
2 ≤

(27) ≤ 2c2K2

n2

n−1∑
p,q=2

1

((p− 1)2 + (q − 1)2)
4−2H

<
2c2K2

n2

∞∑
p,q=1

1

(p2 + q2)
2 .

The inequality (24) follows from relations (25), (26), (27). The Lemma is proved.
□

Corollary 3.2. For all values of the Hurst parameter H ∈ (0, 1), the following upper

bound for the rate of convergence of the sequence of variances V arS
(2)
n holds:

V arS(2)
n = O

(
1

n

)
, n → ∞.
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4. Consistent estimates of the multiplicative parameter c and the Hurst
parameter H

Theorem 4.1. The statistics

Ĉn = S(1)
n and Ĥn = log2

(
2− S

(2)
n

2S
(1)
n

)
, n ≥ 1

are consistent estimators of the multiplicative parameter c and the Hurst parameter H,
respectively.

Proof. From Consequences 3.1 and 3.2 follow the following convergences

S(1)
n → c, S(2)

n → 2c(2− 2H)

with probability one as n → ∞. Then

Ĉn → c and Ĥn → log2

(
2− 2c(2− 2H)

2c

)
= H

with probability one as n → ∞. The Theorem is proved. □

Theorem 4.2. The statistics

C̃n = S
(1)
2n and H̃n = log2

(
2− S

(2)
2n

2S
(1)
2n

)
, n ≥ 1

are strongly consistent estimators of the multiplicative parameter c and the Hurst
parameter H, respectively.

Proof. The following upper bounds for the rate of convergence of the sequence S
(1)
2n , S

(2)
2n

follow from Consequences 3.1 and 3.2:

V arS
(1)
2n = O

(
1

2n

)
, n → ∞ for H ∈

(
0,

3

4

]
;

V arS
(1)
2n = O

(
1

2n(4−4H)

)
, n → ∞ for H ∈

(
3

4
, 1

)
;

V arS
(2)
2n = O

(
1

2n

)
, n → ∞ for all H ∈ (0, 1) .

From these relations follows the convergence of the series

∞∑
n=1

V arS
(1)
2n ,

∞∑
n=1

V arS
(2)
2n

for all H ∈ (0, 1). As a result, S
(1)
2n → c and S

(2)
2n → 2c(2 − 2H) with probability one as

n → ∞. Therefore, C̃n → c and H̃n = log2

(
2 − S

(2)
2n

2S
(1)
2n

)
→ H with probability one as

n → ∞. The Theorem is proved. □

5. Conclusion

In this article we obtained the consistent estimators of the multiplicative parameter c
and the Hurst parameter H of the covariance function of the multiparameter fractional
Brownian motion.
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